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1 Introduction

There is a large class of two-dimensional conformal field theories with N = (2, 2) super-

symmetry that can be described as infrared fixed points of abelian gauge theories [1]. An

interesting observable invariant under the renormalization group flow is the elliptic genus

of the theory [2–6]. Recently, the calculation of elliptic genera of these theories has been

developed further, in particular through the technique of localization [7–9]. The results

obtained so far have lead to elliptic genera that are holomorphic Jacobi forms with weight

zero and index determined by the central charge.
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In supersymmetric quantum mechanics, when there is a continuous spectrum, the

Witten index can become temperature dependent due to a difference in spectral densities

for bosons and fermions. (See e.g. [10] for a review.) The same temperature dependence

due to the continuum was observed in a two-dimensional index in [11]. Similarly when

the infrared fixed point exhibits a continuous spectrum, the elliptic genus can contain a

non-holomorphic contribution [12] due to a difference in spectral density between bosonic

and fermionic right-moving primaries [10, 13]. This difference is determined in terms of

the asymptotic supercharge [10, 14] and the continuum contribution is dictated by the

asymptotic geometry. One obtains as a result real Jacobi forms [15, 16] in physics [12, 13,

17]. A known example of this phenomenon is the cigar coset conformal field theory, which

permits a gauged linear sigma model description [18, 19]. The latter includes a Stückelberg

field linearly transforming under gauge transformations, and rendering the two-dimensional

gauge field massive.

Thus, applying localization techniques [20–22] to abelian two-dimensional gauge the-

ories including Stückelberg fields should lead to new features that allow for elliptic genera

that are real Jacobi forms. We will lay bare these new features, and thereby prove a con-

jectured formula [23] for elliptic genera of gauged linear sigma models containing a single

Stückelberg field. Various consistency checks on the conjecture were performed in [23],

such as reproducing the correct elliptic and modular properties, as well as recuperating

bound states of strings winding an isometric direction in the target space [14]. In this

paper we prove and extend these results by deriving formulas for the elliptic genera of

two-dimensional gauged linear sigma-models with multiple Stückelberg fields.

This paper is organized as follows. In section 2, we discuss the gauged linear sigma

models (GLSMs) that interest us. We review the infrared geometry associated to models

with a single Stückelberg field. We compare and contrast with the gauged linear sigma

models whose elliptic genera have already been calculated in the literature. In section 3

we show how one can evaluate the path integral of the gauged linear sigma model by

using localization in the chiral and vector multiplet sector, and Gaussian integration in the

Stückelberg sector. We perform the calculation first in a model with one Stückelberg field,

and then generalize to models with multiple Stückelberg fields. We compare with known

results. In section 4 we conclude and point out possible applications and generalizations.

2 Gauged linear sigma models with Stückelberg fields

In this section we review a class of gauged linear sigma models with one Stückelberg

field [18, 19], and its relation to non-linear sigma models [24]. Next, we recall gauged

linear sigma models with multiple Stückelberg fields.

2.1 One Stückelberg field

2.1.1 The gauged linear sigma model

The superspace action for the gauged linear sigma model of interest is given by [18]

S =
1

2π

∫
d2xd4θ

[
N∑
i=1

Φ̄ie
V Φi +

k

4
(P + P̄ + V )2 − 1

2e2
Σ̄Σ

]
. (2.1)
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The chiral multiplets Φi have unit charge under the U(1) gauge group, and the superfield

Σ is a twisted chiral superfield derived from the vector superfield V [1]. The superfield P

is also a chiral multiplet with the complex scalar p = p1 + ip2 as its lowest component.

While the field p1 is a real uncharged non-compact bosonic field, the field p2 is compact

with period 2π
√
α′ and we set α′ = 1 as in [18]. The field P is charged under the gauge

group additively. It is a Stückelberg field.

2.1.2 The infrared non-linear sigma model

With suitable linear dilaton boundary conditions [18], the theory flows in the infrared to a

conformal field theory which has N = (2, 2) supersymmetry and central charge

c = 3N

(
1 +

2N

k

)
. (2.2)

To lowest order in α′ these conformal field theories are described by a non-linear sigma

model on a 2N -dimensional Kähler manifold which has U(N) isometry and a linear dilaton

along a non-compact direction:

ds2 =
gN (Y )

2
dY 2 +

2

N2gN (Y )
(dψ +NAFS)2 + 2Y ds2

FS ,

Φ = −NY
k

.

(2.3)

The explicit form of gN (Y ) was found in [24].

2.2 Multiple Stückelberg fields

More general gauged linear sigma models exist [18] in which one considers a (U(1))M

gauge theory with N chiral fields Φi with charge Ria under the ath gauge group, and

M Stückelberg fields Pa. The superspace action is a simple generalization of the action

in (2.1):

S =
1

2π

∫
d2xd4θ

[
N∑
i=1

Φ̄ie
∑
aRiaVaΦi +

M∑
a=1

ka
4

(Pa + P̄a + Va)
2 −

M∑
a=1

1

2e2
a

|Σa|2
]
. (2.4)

The gauge transformations under the U(1)M are given by

Φi → ei
∑M
a=1RiaΛaΦi and Pa → Pa + iΛa . (2.5)

The central charge of the conformal field theory to which this theory flows is given by

c = 3

(
N +

M∑
a=1

2b2a
ka

)
. (2.6)

Here, ba is given by the sum over the charges of the chiral multiplets:

ba =

N∑
i=1

Ria . (2.7)

– 3 –



J
H
E
P
0
4
(
2
0
1
4
)
1
1
9

3 Elliptic genus through localization

In this section, we compute the elliptic genera of the class of models reviewed in section 2.

In the Hamiltonian formalism the elliptic genus is given by

χ = TrHR(−1)F qL0− c
24 q̄L̄0− c

24 zJ0 , (3.1)

where L0 and L̄0 are the right-moving and left-moving conformal dimensions in the CFT

respectively and J0 is the zero mode of the right-moving R-charge.

We will evaluate the trace (3.1) in the path integral formalism where the insertion of

(−1)F amounts to imposing periodic boundary conditions for bosonic as well as fermionic

fields. Furthermore, the insertion of zJ0 twists the periodic boundary conditions in a

manner that depends explicitly on the R-charge of the fields.

Exploiting the invariance of the elliptic genus under the renormalization group flow, the

computation can be carried out in the ultraviolet using the super-renormalizable gauged

linear sigma model description [1, 8]. The R-charges of the fields in the GLSM can be read

off from the explicit expression for the right-moving R-current in the GLSM realization of

the N = (2, 2) superconformal algebra constructed in [18]. Consequently, we can compute

the elliptic genus by evaluating the partition function of the ultraviolet gauged linear sigma

model with twisted boundary conditions using supersymmetric localization, as has been

done for various compact models in [7–9].

3.1 Preliminaries

In what follows we carry out the path integration of the GLSM described by the ac-

tion (2.1) with twisted boundary conditions using supersymmetric localization. To avoid

clutter, we present the computation for a single chiral multiplet Φ minimally coupled, with

gauge charge qΦ = 1, to a U(1) vector multiplet V which is rendered massive by a single

Stückelberg superfield P . The generalization to multiple chiral multiplets and multiple

massive vector multiplets is straightforward.

After integrating over the Grassmann odd superspace coordinates, the action (2.1)

takes the form1

S =
i

4π

∫
d2w

(
Lc.m. +

1

2e2
Lv.m. +

k

2
LSt.

)
, (3.2)

where the chiral multiplet, vector multiplet and Stückelberg multiplet Lagrangians are

given by

Lc.m. = φ̄
(
−D2

µ + σσ̄ + iD
)
φ+ F̄F − iψ̄

(
/D − σγ− − σ̄γ+

)
ψ + iψ̄λφ− iφ̄λ̄ψ , (3.3)

Lv.m. = F2 + ∂µσ∂
µσ̄ + D2 + iλ̄/∂λ , (3.4)

LSt. = ḠG+ σ̄σ +Dµp̄D
µp+ iD(p+ p̄)− iχ̄/∂χ− iλ̄χ+ iχ̄λ . (3.5)

By Dµ we denote the gauge covariant derivative which acts canonically on the chiral mul-

tiplet fields while its action on the on the Stückelberg scalar is given by

Dµp = ∂µp− iAµ . (3.6)

1Note that the volume form in the complex coordinates {w, w̄} takes the form d2x = i
2
d2w.
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The action (3.2) is invariant under N = (2, 2) super-Poincaré transformations generated

by the Dirac spinor supercharges Q and Q̄. The explicit realization of the supersymmetry

algebra on the fields can be found in appendix A.

3.1.1 Localization supercharge

To compute the elliptic genus via supersymmetric localization we choose the supercharge

Q = −Q1 − Q̄1 , (3.7)

whose action on the fields is parametrized by the Grassmann even spinors

ε = ε̄ =

(
1

0

)
. (3.8)

This supercharge satisfies the algebra

Q2 = −2i∂w̄ + 2iδG(Aw̄) (3.9)

where δG denotes a gauge transformation. One can easily show that the vector multiplet

and chiral multiplet Lagrangians are, up to total derivatives, Q-exact, i.e.

Lv.m. = QVv.m. + ∂µJ
µ
v.m. ,

Lc.m. = QVc.m. + ∂µJ
µ
c.m. .

(3.10)

The explicit form of Vv.m. and Vc.m. can be found in appendix B.

In contrast to the vector and chiral multiplets, the action governing the dynamics of the

Stückelberg field P is not globally Q-exact2 [18]. This must be the case since the coefficient

of the P -field action, k, appears explicitly in the expression for the central charge (2.2).

Therefore to obtain the contribution from the Stückelberg multiplet to the path integral

via supersymmetric localization, a non-degenerate and globally Q-exact deformation term

would need to be constructed. This, however, is not necessary since the Stückelberg La-

grangian (3.5) is quadratic, leading to a Gaussian path integral which can be explicitly

carried out.

Consequently, exploiting the Q-exactness of the vector multiplet and chiral multiplet

Lagrangians, we may rescale them independently by positive real numbers leaving the

path integral invariant. While rescaling the chiral multiplet amounts to the replacement

Lc.m. → tLc.m., rescaling the vector multiplet Lagrangian is equivalent to rescaling of the

Yang-Mills coupling e. In particular, we may compute the path integral in the large t

and 1/e2 limit, keeping the product te2 finite. The saddle-point approximation is one-loop

exact.

2Locally, one can write the Stückelberg action as QΛ, however, one can check that Λ does not fall off

fast enough near infinity to be in the Hilbert space of the theory.
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3.1.2 R-charges and twisted boundary conditions

In order to compute the path integral corresponding to the elliptic genus (3.1), we need to

identify the charge assignments of the GLSM fields under the right moving R-symmetry.

Using the explicit expression [18] for the corresponding current

jRw = −i
[
ψ̄1ψ1 +

k

2
χ̄1χ1 +

i

e2
σ̄∂σ − iDw(p− p̄)

]
,

jRw̄ = −i
[

1

2e2
λ̄2λ2 +

i

e2
σ̄∂̄σ − iDw̄(p− p̄)

]
,

(3.11)

yields the charge assignments

qRσ = qRλ2
= qRψ1

= qRχ1
= 1 , (3.12)

and the opposite charge for the barred fields. The zero mode of p2 also carries R-charge,

equal to − 1
k . In addition to the dynamical fields, supersymmetry also fixes the R-charges

of the auxiliary fields to be qF = qG = 1.

The R-charges above determine the boundary conditions that need to be imposed on

the GLSM path integral.3 Equivalently, the boundary conditions can be implemented via

weakly gauging the right moving R-symmetry. This amounts to turning on a background

gauge-field

aR =
v̄

2iτ2
dw − v

2iτ2
dw̄ (3.13)

for the R-symmetry with the constant parameter v satisfying z = e2πiv. The background

gauge field is incorporated into the theory via gauge covariantization

∂µ → ∂µ − δR(aR) . (3.14)

3.1.3 Gauge fixing and supersymmetric Faddeev-Popov ghosts

To impose the Lorentz gauge ∂µA
µ = 0 in the path integral in a supersymmetric way,

we introduce the Grassmann odd BRST operator QBRST, the gauge fixed localization

supercharge Q̂ = Q+QBRST and the ghost and anti-ghost doublets {c, a◦} and {c̄, b} such

that
QBRST = δG(c) ,

Q2
BRST = δG(a◦) ,

Q̂2 = −2i∂̄ + 2iδR(aR) + 2iδG(a◦) .

(3.15)

This fixes the supersymmetry transformations of the ghost and anti-ghost fields up to field

redefinitions.4 Note that the vector and chiral multiplet Lagrangians are also Q̂ exact by

virtue of the gauge invariance of Vv.m. and Vc.m.. We further add to the action the Q̂-exact

gauge fixing term

1

2e2
Q̂VG.F. =

1

2e2

[
(∂µA

µ)2 + (i∂µA
µ + b/2)2 − c̄∂2

µc− ic̄∂̄
(
c̄+ 2λ1 + 2λ̄1

)
− ib◦b− ic̄◦c+ ic̄c◦ − b̄◦ (a◦ − 2iAw̄)

]
,

(3.16)

3This is the method followed in [13] for the gauged Wess-Zumino-Witten model that describes the cigar

conformal field theory.
4See appendix B for details.
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where we have introduced the constant ghost doublets {b◦, c◦} and {b̄◦, c̄◦} in order to

remove the ghost zero-mode.4

3.2 Evaluation of the path integral

The path integral that we are interested in takes the form

χ =

∫
D[Φ, V, C, P ]e−SSt.− i

4π

∫
d2wQ̂V (3.17)

where

V = tVc.m. +
1

2e2
(Vv.m. + VG.F.) ≡ tVc.m. +

1

2e2
VG.F.

v.m. . (3.18)

As explained in section 3.1, the Q̂-exactness of Q̂V ensures that the path integral is inde-

pendent of the couplings t and e. We may therefore carry out the path integration in large

t and 1/e2 limit, while keeping te2 finite, where the saddle-point approximation is valid.

Consequently, we first have to extract the space of saddle points of Q̂V which we denote

by M. Explicitly, the chiral multiplet and the gauge fixed vector multiplet terms in Q̂V
are given by

Q̂Vc.m. = F̄F +Dµφ̄Dµφ+ φ̄(σ̄σ + iD)φ− 2iψ̄2Dwψ2 + 2iψ̄1(Dw̄ − iaRw̄)ψ1

+ iψ̄2σ̄ψ1 − iψ̄1σψ2 + iφ̄(λ̄1ψ2 − λ̄2ψ1)− i(ψ̄1λ2 − ψ̄2λ1)φ ,

Q̂VG.F
v.m. = ∂µAν∂µAν + D2 + b̃2 + (∂µ + iaµR)σ̄(∂µ − iaRµ )σ − ib◦b− b̄◦ (a◦ − 2iAw̄)

− 2iλ̄1∂̄λ1 + 2iλ̄2(∂ − iaRw)λ2 + ∂µc̄∂µc− ic̄∂̄
(
c̄+ 2λ1 + 2λ̄1

)
− ic̄◦c+ ic̄c◦ ,

(3.19)

where b̃ = b/2 + i∂µA
µ. Before we look for the space of saddle points M, note that the

constant ghost multiplet fields {c◦, c̄◦, b◦, b̄◦} appear as Lagrange multipliers and can be

integrated out. This yields a delta function for the ghost zero-modes effectively removing

them from the spectrum. The only remaining fermionic zero-mode is λ1 = λ0, whereas the

space of bosonic zero modes can be identified with the first De Rham cohomology of the

torus and can be parametrized by a constant parameter u as

A =
ū

2iτ2
dw − u

2iτ2
dw̄ . (3.20)

We remark that the bosonic superpartner of the fermionic zero-mode λ0 is the constant

mode of the vector multiplet auxiliary field, D0, and has to be treated separately. The space

of saddle-points is therefore parametrized by {D0, u, ū, λ0, λ̄0}. We normalize all bosonic

and fermionic zero modes to have unit norm when Gaussian wavefunctions are integrated

over the torus worldsheet. With this in mind, the partition function (3.17) reduces to the

Gaussian path integral

χ =

∫
d2u

2iτ2

∫
dD0

∫
d2λ0

∫
D[P ]

∫
D̂[eV, eC, t−1/2Φ]e−SSt.|M− i

4π

∫
d2wQ̂V|quad M (3.21)

where D̂[eV, eC, t−1/2Φ] denotes the path integral measure with the zero-modes removed.

Here Q̂V|quad M is the quadratic action for the fluctuations of order e and order t−1/2 for the

– 7 –
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vector multiplet and chiral multiplet fields respectively. The integral over u is performed

over the whole of the complex plane. The origin of this plane is on the one hand the torus

of holonomies of the gauge field, and on the other hand the winding modes of the compact

boson p2 (the imaginary part of the Stückelberg field) on the toroidal worldsheet. The

latter can be soaked up into the holonomy variable u such that the integral indeed covers

the complex plane once.

The Stückelberg Lagrangian evaluated on the saddle points M is given by

LSt.

∣∣∣
M

= |G|2 + 4|∂p1|2 + 4

∣∣∣∣∂p2 −
ū− v̄/k

2iτ2

∣∣∣∣2 + 2iχ̄1

(
∂̄ +

v

2τ2

)
χ1 − 2iχ̄2∂χ2

+ 2iDp1 + iχ̄2λ0 + iλ̄0χ2 .

(3.22)

Note that the kinetic term for the Stückelberg multiplet is not canonically normalized due

to the factor of k out front in equation (3.2). To this end we rescale each field in the

Stückelberg multiplet by
√
k. This allows us to define a canonical measure in the path

integral. With this rescaling, a few things have to be kept in mind: firstly, the periodicity

of the imaginary part of the Stückelberg field, p2, becomes 2π
√
k. Secondly, the quadratic

terms involving the zero-modes of the vector multiplet fields acquire an overall factor
√
k.

The first integral to carry out is over the fermionic zero modes. To perform this

integral, we isolate all the terms that depend on λ0:∫
d2λ0e

1
4π

∫
d2w(φ̄λ̄0ψ2+ψ̄2λ0φ+

√
kχ̄2λ0+

√
kλ̄0χ2) . (3.23)

We pause here to point out an important difference with earlier calculations of the elliptic

genera of gauged linear sigma models [7–9]. This involves the coupling of the gaugino

zero modes with the fermionic partners χ2 of the Stückelberg field p. In the path integral

over the P multiplet, we also have to soak up the fermionic zero modes of χ2, as can be

seen from the Lagrangian in (3.22). Therefore, on expanding the zero mode part of the

Lagrangian, the only term that contributes is the quartic term in the fermions and that

leads to a factor of k.

In the models with only chiral and vector multiplets [9], one obtains rather a four-point

correlator involving the chiral multiplet fields. The further coupling to the P -multiplet

determines the fact that another correlator is to be evaluated in the chiral multiplet sector,

which turns out to be just 〈1〉. The only coupling between the Stückelberg multiplet and

the vector multiplet that remains is the coupling to the zero mode of the auxiliary field

D. Separating out this integral, the result of doing the λ0 and χ0 zero mode integrals we

obtain

χ = k

∫
d2u

2iτ2

∫
dD0

∫
D̂[P ]e

−
∫
d2wLSt.

∣∣∣λ0=λ̄0=0 〈1〉free , (3.24)

where the expectation value is in the chiral and vector multiplet sector and the hat indicates

that the fermionic zero mode of the P -multiplet is excluded in the path integral. The free

partition function is well known and is given by [8]

〈1〉free = χv.m. χc.m., (3.25)

– 8 –
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where these are given by5

χv.m. =
d̂et(∂̄)

det
(
∂̄ + v

2τ2

) and χc.m. =
det
(
∂̄ + u+v

2τ2

)
det
(
∂̄ + v

2τ2

) . (3.26)

See appendix C for the explicit evaluation of the chiral multiplet contribution. The vector

multiplet contribution will naturally combine with the Stückelberg fields. Turning to the

latter, we have a product of functional determinants ∆i for each of the component fields.

For the field χ2, it is given by

∆̂χ2 = d̂et(∂) . (3.27)

The hat over the χ2 determinant denotes that the zero mode has been removed. The χ1

fermion is charged under the R-current and leads to

∆χ1 = det

(
∂̄ +

v

2τ2

)
. (3.28)

Let us consider the field p1, the real part of p. It has a bosonic zero mode and has to be

treated carefully. Taking care of the coupling of p1 to the auxiliary field D0, we find that∫
dD0 ∆p1 =

∫
dD0

∫
D[p1]e

∫
d2w[−D2

0+4p1(∂∂̄)p1−2i
√
kD0p1]

=
1

(d̂et(∂∂̄))
1
2

∫
dD0

∫
dp1,0e

−
∫
d2w(D2

0+2i
√
kD0p1,0)

=
1√
k

1

(d̂et(∂∂̄))
1
2

(3.29)

Therefore, up to constant factors up front we obtain just the square root of the inverse

determinant. The last component field left is the imaginary part p2 of the Stückelberg

field. This is a periodic variable with period 2π
√
k, on account of the earlier rescaling. It

is only the zero mode of this field that is charged under the gauge field and the R-current

while the non-zero modes are uncharged. The partition function for such a field has been

reviewed in [13] and is given by

∆p2 =

√
k

(d̂et(∂∂̄))
1
2

× e−
πk
τ2
|u− vk |

2

. (3.30)

The factor of
√
k arises from the radius of the compact direction [25]. Note that this

contribution is not holomorphic. The non-holomorphicity arises from the momentum and

winding modes along the compact direction. The Stückelberg field therefore contributes a

factor

χSt. =
det
(
∂̄ + v

2τ2

)
d̂et(∂̄)

e
−πk
τ2
|u− vk |

2

. (3.31)

5Strictly speaking we should write Pfaffians for the fermionic path integrals.
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A crucial point to note is that non-zero modes of the P multiplet have combined to produce

exactly the inverse of the contribution from the vector multiplet. This is as expected from

the supersymmetric Higgs mechanism. Combining all of the above factors, we find that

the path integral takes the form

χ(τ, v) = k

∫
d2u

2iτ2
χc.m.(τ, u, v) e

− kπ
τ2
|u− vk |

2

. (3.32)

Using the results in appendix C, one can write this as

χ(τ, v) = k

∫
d2u

2iτ2

θ11(τ, u+ v)

θ11(τ, u)
e
− kπ
τ2
|u− vk |

2

. (3.33)

Shifting the holonomy variable u by v
k and using the rewriting the u-integral in terms of

the variables (s1, s2) and momentum and winding numbers6 (m,w), we obtain

χ(τ, v) = k

∫ 1

0
ds1

∫ 1

0
ds2

θ11

(
τ, s1τ + s2 + v + v

k

)
θ11

(
τ, s1τ + s2 + v

k

) ∑
m,w

e−2πivwe
− kπ
τ2
|s1τ+s2+m+wτ |2

. (3.34)

This is exactly the elliptic genus of the cigar conformal field theory obtained in [13] by

doing the path integral of the gauged WZW model SL(2,R)/U(1).

3.3 Elliptic genera for models with multiple chiral fields

From the discussion in the preceding section, and especially equation (3.32), it is clear how

to obtain the elliptic genera of the models with more chiral multiplets. The interaction

Lagrangian that couples the Stückelberg field to the vector multiplet remains the same;

therefore the discussion regarding the fermionic zero modes also remains the same. Con-

sequently the correlator to be calculated in the chiral multiplet path integral continues to

be the identity. Therefore, we include the free partition function of a chiral multiplet in

equation (C.5) for each of the N chiral multiplets. The only difference is in the R-charge

of the Stückelberg field; from the discussion in [18], it is clear that the R-charge is given

by −N
k .

Putting all this together the path integral therefore is given by

χ(τ, v) = k

∫
d2u

2iτ2

[
θ11(τ, u+ v)

θ11(τ, u)

]N
e
− kπ
τ2
|u−Nvk |

2

. (3.35)

This is precisely the elliptic genus that was proposed in [23], on the basis of its modular

and elliptic properties as well as its coding of wound bound states [14] in the background

spacetime in (2.3). All properties are consistent with it being the elliptic genus of a con-

formal field theory with central charge c = 3N(1 + 2N/k). Indeed, we have now derived

this fact from first principles, through localization. As shown in [13, 23], it is also possible

to define a twisted elliptic genus by including chemical potentials for global symmetries; in

6A note about ranges: in [13], the conventions are such that the gauge holonomy variables (s1, s2) take

values between 0 and 1. It is possible to combine them along with the winding and momentum quantum

numbers (w,m) to obtain a complex holonomy variable u which takes values on the complex plane.
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this case these are the U(1)N phase rotations of each of the chiral multiplet fields Φi. The

resulting twisted genera take the form

χ(τ, v, βi) = k

∫
d2u

2iτ2

N∏
i=1

[
θ11(τ, u+ v + βi)

θ11(τ, u+ βi)

]
e
− kπ
τ2
|u−Nvk |

2

. (3.36)

These twisted genera were decomposed in holomorphic and remainder contributions in [23].

We refer to [23] for the calculation of the shadow and an interpretation of the remainder

term in terms of the asymptotic geometry.

3.4 Elliptic genera for models with multiple Stückelberg fields

In subsection 2.2 we discussed gauged linear sigma models with gauge groups U(1)M and

M Stückelberg fields. We specified the gauge charges Ria of all the chiral fields. In order

to write the formula for the elliptic genus, we need the R-charges of the component fields

as well. These can be read off from the R-current recorded in [18]. The fermions have

unit R-charge while the zero mode of the Pa field has charge − ba
ka

, where ba is given in

equation (2.7). Using the same logic as before, one can write down the elliptic genus of

such a theory as an integral over the M holonomies of the U(1)M gauge theory:

χ(τ, v) =

∫ M∏
a=1

ka
d2ua
2iτ2

N∏
i=1

[
θ11(τ,

∑M
a=1Riaua + v)

θ11(τ,
∑M

a=1Riaua)

]
e
−
∑M
a=1

kaπ
τ2

∣∣∣ua− baka v∣∣∣2 . (3.37)

One can further generalize this result by including chemical potentials for global symmetries

of the model. It would also be interesting to analyze the decomposition of this formula in

terms of holomorphic contributions and non-holomorphic terms that modularly covariantize

the contributions of right-moving ground states, following [12, 13, 17, 23]

4 Conclusions

We have shown that in the presence of Stückelberg superfields, we can still fruitfully apply

the technique of localization. The dynamics determines the observable to be calculated

by localization in the chiral and vector multiplet sectors. We have demonstrated that

the appearance of extra fermionic zero modes simplifies the observable to be calculated.

After applying localization to the chiral and vector multiplet sectors, we are left with a

Gaussian integration in the Stückelberg sector. Performing this path integral, one finds

that the non-zero modes of the Stückelberg multiplet cancel the contribution from the

vector multiplet, as one would expect from the supersymmetric Higgs mechanism. We

thereby have a derivation of the elliptic genera of gauged linear sigma models from first

principles. The associated models are non-compact and the elliptic genera are real Jacobi

forms.

We were thus able to prove, from first principles, a formula for elliptic genera of

asymptotic linear dilaton spaces conjectured in [23]. Moreover, we have generalized this

formula to abelian gauge theories in two dimensions with multiple Stückelberg fields.
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These models appear in the context of mirror symmetry in two dimensions [21, 26] and

in the worldsheet description of wrapped NS5 branes [19]. It will be interesting to verify

mirror symmetry at the level of the elliptic genera. Verifications of mirror symmetry in

tensor products and orbifolds of the cigar conformal field theory and minimal models were

performed in [27]. In order to check the mirror duality for the genera computed in this

paper, one has to calculate elliptic genera of non-compact Landau-Ginzburg models and

their orbifolds more generally then has been done hitherto.

Applying the calculation of these worldsheet indices to space-time string theory BPS

state counting, along the lines of [28–31], would be a further worthwhile endeavour. It

would also be interesting to find examples of non-holomorphic elliptic genera in higher

dimensions, perhaps by the addition of Stückelberg fields. Since the phenomenon of non-

holomorphic contributions to indices is generic for theories with continuous spectra, higher

dimensional manifestations are likely to be found.

Acknowledgments

We would like to thank Dan Israel, Suresh Nampuri and especially Jaume Gomis for in-

sightful discussions. S.A. would also like to thank the hospitality of Perimeter Institute

where part of this research was carried out. N.D. would like acknowledge support from the

Perimeter Institute. Research at Perimeter Institute is supported by the Government of

Canada through Industry Canada and by the Province of Ontario through the Ministry of

Research and Innovation.

A Supersymmetry variations and Lagrangians

In this appendix we record Lagrangians and supersymmetry variations of the fields. We

follow the notations and conventions of [32] regarding spinors and gamma matrices. We

choose a basis such that the two-dimensional γµ matrices coincide with the Pauli matrices

σ1,2. The chirality matrix is given by

γ3 = −iγ1γ2 = σ3 . (A.1)

This allows to define projection operators

γ± =
1

2
(1± γ3) , (A.2)

which we will use in the supersymmetry variations below. With this choice, if we consider

a two component Dirac spinor λ, with

λ =

(
λ1

λ2

)
, (A.3)

then the components λ1 and λ2 have definite chirality ±1 respectively.

– 12 –



J
H
E
P
0
4
(
2
0
1
4
)
1
1
9

A.1 Vector multiplet

The vector multiplet supersymmetry transformations are given by

δσ = ε̄γ−λ− εγ+λ̄

δσ̄ = ε̄γ+λ− εγ−λ̄
δλ = i

(
/∂σγ+ + /∂σ̄γ− + γ3F + iD

)
ε

δλ̄ = −i
(
/∂σγ− + /∂σ̄γ+ − γ3F + iD

)
ε̄

δAµ = − i
2

(
ε̄γµλ+ εγµλ̄

)
δD = − i

2

(
ε̄/∂λ− ε/∂λ̄

)
.

(A.4)

The Lagrangian governing the dynamics of the vector multiplet fields may be written as

Lv.m. =
1

2e2

(
F2 + ∂µσ∂

µσ̄ + D2 + iλ/∂λ̄
)

(A.5)

A.2 Chiral multiplet with minimal coupling

The supersymmetry transformations for a chiral multiplet with minimal coupling to the

vector multiplet are

δφ = ε̄ψ

δφ̄ = εψ̄

δψ = i
(
/Dφ+ σφγ+ + σ̄φγ−

)
ε+ ε̄F

δψ̄ = i
(
/Dφ̄+ φ̄σγ− + φ̄σ̄γ+

)
ε̄+ εF̄

δF = i (Dµψγ
µ + σψγ+ + σ̄ψγ− + λφ) ε

δF̄ = i
(
Dµψ̄γ

µ + ψ̄σγ− + ψ̄σ̄γ+ − φ̄λ̄
)
ε̄ ,

(A.6)

and the corresponding Lagrangian is given by

Lc.m. = φ̄
(
−D2

µ + σσ̄ + iD
)
φ+ F̄F − iψ̄

(
/D − σγ− − σ̄γ+

)
ψ + iψ̄λφ− iφ̄λ̄ψ . (A.7)

A.3 Chiral multiplet with Stückelberg coupling

The Stückelberg field is coupled to the gauge field via the covariant differentiation

Dµp = ∂µp− iAµ . (A.8)

The supersymmetry transformations then take the form

δp = ε̄χ

δp̄ = εχ̄

δχ = i
(
/Dp+ σγ+ + σ̄γ−

)
ε+ ε̄G

δχ̄ = i
(
/Dp̄+ σγ− + σ̄γ+

)
ε̄+ εḠ

δG = −i (∂µψγ
µ + λ) ε

δḠ = −i
(
∂µψ̄γ

µ − λ̄
)
ε̄ ,

(A.9)

and the Lagrangian is given by

LSt. = k
(
ḠG+ σ̄σ +Dµp̄D

µp− iχ̄/∂χ− iλ̄χ+ iχ̄λ+ iD(p+ p̄)
)
. (A.10)
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B Deformation Lagrangian

In this appendix, we discuss the supersymmetry variations of the fields under the localiza-

tion supercharge, the exactness of various Lagrangians, as well as the technical subtleties

in the localization scheme due to the gauge invariance of the model.

B.1 Vector multiplets and chiral multiplets

The supersymmetry transformation of the vector and chiral multiplet fields, including the

background R-current, take the form

Qσ = −λ2

Qσ̄ = λ̄2

QAw = i(λ1 + λ̄1)/2

QAw̄ = 0

QD = i∂̄(λ1 − λ̄1)

Qλ2 = 2i(∂̄ − iaRw̄)σ

Qλ̄2 = −2i(∂̄ + iaRw̄)σ̄

Qλ1 = iF −D

Qλ̄1 = iF + D

QF = −∂̄(λ1 + λ̄1)

(B.1)

and

Qφ = −ψ2

Qφ̄ = −ψ̄2

Qψ1 = F + iσφ

Qψ̄1 = F̄ + iφ̄σ̄

Qψ2 = 2iDw̄φ

Qψ̄2 = 2iDw̄φ̄

QF = −2i(Dw̄ − iaRw̄)ψ1 + iσψ2 + iλ2φ

QF̄ = −2i(Dw̄ + iaRw̄)ψ̄1 + iψ̄2σ̄ − iφ̄λ̄2 .

(B.2)

It is straightforward to check that the Lagrangian of the vector and chiral multiplets,

including the background R-current couplings, is Q-exact: if L̃ = Lv.m. + Lc.m., then

L̃ = QV where

V = Vv.m. + Vc.m. , (B.3)

and

Vv.m. =
1

4g2

[
λ̄1(D− iF)− λ1(D + iF) + 2iλ̄2 (∂ − iaRw)σ − 2iλ2 (∂ + iaRw)σ̄

]
(B.4)

Vc.m. =
1

2

[
ψ̄1(F − iσφ) + (F̄ − iφ̄σ̄)ψ1 − 2iψ̄2Dwφ− 2iDwφ̄ ψ2 − iφ̄(λ1 − λ̄1)φ

]
(B.5)

B.2 Gauge fixing and ghosts

To implement the gauge fixing condition we define the (Grassmann odd) BRST operator

QBRST and the ghost multiplet {c, a} such that

QBRST = iqGc

Q2
BRST = iqGa .

(B.6)

To fix the supersymmetry transformation rules for the ghost multiplet, we require that the

supercharge Q̂ = Q+QBRST satisfy the algebra

Q̂2 = −2i∂̄ − 2qRa
R
w̄ − 2qGa . (B.7)
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This requires the ghost field c to transform as

Q̂c = a− 2iAw̄ , (B.8)

while the bosonic superpartner of the ghost field, a, must be supersymmetric, i.e. Q̂a = 0.

We next define the anti-ghost multiplet {c̄, b} and the constant (zero-mode) multiplets

{a◦, c◦} and {c̄◦, b◦} and add to our deformation term the gauge fixing terms

Q̂VG.F. =
1

2
Q̂
(
c̄G − i

4
c̄b− c̄a◦ + b◦c

)
=

1

2

(
G2 + (iG + b/2)2 − c̄Q̂G − i

2
c̄∂̄c̄+ iba◦ − ic̄c◦ + ic̄◦c+ b◦(a− 2iAw̄)

)
,

(B.9)

where we have used the supersymmetry transformations

Q̂c̄ = ib

Q̂b = −2∂̄c̄

Q̂c◦ = 0

Q̂a◦ = ic◦

Q̂c̄◦ = 0

Q̂b◦ = ic̄◦ .
(B.10)

In Lorentz gauge, the ghost deformation term therefore has the form

Q̂VG.F. =
1

2

(
(∂µA

µ)2 + (b/2 + i∂µA
µ)2 − 4c̄∂∂̄c− ic̄∂̄

(
c̄+ 2λ1 + 2λ̄1

)
+ iba◦ − ic̄c◦ + ic̄◦c+ b◦(a− 2iAw̄)

)
.

(B.11)

C Product representation of theta functions

In this appendix, we record some formulas for calculating functional determinants of free

fields with twisted boundary conditions on the torus, and their representation in terms of

θ functions. The free (twisted) path integral of the chiral multiplets which we encountered

in the main text can be put in the form

χc.m. =
det
(
∂̄ + u+v

2τ2

)
det
(
∂̄ + v

2τ2

) (C.1)

We will diagonalize these differential operators on the torus by using the following infinite

set of functions:

fr,s(w, w̄) =
1

2iτ2
((r + sτ)w̄ − (r + sτ̄)w) , (C.2)

where r, s ∈ Z. One can check that Ψr,s = eifr,s is single valued under the transformations

w → w + 2π w → w + 2πτ . (C.3)

Using this basis, it is clear that the ratio of determinants takes form of an infinite product

χc.m. =
u+ v

v

∏
{r,s}6={0,0}

((r + sτ) + u+ v)

((r + sτ) + v)
. (C.4)
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The factor out front can be absorbed by including the (r, s) = (0, 0) in the infinite product.

One can check explicitly that this is a Jacobi form with a given weight and index. Using

this knowledge, one can rewrite the expression as

χc.m. =
∏
{r,s}

((r + sτ) + u+ v)

((r + sτ) + v)
=
θ11(τ, u+ v)

θ11(τ, v)
. (C.5)

Similar formulae are also used in [8].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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