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1 Introduction

Combining a non-Abelian gauge theory with a fundamental scalar, called here for con-

venience the Higgs, yields a theory which offers a plethora of interesting phenomena. In

particular, with two Higgs flavors (a complex doublet) in combination with an SU(2) gauge

group, it forms the Higgs sector of the standard model. However, without QED or other
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custodial symmetry breaking effects, all gauge bosons are degenerate, and will therefore be

referred to as W . On the other hand, if the Higgs effect should not be operative, the theory

should exhibit a QCD-like behavior, and especially confinement. This theory is therefore

an excellent laboratory to understand both types of physics, and especially how they differ.

The first lesson about their relation has been learned already long ago [1]: when reg-

ulated with a lattice cutoff, there is no physical distinction between both phases, and any

point in the quantum phase diagram is connected with any other analytically. This has

been confirmed in a multitude of lattice simulations, see especially [2–5]. However, it is not

yet clear whether such a theory may be trivial [6], and therefore whether this statement

is regulator-dependent. In the context of the standard model, this problem may either

be alleviated by dynamical effects in the interplay of all sectors [6, 7] or by new physics.

Here, the precise resolution of this problem is of no interest, and we use the lattice cutoff

as a convenient way to encode any of these effects, under the assumption that this will not

severely affect the low-energy physics, i.e. below 1TeV, in which we are interested here.

The question of how we then characterize both regimes will be detailed in section 3 below,

and will be more pragmatic than fundamental.

However, this coincidence is only necessary for observables. Gauge-dependent quanti-

ties, and especially propagators and vertices, can exhibit in suitable gauges a qualitative

difference [3, 8, 9]. But also the confinement mechanism and the Higgs mechanism with its

gauge-dependent vacuum expectation value1 [3, 11–13] are very likely gauge-dependent [14].

Thus the study of correlation functions can serve as a valuable tool in understanding these

mechanisms, as has been done for Yang-Mills theory [15]. Especially, several predictions

and functional results are available for the present case [7, 16–21], and therefore it is worth-

while to check them explicitly. Furthermore, these correlation functions provide a valuable

input and cross-check for other methods, e.g. functional methods [15]. They therefore

represent quantities of interest in themselves.

Of course, since especially confinement is non-perturbative, non-perturbative methods

are necessary to determine the correlation functions. For this purpose, lattice gauge the-

ory will be employed here. The technical details are given in section 2. In addition, the

general setup of the theory is briefly given in continuum terms in section 2.1. Results for

the propagators, both in position and momentum space, are presented in section 4, and for

the three-point vertices in section 5. Since already the three-point vertices challenged our

computational resources to the utmost, the ever more demanding four-point vertices were

beyond our reach at the current time, see section 5.4. A brief summary and some conclu-

sions are given in section 6. Some technical details and general comments are relegated to

the appendices.

This work extends the previous results [22–24]. There will also appear a companion

paper soon, which addresses certain gauge-invariant aspects of the physics of this the-

ory [25], which results will only be stated here. The results here can also be compared to

the quenched case for the scalar sector [26] or the gauge sector [15].

1Which is also the reason why the Higgs phase is perturbatively only accessible in some gauges [10].
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2 Technical details

2.1 Setup

The theory to be investigated here is two flavors of scalar particles φ coupled to a non-

Abelian gauge field W , with the (Euclidean) action

L = −
1

4
W a

µνW
µν
a + (Dµφ)

†Dµφ− γ(φφ†)2 −
m2

0

2
φφ† (2.1)

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gfabcW b

µW
c
ν

Dij
µ = ∂µδ

ij − igW a
µτ

ij
a ,

where g is the gauge-coupling, γ andm0 the parameters of the Higgs potential, and fabc and

τa are the structure constants and generators of the gauge group, respectively. The gauge

group is chosen to be the weak isospin gauge group SU(2). Thus, the complex doublet

φ contains four real scalar degrees of freedom, exhibiting an SU(2) custodial symmetry,

which is in fact just the (Higgs-)flavor symmetry. The Lagrangian is invariant under the

latter symmetry, as an explicit flavor-symmetry-breaking term is absent. This symmetry

is also found to be not broken spontaneously for any of the parameters to be simulated

here. It will therefore be repeatedly convenient to employ the notation [27]

X =

(

φ1 −φ∗
2

φ2 φ∗
1

)

= φ†
iφiϕ (2.2)

which makes this fact explicit: gauge transformations act on this matrix as a left multipli-

cation, while flavor transformations act as a right multiplication. As given by the second

equality, this can be written as the length of the Higgs field multiplied by an SU(2)-valued

matrix ϕ.

It is important to make a remark here concerning the naming conventions. In this

work, we will adhere strictly to the above prescribed naming scheme of calling the (gauge-

dependent) elementary fields Higgs and W , in accordance with the PDG [28], and the

phenomenological language. In contrast, based on the works [11, 12, 29, 30], certain gauge-

invariant composite operators have in the lattice literature been denoted as Higgs and W

boson, for reasons discussed in [22] and in section 3. Thus, one should be wary when

comparing these different resources.

The aim here are the gauge-dependent two-point and three-point functions. Hence, it

is necessary to fix a gauge. For this the Landau gauge ∂µW
a
µ = 0 will be chosen, which

requires in the continuum to add a ghost field c and an anti-ghost field c̄ with the Lagrangian

Lg = c̄a∂µD
ab
µ cb

Dab
µ = ∂µδ

ab + gfab
c W c

µ.

However, this does not yet specify the gauge completely. First of all, due to the Gribov-

Singer ambiguity [15, 31, 32], this is only a perturbative definition, which requires a non-

perturbative extension to make it well-defined. For this purpose, the minimal Landau gauge

prescription will be used, i.e. an average over all gauge copies satisfying the Landau gauge
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condition, for which also the Faddeev-Popov operator −∂µD
ab
µ is positive semi-definite,

will be performed [15]. Exploratory investigations [33] indicate that, as in Yang-Mills the-

ory [15], alternative choices do have some influence on the propagators, and likely the ver-

tices. Thus, it is important to only compare minimal Landau gauge results with each other.

Second, this does not specify how to deal with the global part of the gauge symmetry.

However, this is required in presence of a Higgs effect. A convenient choice is a non-

aligned gauge, i.e. one in which the global gauge degree of freedom is integrated over [13].

This implies that the space-time average of the Higgs field, and any other space-time-

independent quantity with a gauge-index, is vanishing for every configuration identically.

This especially implies that the Higgs expectation value is zero. This gauge has a number

of advantages. Foremost, it is also a well-defined gauge choice even when the Higgs phase is

not operative, and can therefore be defined throughout the whole phase diagram. Secondly,

it is also technically advantageous [13]: on the one hand it reduces the number of non-

vanishing color tensors to the minimal one. Secondly, it reduces in lattice calculations the

statistical noise, since many disconnected contributions vanish.

Of course, such a gauge choice implies that a perturbative treatment is not trivially

possible, as to all orders in perturbation theory the gauge bosons will remain massless.

However, for certain quantities it is still possible to compare to perturbative results in

other gauges. This is detailed in appendix B.

Other gauge choices are of course also possible. However, this choice yields the lowest

number of independent tensor structures with the simplest renormalization structure, and

is applicable throughout the phase diagram. It is also the one used in the functional cal-

culations outside the Higgs regime [16–20]. Hence, it will be used here. Some aspects of

alternative choices are discussed in appendix A.

2.2 Creation of configurations

The lattice calculations presented use the techniques described in [22, 33, 34]. For the sake

of completeness, the details will be repeated here.

The starting point is the unimproved lattice version of the action (2.1), given by [35],

S = β
∑

x

(

1−
1

2

∑

µ<ν

ℜtrUµν(x) + φ†(x)φ(x) + λ
(

φ(x)†φ(x)− 1
)2

−κ
∑

µ

(

φ(x)†Uµ(x)φ(x+ eµ) + φ(x+ eµ)
†Uµ(x)

†φ(x)
))

(2.3)

Uµν(x) = Uµ(x)Uν(x+ eµ)Uµ(x+ eν)
+Uν(x)

+ (2.4)

Wµ =
1

2agi
(Uµ(x)− Uµ(x)

†) +O(a2) (2.5)

β =
4

g2

a2m2
0 =

(1− 2λ)

κ
− 8

λ = κ2γ.

In this expression a is the lattice spacing, Uµ the link variable exp(igaWµ), φ again the

Higgs field, the bare lattice couplings depend on the bare continuum couplings in the de-
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scribed way, and eµ is the unit vector in µ direction. They are therefore the couplings

at the lattice cut-off, which is essentially given by 1/a, with the largest energy accessible

being 4/a, corresponding to a momentum across the body-diagonal of the cubic lattice of

extension N in each direction.

Choosing a physical scale is not an entirely trivial issue [25, 36], especially when a

consistent scale setting between the Higgs and the confinement region should be achieved.

To circumvent this in a constructive way, here the lighter of the masses of the ground

states in the 0+ flavor singlet and 1− flavor triplet channels, obtained with the methods

described below in section 2.6, will be set to 80.375GeV. This gives for a light Higgs in the

would-be Higgs phase the experimentally observed W mass. This will be discussed further

in section 3. The set of lattice parameters used for most of the calculations is given in

table 1 below.

The generation of configurations follows [33], using a combination of one heat-bath

and five over-relaxation sweeps for the gauge fields according to [34], and in between each

of these 6 sweeps of the gauge fields one Metropolis sweep for the Higgs field using a Gaus-

sian proposal. The width of the proposal is adaptively tuned to achieve a 50% acceptance

probability. This should balance the movement through configuration space compared to

the finding of relevant configurations. These updates have been performed lexicographi-

cal. These 12 sweeps together constitute a single update for the field configuration. The

auto-correlation time of the plaquette is of the order of 1 or less such update. Thus,

N such updates separate a measurement of a gauge-invariant observable, to reduce the

auto-correlation time. Because of the gauge-dependency and the issue of finding the same

Gribov copy, the gauge-dependent quantities determined here have not been used to deter-

mine the auto-correlation time. For the thermalization, 2(10N + 300) such updates have

been performed. Furthermore, all calculations involved many independent runs, to further

reduce correlations.

All errors have been calculated using bootstrap with 1000 re-samplings and give a,

possibly asymmetric, 67.5% interval, i.e. approximately 1σ interval.

The code, including the one to determine the bound states in section 2.6, has been

checked by comparing to the results in [4, 37]. The code for gauge-fixing and the pure gauge

propagators and vertices has been extensively tested in the Yang-Mills case. The code for

the correlation functions involving matter fields has been implemented independently twice.

2.3 Gauge fixing

To obtain the gauge-dependent correlation functions, a subset of the configurations are

gauge fixed to the non-aligned minimal Landau (NML) gauge. Because the gauge-fixing it-

self tends to show a longer auto-correlation time than the plaquette [38], at least 2(N +30)

updates have been performed between measurements of gauge-fixed quantities. Further-

more, since the relation (2.5) only holds for a positive Polyakov loop [39], configurations

with negative Polyakov loop in any direction have not been included for gauge-fixed mea-

surements.2

2Because the Higgs field explicitly breaks the center symmetry, this could not be solved by a center

transformation. However, the value of the Polyakov loops are rather small, and thus the effect should be

minor [40].
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The local part of the gauge-fixing has then been performed using a self-tuning stochas-

tic over-relaxation algorithm with a quality parameter e6 smaller than 10−12, see [34] for

details. This also automatically yields a gauge copy with positive semi-definite Faddeev-

Popov operator. Since there appears to be no bias in the selection of which gauge copy

is obtained [15, 41, 42], taking just this so created random one is equivalent to averaging

over this set after ensemble averaging, thus implementing minimal Landau gauge [42].

To implement the non-alignment a random global gauge transformation was performed

after the fixing to minimal Landau gauge [13]. This only ensures the vanishing of the Higgs

expectation value and similar quantities on the average, instead of for any configuration

individually, but the additional noise is out-weighted by the gain in statistics of independent

configurations. In fact, for typical lattice settings with physics similar to the standard

model, the fluctuations around the average length of the Higgs field is very small, and only

increases slightly for the most extreme cases investigated here. Thus, this a small effect.

2.4 Propagators

The propagators have been obtained with the methods described in [33, 34]. Using the

definition (2.5) for the W field, the W propagator is given by [34]

Dab
µν = 〈W a

µW
b
ν 〉.

In NML gauge it is transverse and color-diagonal with a single dressing function Z, and

multiplicatively renormalized with the wave-function renormalization factor ZW

Dab
µν = δab

(

δµν −
pµpν
p2

)

ZWZ(p2)

p2
.

The renormalization scheme is to demand ZWZ(µ2) = 1, which can be used irrespective of

the phase diagram region, as long as µ 6= 0.

The ghost propagator is considerably more complicated than the W , as on the lattice

it is given as an inverse of the Faddeev-Popov operator [43],

Dab
G (p) =

1

V

〈

(−∂µD
ab
µ )−1(p)

〉

.

The expression for the Faddeev-Popov operator is lengthy, and can be found in [15, 43].

Remaining with a non-aligned gauge, it is required to invert this operator on the sub-space

orthogonal to constant modes, as the latter correspond to global color rotations. Since the

Faddeev-Popov operator is positive3 and symmetric, this inversion is done on a point-source

using a conjugate gradient algorithm, see [34]. The resulting propagator is color-diagonal

and thus has a single dressing function G, and is also renormalized multiplicatively,

Dab
G = −δab

ZGG(p2)

p2
,

where the same renormalization condition will be used as for the W propagator.

3On a finite lattice there are no additional zero modes.
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It should be noted that the two renormalization constants for the W and ghost prop-

agators are not independent, and are linked by the condition Zc̄cW = ZWZ2
G to the renor-

malization constant of the ghost-W vertex Zc̄cW . Since the latter can be chosen to be

one [44, 45], the renormalization constants are then uniquely linked, up to lattice artifacts,

in this so-called miniMOM scheme.

The Higgs propagator is the most straight-forward one, given by

Dab
H = 〈φ(p)a†φ(p)b〉.

However, the renormalization is more involved [46]. The Higgs propagator requires besides

the multiplicative wave-function renormalization also an additive mass renormalization.

The renormalized propagator is given by

Dab
H (p2) =

δab

ZH(p2 +m2) + ΠH(p2) + δm2
,

where ΠH is its self-energy, and ZH and δm2 are the wave-function and mass renormaliza-

tion constants, respectively. The two renormalization conditions implemented are [33]

Dab
H (µ2) =

δab

µ2 +m2
H

(2.6)

∂Dab
H (p2)

∂|p|

∣

∣

∣

∣

|p|=µ

= −
2µδab

(µ2 +m2
H)2

, (2.7)

with mH = µ. Selecting µ, mH , and alongside the two conditions for the ghost and W

propagator, thus defines our (mass-dependent) renormalization scheme.

For both the W and the Higgs it will be interesting to also calculate the propagator

in position space, the so-called Schwinger function. It is obtained from the renormalized

momentum-space propagators D as

∆(t) =
1

aπ

1

N

Nt−1
∑

P0=0

cos

(

2πtP0

Nt

)

D(P 2
0 ). (2.8)

Note that the additive renormalization for the Higgs makes it much easier to calculate the

momentum-space propagator first and then afterwards this position-space function, while

this is not relevant for the W propagator.

It is furthermore important to note that all the propagators presented here are diagonal

in color and flavor space. Thus, they are independent under global color and flavor rota-

tions, see also appendix B. Especially this implies that their traces are identical to the ones

in an aligned Landau gauge, e.g. the Landau-gauge limit of ’t Hooft gauges, even though the

individual color components no longer coincide as they do in the present non-aligned gauge.

The results for the propagators will be shown with momenta selected along several dif-

ferent directions, including edge, space, and space-time diagonals [34], to permit assessment

of the impact of violation of rotational symmetry. The effects turn out to be small, and

of little relevance for the findings here. Furthermore, for particular calculations, e.g. like

the Schwinger function (2.8), momenta are selected which are least sensitive to rotational

symmetry violations at long distances, i.e. edge momenta.
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2.5 Vertices

As noted in the introduction, only the three-point vertices were statistically feasible at

the current time. Of these, there are three in the NML gauge. These are the ghost-W

vertex, the three-W vertex, and the Higgs-W vertex. While their determination is straight-

forward [15, 34], there are a number of subtleties concerning their tensor structures to be

taken care of.

Three-point functions can have various tensor structures. Since only the non-

amputated full correlation functions can be obtained in lattice calculations, it is necessary

to isolate the various tensor structures. The choice of a non-aligned gauge makes for all

three-point functions the connected and disconnected part coincide. Furthermore, to deter-

mine a normalized dressing function A of a tensor structure from a connected three-point

expectation value G, the simplest prescription is the projection [15, 34]

A =
ΓijkGijk

ΓabcDadDbeDcfΓdef

,

where Γ is some tensor structure, and the indices are generic multi-indices for internal

and Lorentz degrees of freedom. A judicious choice are tensor structures which either

coincide with the tree-level one, or are orthogonal to it. Then, this expression is one or

zero, if the dressing function coincides with the tree-level one. The D are symbolically

the propagators of the three legs, and including them amputates the result. On a finite

lattice, it can become important to include lattice corrections to the tensors Γ [34, 47].

This prescription is used in the following for all the vertices.

The ghost-W vertex is the expectation value

Gcc̄W abc
µ (p, q, k) = 〈ca(p)c̄b(q)W c

µ(k)〉.

For the SU(2) gauge group there is only the tree-level color structure. In Landau gauge,

furthermore, only the tensor component transverse in the gluon momentum is accessible.

Hence, there is a single dressing function. It is projected out by choosing for Γ the lattice

version of the tree-level tensor, see [34].

For the three-W vertex,

GWWW abc
µνρ (p, q, k) = 〈W a

µ (p)W
b
ν (q)W

c
ρ (k)〉

the situation is more complicated, as there are four independent transverse tensor struc-

tures [48]. Here only the tensor component of the tree-level tensor structure will be used,

again including lattice corrections [34]. As stated in [34], it is this tensor structure which

is the most relevant one in most contemporary studies using functional methods.

Finally, the Higgs-W vertex

Gφ†φW ija
µ (p, q, k) = 〈φi(p)φ

†
j(q)W

a
µ (k)〉

has a number of peculiarities, which require attention. It is, in principle, as simple as the

ghost-W vertex, since there is only one independent tensor structure transverse to the gluon

– 8 –
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momentum contributing. However, in the denoted form, it is not a flavor-invariant. As the

corresponding symmetry is unbroken, the expectation value vanishes. To circumvent this

problem, a flavor-invariant expectation value must be used, given by

Gφ†φW ija
µ (p, q, k) = 〈Xik(p)X

†
kj(q)W

a
µ (k)〉,

based on the prescription (2.2). This vertex can, up to a normalization, still be projected

in the same way as before, i.e. with a differently normalized tree-level vertex, to obtain the

tensor structure. The corresponding tree-level tensor, including lattice corrections, is

Γtl ija
µ (p, q, k) =

iga

6
τaij sin

π

N
(P −Q)µ cos

π

N
(P +Q)µ,

where P and Q are the integer-valued lattice momenta. This completes the list of vertex

dressing functions to be calculated.

For three-point functions there are three independent kinematic variables. These will

be chosen here to be the magnitude of the W momentum and the particle momentum

in the vertices. For the three-W vertex, due to Bose symmetry, the choice is arbitrary.

The third parameter is then the angle between these two momenta. Given the available

resources, it was not possible to calculate all the possible choices. Thus, here only two

particular important kinematical configurations will be discussed, the symmetric one and

the orthogonal one [34].

The symmetric one is at an angle of π/3, and thus all three momenta have equal

size. This is the configuration usually employed to derive running couplings from the

three-point functions.

The second has an angle of π/2, and thus the two selected momenta are orthogonal to

each other. This is the configuration with the largest integration measure in loop integrals,

and should therefore give an idea about the dominating contribution from this vertex.

Note that all vertices renormalize multiplicatively.

Unfortunately, even the three-point vertices require, depending on the bare parameters

and the types of the involved fields, one to two orders of magnitude more statistics than

the propagators to achieve the same level of statistical error. It was hence not possible to

investigate the vertices for all set of lattice parameters where the propagators have been

studied, but only three different examples have been chosen.

2.6 Bound states

A detailed discussion of the bound states will be given elsewhere [25]. However, to classify

the dominant physics aspects in section 3, as well as to set the scale in section 2.2, it

is necessary to obtain some bound state information, most notably the masses of the 0+

flavor singlet and 1− flavor triplet ground states. For the sake of completeness, here the

procedure to determine them, essentially the one of [22] extending the one of [4, 37, 49],

will be detailed. Note that only a rather rough determination of these masses is necessary

for most purposes of the present work, and hence, e.g., the error on the lattice spacing will

be suppressed throughout, since it is always at the few percent level or less.
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In the 0+ channel several energy levels rather close by are found. To disentangle

them, a basic variational analysis is performed [50], using just two operators. One is the

Higgsonium operator

O0+(x) = φ†
i (x)φ

i(x) = ρ(x), (2.9)

the other the 0+ W -ball state created by the plaquette (2.4) as the lattice discretization

of W a
µνW

a
µν [51].

Since all bound state operators are very noisy, they have been four times APE smeared,

i.e. the operators have been measured using the smeared links and Higgs fields [49]

Uµ(x)
(n) =

1
√

detRµ(x)(n)
Rµ(x)

(n)

R(n)
µ = αUµ(x)

(n−1) +
1− α

2(d− 1)

×
∑

ν 6=µ

(

U (n−1)
ν (x+ eµ)U

(n−1)+
µ (x+ eν)U

(n−1)+
ν (x)

+U (n−1)+
ν (x+ eµ − eν)U

(n−1)+
µ (x− eν)U

(n−1)
ν (x− eν)

)

φ(n) =
1

1 + 2(d− 1)

(

φ(n−1)

+
∑

µ

(U (n−1)
µ (x)φ(n−1)(x+ eµ) + U (n−1)

µ (x− eµ)φ
(n−1)(x− eµ))

)

,

with α = 0.55 and d = 4 and four iterations n = 4.

To disentangle the ground state and the first excited state the correlation matrix of

the two most-smeared operators of both types has been used to determine the eigenvalues

and, as a cross-check, the eigenvectors. The lighter mass, obtained from a fit of type

C(t) = A cosh

(

am

(

t−
N

2

))

+B cosh

(

an

(

t−
N

2

))

, (2.10)

has then been assigned to the ground state.

The usually more cleaner vector state was obtained using the operator

O1−

aµ = V a
µ , (2.11)

= trτa det(−X(x))αX†(x) exp(iτbW
b
µ(x)) det(−X(x+ eµ))

αX(x+ eµ)

again with the four times smeared operators. Note that the index a is a flavor index. The

power α is arbitrary, and does not change the quantum numbers, but changes the influence

of excited states and statistical noise [4]. Here, α = −1/2 has been used, which suppresses

excited states to some extent, but not as much as α = −1, which makes the operator only

dependent on ϕ. This choice was mainly made for the sake of the investigations to be dis-

cussed in [25]. A fit to identify the ground state has then been performed using again (2.10).
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3 QCD-like vs. Higgs-like

As noted already, the (lattice) theory has a continuously connected phase diagram [1].

Thus, though there might be exponentially large quantitative changes, the qualitative

physics is the same throughout the phase diagram. Especially, there is no distinction of a

Higgs phase and a confinement phase, signaled by the Higgs expectation value, as in the

classical case. This is most easily seen in the non-aligned gauge used here, as there the

Higgs expectation value is always zero, while it changes in an aligned gauge. But even the

position of change in a fixed gauge is not unique, as it depends on the local part of the

gauge [3]. Nonetheless, there is a phase transition in the phase diagram, but it ends at a

critical end-point, and therefore does not separate phases [2, 5, 52].

However, there exist two regions of the phase diagram, in which the physics shows

quantitatively a distinctively different behavior. The most marked difference is the ordering

of the ground states of the 0+ and 1− channels, which changes between them [5, 25, 52].

Especially, deep in the regime where in most aligned gauges the Higgs expectation value

does not vanish4 the 1− state is lighter, while in the other domain the 0+ state is lighter.

In the cross-over and phase transition region, where also in some gauges there is always a

phase transition and in some not, the two masses are (nearly) degenerate. Furthermore,

in the domain where the 0+ state is lighter, a non-negligible intermediate distance string

tension can be observed, before string-breaking sets in [53, 54].

This will therefore be used here to define operationally a QCD-like domain (QLD)

and a Higgs-like domain (HLD), away from the cross-over region (COR), by the decision

whether m1−/m0+ is larger than one, smaller than one, or approximately one, respectively.

As so far the mass of the lighter state is always the lightest one in all the investigated

channels in both domains [25], this lighter mass will be taken to define the scale.

To set the scale, as was noted in section 2.2, requires a number of further consid-

erations [36]. The aim will be to obtain scales which are familiar from the electroweak

physics. In this phase, there is a relation between the gauge-invariant 0+ and 1− state’s

masses with the masses of the gauge-dependent Higgs and W particles, in an expansion

in the quantum fluctuations of the Higgs [11, 12], which was confirmed on the lattice [22],

and which will be again confirmed more systematically here, at least for ratios of m1−/m0+

not too small compared to one.

These relations are valid only in an aligned gauge. Taking then the correlators (2.9)

and (2.11) in the continuum and expanding the Higgs field around its expectation value

vni φi(x) = ηi(x) + niv, with ni some constant isospinvector, yields

〈φ†
i (x)φ

i(x)φ†
j(y)φ

j(y)〉

≈ v4 + 4v2(c+ 〈η†i (x)n
in†

jη
j(y)〉) +O(η3), (3.1)

4In the non-aligned gauge used here, it is, of course, always zero. Instead, an equivalent observable is

the relative alignment 〈
∫
dxφ(x)†

∫
dyφ(y)〉 [3]. A vanishing of this quantity in the infinite-volume limit

corresponds to a vanishing Higgs expectation value in the corresponding aligned gauge, and vice versa.
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and5

〈(τaϕ†Dµϕ)(x)(τ
aϕ†Dµϕ)(y)〉

≈ c̃tr(τañτ bñτañτ cñ)〈W b
µW

c
µ〉+O(ηW ), (3.2)

with c and c̃ are some constants, and ñ the SU(2) matrix corresponding to n. Thus, up

to this order, the masses, defined by the poles of the correlators, on both sides have to

coincide. Hence, in the domain relevant to the standard model, a description in terms of

the gauge-invariant and gauge-dependent degrees of freedom give an equally good picture

of the physics, explaining the great success of perturbation theory. As will be seen below,

this relation does not hold throughout the phase diagram. Nonetheless, this will be used

to motivate setting in the HLD the scale such that the 1− ground state mass will be

80.375GeV. To obtain comparable scales also in the QLD, the scale will be set there by

setting the ground state mass of the 0+ to the same value.

The only remaining problem is now that there are three independent parameters

in the theory, and in principle a third external input is necessary. At the current time,

no quantity is both experimentally and theoretical in lattice terms good enough under

control to serve as this input parameter. However, due to the absence of QED already

the W -Z mass splitting is missing. Moreover, the running gauge coupling, as will be

seen below, runs much faster in the present theory as in the standard model, due to the

lack of fermions and therefore a much larger β0 [36]. Hence a quantitative comparison to

the standard model is at the current time anyhow only of limited reliability, a problem

recognized also in other investigations [55].

However, since we are interested here in understanding the theory as such, and not yet

too much the experimental situation, we will not constraint us to a single line of constant

physics (LCP), but rather will use a large set of different points throughout the phase

diagram, to understand the behavior. As will be shown below, it turns out that most of

the properties of the propagators and three-point vertices are actually mainly controlled

by the ratio m1−/m0+ , and therefore fixing the third parameter uniquely seems anyhow to

be of little relevance, at least in the part of the phase diagram investigated here.

This part of the parameter region is shown in figure 1. It is visible, how the phase

diagram disconnects into the two parts, the HLD and the QLD. Interestingly enough, but

not surprising due to the additive mass renormalization, the QLD region persists even deep

into the negative m2
0 region, where classically already the Higgs effect would be operative.

In the following now the propagators and 3-point vertices will be studied for a subset

of the displayed systems. This subset is listed in table 1. However, because of the statistics

required, it was not possible to investigate for all settings in addition also the 3-point

vertices. Hence, as a representative selection, three settings have been chosen. These cor-

respond to a system deep inside the QLD, one with the physical m1−/m0+ ratio of roughly

0.64, and one with a small ratio of 1/3, corresponding to a Higgs mass of 243GeV. Though

not yet in the range where the Higgs self-interaction is very strong, such systems have not

5Note that this result is independent of the power α in (2.11), as to this order the determinant is just a

constant, proportional to v2.
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Figure 1. The phase diagram of the Yang-Mills-Higgs theory as a function of bare gauge cou-

pling, Higgs 4-point coupling, and the bare Higgs mass in units of the 0+ mass. Green points are

confinement-like, and purple points are Higgs-like. The lighter the points, the smaller is the lattice

spacing. The right-hand plot shows the same in terms of the lattice bare parameters of inverse

gauge coupling, hopping parameter, and four-Higgs coupling, see (2.1) for their relation.

Type β κ λ m0+ m1− a−1 [GeV] 〈P 〉 〈φ†φ〉

QLD 2.3095 0.2668 0.5254 0.45(5) 1.08(1) 179 0.616787(3) 1.17838(1)

QLD 2.221 0.125 0 1.44(2) 3.3(3) 56 0.577412(21) 1.44969(1)

QLD 2.2171 0.3182 1.046 0.51(5) 0.57(1) 142 0.600879(4) 1.148630(6)

HLD 2.2667 0.3141 1.043 0.68(5) 0.51(1) 158 0.614414(2) 1.147419(3)

HLD 2.4728 0.2939 1.036 0.41(1) 0.296(4) 272 0.652354(5) 1.11696(1)

HLD 2.3 0.31 1.0 0.74(1) 0.48(1) 168 0.6228101(8) 1.152029(2)

HLD 2.3634 0.3223 1.066 1.12(7) 0.53(1) 153 0.642131(2) 1.171088(4)

HLD 2.3 0.32 1.0 1.04(2) 0.548(3) 148 0.632379(1) 1.206336(2)

HLD 2.8 0.318 1.2 1.21(1) 0.414(3) 194 0.707624(2) 1.154240(4)

HLD 2.7984 0.2954 1.317 0.47(3) 0.219(2) 368 0.701833(2) 1.09106(1)

HLD 2.3579 0.3208 1.010 1.2(1) 0.26(5) 308 0.641783(2) 1.18108(1)

HLD 2.3827 0.3176 1.018 1.10(1) 0.33(7) 244 0.645325(5) 1.173572(9)

Table 1. The lattice parameters β, κ, and λ for the employed configurations, together with the

masses of the 1− and 0+ ground states, the derived ratio and lattice spacing, and the classification.

Various lattice volumes N4 have been used, and the sizes are indicated in the corresponding figures.

In addition, also the plaquette expectation value 〈P 〉 and the value for the Higgs length 〈φ†φ〉
1
2

are displayed. Both quantities are unrenormalized and from 244 lattices. Note that, because of

the gauge interaction, a vanishing λ did not create, even for a negative quadratic term, a runaway

condition.

been included here, the Higgs can decay into two on-shell W , opening new decay channels.

It is an interesting question, whether this manifests itself in the three-point functions.

As it is not entirely trivial to follow the LCPs, due to the fine-tuning problem

especially in κ, at the current time only a very limited amount of different lattice spacing

effects can be studied.
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4 Propagators

4.1 Gauge boson

The simplest possible object, which can be studied, is the gauge boson, i.e. W propagator.

Since in the Yang-Mills case it is severely affected by finite-volume effects [15], first lattice

artifacts will be studied. These volume-effects are shown in figure 2. First of all, it is visible

that the finite-volume effects in the HLD and QLD have opposite effects, i.e. the propagator

is suppressed the larger the volume in the QLD and enhanced the larger the volume in the

HLD. Furthermore, the finite-volume effects in the HLD diminish with increasing 0+ mass.

The behavior in the QLD is quite similar to the one observed in Yang-Mills theory. The

one in the HLD is fundamentally different,6 but they appear to converge quicker than in the

QLD case. In any case, the value of theW propagator at zero momentum is to be considered

unreliable, though its volume-dependence itself maybe of interest in principle [57].

Of course, at large times the position-space correlator shows the typical deviations for

a finite volume in all cases.

Note that while only a selection of lattice parameters are shown here, at least the finite

volume behavior and, where available, the lattice spacing effects have been investigated for

many more of the systems shown in figure 1. In no case a qualitative different pattern has

been observed. This statement holds also true for all the results on the propagators to be

studied below, and will therefore not be repeated again.

Considering the dependence on the lattice spacing is more complicated, as it is not

entirely trivial to be sure to be on the same LCP, mainly due to the lack of a third

observable, and the fact that other states are heavy and therefore their mass determination

tends to be also affected by lattice artifacts [25]. Comparing anyway two cases in the

HLD with different lattice spacing but the same ratio m1−/m0+ in figure 3 shows that

nonetheless there is very little difference between the two sets of lattice parameters. This

indicates that for the present purpose the influence of this type of lattice corrections is

small, and that the third physical parameter plays not a too big role here. Of course,

further systematic studies are required to make this statement more reliable. However,

already in the Yang-Mills case [15] lattice-spacing effects have been found to be at the few

percent level for two-point and three-point correlation functions.

Finally, the W propagator for different values of the ratio m1−/m0+ is displayed in

figure 4. A number of very interesting observations are immediately possible. The first

is that at large momenta all propagators tend to the same asymptotic behavior. This is

expected, as the mass scale generated by the Higgs effect should become irrelevant at large

energies. However, this common behavior is not that of a mass-less particle, but there are

logarithmic corrections, which are particular visible in the lower-right panel. These stem

partly from renormalization effects. The fact that also the QLD propagators join in the

same behavior emphasize that the mass is not a hard mass, and it diminishes quicker at

high energies than an ordinary mass function would do.

6At very small volumes, the same effect is also observed in the Yang-Mills case [15, 40, 56]. However,

given the masses in lattice units of the lightest physical state in the HLD calculations here, the volumes

cannot be considered so small.
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Figure 2. The gauge boson propagator in position space (left panel) and momentum space (right

panel) for different volumes. The top panel is in the QLD with m1−/m0+ = 2.2, the middle panel

has the physical mass ratio m1−/m0+ = 0.72, and the bottom panel is for a large Higgs mass

m1−/m0+ = 0.31, both in the HLD.
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panel) for different mass ratios m1−/m0+ on 244 lattices and for two different lattice spacings.

The second is that the behavior of the space-time-correlation functions is markedly

different for the QLD and the HLD. While in the HLD it is positive, there is a zero-crossing

observed in the QLD. The latter is also characteristic for Yang-Mills theory [15, 58], as

well as QCD [59, 60]. It implies positivity violation in the spectral density.

The result for the HLD for the space-time correlator is also somewhat surprising.

While at small masses they all coincide with the behavior expected because of (3.2), i.e.

they decay like a massive particles at long time with the mass m1− , this does not appear

to be the case if the 0+ mass exceeds the 1− by more than a factor of two.

To make this statement more quantitative, the effective mass

m(t) = − ln
∆(t)

∆(t+ a)
,

is plotted in the left-hand panel of figure 5 for the HLD case. The first observation is

that there is a plateau, corresponding to a mass. But the approach to the plateau is from

below, instead of above. This is not possible for a physical particle. However, the W boson

is also in the HLD gauge-dependent, and not subject to such constraints, like in the QLD.

Physically, the origin of this phenomenon is that the mass of the W is not a hard mass,

but the propagator should vanish quicker than one with such a hard mass, transmuting

into a massless particle at large momenta, i.e. short times. This was already visible in

figure 4. Hence, at short times a different decay is to be expected, and the transition

leaves its mark in the effective mass behavior: the correlator shows a lighter instead of a

heavier behavior at short distances.

At long times the behavior becomes massive. Extracting from the plateaus the effective

mass yields the results shown in the right-hand panel of figure 5. In the transition region

from the QLD to the HLD the relation (3.2) is strongly violated. This is not surprising, as

it does not hold in the QLD, where there is no pole mass in the conventional sense at all. In

the interval 1 > m1−/m0+ > 1/2, i.e. between entering the HLD and while the 0+ remains
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Figure 4. The top panels show the gauge boson propagator in position space (left panel) and

momentum space (right panel) for different mass ratios m1−/m0+ on 244 lattices. The tree-level

result is for the infinite-volume case. The lower panels show the ratio to the expected dressing

function, where Z = 1.4 is a wave-function renormalization constant. Note that the propagators

are unrenormalized.

stable against the decay in two 1−, the relation (3.2) is fulfilled within errors. Starting

at m1−/m0+ < 1/2, two branches are observed, one in which the relation (3.2) remains

fulfilled, and one where this is not the case. As the relation (3.2) is the requirement that

the observable 1− state can be identified with the elementary W boson, this implies that

on the second branch a perturbative description is no longer reliable in the conventional

sense. This would be at an unexpected small value of the mass of the 0+; usually this is

scheduled in perturbation theory to occur at a mass scale of more than 750GeV [46].

Investigating the lattice parameters show that the branch with a fulfilled relation (3.2)

has smaller bare lattice gauge couplings, while the other branch has larger ones. Note

that this has no implications for the lattice spacing, and on both branches similar lattice

spacings are observed. In fact, the bare lattice couplings bear no physical meaning, and it

is required to investigate other quantities to understand the origin of this difference.
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Figure 5. In the left-hand panel the effective masses for the propagators in the HLD phase of

figure 4 are shown. Points with too large errors are suppressed. In the right-hand panel the masses

obtained from the plateaus are shown for all lattice parameters in the HLD also shown in figure 1.

In this case also the errors from the scale setting have been included. Full circles have 0+ masses

in lattice units below 1, open circles between 1 and 3/2, and red squares above 3/2.

4.2 Ghost

One possibility to translate the bare coupling to a physical one is by determining the

corresponding running (gauge) coupling. In Landau gauge, this is simplified in the here

deployed miniMOM renormalization scheme [45], as it is possible to obtain it just from the

ghost and the W boson propagator. This entails to determine the ghost propagator, which

will be done in this section, before assembling the full running coupling in the next section.

Once more, the experience with Yang-Mills theory warns to be wary of lattice artifacts.

In the same manner as for the W propagator, finite volume and lattice spacing effects are

studied in figure 6 and 7, respectively. It is visible that there is at most a slight volume

dependence in all cases. However, the effect is similar to the one in Yang-Mills theory [15].

There, despite an appearance as in the top panel of figure 6, the ghost propagator is found to

be finite towards the infrared [61–63], due to very slowly manifesting volume effects. It ap-

pears likely that the same is true here as well, at least in the QLD, given the similarities for

theW propagator. Of course, larger volumes would be necessary for a conclusive statement.

The situation is more pronounced in the lattice spacing case. The changes in

lattice spacing displayed is not leading to more than a factor two in physical momenta.

Nonetheless, the ghost propagator is substantially different from each other in this case,

compared to the finite-volume effect. The reason for the somewhat stronger dependence is

therefore not due to the change of volume. Furthermore, the behavior is non-monotonous

in momentum, and thus cannot be cured by a multiplicative renormalization. It leads

mainly to a weaker momentum-dependence towards larger momenta. The infrared region

is less affected. Still, this a 10% effect at most.
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Figure 6. The ghost propagator (right panel) and dressing function (left panel) for different

volumes. The top panel is in the QLD with m1−/m0+ = 2.2, the middle panel has the physical

mass ratio m1−/m0+ = 0.72, and the bottom panel is for a large Higgs mass m1−/m0+ = 0.31,

both in the HLD.
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ratios m1−/m0+ on 244 lattices and for two different lattice spacings.
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Figure 8. The ghost propagator (right panel) and dressing function (left panel) for different mass

ratios m1−/m0+ on 244 lattices. Note that the propagators are unrenormalized.

The ghost propagator is shown for different values m1−/m0+ in figure 8. A drastic

difference can be seen between the QLD and HLD. In the former case, the propagator

shows a behavior resembling quite closely the one of Yang-Mills theory [15]. As stated

above, this makes it likely that it is infrared finite, as in the Yang-Mills case, though the

volume-dependence is not yet conclusive.

The situation is quite different in the HLD, where the ghost propagator is much less

infrared enhanced, and the deviation from a massless particle is extremely small. Such

a masslessness is in agreement with perturbation theory in Landau gauge [46]. It is also

compatible with earlier indirect evidence based on the spectrum of the Faddeev-Popov

operator [9], which was found to be close to the perturbative one. Finally, the remaining

infrared enhancement seems to diminish with decreasing mass ratio m1−/m0+ , and thus
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increasing Higgs mass. Note that the two branches observed for the W propagator show

no strongly distinct behavior for the ghost propagator.

4.3 Running coupling

Having both the ghost and the W propagator at hand, it is possible to construct the

running gauge coupling, which in the miniMOM scheme is given by [45, 64]

α(p2) = α(µ2)p6DG(p
2, µ2)2D(p2, µ2), (4.1)

and thus just entirely in terms of the propagators. The scale µ2 is the one where the (exper-

imental) input value for the running coupling is selected. The PDG value [28] is available

at the Z mass, however in a different scheme. Given that this is of the order of the involved

masses, and the running coupling itself being dependent on the gauge, a direct translation

is not feasible. Therefore, rather the ratio α(p2)/α(µ2) will be used here. Since the running

coupling is just a product of the propagators, its lattice-artifact-dependence is just a com-

bination of the ones of the propagators, and it will therefore not be studied explicitly here.

The resulting running coupling is shown in figure 9. The first observation is that once

more at large momenta all results agree very well with the leading-order massless running

gauge coupling
α(p2)

α(µ2)
=

1

1 + 1
4πβ0 ln

p2

µ2

, (4.2)

where β0 is the first coefficient of the β-function, which has a value of 43/6 in the present

theory. This coincides with the previous observation: at momenta large compared to

the scale set by the Higgs mechanism, the behavior is the same for QLD and HLD, and

essentially that of the massless theory. It should be noted that this behavior is markedly

different from the also plotted case with the 12 species of standard model fermions included,
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for which β0 has the value 19/6. The ratio of both cases at 1.2TeV is then still 0.578, which

is larger than the ratio of the β0s. Hence, in the full range the gauge coupling in the present

theory runs faster than the one with fermions, and the gauge interactions would actually

be stronger when including the fermions. Thus, the present theory has a substantially

weaker integrated gauge interaction than the standard model, as already remarked in [36].

Returning to the ultraviolet behavior, the far ultraviolet is rather universal. This is

not surprising, as the propagators show in both the QLD and HLD the same behavior,

despite their different analytic structure. Of course, if desired, the scheme could be

redefined that in all cases the couplings would run to an infrared fixed point [58, 65], but

this is rather cosmetic, and of no relevance here.

More interesting is the mid-momentum regime, i.e. momenta of the order of the bound-

state masses between 50 and 250GeV. Here there is a strong quantitative difference between

the QLD and HLD. In the QLD the running coupling show a pronounced peak, signaling

a large integrated strength, like in Yang-Mills theory [15]. This integrated strength is

the closest possible definition of the statement of a strongly interacting theory, as e.g.

in QCD this integrated strength is responsible for chiral symmetry breaking [66, 67]. The

situation is drastically different in the HLD. There, some maximum remains, though this is

essentially by construction with an infrared and ultraviolet vanishing running coupling. The

height of this maximum decreases continuously with the mass ratio m1−/m0+ , and moves

at the same time also to larger momenta. Thus, the integrated strength diminishes with

decreasing ratio m1−/m0+ . Note that this effect is independent of the branch at large Higgs

mass: the integrated running coupling strength is not a monotonous function of the bare

coupling. The latter therefore gives no indication of the interaction strength of the theory.

As a consequence, it would be expected that the gauge interaction becomes less relevant

the smaller the ratio m1−/m0+ is. It remains to see whether this is true.

Note that there is no three-Higgs vertex in a non-aligned gauge, and there is, to our

knowledge, no simple relation like (4.1) for the four-Higgs interaction, so that no such

calculation can be done for this running coupling. As stated already, a direct calculation

is obstructed by the statistical noise.

4.4 Higgs

The last propagator is the Higgs propagator. As noted already in section 2.4, it is different

from the W and the ghost propagator in so far as that it requires also an additive mass

renormalization. Due to the lack of extensive LCPs, it is not yet possible to study the

renormalization properties in detail. This is possible in the quenched case and this will be

discussed elsewhere [40], though the upshot is that the renormalization is essentially what

is expected from a perturbative calculation [46].

As a consequence, however, the masses extracted from the Higgs propagator space-time

correlator depend on the renormalization scheme (2.6)–(2.7) [22]. This problem did not

surface in the relation (3.1) as to lowest order in the quantum fluctuations renormalization

effects do not play a role. However, in the present lattice calculations all such quantum

effects are included, and therefore checking (3.1), in contrast to the case of the W boson

where no mass renormalization is necessary, is meaningless.
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Of course, in a pole scheme this could be superficially cured by enforcing that the mass

of the Higgs becomes the one of the 0+ in a kind of mimicking the pole/on-shell scheme of

perturbation theory [46, 68]. Then the mass is uniquely fixed by an observable. However,

in a sense this is cheating, as this choice is arbitrary. This will nonetheless be made.7

The necessary repetition of the study of lattice artifacts for volume effects and

discretization effects are shown in figures 10 and 11, respectively. The first observation

is that, in agreement with [33], there is essentially no volume-dependence for the Higgs

propagator, especially in comparison to the W propagator. The same is true for the

lattice spacing-dependency if the masses used for the renormalization purposes are truly

identical. Otherwise the differing mass creates some difference. Nonetheless, in total the

Higgs propagator is least affected by lattice artifacts.

The results for the Higgs propagator for different mass ratios m1−/m0+ are shown in

figure 12. There are a number of intriguing observations. The first is that the propagators

do not fully coincide at large momenta, even though being renormalized. This indicates

that at least the effects of the mass, as a hard mass scale, pertain to larger momenta.

More intriguing is the behavior of the effective mass, which can already be inferred

from the space-time correlator. In the QLD the effective mass bends upwards, signaling an

unphysical behavior. This is not expected in this case in the same way as for the W boson,

since in the QLD the Higgs-like mass generation is not operative. Nonetheless, the Higgs

shows also in the QLD at long times a behavior compatible with the mass induced by the

renormalization prescription. In the HLD, however, the space-time correlator gets more

and more into perfect agreement with an ordinary massive particle of the renormalized

mass with increasing renormalized mass.

Only at large masses a surprising behavior sets in. At small Higgs masses, the propa-

gator is decreasing faster than the tree-level one to which it is tied by the renormalization

scheme (2.6)–(2.7), signaling the presence of the expected logarithmic corrections. This

is the same behavior as in the quenched case [26, 40]. However, at small m1−/m0+ ratios,

there appears a second behavior, in which it increases instead of decreasing. It appears

that this is a systematic effect, which is tied to the validity of the relation (3.2) for the W

boson, as can be seen in figure 13: the propagator decreases slower than tree-level if the

relation (3.2) is valid, and faster if the relation is violated. This behavior can actually be

modified by choosing a different renormalization scheme, but the important observation

here is that in a fixed scheme there is also for the Higgs propagator a possible difference

between both cases.

Thus, at smallm1−/m0+ ratios two different branches seem to appear, with distinct be-

haviors for the W and the Higgs. This is not an effect of the running gauge coupling, where

this behavior does not surfaces, but seems to be connected to the Higgs self-interaction.

Concerning the corresponding bare parameters, the relation (3.2) seems to be violated for a

weaker Higgs self-interaction, in terms of the bare lattice parameters. This is also counter-

7Note that the situation could actually be worse, as the Nielsen identities ensuring gauge-invariance of

the Higgs and W masses in certain classes of gauges are actually not guaranteed to hold between different

classes of gauges [69], and the situation for non-aligned, and therefore genuinely non-perturbative [10, 13],

gauges is not yet settled.
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Figure 10. The Higgs propagator (right panel) and Schwinger function (left panel) for different

volumes. The top panel is in the QLD with m1−/m0+ = 2.2, the middle panel has the physical

mass ratio m1−/m0+ = 0.72, and the bottom panel is for a large Higgs mass m1−/m0+ = 0.31,

both in the HLD. Note that the renormalization has been performed for all volumes with the same

renormalization constants.
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Figure 11. The Higgs propagator (right panel) and Schwinger function (left panel) for different

mass ratios m1−/m0+ on 244 lattices and for two different lattice spacings.

intuitive. However, the number of such lattice parameter sets found is small so far. It

appears necessary to significantly enlarge the sample, also over a wider range of 0+ masses

and lattice spacings, before a conclusive statement can be made. It is, however, tempting to

speculate that these two directions could manifest different kinds of physics when moving

the lattice spacing to the minimum value possible. It is certainly a worthwhile endeavor to

investigate this in more detail, also with respect to gauge-invariant physics [25].

5 Vertices

5.1 Ghost-W vertex

The interaction three-point vertices are after the propagators the most simple objects,

and the first objects which give insights into the interaction of the particles. The simplest,

and statistically most simple one [34], is the ghost-W vertex. It is shown for different

mass ratios m1−/m0+ in figures 14–16. It should be noted that in Landau gauge there

is a ghost-anti-ghost symmetry [70], and therefore the momentum-dependency for the

anti-ghost momentum can be inferred from the one of the ghost.

Not surprisingly, given the results for the propagators, the vertex in the QLD, shown in

figure 14, exhibits essentially the same behavior as in SU(2) Yang-Mills theory [15, 71–74].

Especially, the vertex is rather flat, except for a bump at an intermediate momentum of

typical scale of the theory, here the mass of the lightest bound state.

The situation in the HLD for both a light 0+, shown in figure 15, as well as for

a 0+ above threshold, shown in figure 16, is similar. The only difference is that the

mid-momentum bump is severely reduced, and also shifted to larger masses of about two

times the 0+ mass. Furthermore, the bump decreases with increasing 0+ mass. This

could have also been inferred from the decrease and shift of the running coupling (4.1)

in figure 9, as the relation (4.1) stems from the relation between the ghost-W -vertex

renormalization and the W and ghost propagators [64].
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Figure 12. The Higgs propagator (top-right panel), dressing function (bottom-right panel),

Schwinger function (top-left panel), and effective mass (bottom-left panel) for different mass

ratios m1−/m0+ on 244 lattices. All propagators are renormalized in the pole scheme, and

Dtl
H

= 1/(p2 +m2
H
).

5.2 3-W -boson vertex

The results for the 3-W vertex, which is highly constrained due to the Bose symmetry

of all legs, are shown in figures 17–19. The results show, as in the Yang-Mills case [71],

much stronger statistical fluctuations than for the ghost-W vertex, especially at high

momenta. This limits the reliability, especially for larger lattice volumes. At small

momenta, however, the statistical noise is significantly smaller.

The QLD case is presented in figure 17. It shows the characteristic infrared suppression

also seen in Yang-Mills theory [15, 71, 72, 74], and also compatible with a zero crossing

at small momenta. However, just like in the Yang-Mills case in four dimensions [71],

the volumes are just not large enough to unambiguously establish it. In the Yang-Mills

case, the results in lower dimensions [71, 75, 76] clearly show this zero crossing, and it is
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Figure 13. The Higgs propagator (top-right panel), dressing function (bottom-right panel),

Schwinger function (top-left panel), and effective mass (bottom-left panel) for different mass ratios

m1−/m0+ on 244 lattices. All propagators are renormalized in the pole scheme. Type I refers to

situations where relation (3.2) does not hold, while type II refers to situations where it does hold.

therefore suggestive that this also should occur in four dimensions. The situation for the

QLD here is very reminiscent of this. However, only larger volumes will finally permit to

decide this question unequivocally.

The situation in the HLD, both for the low-mass 0+ in figure 18 and the above-

threshold 0+ mass in figure 19, is somewhat different. Here, the results do not show

a strong tendency for an infrared suppression, though a slight decrease is observed.

Still, the results extrapolate much better to a finite value. However, in units of the

lightest excitation, the volumes in both cases are substantially smaller than for the QLD

calculation. This may therefore be a finite volume effect.

Much clearer is that there is little, if at all, dependency on the mass of the 0+, at

least within the errors. It will require more systematic investigations at larger volumes to

clarify the behavior in the HLD.
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Figure 14. The ghost-W vertex. The top-left panel shows the case of equal ghost and W momen-

tum, orthogonal to each other. The top-right panel shows the case for vanishing W momentum.

The bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-

dimensional plot of the possible ghost and W momenta orthogonal to each other for the largest

lattice volume. The mass ratio is m1−/m0+ = 2.2. The results are not renormalized.

5.3 Higgs-W vertex

The last vertex is, in principle, the most interesting one, the W -Higgs vertex. Not only

because it is the mediator of the Higgs effect [46], but it is also suspected to play an

important role in the confinement process in the QLD [16]. Unfortunately, and somewhat

surprisingly, it is even stronger affected by statistical fluctuations than the 3-W vertex.

This made a large-volume study of it at the current time essentially not feasible. Here, the

results, as far a possible are presented, though the large statistical uncertainty beyond the

smallest volume make the results only of limited systematic reliability.

The dressing functions are shown in figure 20–22. The statistical fluctuations are worst

in the QLD, shown in figure 20, and decrease with increasing 0+ mass in the HLD, i.e.
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Figure 15. The ghost-W vertex. The top-left panel shows the case of equal ghost and W momen-

tum, orthogonal to each other. The top-right panel shows the case for vanishing W momentum.

The bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-

dimensional plot of the possible ghost and W momenta orthogonal to each other for the largest

lattice volume. The mass ratio is m1−/m0+ = 0.65. The results are not renormalized.

from figure 21 to figure 22. The results are compatible with a more or less flat momen-

tum behavior, though the differences between the case with vanishing W momentum and

non-vanishing W momentum for the orthogonal configurations are compatible with some

angular dependence on the angle between the Higgs and the anti-Higgs. Since in the present

case there is no symmetry between the two legs, this is not excluded.

Such an essentially flat behavior is also compatible with the quenched case, though

there no significant angular dependence is observed [26, 40]. The results are furthermore

not compatible with any kind of divergence, either towards the infrared, nor towards

vanishing W momentum, i.e. of any kind of kinematical singularity. This is the case in

both the QLD and the HLD, and appears to preclude any possibility to obtain a strong

contribution to the intermediate distance string tension from a single W exchange, as has

been discussed for QCD [70, 77].
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Figure 16. The ghost-W vertex. The top-left panel shows the case of equal ghost and W momen-

tum, orthogonal to each other. The top-right panel shows the case for vanishing W momentum.

The bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-

dimensional plot of the possible ghost and W momenta orthogonal to each other for the largest

lattice volume. The mass ratio is m1−/m0+ = 0.31. The results are not renormalized.

5.4 A note on the four-point vertices

The previously shown results indicate that the Higgs can have quite an impact on the

gauge boson, in stark contrast to the case of fermions with the same number of degrees of

freedom, even when freely varying their mass. It appears therefore possible that the Higgs-

self-interaction plays an important role in this context, since this is already the case at the

classical level [46]. Unfortunately, the Higgs-self-coupling makes its first direct appearance

in this gauge at the level of the four-point functions.

In the present gauge there are six such four-point functions with the generic structure

〈BaB̄bBcB̄d〉, with collective indices including field type and B̄ is the anti-particle, which

is identical to the particle in case of the W field. These are the ghost-ghost scattering ker-
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Figure 17. The three-W vertex. The top-left panel shows the case of two equal W momenta,

orthogonal to each other. The top-right panel shows the case for one vanishing W momentum. The

bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-dimensional

plot of the possible ghost and W momenta orthogonal to each other for the largest lattice volume.

The mass ratio is m1−/m0+ = 2.2. The results are not renormalized.

nel, the ghost-W scattering kernel, the ghost-Higgs scattering kernel, the W -W scattering

kernel, the W -Higgs scattering kernel, and the Higgs-Higgs scattering kernel. There are

two main issues with the calculation of these four-point functions.

One is that the amount of statistical fluctuations will be larger than the one for the cor-

responding three-point functions, especially the larger the number of Higgs fields, given the

comparison between the three-W and the W -Higgs vertex above. The second is that in the

non-aligned Landau gauge these are the first correlation functions for which connected and

full correlation functions do not agree, but disconnected contributions have to be removed,

〈BaB̄bBcB̄d〉connected = 〈BaB̄bBcB̄d〉 −
∑

P

cP 〈BaP B̄bP 〉〈BcP B̄dP 〉 (5.1)

where the sum is over permutations of the indices and cP is a constant depending on the

involved field types. This increases the required statistical precision even further, pushing
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Figure 18. The three-W vertex. The top-left panel shows the case of two equal W momenta,

orthogonal to each other. The top-right panel shows the case for one vanishing W momentum. The

bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-dimensional

plot of the possible ghost and W momenta orthogonal to each other for the largest lattice volume.

The mass ratio is m1−/m0+ = 0.65. The results are not renormalized.

these objects out of our numerical reach, as noted in the introduction. The only possible

exception may be the ghost-ghost scattering kernel, since due to the inversion of the

Faddeev-Popov operator and the therefore included lattice averaging it is less affected by

statistical fluctuations.

There is one further exception. For the case of the Higgs-Higgs scattering kernel,

there is a gauge-invariant contraction of the indices, if the arguments of the Higgs and the

anti-Higgs fields pairwise coincide. This is then just the Higgsonium operator (2.9). Since

no gauge-fixing is required to determine it, this channel can be statistical accessed with

sufficient brute force [4, 5, 25], and at least its pole structure can be accessed, giving the

physical excitations in the 0+ channel. The relation (3.1) shows also that, for a physical

Higgs mass, there is a connection to the perturbative one-Higgs exchange in this channel

– 32 –



J
H
E
P
0
4
(
2
0
1
4
)
0
0
6

p [GeV]
0 100 200 300 400 500 600

)2
,p2

,p2
(p

3
W

G

-2

-1

0

1

2

424
418
412

Three-W vertex, all momenta equal

p [GeV]
0 50 100 150 200 250 300 350 400 450

)2
,p2

,4
p

2
(p

3
W

G

-2

-1

0

1

2

Three-W vertex, orthogonal momenta with two equal

p [GeV]
0 50 100 150 200 250 300 350 400 450

,0
)

2
,p2

(p
3

W
G

-2

-1

0

1

2

Three-W vertex, one momentum vanishing

p [GeV]
0

100
200

300
400

k [GeV]

0

100

200

300

400

)2
,k2

+
k

2
,p2

(p
3

W
G

-2

-1

0

1

2

Three-W vertex, orthogonal momenta

Figure 19. The three-W vertex. The top-left panel shows the case of two equal W momenta,

orthogonal to each other. The top-right panel shows the case for one vanishing W momentum. The

bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-dimensional

plot of the possible ghost and W momenta orthogonal to each other for the largest lattice volume.

The mass ratio is m1−/m0+ = 0.31. The results are not renormalized.

in an aligned gauge, which is, e.g. absent in the QLD, where the dominant part will

be a two-Higgs exchange. Thus, the relation (3.1) already implies that the Higgs-Higgs

scattering kernel will exhibit at least one perturbative feature. This makes it even more

interesting to understand which role it plays in the influence of the Higgs on the gauge

sector. However, this will have to await significant more computational resources, or

different approaches, like, e.g., functional methods [15].

Note that no such argument can be made in case of the W -W scattering kernel, as

the simplest gauge-invariant objects formed only from W fields involves at least eight W

fields, the plaquette and the topological charge density.
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Figure 20. The Higgs-W vertex. The top-left panel shows the case of equal Higgs and W momen-

tum, orthogonal to each other. The top-right panel shows the case for vanishing W momentum.

The bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-

dimensional plot of the possible ghost and W momenta orthogonal to each other for the 184 lattice.

The mass ratio is m1−/m0+ = 2.2. The results are not renormalized.

6 Conclusions

Summarizing, we have presented an extensive study of two-point functions and, for the

first time, three-point functions in Yang-Mills-Higgs theory in the non-aligned minimal

Landau gauge using lattice methods throughout a significant part of the phase diagram of

the theory.

We have confirmed earlier results [5, 52] that the theory undergoes a drastic change

from a would-be Higgs behavior to a would-be QCD behavior when the mass of the 0+

drops below the one of the 1− state from the investigation of these correlation functions. Of

course, this is true only away from the overlap region, where the transition is a cross-over

and many aspects become gauge-dependent [3]. But already quite close by this cross-over
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Figure 21. The Higgs-W vertex. The top-left panel shows the case of equal Higgs and W momen-

tum, orthogonal to each other. The top-right panel shows the case for vanishing W momentum.

The bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-

dimensional plot of the possible ghost and W momenta orthogonal to each other for the 184 lattice.

The mass ratio is m1−/m0+ = 0.65. The results are not renormalized.

the correlation functions show a pronounced QCD-like or Higgs-like behavior, especially

visible in the gauge sector. Inside this QCD-like region the correlation functions in the

gauge sector show a behavior close to the one of Yang-Mills theory [15], while the ones

involving Higgs fields are close to the quenched case [26]. These results are in line with

most expectations from functional studies [7, 16–21], and proposals which involve infrared

divergent W -Higgs vertices [16] appear currently rather unlikely.

We have furthermore extended the observations from [22] and confirmed that the

relations (3.1)–(3.2) established in [11] hold true as long as the 0+ is below the threshold

for decays into two 1−. In this region, the propagators and vertices are close to the ones

of perturbation theory [46]. Especially, the Higgs and the W are both massive, though the

latter changes gradually into a massless particle at high energies. At these large energies

they therefore coincide with the ones of the QCD-like domain.
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Figure 22. The Higgs-W vertex. The top-left panel shows the case of equal Higgs and W momen-

tum, orthogonal to each other. The top-right panel shows the case for vanishing W momentum.

The bottom-left panel shows the symmetric configuration. The bottom-right panel is a three-

dimensional plot of the possible ghost and W momenta orthogonal to each other for the 184 lattice.

The mass ratio is m1−/m0+ = 0.31. The results are not renormalized.

If the mass of the 0+ exceeds twice the mass of the 1−, i.e. when it crosses the

threshold for decays, the situation changes. Especially, two different behaviors are

observed, which depend on the relative sizes of the bare lattice parameter. Note that

this is not dependent on the running gauge coupling, which is found just to diminish

continuously with increasing 0+ mass. The behavior observed is either a branch where the

relations (3.1)–(3.2) do no longer hold, i.e. perturbation theory is no longer an adequate

description. The other branch still shows this behavior, but the Higgs propagator shows

at short distances no longer a behavior compatible with a simple massive particle. Hence,

in both cases something interesting occurs. To fully understand the effect, this will require

much more systematic investigations, as well as a comparison to the gauge-invariant

physics of this part of the phase diagram, which will be done elsewhere [25].
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Still, it seems to be likely that the simple perturbative behavior is at least valid in the

region 1/2 ≤ m1−/m0+ ≤ 1, in which the physical Higgs mass resides.
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A Some remarks on variables and gauges

A.1 Gauge-invariant variables

The Yang-Mills-Higgs theory with two flavors of Higgs fields has a very interesting prop-

erty [11], which has been used repeatedly in lattice calculations [5, 49]: it is possible to

rephrase the lattice action entirely in terms of the gauge-invariant operators describing the

0+ and 1− excitations (2.9) and (2.11), the latter with α = −1. By this the integration

over the gauge orbit factorizes, and can be removed.

The price to be paid is twofold. One is that the topological structure of the target

space changes from R4 to SU(2)×R+, and is therefore partly compactified. Though such a

change of target space does not seem to influence pertinent features in the ungauged case,

like triviality [6, 79, 80], it is not entirely clear whether this holds true for the gauged case,

in which also the gauge fields offer non-trivial topological structure.

Aside from this more fundamental point, this change of variables entails a non-trivial

Jacobian, which essentially manifests in form of an additional term ln ρ on the level of the

Lagrangian [5]

S = β
∑

xµ<ν

(

1−
1

2
ℜtrVµν(x)

)

+
∑

x



ρ2(x)− 3 log ρ(x) + λ(ρ(x)− 1)2 − κ
∑

µ>0

ρ(x+ µ)ρ(x)trVµ(x)





where Vµν is the plaquette obtained from the Vµ. Note that this theory only retains the

global flavor symmetry, as the last term would no longer be invariant under local gauge

transformations. Thus, already at tree-level, an infinite number of vertices appear due

to the ln ρ term, and perturbative renormalizability becomes quite difficult to achieve, if

possible at all.

Of course, this poses no problem for lattice calculations, but so neither does a formu-

lation including the gauge fields. If this additional term can be neglected perturbatively,

this formulation has turned out to be quite useful [81].

If the fields are coupled, like in the standard model, to other gauge interactions, these

variables are, of course, no longer gauge-invariant. Hence, their use is somewhat limited
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on a conceptual level, despite their technical usefulness. This approach is therefore not

pursued here. Furthermore, there is some problem when the Higgs field vanishes, as then

the action becomes locally infinite, as the Jacobian becomes singular.

A.2 Unitary gauge

One particular convenient way of gauge-fixing at tree-level in this theory is superficially

unitary gauge [46], see e.g. [82]. In this gauge, on each gauge orbit the gauge copy is chosen

for which the ϕa become unit matrices. Since a gauge transformation g achieving this is

given by ϕa−1, this is in general possible, since ϕ is almost everywhere a valid SU(2) group

element. However, at those remaining points, i.e. those at which the Higgs field φ vanishes,

this gauge transformation is ill-defined, i.e. gauge defects are introduced. In contrast to

the Landau gauge used in the main part of the text, it is therefore not a fully well-defined

gauge, though this is of little importance on a finite lattice.

There are also further disadvantages. One is that again this changes the topology

of the target space of the Higgs field. The second is that this gauge is perturbatively

non-renormalizable at the level of gauge-dependent correlation functions [46], entailing

problems in defining the correlation functions of the W and the Higgs.

Formally, when writing down the corresponding gauge-fixed operators for the W and

Higgs field, these are in fact identical to the ones obtained when making the choice of gauge-

invariant variables in the previous section A.1, i.e. (2.9) and (2.11). The main difference

in practical terms is hence that in the previous case the transformation is done before

evaluating the path integral, while in the latter case rather a δ-functional

δ (ϕa − 1) ,

as the gauge condition is introduced into the path integral. Thus, at the conceptual level,

previously the points of vanishing Higgs field yield an infinite action, while they appear as

gauge-fixing defects in the present case. Hence, aside from these points both approaches

are equivalent. However, while the change of variables ceases to yield a gauge-invariant

formulation when adding additional fields, and therefore is no longer useful, unitary gauge

remains a gauge even in that case.

A.3 ’t Hooft gauge

To avoid the problems introduced by the perturbative non-renormalizability of unitary

gauge, perturbative calculations usually employ gauges like the ’t Hooft gauges with the

gauge condition [46]

∂µA
a
µ + iζφiτ

a
ijnjv = 0.

where ζ is a second gauge parameter, which is in general different from the gauge parameter

ξ of the covariant part of the gauge fixing. Usually, however, renormalization schemes

are employed which ensure ξ = ζ to avoid mixing between Goldstone bosons and gauge

fields [46]. Only this version will be discussed here.

It is, of course, possible to take the limit ξ = ζ → 0, in which case the resulting gauge

is the Landau gauge. However, for every non-vanishing value of the gauge parameters, the
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masses of the W boson and the Higgs remain unchanged, while the masses of the ghosts

and the Goldstones go with the gauge parameters to zero [46]. In contrast, if instead of

taking the limit, the gauge parameters are just set to zero, not only the Goldstones and

ghosts will have vanishing mass, but so will the W boson and the Higgs mass becomes

tachyonic. These statements hold true to all orders in perturbation theory, except for

the Higgs mass. Hence, while the limit is perturbatively well-defined, the situation at

zero, which is the one employed in this work, is perturbatively not well-defined [10].

Non-perturbatively, these gauges are still well-defined. The gauge condition plays hence

the role of an external magnetic field, which forces during the limiting process the system

into a preferred vacuum, while the system at zero gauge parameter remains (classically)

in the metastable symmetric situation [13]. From the point of view of non-perturbative

calculations, however, this does not matter, and any choice is equally well possible.

Hence, as to be expected in a situation with metastability, taking the end-point of the

sequence is not a continuous part of the sequence itself.

B Perturbation theory

This still entails the question of how the results of the present work can be compared

to perturbative calculations, and thus whether the statements about the validity of

perturbation theory are reliable. Here helps the fact that the limit of ’t Hooft gauge and

Landau gauge only differ by averaging over the global part of the gauge group [13]. Hence,

all quantities which are invariant under global gauge transformations remain invariant.

Especially, this implies that though the individual components of the propagators are

not invariant under a global gauge transformations, their traces are. Since here only

such traces are calculated, these results will coincide in both gauges. Hence, they can be

perturbatively calculated in the limit of ’t Hooft gauge.

Furthermore, since the global gauge symmetry is explicitly manifest in the present

gauge, all off-diagonal elements of propagators will vanish, and all diagonal elements are

identical. This finally permits to determine the full propagators. Especially, this implies

that at tree-level the propagators will behave as [46]

Dab = δab
(

δµν −
pµpν
p2

)

1

p2 +m2
W

Dab
G = −δab

1

p2

Dij
H = δij

1

p2 +m2
H

,

where mW and mH are the corresponding tree-level masses.

At sufficiently large energy, the consequences of the Higgs effect quickly diminish, and

therefore the propagators decay like massless particles, proportional to lnδi p2, with the

relevant anomalous dimensions δi, which can be obtained from resummed perturbation

theory. However, because of the relation (4.1) and the renormalization of the propagators

in the miniMOM scheme [45], the running gauge coupling will just drop as given in

equation (4.2), i.e. purely logarithmically.
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In the same way also averaged tensor structures for the vertices can be constructed,

for all possible globally invariant gauge tensor structures [17], and in the same way as

before related to the ones of ’t Hooft gauge. Hence, the perturbative results can indeed

be obtained relatively straightforwardly. Especially, only gauge algebra is required,

and no new Feynman diagrams have to be evaluated. Thus, reliable statements about

perturbative results in the main text are possible.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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