
J
H
E
P
0
4
(
2
0
1
4
)
1
0
5

Published for SISSA by Springer

Received: February 18, 2014

Accepted: March 21, 2014

Published: April 15, 2014

Constraining N = 1 supergravity inflation with

non-minimal Kähler operators using δN formalism

Sayantan Choudhury

Physics and Applied Mathematics Unit, Indian Statistical Institute,

203 B.T. Road, Kolkata 700 108, India

E-mail: sayanphysicsisi@gmail.com

Abstract: In this paper I provide a general framework based on δN formalism to study the

features of unavoidable higher dimensional non-renormalizable Kähler operators for N = 1

supergravity (SUGRA) during primordial inflation from the combined constraint on non-

Gaussianity, sound speed and CMB dipolar asymmetry as obtained from the recent Planck

data. In particular I study the nonlinear evolution of cosmological perturbations on large

scales which enables us to compute the curvature perturbation, ζ, without solving the exact

perturbed field equations. Further I compute the non-Gaussian parameters fNL , τNL and

gNL for local type of non-Gaussianities and CMB dipolar asymmetry parameter, ACMB,

using the δN formalism for a generic class of sub-Planckian models induced by the Hubble-

induced corrections for a minimal supersymmetric D-flat direction where inflation occurs

at the point of inflection within the visible sector. Hence by using multi parameter scan

I constrain the non-minimal couplings appearing in non-renormalizable Kähler operators

within, O(1), for the speed of sound, 0.02 ≤ cs ≤ 1, and tensor to scalar, 10−22 ≤ r⋆ ≤ 0.12.

Finally applying all of these constraints I will fix the lower as well as the upper bound of

the non-Gaussian parameters within, O(1 − 5) ≤ fNL ≤ 8.5, O(75 − 150) ≤ τNL ≤ 2800

and O(17.4 − 34.7) ≤ gNL ≤ 648.2, and CMB dipolar asymmetry parameter within the
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1 Introduction

The primordial inflationary paradigm is a very rich idea to explain various aspects of the

early universe, which creates the perturbations and the matter. For recent developments

see refs. [1, 2]. Usually inflation prefers slow-rolling of a single scalar field on a flat potential,

which has unique predictions for the Cosmic Microwave Background (CMB) observables.

The induced cosmological perturbations are generically random Gaussian in nature with a

small tilt and running in the primordial spectrum which indicates that inflation must come

to an end in our patch of the universe. But a big issue may crop up in model discrimina-

tion and also in the removal of the degeneracy of cosmological parameters obtained from

CMB observations [3–6]. Non-Gaussianity has emerged as a powerful observational tool to

discriminate between different classes of inflationary models [7–11]. The Planck data show

no significant evidence in favour of primordial non-Gaussianity, the current limits [6] are

yet to achieve the high statistical accuracy expected from the single-field inflationary mod-

els and for this opportunities are galore for the detection of large non-Gaussianity from

various types of inflationary models. To achieve this goal, apart from the huge success

of cosmological linear perturbation theory, the general focus of the theoretical physicists
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has now shifted towards the study of nonlinear evolution of cosmological perturbations.

Typically any types of nonlinearities are expected to be small; but, that can be estimated

via non-Gaussian n-point correlations of cosmological perturbations. The so-called “δN

formalism” (where N being the number of e-foldings) [12–20] is a well accepted tool for

computing non-linear evolution of cosmological perturbations on large scales (k ≪ aH),

which is derived using the “separate universe” approach [15, 16, 21, 22]. Particularly, it

provides a fruitful technique to compute the expression for the curvature perturbation ζ

without explicitly solving the perturbed field equations from which the various local non-

Gaussian parameters, f local
NL , τ localNL , glocalNL and CMB dipolar asymmetry parameter [23–27],

ACMB are easily computable.1

We will be using the following constraints on the amplitude of the power spectrum, Ps,

spectral tilt, ns, tensor-to-scalar ratio, r, sound speed, cs, local type of non-Gaussianity,

f local
NL and τ localNL and CMB dipolar asymmetry from Planck data throughout the paper [4–

6, 28]:

ln(1010Ps) = 3.089+0.024
−0.027 ( at 2σ CL) , (1.1)

ns = 0.9603± 0.0073 ( at 2σ CL) , (1.2)

r ≤ 0.12 ( at 2σ CL) , (1.3)

0.02 ≤ cs ≤ 1 ( at 2σ CL) , (1.4)

f local
NL = 2.7± 5.8 ( at 1σ CL) , (1.5)

τ localNL ≤ 2800 ( at 2σ CL) , (1.6)

ACMB = 0.07± 0.02 ( at 2σ CL). (1.7)

In this paper I will concentrate our study for Hubble induced inflection point MSSM

inflation derived from various higher dimensional Planck scale suppressed non-minimal

Kähler operators in N = 1 supergravity (SUGRA) which satisfies the observable universe,

and it is well motivated for providing an example of visible sector inflation.

In section 2, I will briefly review the setup with one heavy and one light superfield

which are coupled via non-minimal interactions through Kähler potential. In section 3

I discuss very briefly the role of various types of Planck suppressed non-minimal Kähler

corrections to model a Hubble induced MSSM inflation for any D-flat directions. Hence

in section 4 I present a quantitaive analysis to compute the expression for the local types

of non-Gaussianin parameters and CMB dipolar asymmetry parameter which characterize

the bispectrum and trispectrum using the δN formalism. For the numerical estimations I

analyze the results in the context of two D-flat direction, L̃L̃ẽ and ũd̃d̃ within the framework

of MSSM inflation [29, 30].

1One can also compute all the non-gaussian parameters, f local
NL , τ local

NL , glocalNL and CMB dipolar asymmetry

parameter, ACMB using In-In formalism in the quantum regime. But the inflationary dynamics responsible

for the interactions between the modes occurs at the super-horizon scales within the effective theory setup

proposed in this paper. Here I use δN formalism as-(1) it perfectly holds good at the super-horizon scales

and (2) are also independent of any kind of intrinsic non-Gaussianities generated at the scale of horizon

crossing.
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2 Planck suppressed non-minimal Kähler operators within N = 1 SUGRA

2.1 The superpotential

In this section I concentrate on two sectors; heavy hidden sector denoted by the superfield

S, and the light visible sector denoted by Φ where they interact only via gravitation.

Specifically the inflaton superfield Φ is made up of D-flat direction within MSSM and they

are usually lifted by the F -term [31] of the non-renormalizable operators as appearing in

the superpotential. In the present setup for the simplest situation I start with the following

simplified expression for the superpotential made up of the superfields S and Φ as given by:

W (Φ, S) = W (Φ) +W (S) =
λΦn

nMn−3
p

+
Ms

2
S2 , (2.1)

where for MSSM D-flat directions, n ≥ 3 (In the present context n characterizes the di-

mension of the non-renormalizable operator) and the coupling, λ ∼ O(1). The scale Ms

characterizes the scale of heavy physics which belongs to the hidden sector of the effective

theory. Furthermore, I will assume that the VEV, 〈s〉 = Ms ≤ Mp and 〈φ〉 = φ0 ≤ Mp,

where both s and φ are fields corresponding to the super field S and Φ. We also concen-

trate on two MSSM flat directions, L̃L̃ẽ and ũd̃d̃, which can drive inflation with n = 6

via R-parity invariant (L̃L̃ẽ)(L̃L̃ẽ)/M3
p and (ũd̃d̃)(ũd̃d̃)/M3

p operators in the visible sector,

which are lifted by themselves [32–34], where ũ, d̃ denote the right handed squarks, and L̃

denotes that left handed sleptons and ẽ denotes the right handed slepton.

2.2 The Kähler potential

In this paper I consider the following simplest choice of the holomorphic Kähler potential

which produces minimal kinetic term, and the Kähler correction of the form:

K(s, φ, s†, φ†) = s†s+ φ†φ︸ ︷︷ ︸
minimal part

+ δK︸︷︷︸
non−miniml part

, (2.2)

where δK represent the higher order non-minimal Kähler corrections which are extremely

hard to compute from the original string theory background. in a more generalized pre-

scription such corrections allow the mixing between the hidden sector heavy fields and the

soft SUSY breaking visible sector MSSM fields. Using eq. (2.2) the most general N = 1

SUGRA kinetic term for (s, φ) field can be written in presence of the non-minimal Kähler

corrections through the Kähler metric as:

LKin =

(
1 +

∂δK

∂φ∂φ†

)
(∂µφ

†)(∂µφ) +

(
1 +

∂δK

∂s∂s†

)
(∂µs

†)(∂µs)

+

(
∂δK

∂φ∂s†

)
(∂µs

†)(∂µφ) +

(
∂δK

∂s∂φ†

)
(∂µφ

†)(∂µs).
(2.3)
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Figure 1. Schematic representation of effective field theory setup within N = 1 SUGRA setup in

presence of non-minimal Kähler interaction. In the final stepN = 1 SUGRA inflation is governed by

the light inflaton field φ which belongs to the soft SUSY breaking MSSM sector. Additionally, the

sinusoidally time dependent dynamical heavy field s always triggers the dynamics of the inflationary

framework as the VEV, 〈s〉 = Ms( 6= 0) < Mp via the Hubble induced correction 〈V (s)〉 = M4
s and

non-minimal interactions a, b, c, d as appearing in the aH (A-term) and cH (mass term) in the

SUGRA induced MSSM inflation.

In this paper I consider the following gauge invariant non-minimal Planck scale suppressed

Kähler operators within N = 1 SUGRA [32–36]:

δK(1) =
a

M2
p

φ†φs†s+ h.c.+ · · · , (2.4)

δK(2) =
b

2Mp
s†φφ+ h.c.+ · · · , (2.5)

δK(3) =
c

4M2
p

s†s†φφ+ h.c.+ · · · , (2.6)

δK(4) =
d

Mp
sφ†φ+ h.c.+ · · · , (2.7)
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where a, b, c, d are dimensionless non-minimal coupling parameters. The · · · contain

higher order non minimal terms which has been ignored in this paper. In figure 1 let me

have shown the schematic picture of the total effective field theory setup within N = 1

SUGRA in presence of non-minimal Kähler interaction.

3 Modeling MSSM inflation from light & heavy sector

In this section let me consider a situation where inflation occurs via the slow roll of φ field

within an MSSM vacuum with a gauge enhanced symmetry, where the entire electroweak

symmetry is completely restored. Let me imagine a physical situation where the heavy

field is coherently oscillating around a VEV, 〈s〉 ∼ Ms, during the initial phase of inflation,

s(t) = Ms +Ms sin(Mst) (3.1)

which arises quite naturally from the hidden sector string moduli field and is coherently

oscillating before being damped away by the phase of inflation. The contribution to the

potential due to the time dependent oscillating heavy field, with an effective mass Ms ≫
Hinf , is averaged over a full cycle (0 < tosc < H−1

inf ) is given by:

〈V (s)〉 ≈ M2
s 〈s2(t)〉 ∼ H2M2

p . (3.2)

Let me now concentrate on the Hubble induced potential when V (s) = 3H2M2
p ∼

M2
s |s|2, in which case the contributions from the Hubble-induced terms are important

compared to the soft SUSY breaking mass, mφ, and the A term for all the cases mentioned

in eq. (2.4)–(2.7). Consequently the potential is dominated by a single scale, i.e. H ∼
Hinf , [37]

V (φ) = V (s) + cHH2|φ|2 − aHHφn

nMn−3
p

+
|φ|2(n−1)

M
2(n−3)
p

, (3.3)

where I have taken λ = 1 and, the Hubble-induced mass parameter cH and A-term aH ,2

for s ≪ Mp can be expressed in terms of the non-minimal couplings appearing in eq. (2.4).

Fortunately for this class of potential given by eq. (3.3), inflection point inflation can be

characterized by a fine-tuning parameter, δ, defined as [38]:

a2H
8(n− 1)cH

= 1−
(
n− 2

2

)2

δ2 . (3.4)

Here the tuning parameter, |δ| is small enough,3 for which a point of inflection at the

position of the VEV of the inflaton 〈φ〉 = φ0 exists, so that the flatness condition V ′′ (φ0) =

0 holds good in the present context, with

φ0 =

(√
cH

(n− 1)
HMn−3

p

)1/n−2

+O(δ2). (3.5)

2In the present setup the Hubble induced mass term cH and the A-term aH can be expressed in terms

of the non-minimal parameters a, b, c, d. For more details see ref. [32–36] on these aspects.
3In the present context I consider that the tuning is of the order of δ ∼ 10−4
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For δ < 1, one can Taylor-expand the inflaton potential around an inflection point,

φ = φ0, as [39–44]:

V (φ) = α+ β(φ− φ0) + γ(φ− φ0)
3 + κ(φ− φ0)

4 + · · · , (3.6)

where α denotes the height of the potential, and the coefficients β, γ, κ determine the

shape of the potential in terms of the model parameters.4 Note that once the numerical

values of cH and H are specified, all the terms in the potential are determined.

For cs 6= 1, the upper bound on the numerical value of the Hubble parameter (H), the

scale of inflation ( 4
√
V∗) and the scale of the heavy string moduli field (Ms) are expressed as:

H ≤ 9.241× 1013 ×
√

r∗
0.12

c
ǫV

ǫV −1
s GeV , (3.7)

4
√
V∗ ≤ 1.96 × 1016 × 4

√
r∗
0.12

c
ǫV

2(ǫV −1)
s GeV , (3.8)

Ms ≤ 1.77 × 1016 × 4

√
r∗
0.12

c
ǫV

2(ǫV −1)
s GeV . (3.9)

where r∗ is the tensor-to-scalar ratio at the pivot scale of momentum k∗ ∼ 0.002Mpc−1.

4 δN formalism in presence of non-minimal Kähler operators for cs 6= 1

In this section I have used the δN formalism [12–20] to compute the local type of non-

Gaussianity, f local
NL from the prescribed setup for cs 6= 1. In the non-attractor regime, the

δN formalism shows various non trivial features which has to be taken into account during

explicit calculations. Once the solution reaches the attractor behaviour, the dominant

contribution comes from only on the perturbations of the scalar-field trajectories with

respect to the inflaton field value at the initial hypersurface, φ, as the velocity, φ̇, is

uniquely determined by φ. However, in the non-attractor regime of solution, both the

information from the field value φ and also φ̇ are required to determine the trajectory [45].

In order to compute the scalar-field trajectories explicitly, here I feel the need to solve

the equation of motion of the scalar field, which is in general a second-order differential

equation in a prescribed background. This can be solved by providing two initial condi-

tions on φ and φ̇ on the initial hypersurface. I have, therefore, integrated the equation of

motion to the final time, t = t∗. Here I have solved the equation of motion perturbatively

by expanding it around a particular trajectory given by φ ∝ eϑHt, where ϑ is time depen-

dent function in the generalized physical prescription. So I have used these background

solutions for the field trajectories to compute the perturbations of the number of e-folds

with respect to the initial field value and its time derivative. During the computation of

the trajectories let me assume here that the universe has already arrived at the adiabatic

limit via attractor phase by this epoch, or equivalently it can be stated that a typical phase

4The analytical expressions for the co-efficients appearing in the inflection point potential, α, β, γ and

κ, can be expressed in terms of the mass parameter cH , Hubble scale H and, the VEV of the inflaton φ0

and tuning parameter δ are explicitly mentioned in the appendix.
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transition phenomenona appears to an attractor phase at the time t = t∗. More specifically,

in the present context, I have assumed that the evolution of the universe is unique after

the value of the scalar field arrived at φ = φ∗ where it is mimicking the role of standard

clock, irrespective of the value of its velocity φ̇∗. Let me mention that only in this case δN

is equal to the final value of the comoving curvature perturbation ζ which is conserved at

t ≥ t∗. In figure 2 I have shown the schematic picture of the δN formalism.

4.1 General conventions

In the present context, further I have neglected the canonical kinetic term during the non-
attractor phase for simplicity. The background equation of motion for the four physical
situations are given by

0 =





(
φ̈+ 3Hφ̇

) [
1 +

aM2
s

2M2
p
(1 + sin(Mst))

2
]
+

2aM3
s

M2
p

[(
2φ̇+ 3Hφ

)
cos(Mst)

− φMs sin(Mst)] (1 + sin(Mst)) + V
′

(φ) for Case I

φ̈+ 3Hφ̇+
bM2

s

Mp

[(
φ̇+ 3Hφ

)
cos(Mst)−Msφ sin(Mst)

]
+ V

′

(φ) for Case II

φ̈+ 3Hφ̇+
cM3

s

2M2
p

[(
φ̇+ 3Hφ

)
cos(Mst) (1 + sin(Mst)) +Msφ

(
cos2(Mst)

− sin(Mst) (1 + sin(Mst)))] + V
′

(φ) for Case III(
φ̈+ 3Hφ̇

) [
1 + 2dMs

Mp
(1 + sin(Mst))

]
+

2dM2
s

Mp

[(
2φ̇+ 3Hφ

)
cos(Mst)

− φMs sin(Mst)] + V
′

(φ) for Case IV.
(4.1)

From the eq. (4.1), it is obvious that the determination of a general analytical solution is

too much complicated. To simplify the task here I consider a particular solution,

φ = φL ∝ eϑHt ( i.e. φ = φL(N) = φ∗e
−ϑN ), (4.2)

and further my prime objective is to obtain a more generalized solution for the background

up to the second order in perturbations around this particular solution. Here I also assume

that the non-attractor phase ends when the inflaton field value is achieved at φ = φ∗. Let

me define a perturbative parameter,

∆ ≡ φ− φ0 − φL = ∆1 +∆2 + · · · ,

which represents the difference between the true background solution and the reference

solution to solve the background eq. (4.1) perturbatively. Here ∆1 and ∆2 are the general

linearized and second order perturbative solution of the background field equations. The

· · · contribution comes from the higher order perturbation scenario which I will neglect for

further computation.

4.2 Linearized perturbation

Let me consider the contribution from the linear perturbation, ∆1. Consequently in the

leading order the background linearized perturbative equation of motion takes the following

– 7 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
5

form:

0 ≈





(
∆̈1 + 3H∆̇1 + ϑH2(3 + ϑ)φL

) [
1 + aM2

s

4M2
p

]
− aM3

s

M2
p
(∆1 + φL)Ms + β for Case I

∆̈1 + 3H∆̇1 + ϑH2(3 + ϑ)φL + β for Case II

∆̈1 + 3H∆̇1 + ϑH2(3 + ϑ)φL + β for Case III(
∆̈1 + 3H∆̇1 + ϑH2(3 + ϑ)φL

) [
1 + 2dMs

Mp

]
+ β for Case IV.

(4.3)
where I have neglect the higher powers of ∆1 in the linearized approximation. The general
solution is given by

∆1 ≈





C1e

1
2



−3H−

√√√√
4aM4

s

M2
p

(

1+
aM2

s
4M2

p

)+9H2



t

+C2e

1
2



−3H+

√√√√
4aM4

s

M2
p

(

1+
aM2

s
4M2

p

)+9H2



t

+ φ∗e
ϑHt − βM2

p

aM4
s

for Case I

C3 − C4

3H
e−3Ht − βt

3H
− φ∗e

ϑHt for Case II

C5 − C6

3H
e−3Ht − βt

3H
− φ∗e

ϑHt for Case III

C7 − C8

3H
e−3Ht − βt

3H
(
1+

2dMs
Mp

) − φ∗e
ϑHt for Case IV.

(4.4)

where Ci∀i(= 1, 2, . . . , 8) are dimensionful arbitrary integration constants which can be

fixed by imposing the boundary conditions.

4.3 Second-order perturbation

Next I have considered the contribution from the second-order perturbation, ∆2. Conse-
quently in the leading order the background second-order perturbative equation of motion
takes the following form:

Πs ≈





(
∆̈2 + 3H∆̇2 + ϑH2(3 + ϑ)φL

) [
1 +

aM2
s

4M2
p

]
− aM3

s

M2
p
(∆2 + φL)Ms + β for Case I

∆̈2 + 3H∆̇2 + ϑH2(3 + ϑ)φL + β for Case II

∆̈2 + 3H∆̇2 + ϑH2(3 + ϑ)φL + β for Case III(
∆̈2 + 3H∆̇2 + ϑH2(3 + ϑ)φL

) [
1 + 2dMs

Mp

]
+ β for Case IV.

(4.5)

where the source term, Πs, for the sub-Planckian Hubble induced inflection point inflation

within N = 1 SUGRA is given by

Πs = 3γ(∆1 + φL)
2 . (4.6)

Now to solve eq. (4.5) in presence of non-linear source term, let me assume that the
contribution from φL is sub-dominant. Consequently the general solution in presence of
second-order perturbation is given by:

∆2 ≈





G1e

1
2



−3H−

√√√√
4aM4

s

M2
p

(

1+
aM2

s
4M2

p

)+9H2



t

+G2e

1
2



−3H+

√√√√
4aM4

s

M2
p

(

1+
aM2

s
4M2

p

)+9H2



t

+Σs(t) for Case I

G5 − 12G6

H
e−3Ht + Ξs(t) for Case II

G5 − 12G6

H
e−3Ht +Ψs(t) for Case III

G7 − 12G8

H
e−3Ht +Θs(t) for Case IV.

(4.7)
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where the time dependent functions Σs(t),Ξs(t),Ψs(t) and Θs(t) are explicitly mentioned

in the appendix A. HereGi∀i(= 1, 2, . . . , 8) are dimensionful arbitrary integration constants

which can be fixed by imposing the boundary conditions.

4.4 δN at the final hypersurface

In the present context my prime objective is to compute the perturbations of the number of

e-folds, δN . The truncated background solution of φ up to the second-order perturbations

around the reference trajectory, φL ∝ e−ϑN in terms of N is given by,

φ = φ0 +





φ∗

1+Ĉ1+Ĉ2−
βM2

p

aφ∗M
4
s
+Ĝ1+Ĝ2+Σ̂s(0)

(
e−ϑN + ∆̂1(N) + ∆̂2(N)

)
for Case I

φ∗

1+Ĉ3−
Ĉ4
3H

+Ĝ3−
12Ĝ4
H

+Ξ̂s(0)

(
e−ϑN + ∆̂1(N) + ∆̂2(N)

)
for Case II

φ∗

1+Ĉ5−
Ĉ6
3H

+Ĝ5−
12Ĝ6
H

+Ψ̂s(0)

(
e−ϑN + ∆̂1(N) + ∆̂2(N)

)
for Case III

φ∗

1+Ĉ7−
Ĉ8
3H

+Ĝ7−
12Ĝ8
H

+Θ̂s(0)

(
e−ϑN + ∆̂1(N) + ∆̂2(N)

)
for Case IV.

,

(4.8)

where the symbol ̂ is introduced to rescale the integration constants as well as the per-

turbative solutions by φ∗. Here I have neglected the contribution from e−ϑN in ∆̂2(N) to

avoid over counting in the eq. (4.8). It is important to note that in the present context of

all these sets of scaled integration constants parameterizes different trajectories, and I have

set φ(0,Ŵk) = φ∗ for any value of Ŵk∀k = ([1, 2], [3, 4], [5, 6], [7, 8]) in accordance with the

assumption that the end of the non-attractor phase is determined only by the value of the

scalar field, φ = φ∗. Here Ŵk = Ĉk, Ĝk represent collection of all integration constants.

Further inverting eq. (4.8) for a fixed set of Ŵk, I have obtained N as a implicit

function of φ and Ŵk. Then the δN formula can be obtained by [46]:

δN = N(φ+ δφ,Ŵk)−N(φ, 0) =
∑

k

∑

n,m

1

n!m!
∂n
φn∂m

Ŵm
k

N(φ, 0)δφnŴm
k . (4.9)

Here I have introduced the shift in the inflaton field φ → φ+ δφ and the number of e-folds

N → N + δN on both sides of eq. (4.8) to compute δN iteratively. In the present context I

have obtained, perturbative solutions of the scalar-field trajectories around the particular

reference solution, φL = φ∗e
ϑHt, which are valid only when the perturbed trajectories

are not far away from the reference solution. Additionally, since I have neglected the sub-

dominant solution, ∆1 ∝ eϑHt, my approximation holds good only at sufficiently late times.

These imply that here I should choose the initial time as close as possible to the final time

for which N . 1. Then the simplest choice is to take the initial time to be infinitesimally

close to t = t∗.

Now perturbing the number of e-folds N up to the second order at the epoch t = t∗, I

get [46]:

ζ = δN = N,φδφ+
1

2
N,φφδφ

2 +
1

6
N,φφφδφ

3 + · · · . (4.10)

where I have used the Ŵ-independence of N at N = 0 for which, N
,Ŵk

= 0 = N
,ŴpŴq

.

Here · · · corresponds to the higher order contributions, which are negligibly small compared
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Figure 2. Diagrammatic representation of δN formalism. In this schematic picture Σ(ti) and

Σ(tf ) represent the initial and final hypersurface where time arrow flows from ti → tf .

to the leading order contributions. By taking the derivatives of both sides of eq. (4.8) and

setting N = 0 = Ŵk(= Ĉk, Ĝk)∀k at the end, my next task is to identify δφ∗ and

Ŵk(= Ĉk, Ĝk) which are actually generated from quantum fluctuations on flat slicing, δφ.

To serve this purpose let me consider the evolution of δφ on super-horizon scales. The shift

in the inflaton field can be expressed here as:

δφ(N) = δφ1(N) + δφ2(N) = φ∗

(
∆̂1(N) + ∆̂2(N)

)
(4.11)

where the subscript “1” and “2” represent the solution at the linear and the second order

respectively. It is important to note that both the solutions include the features of growing

and decaying mode. Now imposing the boundary condition from the end of the non-
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attractor phase, where N = 0, I get:

δφ1(0) = δφ1∗ = φ∗∆̂1(0) =





φ∗

(
Ĉ1 + Ĉ2 − βM2

p

aφ∗M4
s

)
for Case I

φ∗

(
Ĉ3 − Ĉ4

3H

)
for Case II

φ∗

(
Ĉ5 − Ĉ6

3H

)
for Case III

φ∗

(
Ĉ7 − Ĉ8

3H

)
for Case IV.

(4.12)

δφ2(0) = δφ2∗ = φ∗∆̂2(0) =





φ∗

(
Ĝ1 + Ĝ2 + Σ̂s(0)

)
for Case I

φ∗

(
Ĝ3 − 12Ĝ4

H + Ξ̂s(0)
)

for Case II

φ∗

(
Ĝ5 − 12Ĝ6

H + Ψ̂s(0)
)

for Case III

φ∗

(
Ĝ7 − 12Ĝ8

H + Θ̂s(0)
)

for Case IV.

(4.13)

from which I have obtained:

δφ∗ = δφ(0) = δφ1∗ + δφ2∗ = φ∗

(
∆̂1(0) + ∆̂2(0)

)
. (4.14)

Further neglecting the mixing between the solutions corresponding to the linearized

and second order perturbation, the analytical expression for δN can be expressed as:

ζ = δN = −(δφ1∗ + δφ2∗)

ϑφ∗
+

(δφ2
1∗ + δφ2

2∗)

2ϑφ2
∗

+ · · · (4.15)

4.5 Computation of local type of non-Gaussianity and CMB dipolar asymme-

try

The local type of non-Gausiianity is originally implemented as a position space expansion

of non-Gaussian fluctuations around Gaussian pertabations [47]:

ζ(x) = ζg(x) +
3

5
fNLζ

2
g (x) +

9

25
gNLζ

3
g (x) + · · · , (4.16)

where ζg(x) satisfies the Gaussian statistics. Here fNL, gNL, · · · are the non-Gaussian

estimators. However, the inflationary perturbation itself is implemented in the momentum

space and thus the momentum space correlators provide a clear picture of non-Gaussianity

compared to the isolated position space. Using eq. (4.16) in fourier space the three point

and the four point correlator can be expressed as [47]:

〈ζk1
ζk2

ζk3
〉 = (2π)7δ3(k1 + k2 + k3)

[
3f local

NL

10k31k
3
2

Ps(k1)Ps(k2) + (k2 ↔ k3) + (k1 ↔ k3)

]

(4.17)

〈ζk1
ζk2

ζk3
ζk4

〉 = (2π)9δ4(k1 + k2 + k3 + k4)


27glocalNL

100

3∑

i<j<p=1

Ps(ki)Ps(kj)Ps(kp)

(kikjkp)3

+
τ localNL

8

11∑

j<p,i 6=j,p=1

Ps(kij)Ps(kj)Ps(kp)

(kijkjkp)3




(4.18)
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My next job is to derive and to estimate the amount of the local type of non-Gaussianity

from the prescribed setup. Further using the results obtained for δN in the earlier section,

the non-Gaussian parameter corresponding to the local type of non-Gaussianity f local
NL ,5

glocalNL and τ localNL can be computed as:

f local
NL =

5

6

N,φφ

N2
,φ

+ · · · = 5ϑ

6
+ · · · (4.19)

τ localNL =
N2

,φφ

N4
,φ

+ · · · = ϑ2 + · · · (4.20)

glocalNL =
25

54

N,φφφ

N3
,φ

+ · · · = 25ϑ2

108
+ · · · (4.21)

where the parameter ϑ, appearing in all the physical situations, can be expressed in terms

of the sound speed (cs), potential dependent slow roll parameter (ǫV , ηV ) and the model

parameters (α, β, γ) as:

ϑ ≈
[
ηV

(
1 +

1

c2s

)2

+ ǫV

(
1− 1

c4s

)]
≈

[
6γφ∗M

2
p

α

(
1 +

1

c2s

)2

+
β2M2

p

2α2

(
1− 1

c4s

)]
.

(4.22)

where the sound speed cs can be expressed in terms of non-canonical Kähler corrections,

a, b, c, d and the scale of heavy field, Ms, as:

cs ≈



√√√√Σ1(t)−Σ2(t)− ˙̂

V

Σ1(t) +Σ3(t) +
˙̂
V



t=t∗

(4.23)

The dot denotes derivative w.r.t. physical time, t. Here V̂ = V (φ)− V (S) and the symbol

Σ = X,Y, Z,W , appearing for the four cases in eq. (4.23) are mentioned in the appendix.

Additionally, it is important to note that the well-known Suyama-Yamaguchi consis-

tency relation [48, 49] between the three and four point non-Gaussian parameters, f local
NL ,

τ localNL and glocalNL violates [50–53] in the present context due to the appearance of · · · terms in

eq. (4.19), (4.20), (4.21). As the contributions form · · · terms are positive, the consistency

relation is modified as:

glocalNL =
25

108
τ localNL =

9

25

(
f local
NL

)2
+ · · · . (4.24)

However, it is important to note that since · · · terms are small, the amount of violation is

also small.

Further using δN formalism, the CMB dipolar asymmetry parameter for single field

inflationary framework can be expressed as [54]:

ACMB =
1

4

∆Ps(k)

Ps(k)
≈ 1

2

∆(δN)

δN
=

3

5
f local
NL |N,φ∆φ|+ 27

50
glocalNL |N,φ∆φ|2 + · · · (4.25)

5In [46] the authors have shown that for a specific P (X,φ) theory with cs 6= 1 the non-Gaussian

parameter, f local
NL = 5

4

(

1 + 1
c2s

)

. In this paper I have obtained different result as the non-minimal Kähler

interactions within N = 1 SUGRA effective theory setup which is completely different compared to the

case studied in [46].
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where |N,φ∆φ| < 1 for which the perturbative expansion is valid here. In it the field

excursion ∆φ = φcmb − φe ≈ φ∗ − φe, can be expressed as [55, 56]:

|∆φ|
Mp

≈ 3

25
√
cs

√
r∗
0.12

∣∣∣∣
{

3

400

( r∗
0.12

)
− ηV (k⋆)

2
− 1

2

}∣∣∣∣ (4.26)

where φcmb ≈ φ∗ and φe be the value of the inflaton field at the horizon crossing and the end

of inflation respectively. Here r∗ be the tensor-to-scalar ratio at the pivot scale of momen-

tum, k∗ ∼ 0.002 Mpc−1. Hence substituting eq. (4.19), (4.20), (4.21) in eq. (4.25) I derive

the following simplified expression in terms of the tensor-to-scalar ratio, sound speed and:

ACMB =
1

2

|∆φ|
φ∗

+
1

8

( |∆φ|
φ∗

)2

+ · · ·

≈ 3Mp

50φ∗
√
cs

√
r⋆
0.12

∣∣∣∣∣

{
3

400

( r⋆
0.12

)
−

3γφ∗M
2
p

α
− 1

2

}∣∣∣∣∣+ · · ·
(4.27)

where |∆φ|
φ∗

< 1 in the present sub-Planckian setup.

4.6 Constraining local type of non-Gaussianity and CMB dipolar asymmetry

via multi parameter scanning

My present job is to now scan the parameter space for cH , aH with the help of, by fixing λ =

O(1) and δ ∼ 10−4. In order to satisfy the inflationary paradigm, the Planck observational

constraints, as stated in the introduction of the paper, I obtain the following constraints

on our parameters for Hinf ≥ mφ ∼ O(TeV):

cH ∼ O(10− 10−6) , (4.28)

aH ∼ O(30− 10−3) , (4.29)

Ms ∼ O(9.50× 1010 − 1.77× 1016) GeV , . (4.30)

Inflation would not occur outside the scanning region since, at least, one of the con-

straints would be violated. Note that for the above ranges, the VEV of the inflaton,

〈φ〉 = φ0, gets automatically fixed by eq. (3.5), in the sub-Planckian scale as:

φ0 ∼ O(1014 − 1017) GeV (4.31)

which bounds the tensor-to-scalar ratio within, 10−22 ≤ r∗ ≤ 0.12 for the present setup.

This analysis will further constrain the non-minimal Kähler coupling parameters a, b, c, d,6

appearing in the higher dimensional Planck scale suppressed opeartors within the follow-

ing range:

a ∼ O(1− 0.99) , (4.32)

b ∼ O(1− 0.92) , (4.33)

c ∼ O(0.3− 1) , (4.34)

d ∼ O(1− 0.5) . (4.35)

6The analytical expressions for the non-minimal coupling parameters, a, b, c, d can be expressed in terms

of the scale (VEV) of the heavy field Ms are explicitly mentioned in the appendix.
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(a) Case I
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(b) Case II
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(c) Case III
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(d) Case IV

Figure 3. Behaviour of the local type of non-Gaussian parameter f local
NL computed from the effective

theory of N = 1 supergravity with respect to the sound speed cs in the Hubble induced inflection

point inflationary regime, represented by H ≫ mφ. The shaded yellow region represents the allowed

parameter space for Hubble induced inflation which satisfies the combined Planck constraints on the

f local
NL (within 1σ CL) and sound speed cs (within 2σ CL). The red, blue coloured boundaries and

the bounded dark coloured regions are obtained from the scanning range of the scale of the of heavy

scalar degrees freedom Ms corresponds to the hidden sector, within the window 9.50×1010 GeV ≤
Ms ≤ 1.77×1016 GeV . The four distinctive features are obtained by varying the model parameters

of the effective theory of N = 1 SUGRA, cH , aH ,Ms and φ0, subject to the constraint as stated

in eq. (4.28)–(4.31). The overlapping region between the dark coloured and yellow region satisfied

the combined constraints on the f local
NL and cs within our proposed framework and the rest of the

regions are excluded.
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(a) Case I
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(b) Case II

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

cS

Τ
N

L
lo

ca
l

ΤNL
local vs cS plot

(c) Case III
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(d) Case IV

Figure 4. Behaviour of the local type of non-Gaussian parameter τ localNL computed from the effective

theory of N = 1 supergravity with respect to the sound speed cs in the Hubble induced inflationary

regime is represented by H ≫ mφ. The red and blue coloured boundaries are obtained from the

scanning range of the scale of the of heavy scalar degrees freedom Ms corresponds to the hidden

sector, within the window 9.50× 1010 GeV ≤ Ms ≤ 1.77× 1016 GeV . The four distinctive features

are obtained by varying the model parameters of the effective theory of N = 1 SUGRA, cH , aH ,Ms

and φ0, subject to the constraint as stated in eq. (4.28)–(4.31). The dark coloured region satisfied

the combined constraints on the f local
NL and cs within the proposed framework. As Planck puts an

upper bound, τ localNL ≤ 2800, the rest of the region above the τ localNL = 2800 line is excluded.
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Figure 5. Behaviour of the CMB dipolar asymmetry parameter ACMB computed from the effective

theory of N = 1 supergravity with respect to the tensor-to-scalar ratio r∗ at the pivot scale,

k∗ ∼ 0.002 Mpc−1 for the Hubble induced inflation. The red and blue coloured boundaries are

obtained by fixing the sound speed at cS = 0.02 and cS = 1. The four distinctive features are

obtained by varying the model parameters of the effective theory of N = 1 SUGRA, cH , aH ,Ms

and φ0 subject to the constraint as stated in eq. (4.28)–(4.31). The orange dark coloured region

satisfied the Planck constraint on the ACMB within the proposed framework. Here only the region

bounded by the red, blue and brown colour is the allowed one and the rest of the region is excluded

by the Planck data.
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In figure 3 and figure 4 I have shown the behaviour of the local type of non-Gaussian

parameter f local
NL and τ localNL with respect to the sound speed cs in the Hubble induced in-

flationary regime (H ≫ mφ). In figure 3, the shaded yellow region represent the allowed

parameter space for Hubble induced inflation which satisfies the combined Planck con-

straints on the f local
NL and cs. For all the four cases, the region above the f local

NL = 8.5 line

is observationally excluded by the Planck data. The four distinctive features are obtained

by varying the model parameters of the effective theory of N = 1 SUGRA, cH , aH and Ms

subject to the constraint as stated in eq. (4.28)–(4.31). As Planck puts an upper bound,

τ localNL ≤ 2800, the rest of the region above the τ localNL = 2800 line in figure 4 is excluded. In

the present setup I have obtained the following stringent bound on the f local
NL , τ localNL and

glocalNL within the following range:

5 ≤ f local
NL ≤ 8.5, 100 ≤ τ localNL ≤ 2800, 23.2 ≤ glocalNL ≤ 648.2 for Case I

1 ≤ f local
NL ≤ 8.5, 150 ≤ τ localNL ≤ 2800, 34.7 ≤ glocalNL ≤ 648.2 for Case II

5 ≤ f local
NL ≤ 8.5, 75 ≤ τ localNL ≤ 2800, 17.4 ≤ glocalNL ≤ 648.2 for Case III

2 ≤ f local
NL ≤ 8.5, 110 ≤ τ localNL ≤ 2800, 25.5 ≤ glocalNL ≤ 648.2 for Case IV.

(4.36)

Here the theoretical upper and lower bound on f local
NL ,7 satisfy both the constraints on

the f local
NL and cs observed by Planck data. Also it is important to note that, within this

prescribed framework, τ localNL is bounded by below for all the four cases and consequently

it is possible to put a stringent lower bound on τ localNL which satisfies the constraints on

τ localNL and cs both. Till date the observational results obtained from Planck do not give any

significant constraint on glocalNL . However in this paper I have provided a theoretical lower

and upper bound of glocalNL using the consistency relation between τ localNL and glocalNL as stated

in eq. (4.24).

Finally, in figure 5 I have shown the behaviour of the CMB dipolar asymmetry pa-

rameter ACMB with respect to the tensor-to-scalar ratio r∗ within, 10−22 ≤ r∗ ≤ 0.12,

at the pivot scale, k∗ ∼ 0.002 Mpc−1 for the Hubble induced inflation. Here the red

and blue coloured boundaries are obtained by fixing the sound speed at cS = 0.02 and

cS = 1. The orange dark coloured region satisfied the Planck constraint on the ACMB i.e.

0.05 ≤ ACMB ≤ 0.09,8 for 10−22 ≤ r∗ ≤ 0.12 within our proposed framework. In figure 5

only the region bounded by the red, blue and brown colour is the allowed one and the rest

of the region (ACMB < 0.02 and ACMB > 0.09) is excluded by the Planck data.

5 Conclusion

In this paper, I have shown that in any general class of N = 1 SUGRA inflationary

framework, the behaviour of Kähler potential in presence of non-minimal Kähler correc-

7In the prescribed setup the consistency relation between the non-Gaussian parameter f local
NL and the

spectral tilt ns [7], f local
NL ∼ 5

12
(1 − ns), does not hold as in the present setup sound speed, cs 6= 1 and

for such non-minimal N = 1 SUGRA setup, Planck data favours lower values of the sound speed (within

0.02 < cs < 1).
8The upper bound of the CMB dipolar asymmetry parameter (ACMB) can be expressed in terms of the

non-Gaussian parameter f local
NL through a consistency relation as [57], ACMB . 10−1f local

NL , which perfectly

holds good in the present effective theory setup.
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tions in effective theory setup are constrained via the non-minimal couplings of the non-

renormalizable gauge invariant Kähler higher dimensional Planck scale suppressed opera-

tors from the observational constraint on non-Gaussianity, sound speed and CMB dipolar

asymmetry as obtained from the Planck data. In the present setup the hidden sector based

heavy field is settled down in its potential via its Hubble induced vacuum energy density.

In particular, for the numerical estimations in this paper I have used a very particular

kind of (inflection point) inflationary model, which is fully embedded within MSSM, where

the inflaton is made up of L̃L̃ẽ and ũd̃d̃ gauge invariant D-flat directions. However the

prescribed methodology holds good for other kinds of inflationary models too.

Further I have scanned the multiparameter region characterized by the Hubble in-

duced mass parameter, cH , A-term, aH and the scale of the heavy field Ms, where I

have satisfied the current Planck observational constraints on the, inflationary parameters:

PS , nS , cs, r∗ (within 2σ CL), non-Gaussian parameters: f local
NL , τ localNL (within 1σ−1.5σ CL)

and CMB dipolar asymmetry parameter ACMB (within 2σ CL). Consequently the non-

minimal Kähler couplings, a, b, c, d are fixed within ∼ O(1) in the present effective the-

ory setup. Finally, using this methodology, I have obtained the theoretical upper and

lower bound on the non-Gaussian parameters within the range, O(1 − 5) ≤ fNL ≤ 8.5,

O(75−150) ≤ τNL < 2800 and O(17.4−34.7) ≤ gNL ≤ 648.2, and the CMB dipolar asym-

metry parameter within, 0.05 ≤ ACMB ≤ 0.09, which satisfy the observational constraints

stated in eq. (1.1)–(1.7), as obtained from Planck data.

There is also a future prospect of upgrading the present methodology proposed in

this paper by studying the further stringent phenomenological constraints on the non-

minimal couplings a, b, c, d, as appearing in the context of higher dimensional Planck scale

suppressed Kähler operators within N = 1 SUGRA by imposing the constraint on Higgs

mass [58, 59] and the dark matter abundance [5, 60] via WIMPy baryogenesis scenario (see

also refs. [61–63] for the various theoretical issues). A detailed analysis on these aspects

have been reported shortly as a separate paper [64].
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A The model parameters α, β, γ, κ

The model parameters characterizing the potential stated in eq. (3.6) can be expressed as:

α = M4
s +

(
(n− 2)2

n(n− 1)
+

(n− 2)2

n
δ2
)
cHH2φ2

0 + · · · , (A.1)

β = 2

(
n− 2

2

)2

δ2cHH2φ0 + · · · , (A.2)

γ =
cHH2

φ0

(
4(n− 2)2 − (n− 1)(n− 2)3

2
δ2
)
+ · · · , (A.3)

κ =
cHH2

φ2
0

(
12(n− 2)3 − (n− 1)(n− 2)(n− 3)(7n2 − 27n+ 26)

2
δ2
)
+ · · · (A.4)

where the higher order · · · terms are neglected due to δ2 ≪ 1. During numerical estimations

I fix n = 6 for L̃L̃ẽ and ũd̃d̃ D-flat directions respectively.

B. The symbol Σ = X,Y, Z,W :

The symbols appearing in the eq. (4.23), in the definition of the sound speed cs for s ≪ Mp,

after imposing the slow-roll approxiation are given by:

X1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

aM3
s

M2
p

[2 sin(2Mst) + 4 cos(Mst)]

− aM4
s

M2
p

|φ| cosΘ [cos(2Mst)− sin(Mst)]

}
,

(A.5)

Y1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

2bM2
s

Mp
cos(Mst) +

bM3
s

Mp
|φ| cosΘ sin(Mst)

}
,

(A.6)

Z1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

cM3
s

4M2
p

[2 sin(2Mst) + 4 cos(Mst)]

− cM4
s

4M2
p

|φ| cosΘ [cos(2Mst)− sin(Mst)]

}
,

(A.7)

W1(t) =

√
2ǫV (φ)V (φ)

3

{√
2ǫV (φ)V (φ)

3

4dM2
s

Mp
cos(Mst) +

dM3
s

Mp
|φ| cosΘ sin(Mst)

}
,

(A.8)

X2(t) =

(
Y2(t) +

a|φ|2M5
s

M2
p

sin(2Mst)

)
,

Y2(t) = Z2(t) = W2(t) = 5M5
s sin(2Mst) + 8M5

s cos(Mst),

X3(t) =

(
Y3(t)−

a|φ|2M5
s

M2
p

sin(2Mst)

)
,

Y3(t) = Z3(t) = W3(t) = 3M5
s sin(2Mst)− 8M5

s cos(Mst).

(A.9)

Here the complex inflaton field φ is parameterized by, φ = |φ| exp(iΘ). Here the new

parameter Θ characterizes the phase factor associated with the inflaton and it has a two

dimensional rotational symmetry.
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C. Expression for the non-minimal couplings a, b, c, d:

The expressions for the non-minimal supergravity coupling parameter a, b, c, and d for all

the four physical cases within N = 1 SUGRA with Hinf ≫ mφ can be expressed in terms

of the VEV of the heavy field, 〈s〉 = Ms as:

a ∼ O
(
1− 1.06× 10−5 n2

(n− 1)

M2
s

M2
p

)
for Case I,

b ∼ O



√√√√

∣∣∣∣∣

(
3− 1

n

)2

100(n− 1)

M2
s

M2
p

− 1

∣∣∣∣∣


 for Case II,

c ∼ O


 1

500

∣∣∣∣∣∣∣

±8.16Ms

Mp

√
n− 1− 4

√
2
3

(√
3
2(n− 3) + 1

)

1.24Ms

Mp
− 4

√
2
3n

∣∣∣∣∣∣∣


 for Case III,

d ∼ O




√√√√
∣∣∣∣∣2.54× 10−4

(
n− 1 +

√
6
)2

(n− 1)

M2
s

M2
p

− 1

∣∣∣∣∣


 for Case IV.

(A.10)

D. Expression for Σs(t),Ξs(t),Ψs(t),Θs(t):

Σs(t) =
e




−3H−

√√√√√√

4aM4
s

M2
p

(

1+
aM2

s
4M2

p

)+9H2




t

3aM4
s

M2
p

(

1+
aM2

s
4M2

p

)




aM4
s

M2
p

(

1+
aM2

s
4M2

p

)+2H2








3γ(
1+

aM2
s

4M2
p

)




 aM4

s

M2
p

(
1+

aM2
s

4M2
p

) + 3H2

−H

√
4aM4

s

M2
p

(
1+

aM2
s

4M2
p

) + 9H2






C2

1 +C2
2e

2




√√√√
4aM4

s

M2
p

(

1+
aM2

s
4M2

p

)+9H2


t




− 6C1C2


 aM4

s

M2
p

(
1+

aM2
s

4M2
p

) + 2H2







 ,

(A.11)

Ξs(t) = γ
[

C2
4

54H4 e
−6Ht + t

81H5

{
β2 (2− 3Ht)− 3H2β (9HtC3

−
[
βt2 + 6C3

])
− 81H4

(
β
γ −C2

3

)}
− C4

243H5 e
−3Ht

×
{
β
(
2 + 6Ht+ 9H2t2

)
− 18H2 (1 + 3Ht)C3

}]
,

(A.12)

Ψs(t) = γ
[

C2
6

54H4 e
−6Ht + t

81H5

{
β2 (2− 3Ht)− 3H2β (9HtC5

−
[
βt2 + 6C5

])
− 81H4

(
β
γ −C2

5

)}
− C6

243H5 e
−3Ht

×
{
β
(
2 + 6Ht+ 9H2t2

)
− 18H2 (1 + 3Ht)C5

}]
,

(A.13)
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Θs(t) =
γ(

1+
2dMs
Mp

)

[
C

2
8

54H4 e
−6Ht + t

81H5

{
β2

(
1+

2dMs
Mp

)
2 (2− 3Ht)− 3H2β(

1+
2dMs
Mp

) (9HtC7

−
[

βt2(
1+

2dMs
Mp

) + 6C7

])
− 81H4

(
β
γ
−C2

7

)}
− C8

243H5 e
−3Ht

×
{

β(
1+

2dMs
Mp

)
(
2 + 6Ht+ 9H2t2

)
− 18H2 (1 + 3Ht)C7

}]
.

(A.14)
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