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1 Introduction

Recently a new formula was proposed by Cachazo, He and Yuan (CHY) to compute the

tree-level scattering amplitudes of massless bosons (doubly-colored scalar with cubic self-

interaction, pure gluon and pure graviton) in any dimensions [1, 2], which is constructed

upon scattering equations that govern the relation between scattering data and an underly-

ing punctured Riemann sphere in the connected prescription [3–8]. This formula has been

proven by Britto-Cachazo-Feng-Witten (BCFW) recursion relations [9]. Given the twistor

string origin of such construction, Mason and Skinner found a new ambitwistor string

theory whose tree-level scattering produces this formula [10]. Moreover, they pointed out

that this new version of twistor string can be obtained by taking the chiral infinite tension

limit of the ordinary string theory and they gave an explicit example in the bosonic case.

This was extended by Berkovits very recently to the superstring in the pure spinor formal-

ism [11]. By investigating its connection with the RNS formalism in Mason and Skinner’s

discussion, this infinite tension pure spinor string theory was also claimed to give rise to

the scattering-equation-based formula. A particularly interesting aspect of this extension

is that, since the pure spinor formalism naturally encodes space-time supersymmetry, this

has the potential of extending the original CHY formula to the supersymmetric case, at

least in ten dimensions where this string theory sits.

In this short paper, we give a proof that at tree-level Berkovits’ infinite tension limit of

heterotic string and type II string computes the scattering amplitudes from ten-dimensional

N = 1 super Yang-Mills (SYM) and type II supergraivty (SUGRA), respectively. The proof

uses the results of Mafra, Schlotterer and Stieberger (and also later on with Broedel) on

the disk amplitudes of ordinary superstring in the pure spinor formalism [12–14]. This is

expected since the constructions of vertex operators are very similar between the two the-

ories. The main difference comes with the moduli, which are now holomorphic coordinates

on a Riemann sphere instead of ordered coordinates on the real axis that by conformal
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symmetry describe points on the boundary of a disk. With this, the scattering equations

directly make an appearance in the amplitude [10, 11]. As a result of Kawai-Lewellen-Tye

(KLT) orthogonality pointed out in [2], in the heterotic version this just reduces to the

SYM tree level amplitude as given in [15], and in the type II version it leads to SUGRA as

the KLT of two copies of SYM. The paper is organized as follows. We first give a detailed

proof for the case of heterotic string in section 2. Since the proof for the type II string

shares a lot in common, we only discuss in detail the differences in section 3. A quick

review of Berkovits’ theory in each case is summarized at the beginning of each section.

2 Tree-level SYM amplitude

The new action proposed by Berkovits for heterotic superstring, which is expected to

describe the N = 1 SYM scattering amplitudes in ten dimensions, is given by [11]

S =

∫

d2z (Pm∂̄Xm + pα∂̄θ
α + wα∂̄λ

α + b∂̄c) + Sc, (2.1)

where λα is a ten dimensional pure spinor (this means λγmλ = 0, m = 0, . . . , 9) and SC is

the worldsheet action for the current algebra. The BRST operator is defined as

Q =

∫

dz (λαdα + c(Pm∂Xm + pα∂θ
α + wα∂λ

α + Tc) + bc∂c), (2.2)

where dα is the Green-Schwarz constraint

dα = pα −
1

2
Pm(γmθ)α. (2.3)

The massless vertex operator describing the N = 1 SYM multiplet are

V = c Ṽ I JI , Unintegrated,

U = Ũ I JI , Integrated,
(2.4)

where

Ṽ I = eik·XλαAI
α(θ),

Ũ I = eik·X δ̄(k · P )[PmAI
m + dαW

αI +
1

2
NmnF

mnI ].
(2.5)

In the above, Nmn := 1
2(λγmnw), {Aα(θ), Am(θ),Wα(θ),Fmn(θ)} are the N = 1 SYM

superfields

Aα(θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α −

1

32
Fmn(γpθ)α(θγ

mnpθ) + · · · (2.6)

Am(θ) = am − (ξγmθ)−
1

8
(θγmγpqθ)Fpq +

1

12
(θγmγpqθ)(∂pξγqθ) + · · ·

Wα(θ) = ξα −
1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) +

1

48
(γmnθ)α(θγnγ

pqθ)∂mFpq + · · ·

Fmn(θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγpqθ)∂n]Fpq +

1

6
∂[m(θγ pq

n] θ)(ξγqθ)∂p + · · ·

– 2 –
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and the current JI(σ) satisfies

JI(σi)JJ(σj) ∼
kδIJ
σ2
ij

+
fK
IJJK(σj)

σij
. (2.7)

From the action (2.1) it is simple to read the OPE’s

dα(σi)dβ(σj) ∼ −
γm
αβPm

σij

, dα(σi)θ
β(σj) ∼

δβα
σij

, dα(σi)f(X(σj), θ(σj)) ∼
Dαf(X(σj)

σij

,

N
mn(σi)Npq(σj) ∼

4N
[m

[pδ
n]

q]

σij

−
6δm[p δ

n
q]

σ2
ij

, N
mn(σi)λ

α(σj) ∼ −
1

2

(λγmn)α

σij

, P
m(σi)Pn(σj) ∼ 0,

P
m(σi)f(X(σj), θ(σj)) ∼ −

(km)f(X(σj), θ(σj))

σij

, (2.8)

where Dα := ∂α + 1
2(γ

mθ)α∂m is the covariant derivative. Note that these are the same

OPE’s as found in the pure spinor superstring formalism [16], except for the OPE of

Pm(σi)Pn(σj), which in the pure spinor formalism of ordinary string has a double pole.1

The tree-level amplitude prescription is given by the correlation function

AN =

∫ N−2
∏

i=1

dσi 〈V1(σ1 = 0)U2 · · ·UN−2VN−1(σN−1 = 1)VN (σN = ∞)〉, (2.9)

where the three unintegrated vertex operators {V1(σ1 = 0), VN−1(σN−1 = 1), VN (σN =

∞)} fix the SL(2,C) gauge symmetry on the sphere. Since there is no correlation between

c, JI and the vertices {Ṽ I , Ũ I}, the above formula can be decomposed as

AN =

∫ N−2
∏

i=1

dσi〈c(σ1)c(σN−1)c(σN )〉 〈Ṽ I1
1 Ũ I2

2 . . . Ũ
IN−2

N−2 Ṽ
IN−1

N−1 Ṽ IN
N 〉 〈JI1JI2 . . . JIN 〉,

(2.10)

where the c-ghost correlator just produces a Vandermonde factor

〈c(σ1)c(σN−1)c(σN )〉 = σ1,N−1σN−1,NσN,1. (2.11)

2.1 X
m and P

m integration

We first perform the phase space integration. In the path integral prescription (2.10) the

Xm effective action contribution, obtained by absorbing the plane waves factors from the

vertices, is given by

S[X,P ] = −

∫

d2σ

(

1

2π
Pm∂̄Xm − i

N
∑

i=1

ki ·Xδ(2)(σ − σi)

)

. (2.12)

Integrating the zero modes of the Xm field leads to the usual momentum conservation

δ(10)(
∑

i k
m
i ). The non-zero modes integration implies the constraint

∂̄Pm = −2πi
N
∑

i=1

kmi δ(2)(σ − σi), (2.13)

1Note that the OPE between Pm and any superfield has the same convention as in [12]. The idea is to

apply the results obtained in that paper.
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which, on the sphere, has the unique solution

Pm(σ) =
N
∑

i=1

−(ikmi )

σ − σi
. (2.14)

This solution must be replaced in the integrated vertex operators, i.e., at the vertex Ui we

have

Pm −→ Pm(σi) =
N
∑

j 6=i

−(ikmj )

σi − σj
(2.15)

δ̄(ki · P ) −→ δ̄(ki · P (σi)) = δ



i
N
∑

j 6=i

(ikj) · (ikj)

σi − σj



 = δ



i
N
∑

j 6=i

sij
σij



 , (2.16)

where2 sij := (iki) · (ikj). The solution (2.15) is equivalent to consider the OPE given

in (2.8) and we can write the Dirac delta as

δ̄(ki · P (σi)) = δ





N
∑

j 6=i

sij
σij



 , (2.17)

since the overall i factor does not affect the final answer.3 Hence, we can conclude that

the integration by the Xm and Pm fields imply the OPE (2.8), the N − 3 independent

scattering equations (2.17) and the momentum conservation.

2.2 N-point pure spinor amplitude

In order to compute the pure spinor correlator we must note that every single pole con-

traction is the same as those given in [12]. This is simple to see, since the only difference

between the operators in (2.5) and those used in [12] is the missing term

∂θαAα(X, θ) (2.18)

in the definition of the integrated vertices, whose OPE’s involve only double poles (all possi-

ble simple poles from this term cancel away in the end). In addition, the operator Πm in the

ordinary string, which is replaced by Pm in the new vertex operator (2.5), has the OPE’s

Πm(σi)Πn(σj) ∼ −
δmn
σ2
ij

, Πm(σi)f(X(σj), θ(σj)) ∼ −
kmf(X(σj), θ(σj))

σij
(2.19)

where f(X(σj), θ(σj)) is any superfield. Note that the only difference between (2.8)

and (2.19) is the double pole. These indicate that all differences enter into the terms

with double poles, and so we must have a careful look at these terms before moving on.

2The definition of sij matches with one given in [12].
3Integrating out the phase space {Pm, Xm} implies that it is not necessary to consider the OPE between

the Dirac delta δ̄(k · P ) and the superfields.
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In [12] it was argued that terms involving double poles always combine to produce a

prefactor of the form
(1 + sij)

σ2
ij

, (2.20)

whose numerator plays the role of canceling the tachyon pole 1/(1 + sij) produced by in-

tegration of the Koba-Nielsen (KN) factor
∏

i<j |σi − σj |
−sij (since such a pole is expected

to be spurious). At the integrand level this means that the double poles are actually spu-

rious as well, and hence the aim is to remove the appearance of the double poles. In the

treatment of [12] for ordinary string, this is done by integration by parts in the presence

of the KN factor, e.g.,

∫

dσa
d

dσa





1

σa,b

∏

i<j

|σi − σj |
−sij



=−

∫

dσa





1+sab
σ2
ab

+
∑

i 6=a,b

sai
σabσai





∏

i<j

|σi−σj |
−sij =0,

(2.21)

and so the effect of this operation is equivalent to the substitution

(1 + sab)

σ2
ab

−→ −
∑

i 6=a,b

sai
σabσai

. (2.22)

It is important to point out that, in the calculation of ordinary string, the presence

of the term (2.18) in the integrated vertex and the double pole in (2.19) contribute and

only contribute to the term “1” in the numerator of (2.20), and this “1” term receives no

contribution from anything else. Here we just show this explicitly in the simplest example

at five points. According to the calculation in [17], when fixing {σ1, σ4, σ5}, the terms with

double poles reads

(1 + s23)

σ2
23

〈Ṽ (σ1) [Aα(σ2)W
α(σ3)+Aα(σ3)W

α(σ2)−Am(σ2)A
m(σ3)] Ṽ (σ4) Ṽ (σ5)〉, (2.23)

where with a slight abuse of notation we denote Ṽ = λαA
α. If we study the contribution

from the term (2.18), from (2.8) it is easy to see that the only non-trivial OPE’s are4

(∂θαA
α)(σ2) (dβW

β)(σ3)∼
Aα(σ2)W

α(σ3)

σ2
23

, (dβW
β)(σ2) (∂θαA

α)(σ3)∼
Aα(σ3)W

α(σ2)

σ2
23

.

(2.24)

Moreover, the non-trivial OPE among Πm’s given in (2.19) produces an additional term

(ΠmAm)(σ2) (Π
nAn)(σ3) ∼ −

Am(σ2)A
m(σ3)

σ2
23

. (2.25)

When we switch from ordinary string to the twistor string constructed by Berkovits, one

can check that (2.24) and (2.25) are the only OPE’s that cease to contribute to the vertices

correlator, and so the change to the result (2.23) is only to delete the “1” from the prefactor

4Here we only write out the double-pole terms. As stated before, the simple-pole terms from these

additional OPE’s eventually cancel each other, and thus are of no interests.
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(1+s23). In general, in the computation of Berkovits’ twistor string, we just need to switch

the prefactors (1 + sij) to the corresponding sij .
5

Now, in the context of twistor string, there is no longer any KN factor. Instead, since

the σ variables are evaluated under the delta constraints (2.17), the way to get rid of

the presence of double poles is to apply substitution on the support of the corresponding

scattering equations, e.g.,
sab
σ2
ab

−→ −
∑

i 6=a,b

sai
σabσai

. (2.26)

From (2.22) and (2.26), we see that although the differences in OPE’s between ordinary

string and Berkovits’ twistor string lead to different appearances of double-pole terms, after

canceling these spurious poles they actually give the same result for the vertices correlator.

Due to this fact, we are justified to directly apply the results obtained in [12]

〈Ṽ I1
1 Ũ I2

2 . . . Ũ
IN−2

N−2 Ṽ
IN−1

N−1 Ṽ IN
N 〉 = δ(10)

(

∑

i

kmi

) N−2
∏

i=2

δ





N
∑

j 6=i

sij
σij



 ·

·
∑

β∈SN−3

AYM (1, β,N − 1, N)
N−2
∏

k=2

k−1
∑

m=1

sβ(m)β(k)

σβ(m)β(k)
,

(2.27)

where AYM (1, β,N − 1, N) = AYM (1, β(2), . . . , β(N − 3), N − 1, N) is the SYM scattering

amplitude which is given in terms of the BRST building blocks [15]. Furthermore, from [14]

we know that by manipulations with partial fraction relations the last factor above can be

rewritten as6

N−2
∏

k=2

k−1
∑

m=1

sβ(m)β(k)

σβ(m)β(k)
= σ1,NσN,N−1σN−1,1

∑

γ∈SN−3

S[β|γ]
1

(1, γ,N,N − 1)
, (2.28)

where

(1, γ,N,N − 1) := σ1γ(2)σγ(2)γ(3) . . . σγ(N−2)NσN,N−1σN−1,1

denotes the Parker-Taylor factor, and

S[β|γ] :=
N−2
∏

a=2

(

s1,β(a) +
a−1
∑

b=2

θ(β(b), β(a))γ sβ(b),β(a)

)

is the infinite tension limit of the (N − 3)!× (N − 3)! momentum kernel, with θ(a, b)β = 1

if the ordering of the labels a, b is the same in both sets β and γ, and zero otherwise [18].

On the other hand, the current algebra correlator gives7

〈JI1JI2 · · · JIN 〉 =
∑

Π∈SN−1

Tr(T I1TΠ(I2) · · ·TΠ(IN ))

(1,Π(2), . . . ,Π(N))
. (2.29)

5The authors are grateful to Carlos Mafra for discussions over this issue.
6Rigorously speaking, this identity holds only when σN is gauge-fixed at infinity. However, for the general

gauge where σN is finite, the requirement of SL(2,C) invariance of AN guarantees that the r.h.s. below is

the correct answer. This will become obvious later in (2.32).
7In addition to the single-trace terms, the current algebra correlator also produces multi-trace terms [10,

19]. As stated in [10], the multi-trace terms are associated to coupling Yang-Mills to gravity. Here we care

about pure Yang-Mills and so we only focus on the single-trace terms.
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Due to the delta constraints in (2.27), the formula actually reduces to a rational function

with the {σ} variables evaluated on the solutions to the scattering equations. On the sup-

port of these equations, it is known from [20] that the Parke-Taylor factors in (2.29) can be

linearly decomposed onto a (n − 3)! basis due to the validity of Bern-Carrasco-Johansson

relations [21]
1

(1,Π(2), . . . ,Π(N))
=

∑

α∈SN−3

K[Π, α]
1

(1, α,N − 1, N)
(2.30)

in the same way as

AYM (1,Π(2), . . . ,Π(N)) =
∑

α∈SN−3

K[Π, α]AYM (1, α,N − 1, N), (2.31)

with K[Π, α] some function only depending on the kinematic invariants {sij} and the two

orderings Π, α (which is not relevant to our discussion).8

To this end, we see that the two copies of Vandermonde factor (σ1,N−1, σN−1,1, σN,1)

from the c-ghost correlation and (2.28) combine with the measure and the delta constraints

in (2.27) to form fully permutation invariant and SL(2,C) covariant objects

∫

dNσ

vol SL(2,C)
:= σ1,N−1σN−1,NσN,1

∫ N−2
∑

i−2

dσi,

∏′
(

∑ sij
σij

)

:= σ1,NσN,N−1σN−1,1

N−2
∏

i=2

δ





N
∑

j 6=i

sij
σij



 .

(2.32)

Hence by assembling different pieces in (2.10), the whole amplitude can be expressed as

AN =
∑

Π∈SN−1

∑

α∈SN−3

Tr(T I1T
Π(I2) · · ·TΠ(IN ))K[Π, α]

∫

dNσ

vol SL(2,C)

∏′
(

∑ sij

σij

)

1

(1, α,N − 1, N)

×
∑

β∈SN−3

AY M (1, β,N − 1, N)
∑

γ∈SN−3

S[β|γ]
1

(1, γ,N,N − 1)
δ
(10)

(

∑

i

k
m
i

)

. (2.33)

It is easy to see that the part

m[γ|α] :=

∫

dNσ

vol SL(2,C)

∏′
(

∑ sij
σij

)

1

(1, γ,N,N − 1)

1

(1, α,N − 1, N)
(2.34)

is exactly the double partial amplitude in the doubly colored φ3 theory computed by CHY

formula in [2]. Since from there we know that as the result of KLT orthogonality

m[γ|α] = (S[γ|α])−1, (2.35)

(2.33) reduces to

AN = δ(10)
(

∑

i

kmi

)

∑

Π∈SN−1

∑

α∈SN−3

Tr(T I1TΠ(I2) · · ·TΠ(IN ))K[Π, α]AYM (1, α,N − 1, N),

(2.36)

8The K[Π, α] matrix is the field theory limit of the string theory integrals F [Π, α] [12–14].
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which by (2.31) is indeed the full tree-level amplitude of ten-dimensional N = 1 SYM as

originally computed in [15].

In (2.36), the polarization vectors and spinors are solely encoded into the (N − 3)!

basis AYM (1, α,N − 1, N). Note that the AYM (1, α,N − 1, N) amplitude only depends on

the pure spinor variable and the superfields {Aα(θ), Am(θ),Wα(θ),Fmn(θ)}. Therefore, in

order to compute the scattering between gluons and gluinos one must take into account

the pure spinor measure

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. (2.37)

Using the theta expansion (2.6) for the component amplitude involving gluons only, and

the measure (2.37), we can compare (2.33) with the CHY formula

ACHY
YM (1, β,N − 1, N) =

∫

dNσ

vol SL(2,C)

∏′
(

∑ sij
σij

)

1

(1, α,N − 1, N)
Pf ′Ψ. (2.38)

and conclude that the factor

∑

β∈SN−3

AYM (1, β,N − 1, N)
∣

∣

∣

gluons

∑

γ∈SN−3

S[β|γ]
1

(1, γ,N,N − 1)
(2.39)

becomes a Pfaffian.9 In this way (2.33) is related to the original CHY formula (apart from

the momentum conservation).

3 Tree-level SUGRA amplitude

In the version of Berkovits’ theory for type II superstring, which is expected to describe

type II supergravity scattering amplitudes in ten dimensions, the action reads [11]

S =

∫

d2z(Pm∂̄Xm + pα∂̄θ
α + wα∂̄λ

α + p̂α̂∂̄θ̂
α̂ + ŵα̂∂̄λ̂

α̂), (3.1)

where λα and λ̂α̂ are pure spinors. The BRST charge is defined as

Q =

∫

dz(λαdα + λ̂α̂d̂α̂) (3.2)

where dα(d̂α̂) is the Green-Schwarz constraint given in (2.3).

The massless vertex operators are the double copy of the vertices defined previously

in (2.4), but now without c-ghost and JI current. With a little change of notation for later

convenience, these are given by

V = eik·X Ṽ
˜̂
V, Unintegrated,

U = eik·X δ̄(k · P ) Ũ
˜̂
U, Integrated,

(3.3)

9The 4-point amplitude can be checked straightforwardly since that S[2|2] = s12 and that

AY M (1, 2, 3, 4)
∣

∣

∣

gluons
is given in [12, 22].
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where

Ṽ = λαAα(θ),

Ũ = PmAm + dαW
α +

1

2
NmnF

mn,
(3.4)

and the {
˜̂
V,

˜̂
U} are defined in a similar way (with the hatted version of the fields).

3.1 N-point correlator and KLT formula

The computation in this case greatly resembles that for the heterotic string, and so here

we only summarize the differences. Since there is no correlation between the hatted and

non-hatted fields, the tree-level amplitude prescription reads

MN =

∫ N−2
∏

i=1

dσi 〈V1(σ1 = 0)U2 · · ·UN−2VN−1(σN−1 = 1)VN (σN = ∞)〉

= δ
(10)

(

∑

i

k
m
i

) ∫ N−2
∏

i=1

dσi δ





N
∑

j 6=i

sij

σij



 〈Ṽ1Ũ2 . . . ŨN−2ṼN−1ṼN 〉 〈
˜̂
V1

˜̂
U2 . . .

˜̂
UN−2

˜̂
VN−1

˜̂
VN 〉 (3.5)

where we have already performed the phase space integration, which is the same as that

discussed in the SYM case. Each of the remaining correlators above is computed in the

same way as that in (2.27) and (2.28). Hence one can check that MN can be expressed as

MN = δ(10)
(

∑

i

kmi

)

∑

β∈SN−3

∑

β̂∈SN−3

AYM (1, β,N − 1, N) H[β|β̂] ÂYM (1, β̂, N,N − 1),

(3.6)

where

H[β|β̂] =

∫

dNσ

vol SL(2,C)

∏′
(

∑ sij

σij

)

∑

γ∈SN−3

S[β|γ]
1

(1, γ,N,N − 1)

∑

γ̂∈SN−3

S[γ̂|β̂]
1

(1, γ̂, N − 1, N)

=
∑

γ,γ̂∈SN−3

S[β|γ]m[γ|γ̂]S[γ̂|β̂]. (3.7)

Then by the relation (2.35) it is clear that

MN = δ(10)
(

∑

i

kmi

)

∑

β∈SN−3

∑

β̂∈SN−3

AYM (1, β,N − 1, N) S[β|β̂] ÂYM (1, β̂, N,N − 1),

(3.8)

which is just the KLT relation in constructing SUGRA amplitude from the corresponding

SYM amplitude. So we have also confirmed that this theory indeed produces the amplitudes

of the type II SUGRA at tree level.

Analogous to subsection 2.2 , when (3.6) is restricted to graviton scattering, and us-

ing the pure spinor measure (2.37), we can connect (3.8) to the CHY formula for pure

gravitons, similar to (2.39) for gluons.

4 Conclusion and discussion

We conclude that at tree level the Berkovits’ infinite tension limit theory of the heterotic

string (type II string) produces the ten-dimensional N = 1 SYM (N = 2 SUGRA) scatter-

ing amplitudes. The computation straightforwardly leads to the scattering-equation-based
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structure in CHY formula, in similar way as discussed by Mason and Skinner in the RNS

formalism. Note that the result is manifestly supersymmetric, since AYM (1, β,N,N − 1)

only depends on the superfields wrote in (2.6). This result is in perfect agreement with the

structure of the superstring amplitude given in the paper [12], which was one of the most

important reference to our proof.

At the time when this paper was being prepared, Adamo, Casali and Skinner published

a new work studying Mason and Skinner’s ambitwistor string at one loop [23]. In particular,

the extention of scattering equations to loop levels was proposed, and one-loop amplitudes

for NS-NS external states in the type II ambitwistor string were calculated. It is interesting

to see how Berkovits’ theory works at loop levels. The main drawback to compute loop

level in the new Berkovits’ string is to obtain a well defined b-ghost. However, since a lot of

progress have been done on the pure spinor formalism, for example [24, 25], it should not be

hard to find a b-ghost and so to perform the loop-level scattering amplitude computation.
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