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1 Introduction

Four-dimensional field theories with rigid N = 2 supersymmetry provide a remarkable

arena where many exact results can be obtained; indeed N = 2 supersymmetry, not being

maximal, permits a great deal of flexibility but, at the same time, is large enough to guar-

antee full control. This fact was exploited in the seminal papers [1, 2] where it was shown

that the effective dynamics of N = 2 super Yang-Mills (SYM) theories in the limit of low

energy and momenta can be exactly encoded in the so-called Seiberg-Witten (SW) curve

describing the geometry of the moduli space of the SYM vacua. When the gauge group

is SU(2), the SW curve defines a torus whose complex structure parameter is identified

with the (complexified) gauge coupling constant τ of the SYM theory at low energy. This
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coupling receives perturbative corrections at 1-loop and non-perturbative corrections due

to instantons, and the corresponding effective action follows from a prepotential F that is

a holomorphic function of the vacuum expectation value a of the adjoint vector multiplet,

of the flavor masses, if any, and of the dynamically generated scale in asymptotically free

theories or of the bare gauge coupling constant τ0 in conformal models (see for instance [3]

for a review and extensions of this approach).

Recently, N = 2 superconformal field theories (SCFT) have attracted a lot of atten-

tion. Two canonical examples of SCFT’s are the N = 2 SU(2) SYM theory with Nf = 4

fundamental hypermultiplets and the N = 2∗ theory, namely a N = 2 SYM theory with

an adjoint hypermultiplet. In both cases, the β-function vanishes but, when the hypermul-

tiplets are massive, the bare coupling τ0 gets renormalized at 1-loop by terms proportional

to the mass parameters. Besides these, there are also non-perturbative corrections due to

instantons. As shown in [4] for the N = 2∗ theory and more recently in [5] for the Nf = 4

theory, by organizing the effective prepotential F as a series in inverse powers of a and by

exploiting a recursion relation hidden in the SW curve, it is possible to write the various

terms of F as exact functions of the bare coupling. These functions are polynomials in

Eisenstein series and Jacobi θ-functions of τ0 and their modular properties allow one to

show that the effective theory at low energy inherits the Sl(2,Z) symmetry of the micro-

scopic theory at high energy. In particular one can show [4, 5] that the S-duality map on

the bare coupling, i.e. τ0 → −1/τ0, implies the corresponding map on the effective coupling,

i.e. τ → −1/τ , and that the prepotential F and its S-dual are related to each other by a

Legendre transformation.

The non-perturbative corrections predicted by the SW solution can also be obtained

directly via multi-instanton calculus and the use of localization techniques [6, 7].1 This ap-

proach is based on the calculation of the instanton partition function after introducing two

deformation parameters, ǫ1 and ǫ2, of mass dimension 1 which break the four-dimensional

Lorentz invariance, regularize the space-time volume and fully localize the integrals over

the instanton moduli space on sets of isolated points, permitting their explicit evaluation.

This method, which has been extensively applied to many models (see for instance [10–17])

can be interpreted as the effect of putting the gauge theory in a curved background, known

as Ω-background [6, 7, 18], or in a supergravity background with a non-trivial graviphoton

field strength, which are equivalent on the instanton moduli space [19, 20]. The resulting

partition function Zinst(ǫ1, ǫ2), also known as Nekrasov partition function, allows one to

obtain the non-perturbative part of the SYM prepotential according to

Finst = − lim
ǫ1,ǫ2→0

ǫ1ǫ2 logZinst(ǫ1, ǫ2) . (1.1)

Actually, the Nekrasov partition function is useful not only when the ǫ parameters are

sent to zero, but also when they are kept at finite values. In this case, in fact, the non-

perturbative ǫ-deformed prepotential

Finst(ǫ1, ǫ2) = −ǫ1ǫ2 logZinst(ǫ1, ǫ2) (1.2)

1See also [8, 9] for earlier applications of these techniques.
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represents a very interesting generalization of the SYM one. By adding to it the corre-

sponding (ǫ-deformed) perturbative part Fpert, one gets a generalized prepotential that can

be conveniently expanded as follows

Fpert + Finst =
∞∑

n,g=0

F (n,g) (ǫ1 + ǫ2)
2n (ǫ1ǫ2)

g . (1.3)

The amplitude F (0,0), which is the only one that remains when the ǫ-deformations are

switched off, coincides with the SYM prepotential F of the SW theory, up to the classical

tree-level term. The amplitudes F (0,g) with g ≥ 1 account instead for gravitational cou-

plings and correspond to F-terms in the effective action of the form F (0,g)W2g, where W
is the chiral Weyl superfield containing the graviphoton field strength as its lowest compo-

nent. These terms were obtained long ago from the genus g partition function of the N = 2

topological string on an appropriate Calabi-Yau background [21] and were shown to satisfy

a holomorphic anomaly equation [22, 23] from which one can recursively reconstruct the

higher genus contributions starting from the lower genus ones (see for instance [24, 25]).

More recently, also the amplitudes F (n,g) with n 6= 0 have been related to the N = 2

topological string and have been shown to correspond to higher dimensional F-terms of

the type F (n,g)Υ 2nW2g where Υ is a chiral projection of real functions of N = 2 vector

superfields [26], which also satisfy an extended holomorphic anomaly equation [27, 28]. By

taking the limit ǫ2 → 0 with ǫ1 finite, one selects in (1.3) the amplitudes F (n,0). This limit,

also known as Nekrasov-Shatashvili limit [29], is particularly interesting since it is believed

that the N = 2 effective theory can be described in this case by certain quantum integrable

systems. Furthermore, in this Nekrasov-Shatashvili limit, using saddle point methods it is

possible to derive a generalized SW curve [30, 31] and extend the above-mentioned results

for the SYM theories to the ǫ-deformed ones.

By considering the Nekrasov partition function and the corresponding generalized pre-

potential for rank one SCFT’s, in [32] a very remarkable relation has been uncovered with

the correlation functions of a two-dimensional Liouville theory with an ǫ-dependent central

charge. In particular, for the SU(2) theory with Nf = 4 the generalized prepotential turns

out to be related to the logarithm of the conformal blocks of four Liouville operators on

a sphere and the bare gauge coupling constant to the cross-ratio of the punctures where

the four operators are located; for the N = 2∗ SU(2) theory, instead, the correspondence

works with the one-point conformal blocks on a torus whose complex structure parameter

plays the role of the complexified bare gauge coupling. Since the conformal blocks of the

Liouville theory have well-defined properties under modular transformations, it is natural

to explore modularity also on the four-dimensional gauge theory and try to connect it to

the strong/weak-coupling S-duality, generalizing in this way the SW results when ǫ1 and

ǫ2 are non-zero. On the other hand, one expects that the deformed gauge theory should

somehow inherit the duality properties of the Type IIB string theory in which it can be

embedded. Some important steps towards this goal have been made in [33] and also in [34]

where it has been shown that the SW contour integral techniques remain valid also when

both ǫ1 and ǫ2 are non-vanishing. To make further progress and gain a more quantita-

tive understanding, it would be useful to know the various amplitudes F (n,g) in (1.3) as
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exact functions of the gauge coupling constant and analyze their behavior under modular

transformations, similarly to what has been done for the SW prepotential F (0,0) in [4, 5].

Recently, by exploiting the generalized holomorphic anomaly equation, an exact expression

in terms of Eisenstein series has been given for the first few amplitudes F (n,g) of the SU(2)

theory with Nf = 4 and the N = 2∗ SU(2) theory in the limit of vanishing hypermul-

tiplet masses [35]. This analysis has then been extended in [36] to the massive N = 2∗

model in the Nekrasov-Shatashvili limit, using again the extended holomorphic anomaly

equation, and in [37] using the properties of the Liouville toroidal conformal blocks in the

semi-classical limit of infinite central charge. However, finding the modular properties of

the deformed prepotential in full generality still remains an open issue.

In this paper we address this problem and extend the previous results by adopting

a different strategy. In section 2, using localization techniques we explicitly compute the

first few instanton corrections to the prepotential for the N = 2∗ massive theory with

gauge group SU(2) in a generic ǫ-background. From these explicit results we then infer

the exact expressions of the various prepotential coefficients and write them in terms of

Eisenstein series of the bare coupling. Our results reduce to those of [4, 5] when the de-

formation parameters are switched off, and to those of [35–37] in the massless or in the

Nekrasov-Shatashvili limits. The properties of the Eisenstein series allow us to analyze the

behavior of the various prepotential terms under modular transformations and also to write

a recursion relation that is equivalent to the holomorphic anomaly equation if one trades

modularity for holomorphicity. The recursion relation we find contains a term proportional

to ǫ1ǫ2, which is invisible in the SYM limit or in the Nekrasov-Shatashvili limit. In sec-

tion 3 we repeat the same steps for the N = 2 SU(2) theory with Nf = 4 and arbitrary

mass parameters and also in this case derive the modular anomaly equation in the form

of a recursion relation. In section 4 we study in detail the properties of the generalized

prepotential under S-duality, and show that when both ǫ1 and ǫ2 are different from zero,

due to the new term in the recursion relation, the prepotential and its S-dual are not any

more related by a Legendre transformation, an observation which has been recently put

forward in [38] from a different perspective. We also propose how the relation between the

prepotential and its S-dual has to be modified, by computing the first corrections in ǫ1ǫ2.

Finally, in section 5 we conclude by showing that there exist suitable redefinitions of the

prepotential and of the effective coupling from which we can recover the simple Legendre

relation and write the S-duality relations in the same form as in the undeformed SW theory.

The appendices contain some technical details and present several explicit formulas which

are useful for the computations described in the main text.

2 The N = 2∗ SU(2) theory

The N = 2∗ SYM theory describes the interactions of a N = 2 gauge vector multiplet

with a massive N = 2 hypermultiplet in the adjoint representation of the gauge group.

It can be regarded as a massive deformation of the N = 4 SYM theory in which the

β-function remains vanishing but the gauge coupling constant receives both perturbative

and non-perturbative corrections proportional to the hypermultiplet mass. Using the lo-
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calization techniques [6, 7] one can obtain a generalization of this theory by considering the

ǫ-dependent terms in the Nekrasov partition function. In the following we only discuss the

case in which the gauge group is SU(2) (broken down to U(1) by the vacuum expectation

value a of the adjoint scalar of the gauge vector multiplet). We begin by considering the

non-perturbative corrections.

2.1 Instanton partition functions

The partition function Zk at instanton number k is defined by the following integral over

the instanton moduli space Mk:

Zk =

∫
dMk e

−Sinst (2.1)

where Sinst is the instanton moduli action of the N = 2∗ theory. After introducing two

deformation parameters ǫ1 and ǫ2, the partition function Zk can be explicitly computed

using the localization techniques. In the case at hand, each Zk can be expressed as a sum

of terms in one-to-one correspondence with an ordered pair of Young tableaux of U(k)

such that the total number of boxes in the two tableaux is k. For example, at k = 1

we have the two possibilities: ( , •) and (•, ); at k = 2 we have instead the five cases:

( , •), (•, ), ( , •), (•, ), ( , ); and so on and so forth. Referring for example to

the appendix A of [39] for details, at k = 1 one finds

Z( ,•) =
(−ǫ1 + m̃)(−ǫ2 + m̃)(a12 + m̃)(a21 + m̃− ǫ1 − ǫ2)

(−ǫ1)(−ǫ2)a12(a21 − ǫ1 − ǫ2)
,

Z(•, ) =
(−ǫ1 + m̃)(−ǫ2 + m̃)(a21 + m̃)(a12 + m̃− ǫ1 − ǫ2)

(−ǫ1)(−ǫ2)a21(a12 − ǫ1 − ǫ2)
,

(2.2)

where auv = au − av with a1 = −a2 = a, and

m̃ = m+
ǫ1 + ǫ2

2
(2.3)

is the equivariant mass parameter for the adjoint hypermultiplet in the ǫ-background [35,

40]. The 1-instanton partition function is therefore

Z1 = Z( ,•) + Z(•, ) =
(4m2 − (ǫ1 − ǫ2)

2)(16a2 − 4m2 − 3(ǫ1 + ǫ2)
2)

8ǫ1ǫ2(4a2 − (ǫ1 + ǫ2)2)
. (2.4)

At k = 2 the relevant partition functions are

Z( ,•) =
(−ǫ1 + m̃)(−ǫ2 + m̃)(−ǫ1 + ǫ2 + m̃)(−2ǫ2 + m̃)(a12 + m̃)

(−ǫ1)(−ǫ2)(−ǫ1 + ǫ2)(−2ǫ2)a12

× (a12 + m̃+ ǫ2)(a21 + m̃− ǫ1 − ǫ2)(a21 + m̃− ǫ1 − 2ǫ2)

(a12 + ǫ2)(a21 − ǫ1 − ǫ2)(a21 − ǫ1 − 2ǫ2)
,

Z( , ) =
(−ǫ1 + m̃)2(−ǫ2 + m̃)2(a12 + m̃− ǫ1)(a12 + m̃− ǫ2)

(−ǫ1)2(−ǫ2)2(a12 − ǫ1)(a12 − ǫ2)

× (a21 + m̃− ǫ1)(a21 + m̃− ǫ2)

(a21 − ǫ1)(a21 − ǫ2)
.

(2.5)
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The contributions corresponding to the other Young tableaux at k = 2 can be obtained

from the previous expressions with suitable redefinitions. In particular, Z(•, ) is obtained

from Z( ,•) in (2.5) by exchanging a12 ↔ a21, Z
( ,•)

is obtained by exchanging ǫ1 ↔ ǫ2,

and finally Z
(•, )

is obtained by simultaneously exchanging a12 ↔ a21 and ǫ1 ↔ ǫ2. The

complete 2-instanton partition function is

Z2 = Z( ,•) + Z(•, ) + Z
( ,•)

+ Z
(•, )

+ Z( , ) (2.6)

but we refrain from writing its expression since it is not particularly inspiring. This pro-

cedure can be systematically extended to higher instanton numbers leading to explicit

formulas for the instanton partition functions.

Following [7] we can cast these results in a nice and compact form. Indeed, defining

q = eπiτ0 (2.7)

where τ0 = θ
2π + i 4π

g2
is the complexified gauge coupling constant of the N = 2∗ SYM

theory, the grand-canonical instanton partition function

Zinst =
∞∑

k=0

q2k Zk (2.8)

where Z0 = 1, can be rewritten as

Zinst =
∑

(Y1,Y2)

q2|Y |
∞∏

i,j=1

2∏

u,v=1

[
auv + ǫ1(i− 1)− ǫ2j

auv + ǫ1(i− 1− k̃vj)− ǫ2(j − kui)

× auv + m̃+ ǫ1(i− 1− k̃vj)− ǫ2(j − kui)

auv + m̃+ ǫ1(i− 1)− ǫ2j

] (2.9)

where the first line represents the contribution of the gauge vector multiplet and the second

line that of the adjoint hypermultiplet. Here kui and k̃ui denote, respectively, the number

of boxes in the i-th row and in the i-th column of a Young tableaux Yu and are related to

the Dynkin indices of the corresponding representation. These quantities can be extended

for any integer i with the convention that kui = 0 or k̃ui = 0 if the i-th row or the i-th

column of Yu is empty. For example, for Yu = the kui’s are (2, 0, 0, 0, . . .) and the k̃ui’s

are (1, 1, 0, 0, . . .). Moreover we have

|Y | =
∑

u,i

kui =
∑

u,i

k̃ui = k . (2.10)

It is quite straightforward to check that the expressions (2.2) and (2.5) are reproduced by

the compact formula (2.9) by selecting the appropriate Young tableaux.

Following Nekrasov’s prescription, we can obtain the generalized non-perturbative pre-

potential according to

Finst = −ǫ1ǫ2 logZinst =
∞∑

k=1

q2k Fk . (2.11)

– 6 –
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In the limit ǫℓ → 0, the above expression computes the instanton contributions to the pre-

potential of the N = 2∗ SYM theory, while the finite ǫ-dependent terms represent further

non-perturbative corrections. Notice that in the limit m̃ → 0, (2.9) correctly reduces to

the partition function of the N = 4 SYM theory, namely to the Euler characteristic of the

instanton moduli space (see for instance [41]).

2.2 Perturbative part

The compact expression (2.9) allows us to “guess” the perturbative part of the partition

function by applying the same formal reasoning of section 3.10 of [6]. Indeed, in (2.9) we

recognize the following universal (i.e. k-independent but a-dependent) factor

∞∏

i,j=1

2∏

u,v=1

u 6=v

auv + ǫ1(i− 1)− ǫ2j

auv + m̃+ ǫ1(i− 1)− ǫ2j
(2.12)

which, if suitably interpreted and regularized [6, 7], can be related to the perturbative part

of the partition function of the N = 2∗ theory in the ǫ-background. According to this idea,

we are then led to write

Fpert = ǫ1ǫ2

2∑

u,v=1

u 6=v

∞∑

i,j=1

log
auv + ǫ1(i− 1)− ǫ2j

auv + m̃+ ǫ1(i− 1)− ǫ2j
. (2.13)

Using the following representation for the logarithm

log
x

Λ
= − d

ds

(
Λs

Γ(s)

∫ ∞

0

dt

t
ts e−tx

)∣∣∣∣
s=0

(2.14)

where Λ is an arbitrary scale and summing over i and j, we can rewrite (2.13) as

Fpert = ǫ1ǫ2

2∑

u,v=1

u 6=v

[
γǫ1,ǫ2(auv)− γǫ1,ǫ2(auv + m̃)

]
(2.15)

where (see also [18, 35])

γǫ1,ǫ2(x) =
d

ds

(
Λs

Γ(s)

∫ ∞

0

dt

t

ts e−tx

(e−ǫ1t − 1)(e−ǫ2t − 1)

)∣∣∣∣
s=0

. (2.16)

This function, which is related to the logarithm of the Barnes double Γ-function, can be

easily computed by expanding for small values of ǫ1 and ǫ2. As a result, Fpert becomes a

series in inverse powers of a2 whose first few terms are

Fpert =
1

4

(
4m2 − s2

)
log

2a

Λ
−
(
4m2 − s2

)(
4m2 + 4p− s2

)

768 a2

−
(
4m2 − s2

)(
4m2 + 4p− s2

)(
4m2 + 6p− 3s2

)

61440 a4
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−
(
4m2−s2

)(
4m2+4p−s2

)(
48m4+176m2p+160p2−88m2s2−204ps2+51s4

)

8257536 a6

+O(a−8) . (2.17)

Here we have used (2.3) and introduced the convenient notation

s = ǫ1 + ǫ2 , p = ǫ1ǫ2 . (2.18)

One can easily check that in the limit ǫℓ → 0 this expression correctly reproduces the 1-loop

prepotential of the N = 2∗ SU(2) gauge theory (see for instance [4]).

2.3 Generalized prepotential

The complete generalized prepotential is the sum of the classical, perturbative and non-

perturbative parts. We now focus on the latter two terms which are directly related

to the Nekrasov partition function. Just like the 1-loop piece (2.17), also the instan-

ton terms (2.11) can be organized as a series expansion for small values of ǫ1 and ǫ2, or

equivalently for large values of a. Discarding a-independent terms, which are not relevant

for the gauge theory dynamics, we write

Fpert + Finst = h0 log
2a

Λ
−

∞∑

ℓ=1

hℓ
2ℓ+1 ℓ

1

a2ℓ
(2.19)

where the coefficients hℓ are polynomials in m2, s2 and p which can be explicitly derived

from (2.17) as far as the perturbative part is concerned, and from the instanton partition

functions (2.9), after using (2.11), for the non-perturbative part. Here we list the first few

of these coefficients up to three instantons:

h0 =
1

4

(
4m2 − s2

)
, (2.20)

h1 =
(
4m2 − s2

)(
4m2 + 4p− s2

)( 1

192
− 1

8
q2 − 3

8
q4 − 1

2
q6 + · · ·

)
, (2.21)

h2 =
(
4m2 − s2

)(
4m2 + 4p− s2

)(4m2 + 6p− 3s2

3840
− s2

8
q2

+
12m2 + 18p− 21s2

16
q4 +

8m2 + 12p− 9s2

2
q6 + · · ·

)
, (2.22)

h3 =
(
4m2 − s2

)(
4m2 + 4p− s2

)(48m4 + 176m2p+ 160p2 − 88m2s2 − 204ps2 + 51s4

172032

− 3s4

32
q2 − 240m4 + 1392m2p+ 1440p2 − 3000m2s2 − 7548ps2 + 3903s4

1024
q4

− 240m4 + 1008m2p+ 960p2 − 1080m2s2 − 2652ps2 + 987s4

32
q6 + · · ·

)
. (2.23)

It is interesting to notice that all hℓ’s are proportional to
(
4m2 − s2

)
and, except for h0,

also to
(
4m2+4p−s2

)
. Explicit expressions for hℓ with ℓ > 3 can be systematically derived

from the generalized prepotential but they are not needed for our considerations.
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Building on previous results obtained in ǫℓ → 0 limit from the SW curve [4, 5] and

on the analysis of [35] for the massless case, we expect that the expressions (2.20)–(2.23)

are just the first terms in the instanton expansion of (quasi) modular functions of q. More

precisely, we expect that hℓ are (quasi) modular functions of weight 2ℓ that can be written

solely in terms of the Eisenstein series E2, E4 and E6 (see appendix A for our conventions

and definitions). This is indeed what happens. In fact we have

h0 =
1

4

(
4m2 − s2

)
, (2.24)

h1 =
1

26 · 3
(
4m2 − s2

)(
4m2 + 4p− s2

)
E2 , (2.25)

h2 =
1

29 · 32 · 5
(
4m2 − s2

)(
4m2 + 4p− s2

)

×
[
5
(
4m2 + 6p− s2

)
E2

2 +
(
4m2 + 6p− 13s2

)
E4

]
, (2.26)

h3 =
1

214 · 33 · 5 · 7
(
4m2 − s2

)(
4m2 + 4p− s2

)

×
[
35
(
80m4 + 272m2p+ 240p2 − 40m2s2 − 68ps2 + 5s4)E3

2

+ 84
(
16m4 + 64m2p+ 60p2 − 56m2s2 − 136ps2 + 13s4

)
E4E2

+
(
176m4 + 944m2p+ 960p2 − 1816m2s2 − 4556ps2 + 3323s4

)
E6

]
. (2.27)

By using the small q expansion of the Eisenstein series one can check that the explicit

instanton contributions we have computed using localization techniques are correctly re-

covered from the previous formulas. We stress that the fact that the various instanton terms

nicely combine into expressions involving only the Eisenstein series is not obvious a priori

and is a very strong a posteriori test on the numerical coefficients appearing in (2.20)–

(2.23). It is quite remarkable that the explicit instanton results at low k can be nicely

extrapolated to reconstruct modular forms from which, by expanding in powers of q, one

can obtain the contributions at any instanton number.

We can also organize the generalized prepotential according to (1.3) and obtain the

amplitudes F (n,g) as a series in inverse powers of a2 with coefficients that are polynomials

in E2, E4 and E6. The first few of such amplitudes are:

F (0,0)=m2 log
2a

Λ
−m4E2

48 a2
−m6(5E2

2+E4)

5760 a4
−m8(175E3

2+84E2E4+11E6)

2903040 a6
+ · · · , (2.28)

F (1,0)=−1

4
log

2a

Λ
+

m2E2

96 a2
+

m4(E2
2 + E4)

1536 a4
+

m6(175E3
2 + 336E2E4 + 8E6)

2903040 a6
+ · · · (2.29)

F (0,1)=−m2E2

48 a2
− m4(5E2

2 + E4)

2304 a4
− m6(11E3

2 + 6E2E4 + E6)

41472 a6
+ · · · (2.30)

F (2,0)=− E2

768 a2
− m2(5E2

2 + 9E4)

30720 a4
+

m4(175E3
2 + 588E2E4 + 559E6)

7741440 a6
+ · · · (2.31)

F (1,1)=
E2

192 a2
+

m2(25E2
2 + 17E4)

23040 a4
+

m4(385E3
2 + 798E2E4 + 213E6)

1935360 a6
+ · · · (2.32)
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F (0,2)=−m2(5E2
2 + E4)

3840 a4
− m4(160E3

2 + 93E2E4 + 17E6)

414720 a6
+ · · · (2.33)

Terms with higher values of n and g can be systematically generated without any difficulty

from the hℓ’s given in (2.24)–(2.27). The first term F (0,0) represents the prepotential of the

N = 2∗ SU(2) gauge theory and its expression (2.28) agrees with that found in [4] from the

SW curve (see also [5]). The other terms are generalizations of those considered in [35] and

more recently in [37] in particular limits (m → 0 or ǫ2 → 0) where they drastically simplify.

2.4 Recursion relations

The generalized prepotential (2.19) is clearly holomorphic by construction but does not

have nice transformation properties under the modular group since the coefficients hℓ ex-

plicitly depend on the second Eisenstein series E2 which is not a good modular function.

Indeed, under

τ0 →
aτ0 + b

cτ0 + d
with ad− bc = 1 , (2.34)

E2 transforms inhomogeneously as follows

E2(τ0) → (cτ0 + d)2E2(τ0) + (cτ0 + d)
6c

πi
. (2.35)

Therefore, in order to have good modular properties we should replace everywhere E2 with

the shifted Eisenstein series Ê2 = E2 + 6
πi(τ0−τ̄0)

at the price, however, of loosing holo-

morphicity. This fact leads to the so-called holomorphic anomaly equation [22, 23] (see

also [28]). On the other hand, in the limit τ̄0 → ∞, holding τ fixed so that Ê2 → E2, we

recover holomorphicity but loose good modular properties and obtain the so-called modu-

lar anomaly equation [42]. This equation can be rephrased in terms of a recursion relation

for the hℓ coefficients which allows us to completely fix their dependence on E2.

To this aim let us consider the explicit expressions (2.24)–(2.27) and compute the

derivatives of hℓ with respect to E2. With simple algebra we find

∂hℓ
∂E2

=
ℓ

12

ℓ−1∑

i=0

hihℓ−i−1 +
ℓ(2ℓ− 1)

12
ǫ1ǫ2 hℓ−1 (2.36)

with the initial condition
∂h0
∂E2

= 0 . (2.37)

We have explicitly checked this relation for several values of ℓ > 3; we can thus regard

it as a distinctive property of the ǫ-deformed N = 2∗ low-energy theory. Notice that in

the limit ǫℓ → 0, (2.36) reduces to the recursion relation satisfied by the coefficients of the

prepotential of the N = 2∗ SU(2) theory found in [4, 5] from the SW curve, and that the

linear term in the right hand side disappears in the so-called Nekrasov-Shatashvili limit [29]

where one of the two deformation parameters vanishes and a generalized SW curve can be

introduced [30, 31].
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Eq. (2.36) can be formulated also as a recursion relation for the amplitudes F (n,g) de-

fined in (1.3). To see this, let us first extract the a-dependence and, in analogy with (2.19),

write

F (n,g) = −
∞∑

ℓ=1

f
(n,g)
ℓ

2ℓ+1ℓ

1

a2ℓ
, (2.38)

so that

hℓ =
∑

n,g

f
(n,g)
ℓ (ǫ1 + ǫ2)

2n(ǫ1ǫ2)
g . (2.39)

Notice that the coefficients f
(n,g)
ℓ , which are polynomials in the hypermultiplet mass m,

have mass dimensions 2(1 + ℓ− n− g); therefore f
(n,g)
ℓ = 0 if n+ g > ℓ+ 1 (this condition

can be easily checked on the explicit expressions (2.28)–(2.31). These definitions must be

supplemented by the “initial conditions”

f
(0,0)
0 = m2 , f

(1,0)
0 = −1

4
, f

(0,1)
0 = 0 (2.40)

which are obtained from (2.24). Inserting (2.39) in the recursion relation (2.36), we obtain

∂f
(n,g)
ℓ

∂E2
=

ℓ

12

∑

n1,n2;g1,g2

′

( ℓ−1∑

i=0

f
(n1,g1)
i f

(n2,g2)
ℓ−i−1

)
+

ℓ(2ℓ− 1)

12
f
(n,g−1)
ℓ−1 (2.41)

where the ′ means that the sum is performed over all n1, n2, g1 and g2 such that n1+n2 = n

and g1 + g2 = g. Eq. (2.41) shows that the coefficients f
(n,g)
ℓ and hence the amplitudes

F (n,g) are recursively related to those with lower values of n and g, similarly to what can

be deduced from the holomorphic anomaly equation [35].

3 The N = 2 SU(2) theory with Nf = 4

We now consider the N = 2 SU(2) theory with Nf flavor hypermultiplets in the funda-

mental representation of the gauge group. When Nf = 4 the 1-loop β-function vanishes

and the conformal invariance is broken only by the flavor masses mf (f = 1, . . . , 4). Fur-

thermore there are non-perturbative effects due to instantons which are nicely encoded in

the exact SW solution [2]. We now discuss the generalizations of these effects induced by

the ǫℓ deformation parameters in the Nekrasov partition function, following the same path

described in the previous section for the N = 2∗ theory.

3.1 Instanton partition functions

Using localization techniques, we can express the instanton partition functions Zk of the

Nf = 4 theory as sums of terms related to pairs of Young tableaux. Referring again the

appendix A of [39] for details, at k = 1 we have the following two contributions

Z( ,•) =
1

(−ǫ1)(−ǫ2)a12(a21 − ǫ1 − ǫ2)

4∏

f=1

(a1 + m̃f ) ,

Z(•, ) =
1

(−ǫ1)(−ǫ2)a21(a12 − ǫ1 − ǫ2)

4∏

f=1

(a2 + m̃f )

(3.1)
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where

m̃f = mf +
ǫ1 + ǫ2

2
(3.2)

is the equivariant hypermultiplet mass in the ǫ-background.2 Summing the two terms (3.1)

and setting a1 = −a2 = a, we get

Z1 = Z( ,•) + Z(•, )

= − 1

2ǫ1ǫ2

[
a2+

∑

f<f ′

mfmf ′+(ǫ1+ǫ2)
∑

f

mf+
3

4
(ǫ1+ǫ2)

2+
4Pfm

4a2−(ǫ1+ǫ2)2

]
(3.3)

where Pfm ≡ m1m2m3m4. The partition function Z1 contains a part proportional to a2,

a part which does not depend on a and a part containing a2 in the denominator. In all

a-dependent terms the flavor masses mf always occur in SO(8)-invariant combinations and

thus in all such terms we can always express the mass dependence using the following

quadratic, quartic and sextic SO(8) invariants:

R =
1

2

∑

f

m2
f ,

T1 =
1

12

∑

f<f ′

m2
fm

2
f ′ − 1

24

∑

f

m4
f ,

T2 = − 1

24

∑

f<f ′

m2
fm

2
f ′ +

1

48

∑

f

m4
f − 1

2
Pfm,

N =
3

16

∑

f<f ′<f ′′

m2
fm

2
f ′m2

f ′′ − 1

96

∑

f 6=f ′

m2
fm

4
f ′ +

1

96

∑

f

m6
f .

(3.4)

The a-independent terms in (3.3), instead, are not invariant under the SO(8) flavor group.

Indeed, neither
∑

f mf nor
∑

f<f ′ mfmf ′ respect this invariance. Notice, however, that

a-independent terms in the partition functions, and hence in the prepotential, are irrele-

vant for the gauge theory dynamics, and thus can be neglected. We will always do so in

presenting our results.

The explicit expressions of the partition functions Zk for k > 1 are rather cumbersome;

nevertheless it is possible to write the (grand-canonical) instanton partition function in a

quite compact way using the connection with the Young tableaux. Indeed, denoting as x

the instanton counting parameter and using the same notations introduced in section 2.1,

we have

Zinst =
∞∑

k=0

xk Zk

=
∑

(Y1,Y2)

x|Y |
∞∏

i,j=1

[
2∏

u,v=1

auv + ǫ1(i− 1)− ǫ2j

auv + ǫ1(i− 1− k̃vj)− ǫ2(j − kui)

×
2∏

u=1

4∏

f=1

au + m̃f + ǫ1(i− 1)− ǫ2(j − kui)

au + m̃f + ǫ1(i− 1)− ǫ2j

]
.

(3.5)

2Note that in [39] the hypermultiplet masses were denoted −mf .
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Here the second line represents the contribution of the gauge vector multiplet and the

last line that of the fundamental hypermultiplets. From this expression, by selecting the

appropriate Young tableaux, one can obtain the various terms of the instanton partition

function and their dependence on the ǫℓ parameters.

3.2 Perturbative part

Also in the Nf = 4 theory one can deduce the perturbative contribution to the parti-

tion function from the “universal” factor of the grand-canonical instanton partition func-

tion (3.5), namely

∞∏

i,j=1

[
2∏

u,v=1

u 6=v

(auv + ǫ1(i− 1)− ǫ2j)
2∏

u=1

4∏

f=1

1

(au + m̃f + ǫ1(i− 1)− ǫ2j)

]
(3.6)

which, of course, requires a suitable interpretation and regularization. Using this observa-

tion and following again [6, 7], we can write the perturbative part of the prepotential as

Fpert=ǫ1ǫ2

∞∑

i,j=1

[
2∑

u,v=1

u 6=v

log
auv+ǫ1(i−1)−ǫ2j

Λ
−

2∑

u=1

4∑

f=1

log
au+m̃f+ǫ1(i−1)−ǫ2j

Λ

]
(3.7)

which, after using (2.14) and summing over i and j, becomes

Fpert = ǫ1ǫ2

[
2∑

u,v=1

u 6=v

γǫ1ǫ2(auv)−
2∑

u=1

4∑

f=1

γǫ1ǫ2(au + m̃f )

]
(3.8)

where the function γǫ1ǫ2 is defined in (2.16). Expanding the latter for small values of ǫ1
and ǫ2 and discarding as usual a-independent terms, we obtain

Fpert = − log 16 a2 +
1

2

(
4R− s2 + p

)
log

a

Λ

− 1

96 a2

[
16R2 − 96T1 − 8R(s2 − 2p) + s4 − 4s2p+ 3p2

]
(3.9)

− 1

3840 a4

[
128R3 − 1920RT1 + 768N − 160(R2 − 6T1)(s

2 − 2p)

+R(56s4 − 224s2p+ 192p2)− 6s6 + 36s4p− 63s2p2 + 30p3
]
+O

(
a−6
)

where s and p are as in (2.18). One can easily check that in the limit ǫℓ → 0 this expression

correctly reproduces the 1-loop prepotential of the N = 2 SU(2) Nf = 4 theory (see for

instance [3]). Notice the presence of a term proportional to a2 which corresponds to a finite

1-loop renormalization of the gauge coupling constant.

3.3 Generalized prepotential

We now consider the instanton corrections to the prepotential of the Nf = 4 theory which

is given by

Finst = −ǫ1ǫ2 logZinst =
∞∑

k=1

xk Fk . (3.10)
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At k = 1, up to a-independent terms, from (3.1) we simply get

F1 = −ǫ1ǫ2 Z1 =
a2

2
− 2(T1 + 2T2)

4a2 − s2
(3.11)

The presence of an a2-term in F1 signals that there is a renormalization of the gauge cou-

pling constant at the 1-instanton level. Actually, the same thing occurs also at higher

instanton numbers; indeed we find

F2 =
13 a2

64
+ · · · , F3 =

23 a2

192
+ · · · , F4 =

2701 a2

32678
+ · · · (3.12)

Combining these contributions with the perturbative one given by the first term in (3.8)

and adding also the classical tree-level prepotential Fcl = log x a2, we obtain

(
log x− log 16 +

1

2
x+

13

64
x2 +

23

192
x3 +

2701

32768
x4 + · · ·

)
a2 ≡ log q a2 (3.13)

that is a redefinition of the instanton expansion parameter and hence of the gauge coupling

constant. By inverting this relation we get [43]

x = 16 q
(
1− 8q + 44q2 − 192q3 + · · · ) = θ2(q)

4

θ3(q)4
(3.14)

(see appendix A for some properties of the Jacobi θ-functions). As pointed out for instance

in [44], by setting

q = eiπτ0 with τ0 =
θ

π
+ i

8π

g2
, (3.15)

one can show that τ0 is precisely the modular parameter of the SW curve for the SU(2)Nf =

4 theory appearing in the original paper [2]. This gauge coupling constant receives only

corrections proportional to the hypermultiplet masses and as such is the strict analogue3 of

the gauge coupling constant τ0 of the N = 2∗ theory considered in section 2. On the other

hand, using (3.14) one can show that x is a cross-ratio of the four roots of the original SW

curve [2]. From now on we always present the results for the Nf = 4 theory in terms of q.

Expanding the complete prepotential Fpert + Finst as in (2.19), the first coefficients hℓ
up to three instantons turn out to be

h0 =
1

2

(
4R− s2 + p

)
, (3.16)

h1 =
1

24

[
16(R2 − 6T1)− 8R(s2 − 2p) + s4 − 4s2p+ 3p2

]
+ 32(T1 + 2T2) q

−
[
16(R2 + 6T1)− 8R(s2 − 2p) + s4 − 4s2p+ 3p2

]
q2

+ 128
(
T1 + 2T2

)
q3 +O(q4) , (3.17)

h2 =
1

240

[
128R3 − 1920RT1 + 768N − 160(R2 − 6T1)(s

2 − 2p)

+R(56s4 − 224s2p+ 192p2)− 6s6 + 36s4p− 63s2p2 + 30p3
]

3Except for a customary overall factor of 2.

– 14 –



J
H
E
P
0
4
(
2
0
1
3
)
0
3
9

+ 32s2(T1 + 2T2) q

+
[
768N + 384RT1 − 64(R2 + 6T1)(s

2 − p) + 8R(4s4 − 12s2p+ 5p2)

− 4s6 + 20s4p− 25s2p2 + 6p3
]
q2

− 128(T1 + 2T2)
(
16R− 11s2 + 16p

)
q3 +O(q4) . (3.18)

We worked out also the expressions for a few other hℓ’s with ℓ > 3 which however become

rapidly very cumbersome and thus we do not write them here (see for example appendix B

where we give the detailed form of h3).

As in the N = 2∗ model, also in the Nf = 4 theory we can view the previous results as

the first instanton terms of the expansion of (quasi) modular forms in powers of q. In this

case, however, besides the Eisenstein series E2, E4 and E6, also the Jacobi θ-functions θ2
and θ4 are needed. Matching the q-expansion of these modular functions with the explicit

results (3.16)–(3.18), guided by what we already obtained in the ǫℓ → 0 limit [5] which

suggests the existence of a recursion relation that fixes the E2 dependence, we find4

h0 =
1

2

(
4R− s2 + p

)
, (3.19)

h1 =
1

24

(
4R− s2 + p

)(
4R− s2 + 3p

)
E2 − 4

(
T1 θ

4
4 − T2 θ

4
2

)
, (3.20)

h2 =
1

144

(
4R− s2 + p

)(
4R− s2 + 3p

)(
4R− s2 + 4p

)
E2

2

− 4

3

(
4R− s2 + 4p

)(
T1 θ

4
4 − T2 θ

4
2

)
E2

+
1

720

[
64R3 − 80R2(3s2 − 4p) + 4R(27s4 − 88s2p+ 49p2)

− 13s6 + 68s4p− 94s2p2 + 30p3 + 2304N
]
E4

− 8

3

(
R− s2 + p

)[
T1 θ

4
4

(
2θ42 + θ44

)
+ T2 θ

4
2

(
θ42 + 2θ44

)]
. (3.21)

We have checked that a similar pattern occurs also in other hℓ’s with ℓ > 3 (see appendix B).

Organizing the complete prepotential as an expansion in powers of s2 and p as in (1.3),

we can obtain the amplitudes F (n,g), the first few of which are

F (0,0) = 2R log
a

Λ
− R2E2

6a2
+

T1θ
4
4 − T2θ

4
2

a2
− R3(5E2

2 + E4)

180 a4
− NE4

5 a4

+
RT1θ

4
4(2E2 + 2θ42 + θ44)

6 a4
− RT2θ

4
2(2E2 + 2θ44 + θ42)

6 a4
+ · · · , (3.22)

F (1,0) = −1

2
log

a

Λ
+

RE2

12 a2
+

R2(E2
2 + E4)

48 a4

− T1θ
4
4(E2 + 4θ42 + 2θ44)

12 a4
+

T2θ
4
2(E2 − 4θ44 − 2θ42)

12 a4
+ · · · , (3.23)

4As compared to the results presented in [5, 44], here all masses have been rescaled by a factor of
√
2,

that is mthere

f =
√
2mhere

f for all f .
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F (0,1) =
1

2
log

a

Λ
− RE2

6 a2
− R2(2E2

2 + E4)

36 a4

+
T1θ

4
4(2E2 + 2θ42 + θ44)

6 a4
− T2θ

4
2(2E2 − 2θ44 − θ42)

6 a4
+ · · · , (3.24)

F (2,0) = − E2

96a2
− R(5E2

2 + 9E4)

960 a4
+ · · · , (3.25)

F (1,1) =
E2

24a2
+

R(10E2
2 + 11E4)

360 a4
+ · · · , (3.26)

F (0,2) = − E2

32a2
− R(95E2

2 + 49E4)

2880 a4
+ · · · , (3.27)

F (3,0) =
5E2

2 + 13E4

11520 a4
· · · , F (2,1) = −10E2

2 + 17E4

2880 a4
· · · , (3.28)

F (1,2) =
95E2

2 + 94E4

11520 a4
· · · , F (0,3) = −2E2

2 + E4

384 a4
· · · . (3.29)

One can easily check that F (0,0) in (3.22) completely agrees with the prepotential of the

N = 2 SU(2) Nf = 4 gauge theory as derived for example in [5]; notice also that in

the massless limit, i.e. R,N, T1, T2 → 0, these amplitude drastically simplify and precisely

match the results presented in [35]. It is also interesting to observe that in the Nekrasov-

Shatshvili limit where one of the ǫℓ’s vanishes, the amplitudes F (n,0) of the Nf = 4 theory

reduce to those of the N = 2∗ theory upon setting T1 = T2 = N = 0 and R = m2. Indeed,

with these positions and rescaling a → 2a, the amplitudes F (n,0) in (3.22)–(3.29) become

twice the corresponding amplitudes of the N = 2∗ theory given in (2.28)–(2.33). This

simple relation does not hold away from the Nekrasov-Shatashvili limit: the amplitudes

F (n,g) with g 6= 0 are in fact intrinsically different in the two theories, as a consequence of

their different gravitational structure.

3.4 Recursion relations

Looking at the explicit expressions (3.19) - (3.21), it is not difficult to realize that the E2

dependence of the hℓ’s is quite simple and exhibits a recursive pattern. This points again to

the existence of a recursion relation among the hℓ’s involving their derivatives with respect

to E2. Indeed, following the same steps described in section 2.4, one can check that

∂hℓ
∂E2

=
ℓ

6

ℓ−1∑

i=0

hihℓ−i−1 +
ℓ(2ℓ− 1)

6
ǫ1ǫ2 hℓ−1 (3.30)

with the initial condition
∂h0
∂E2

= 0 . (3.31)

This recursion relation has exactly the same structure of that of the N = 2∗ theory given

in (2.36), the only difference being in the numerical coefficients. Notice that the coefficients

of the quadratic terms can be matched by a rescaling of the hℓ’s, but those of the linear

terms proportional to ǫ1ǫ2 remain different for the two theories; this is another signal of

their intrinsically different behavior when a generic ǫ-background is considered.
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Finally, if we expand the hℓ’s as in (2.39) we can reformulate the recursion rela-

tion (3.30) in terms of the partial amplitudes f
(n,g)
ℓ and get

∂f
(n,g)
ℓ

∂E2
=

ℓ

6

∑

n1,n2;g1,g2

′

( ℓ−1∑

i=0

f
(n1,g1)
i f

(n2,g2)
ℓ−i−1

)
+

ℓ(2ℓ− 1)

6
f
(n,g−1)
ℓ−1 (3.32)

where the ′ means that the sum is performed over all n1, n2, g1 and g2 such that n1+n2 = n

and g1 + g2 = g. This relation has to be supplemented by the initial conditions

f
(0,0)
0 = 2R , f

(1,0)
0 = −1

2
, f

(0,1)
0 =

1

2
(3.33)

obtained from (3.19).

In the next section we will analyze the implications of the recursion relations and in

particular their consequences on the modular transformation properties of the generalized

prepotential.

4 Modular anomaly equations and S-duality

The fact that the generalized prepotential can be written in terms of (quasi) modular

functions of the bare coupling constant allows us to explore the modularity properties of

the deformed theory and study how the Sl(2,Z) symmetry of the microscopic high-energy

theory is realized in the effective low-energy theory. In the following we will concentrate on

the SU(2) Nf = 4 theory, even if our analysis and our methods can be equally well applied

to the N = 2∗ SU(2) model. Furthermore, we will focus on the generator S of the modular

group, corresponding to the following transformation of the bare coupling constant

S : τ0 → − 1

τ0
. (4.1)

Notice that this action implies that the instanton counting parameter x in the Nekrasov’s

partition of the Nf = 4 theory, defined in (3.14), transforms as follows

S : x → 1− x , (4.2)

as one can readily check from the properties of the Jacobi θ-functions. This type of trans-

formation is consistent with the interpretation of x as a cross-ratio, a fact that is also

exploited in the AGT correspondence with the Liouville conformal blocks [32]. As dis-

cussed in [2], in the Nf = 4 theory the modular group acts with triality transformations

on the mass invariants (3.4); in particular one has

S : R → R , T1 → T2 , T2 → T1 , N → N . (4.3)

In the deformed theory, these rules have to be supplemented by those that specify how

Sl(2,Z) acts on the equivariant deformation parameters. Adapting to the present case the

considerations made in [45] for the ǫ-deformed conformal Chern-Simons theory in three
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dimensions, we assume that S simply exchanges ǫ1 and ǫ2 with each other.5 In particular

this means that s = ǫ1 + ǫ2 and p = ǫ1ǫ2 are left unchanged, i.e.

S : s → s , p → p . (4.4)

Using the rules (4.1) - (4.4) and the modular properties of the Eisenstein series and Jacobi θ-

functions, it is easy to show that the coefficients hℓ of the generalized prepotential (see (3.21)

and appendix B) transform as quasi-modular forms of weight 2ℓ with anomalous terms due

to the presence of the second Eisenstein series E2, namely

S : hℓ(E2) → τ2ℓ0 hℓ

(
E2 +

6

πiτ0

)
= τ2ℓ0

ℓ∑

k=0

1

k!

(
1

2πiτ0

)k

Dkhℓ(E2) (4.5)

where we have introduced the convenient notation D ≡ 12∂E2
. These transformation rules

are formally identical to those of the underformed Nf = 4 theory derived in [5] from the

SW curve; however, since the hℓ’s satisfy a modified recursion relation with a new term

proportional to ǫ1ǫ2, the practical effects of (4.5) in the deformed theory are different from

those of the undeformed case, as we shall see momentarily.

To proceed let us consider the pair made by a and its S-dual image S(a) ≡ aD, on

which S acts as follows [1, 2]:

S :

(
a

aD

)
→

(
0 1

−1 0

) (
a

aD

)
=

(
aD
−a

)
. (4.6)

We therefore have

S2(a) = −a . (4.7)

In the SW theory this relation is enforced by taking

S(a) = 1

2πi

∂F
∂a

(4.8)

where F is the undeformed effective prepotential which is related to its S-dual by a Leg-

endre transform:

F − S(F) = 2πi aS(a) . (4.9)

It seems natural to try the same thing also in the deformed theory. Recalling that the

effective generalized prepotential is

F = πiτ0 a
2 + h0 log

a

Λ
−

∞∑

ℓ=1

hℓ
2ℓ+1 ℓ

1

a2ℓ
(4.10)

where the first term is the classical part, we therefore posit

S(a) = 1

2πi

∂F

∂a
= τ0 a+

1

2πi

∞∑

ℓ=0

hℓ
2ℓ

1

a2ℓ+1
. (4.11)

5Note that this rule is consistent with the interpretation of ǫ1 and ǫ2 as fluxes of (complex) combinations

of NS-NS and R-R 3-form field strengths in a Type IIB string theory realization which rotate among

themselves under S-duality.
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Applying the S-duality rules (4.1) and (4.5), we obtain

S2(a) = −S(a)
τ0

+
1

2πi

∞∑

ℓ=0

τ2l0

(
hℓ +

1
2πiτ0

Dhℓ +O(τ−2
0 )
)

2ℓ (S(a))2ℓ+1
(4.12)

= −a+
1

(2πiτ0)2

[
∞∑

ℓ=0

Dhℓ
2ℓ

1

a2ℓ+1
−

∞∑

ℓ,n=0

(2ℓ+ 1)hℓ hn
2ℓ+n

1

a2ℓ+2n+3

]
+O(τ−3

0 ) .

The expression in square brackets can be simplified using the recursion relation (3.30); like

in the undeformed theory, the quadratic terms in the h’s exactly cancel but, due to the new

ǫ-dependent term in the deformed recursion relation, an uncanceled part proportional to

ǫ1ǫ2 remains. This simple calculation shows that in order to enforce the relation (4.7) when

ǫ1ǫ2 6= 0, the standard definition (4.11) has to be modified by adding terms proportional

to ǫ1ǫ2 in the right hand side. In the sequel we will work out explicitly the first corrections

and show how the relation (4.7) constrains the form of S(a).

4.1 S-duality at first order in ǫ1ǫ2

To organize the calculation, we introduce a set of generating functions ϕℓ for the coefficients

hℓ according to

ϕ0 = −h0 log
a

Λ
+

∞∑

ℓ=1

hℓ
2ℓ+1 ℓ

1

a2ℓ
, ϕℓ+1 = −∂aϕℓ for ℓ ≥ 0 . (4.13)

In particular we have the following relations with the generalized prepotential F :

ϕ0 = πiτ0 a
2 − F , (4.14a)

ϕ1 = −2πiτ0 a+ ∂aF , (4.14b)

ϕ2 = 2πiτ0 − ∂2
aF ≡ 2πiτ0 − 2πiτ , (4.14c)

where in the last line we have introduced the effective coupling τ .

As shown in appendix C, the ϕℓ’s form a ring under the action of D due to the gen-

eralized modular anomaly equations (3.30). This ring structure will enable us to formally

express everything as functions of the ϕℓ’s with coefficients that may depend on the product

ǫ1ǫ2. Such a dependence is a consequence of the ǫ1ǫ2-term in the recursion relation (3.30)

and is the only explicit dependence on the deformation parameters that will be relevant

for our purposes, all the rest being implicit inside the ϕℓ’s and the hℓ’s therein.

As argued above, the definition (4.11) for S(a), namely S(a) = τ0a+ ϕ1/(2πi), has to

be replaced by a new one containing terms proportional to ǫ1ǫ2, i.e.

S(a) = τ0 a+
ϕ1

2πi
+

X

2πi
(4.15)

with

X = ǫ1ǫ2X1 + (ǫ1ǫ2)
2X2 + · · · (4.16)

where the Xℓ’s have to be determined by imposing the constraint (4.7). Notice that in

the undeformed theory a and S(a) can be regarded as a pair of canonically conjugated
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variables [1, 2, 46]; when the ǫ1ǫ2-deformation is turned on, the relations (4.15) and (4.16)

have thus to be understood as a (sort of) semi-classical expansion [47]. Applying S-duality

to (4.15), it is straightforward to obtain

S2(a) = −a+
1

2πiτ0

[(
τ0 S(ϕ1)− ϕ1

)
+
(
τ0 S(X)−X

)]
; (4.17)

therefore, in order to satisfy the relation (4.7), the expression in the square brackets above

must vanish. Expanding this condition in ǫ1ǫ2, we obtain the following constraints

(
τ0 S(ϕ1)− ϕ1

)∣∣∣
0
= 0 , (4.18a)

(
τ0 S(ϕ1)− ϕ1

)∣∣∣
n
+

n∑

k=1

(
τ0 S(Xk)−Xk

)∣∣∣
n−k

= 0 (4.18b)

where the symbol
∣∣
n
means taking the coefficient of (ǫ1ǫ2)

n (notice that the ϕℓ’s defined

in (4.13) do not have any explicit dependence on ǫ1ǫ2 and thus ϕℓ

∣∣
n
= δn0 ϕℓ; for the same

reason we also have Xℓ

∣∣
n
= δn0Xℓ).

Let us now compute S(ϕ1). Using the S-duality rules (4.1) and (4.5), and exhibit-

ing temporarily the dependencies on E2 and a which are the only relevant ones for our

purposes, we obtain

τ0 S
(
ϕ1(E2; a)

)
=

∞∑

ℓ=0

τ2ℓ+1
0 hℓ

(
E2 +

6
πiτ0

)

2ℓ (S(a))2ℓ+1
=

∞∑

ℓ=0

hℓ

(
E2 +

6
πiτ0

)

2ℓ
(
a+ ϕ1

2πiτ0
+ X

2πiτ0

)2ℓ+1

= ϕ1

(
E2 +

6

πiτ0
; a+

ϕ1

2πiτ0
+

X

2πiτ0

)

= e
1

2πiτ0
(D+ζ ∂a)ϕ1(E2; a)

∣∣∣
ζ=ϕ1+X

.

(4.19)

Actually, this is a particular case of the more general result

τ ℓ0 S(ϕℓ) = e
1

2πiτ0
(D+ζ ∂a) ϕℓ

∣∣∣
ζ=ϕ1+X

. (4.20)

Expanding the exponential and using the relation

(D + ζ∂a)
nϕℓ

∣∣∣
ζ=ϕ1+X

=
n∑

k=0

(−1)k
(

n

k

)
Xk (D + ζ∂a)

nϕℓ+k

∣∣∣
ζ=ϕ1

, (4.21)

after some straightforward algebra to rearrange the various terms, we obtain

τ ℓ0 S(ϕℓ) =
∞∑

n=0

(−1)n

n!

(
X

2πiτ0

)n

Σ(ℓ+n) (4.22)

where the functions Σ(ℓ) are defined by

Σ(ℓ) = e
1

2πiτ0
(D+ζ ∂a)ϕℓ

∣∣∣
ζ=ϕ1

. (4.23)
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As shown in appendix C, these functions satisfy the remarkably simple relation

Σ(ℓ+1) = −τ0
τ
∂aΣ

(ℓ) (4.24)

that is a consequence of the ring properties obeyed by the functions ϕℓ, which in turn are

due to the modular anomaly equations (3.30). In view of this we can therefore rewrite (4.22)

as

τ ℓ0 S
(
ϕℓ

)
= e

ζ

2πiτ
∂a Σ(ℓ)

∣∣∣
ζ=X

. (4.25)

Note that the bare coupling τ0 initially appearing in the right hand side of (4.20) has been

dressed into the effective coupling τ .

We now exploit this result and proceed perturbatively in ǫ1ǫ2 to obtain explicit ex-

pressions. At the zeroth order in ǫ1ǫ2, from (4.25) we have

τ0 S(ϕ1)
∣∣∣
0
= Σ(1)

∣∣∣
0
= ϕ1 (4.26)

where the last equality follows from (C.13). The constraint (4.18a) is therefore identically

satisfied. This is no surprise since we have already shown that the relation (4.7) must be

true up to terms proportional to ǫ1ǫ2. At the first order in the deformation parameters we

get instead

τ0 S(ϕ1)
∣∣∣
1
= Σ(1)

∣∣∣
1
+

X1

2πiτ
∂aΣ

(1)
∣∣∣
0
=

τ0 ϕ3

2(2πi)τ2
− X1 ϕ2

2πiτ
(4.27)

where we have used (C.13). Inserting this result into (4.18b) for n = 1, we obtain the

following equation for X1

S(X1)
∣∣∣
0
=

X1

τ
− ϕ3

2(2πi)τ2
. (4.28)

To solve it we take advantage of the S-duality relations at the zeroth order in ǫ1ǫ2, which

are formally the same of the SW theory. Using (4.24) - (4.26) it is easy to show that

S(ϕ2)
∣∣∣
0
=

ϕ2

τ0τ
, S(ϕ3)

∣∣∣
0
=

ϕ3

τ3
, (4.29)

and also that

S(τ)
∣∣∣
0
= −1

τ
. (4.30)

Equipped with these results, one can check that a solution to (4.28) is given by

X1 =
ϕ3

8πiτ
. (4.31)

In conclusion6 we find that the S-dual image of a, which obeys the constraint (4.7) up to

terms of order (ǫ1ǫ2)
2, is

S(a) = τ0 a+
ϕ1

2πi
+ ǫ1ǫ2

ϕ3

4(2πi)2τ
+O

(
(ǫ1ǫ2)

2
)
. (4.32)

6Note that actually the solution (4.31) is not unique, since in principle one could add to X1 a term Y1

such that S(Y1) = Y1/τ . A detailed analysis shows that a term of this type is of the form αϕ3/(τ
2 + 1)

with α constant, which has different pole structure in τ with respect to X1. We therefore do not consider

this possibility and take α = 0.

– 21 –



J
H
E
P
0
4
(
2
0
1
3
)
0
3
9

Observing that ϕ3 = 2πi ∂aτ , we can rewrite the ǫ1ǫ2-term above also as

ǫ1ǫ2
4(2πi)

∂a log

(
τ

τ0

)
, (4.33)

so that (4.32) becomes

2iπ S(a) = ∂aF +
ǫ1ǫ2
4

∂a log

(
τ

τ0

)
+O

(
(ǫ1ǫ2)

2
)
. (4.34)

In the following we will investigate the implications of this result, while we refer to ap-

pendix D for its extension to the second order in ǫ1ǫ2.

4.2 S-duality on the prepotential

An immediate consequence of the ǫ-correction in (4.34) is that S(a) is not simply pro-

portional to the derivative of the prepotential F ; thus it is natural to expect that in the

deformed theory the S-dual of the prepotential is not simply given by a Legendre transfor-

mation as it happens instead in the undeformed SW case (see (4.9)). In [38] the relation

between F and S(F ) has been conjectured to be a deformed Fourier transformation. Here

we reach the same conclusion, even though from a different perspective since for us all

deviations from the undeformed theory are parametrized by the product ǫ1ǫ2.

We can compute the first ǫ-corrections to the relation between F and S(F ) using the

same methods of the previous subsection and the results given in appendix C. The starting

point is the relation between ϕ0 and the generalized prepotential (see (4.14a)); from this

we get the useful identity

F − S(F ) = 2πi aS(a) + πi

τ0

(
S(a)− aτ0

)2
+ S(ϕ0)− ϕ0 . (4.35)

Using (4.15) and (4.22) for ℓ = 0, we can easily rewrite the right hand side and obtain

F − S(F ) = 2πi aS(a) + ϕ2
1

2(2πi)τ0
+Σ(0) − ϕ0 −

X

2πiτ0

(
Σ(1) − ϕ1

)

+
1

2

(
X

2πiτ0

)2(
Σ(2) + 2πiτ0

)
+ · · ·

(4.36)

where the dots stand for terms of order X3 which are at least O
(
(ǫ1ǫ2)

3
)
. Notice that the

difference Σ(1) − ϕ1 is of order ǫ1ǫ2, as one can see from (4.26); thus the linear term in X

gives contributions O
(
(ǫ1ǫ2)

2
)
, like theX2 term. This means that the knowledge of the first

order correctionX1 obtained in the previous subsection is enough to compute the correction

to F − S(F ) at order (ǫ1ǫ2)
2. This mechanism actually works at all orders, namely the

k-th order coefficient of F − S(F ) does not depend on Xk but only on Xj with j < k.

Using the explicit value of X1 given in (4.31) and the expressions for the Σ(ℓ)’s given

in appendix C (see in particular (C.12) - (C.14)), after straightforward algebra we obtain

F−S(F )=2πi aS(a)−ǫ1ǫ2
2

log

(
τ

τ0

)
+(ǫ1ǫ2)

2

(
1

8

ϕ4

(2iπτ)2
+
11

96

ϕ2
3

(2iπτ)3

)
+O
(
(ǫ1ǫ2)

3
)
. (4.37)
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This shows that the simple Legendre transform relation (4.9), which holds in the under-

formed theory, does not work any more when ǫ1ǫ2 6= 0, as argued, from a different point of

view, in [38]. In the next section, however, we will show that with a suitable redefinition

of the prepotential F and of the coupling constant τ it is possible to recover the standard

Legendre transform relation also in the ǫ1ǫ2-deformed theory.

5 Conclusions

The explicit first-order calculation of section 4.1 shows that S(a) is not simply the deriva-

tive of the prepotential F . However, it is still a total derivative, as is clear from (4.34).

This feature is maintained also at the second order. Indeed, as shown in appendix D, the

(ǫ1ǫ2)
2 correction X2 can be chosen as

X2 =
1

16

ϕ5

(2πiτ)2
+

23

96

ϕ3ϕ4

(2πiτ)3
+

11

64

ϕ3
3

(2πiτ)4

= ∂a

(
− 1

16

ϕ4

(2πiτ)2
− 11

192

ϕ2
3

(2πiτ)3

)
,

(5.1)

so that we can rewrite (4.15) in the following way

S(a) = 1

2πi
∂aF̂ (5.2)

with

F̂ = F +
ǫ1ǫ2
4

log

(
τ

τ0

)
−
(
ǫ1ǫ2
4

)2( ϕ4

(2πiτ)2
+

11

12

ϕ2
3

(2πiτ)3

)
+O

(
(ǫ1ǫ2)

3
)
. (5.3)

In the deformed theory the S-duality transformation of the effective coupling τ does not

have a simple form; in fact, using (4.14c) and the transformation properties of ϕ2, it is

easy to show that (see (D.7))

S(τ) = −1

τ
− ǫ1ǫ2

(
1

2

ϕ4

(2πi)2τ3
+

3

4

ϕ2
3

(2πi)3τ4

)
+O

(
(ǫ1ǫ2)

2
)
. (5.4)

However, there is a modified effective coupling on which S-duality acts in a simple way.

This is

τ̂ ≡ ∂aS(a) =
1

2πi
∂2
aF̂ = τ

[
1− ǫ1ǫ2

4

(
ϕ4

(2πiτ)2
+

ϕ2
3

(2πiτ)3

)
+O

(
(ǫ1ǫ2)

2
)
]
. (5.5)

One can easily check that

S(τ̂) = ∂S(a)S2(a) = −∂S(a)a = −1

τ̂
. (5.6)

Thus, in the effective ǫ-deformed theory it is τ̂ , and not τ , that exhibits the same behavior

of the bare coupling τ0 under S-duality. We also observe that if one uses τ̂ , the expression

of the extended prepotential F̂ given in (5.3) simplifies and becomes

F̂ = F +
ǫ1ǫ2
4

log

(
τ̂

τ0

)
+

(
ǫ1ǫ2
4

)2 ϕ2
3

12(2πiτ̂)3
+O

(
(ǫ1ǫ2)

3
)
. (5.7)
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This result seems to suggest that it is possible to write the higher order corrections only

in terms of ϕ3 which, being the triple derivative of the prepotential, is proportional to the

Yukawa coupling Caaa, the rank-three symmetric tensor playing a crucial rôle in special

geometry. Moreover, one can verify the simple Legendre transform relation

F̂ − S(F̂ ) = 2πi aS(a) (5.8)

up to terms of order (ǫ1ǫ2)
3. It is quite natural to expect that this pattern extends also to

higher orders.

Our detailed analysis shows that when both deformation parameters ǫ1 and ǫ2 are

non-vanishing, besides the ǫ-dependent structures generated by the Nekrasov partition

functions, the effective theory seems to require a new series of explicit ǫ1ǫ2-corrections in

order to have S-duality acting in the proper way. These new corrections, being proportional

to inverse powers of the coupling constant, appear to correspond to perturbative terms at

higher loops and are absent in the Nekrasov-Shatashvili limit. We find remarkable that

by using the modified prepotential F̂ and the modified coupling τ̂ , all S-duality relations

acquire the standard simple form as in the undeformed theory (see (5.2), (5.6) and (5.8)).

It would be very nice to see whether these results admit an interpretation in the context of

special geometry or in a more general geometric set-up that would allow us to go beyond the

perturbative approach in the deformation parameters we have used in this paper. It would

be interesting also to study the recursion relations obeyed by the functions ϕℓ’s which can

be iteratively obtained from the viscous Burgers equation satisfied by ϕ1 (see (C.2)).

We conclude by observing that all S-duality formulas we have derived for the SU(2)

Nf = 4 theory can be obtained for the N = 2∗ SU(2) theory as well. The only difference in

this case is that every explicit occurrence of ǫ1ǫ2 has to be replaced by (ǫ1ǫ2)/2 to take into

account the different normalization of the viscous term in the modular anomaly recursion

relation (see (2.36) as compared to (3.30)).
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A Modular functions

We collect here some useful formulas involving the modular functions we used.

θ-functions. The Jacobi θ-functions are defined as

θ
[a
b

]
(v|τ) =

∑

n∈Z

q(n−
a
2
)2 e2πi(n−

a
2
)(v− b

2
) , (A.1)

for a, b = 0, 1 and q = eπiτ . We simplify the notation by writing, as usual, θ1 ≡ θ
[1
1

]
,

θ2 ≡ θ
[1
0

]
, θ3 ≡ θ

[0
0

]
, θ4 ≡ θ

[0
1

]
. The functions θa, a = 2, 3, 4, satisfy the “aequatio identica

satis abstrusa”

θ43 − θ42 − θ44 = 0 , (A.2)
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and admit the following series expansions

θ2(0|τ) = 2q
1

4

(
1 + q2 + q6 + q12 + · · ·

)
,

θ3(0|τ) = 1 + 2q + 2q4 + 2q9 + · · · ,
θ4(0|τ) = 1− 2q + 2q4 − 2q9 + · · · .

(A.3)

η-function. The Dedekind η-function is defined by

η(q) = q
1

12

∞∏

n=1

(1− q2n) . (A.4)

Eisenstein series. The first Eisenstein series can be expressed as follows:

E2 = 1− 24
∞∑

n=1

σ1(n) q
2n = 1− 24q2 − 72q4 − 96q6 + . . . ,

E4 = 1 + 240
∞∑

n=1

σ3(n) q
2n = 1 + 240q2 + 2160q4 + 6720q6 + . . . ,

E6 = 1− 504
∞∑

n=1

σ5(n) q
2n = 1− 504q2 − 16632q4 − 122976q6 + . . . ,

(A.5)

where σk(n) is the sum of the k-th power of the divisors of n, i.e., σk(n) =
∑

d|n d
k. The

series E4 and E6 are related to the θ-functions in the following way

E4 =
1

2

(
θ82 + θ83 + θ84

)
, E6 =

1

2

(
θ43 + θ44

)(
θ42 + θ43

)(
θ44 − θ42

)
. (A.6)

The series E2, E4 and E6 are connected among themselves by logarithmic q-derivatives

according to

q∂qE2 =
1

6

(
E2

2 − E4

)
, q∂qE4 =

2

3

(
E4E2 − E6

)
, q∂qE6 = E6E2 − E2

4 . (A.7)

Also the derivatives of the functions θ4a have simple expressions:

q∂qθ
4
2 =

θ42
3

(
E2+θ43+θ44

)
, q∂qθ

4
3 =

θ43
3

(
E2+θ42−θ44

)
, q∂qθ

4
4 =

θ44
3

(
E2−θ42−θ43

)
. (A.8)

Modular transformations. Under the Sl(2,Z) modular transformation

τ → τ ′ =
aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 , (A.9)

the Eisenstein series E4 and E6 behave as modular forms of weight 4 and 6, respectively:

E4(τ
′) = (cτ + d)4E4(τ) , E6(τ

′) = (cτ + d)6E6(τ) . (A.10)

The series E2, instead, is a quasi modular form of degree 2:

E2(τ
′) = (cτ + d)2E2(τ) +

6

iπ
c (cτ + d) . (A.11)

Under the generators T and S of the modular group the θ-functions and the Dedekind η

function transform as follows

T : θ43 ↔ θ44 , θ42 → −θ42 , η → e
iπ
12 η ,

S : θ42 → −τ2 θ44, θ43 → −τ2 θ43, θ44 → −τ2 θ42, η →
√
−iτ η.

(A.12)
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B The coefficient h3 of the SU(2) Nf = 4 prepotential

Here we give the explicit expression of the coefficient h3 up to three instantons obtained

using localization. It is given by

h3 =
1

1344

[
768R4 − 21504R2T1 + 12288RN + 26112T 2

1 − 6144T1T2 − 6144T 2
2

− (1792R3 − 26880RT1 + 10752N)(s2 − 2p) +R2(1568s4 − 6272s2p+ 5376p2)

− T1(9408s
4 − 37632s2p+ 32256p2)−R(496s6 − 2976s4p+ 5248s2p2 − 2560p3)

+ 51s8 − 408s6p+ 1102s4p2 − 1144s2p3 + 357p4
]
+ 24s4(T1 + 2T2)q

− 1

4

[
3840(T1 + 2T2)

2 − 1152(RT1 + 2N)(5s2 − 2p)

+ 48(R2 + 6T1)(16s
4 − 32s2p+ 7p2)− 192R(2s6 − 8s4p+ 7s2p2 − p3)

+ 3(16s8 − 96s6p+ 168s4p2 − 88s2p3 + 9p4)
]
q2

+ 32(T1 + 2T2)
[
160(R2 + 6T1)− 2R(280s2 − 272p)

+ 313s4 − 856s2p+ 366p2
]
q3 +O(q4) . (B.1)

Following the procedure described in the main text, we can rewrite h3 in terms of (quasi)

modular functions according to

h3 =
1

3456

(
4R− s2 + p

)(
4R− s2 + 3p

)[
80R2 − 8R(5s2 − 22p) + 5s4 − 44s2p+ 99p2

]
E3

2

− 1

12

[
80R2 − 8R(5s2 − 22p) + 5s4 − 44s2p+ 99p2

]
(T1θ

4
4 − T2θ

4
2)E

2
2

+
1

1440

(
4R− s2 + 6p

)[
64R3 − 80R2(3s2 − 4p) + 4R(27s4 − 88s2p+ 49p2)

− 13s6 + 68s4p− 94s2p2 + 30p3 + 2304N
]
E2E4

− 4

3

(
4R− s2 + 6p

)(
R− s2 + p

)[
T1θ

4
4(2θ

4
2 + θ44) + T2θ

4
2(θ

4
2 + 2θ44)

]
E2

+ 8(T1θ
4
4 − T2θ

4
2)

2E2 + 16
[
T 2
1 (θ

4
4 + 2θ42)θ

8
4 − T 2

2 (θ
4
2 + 2θ44)θ

8
2 − T1T2 θ

4
2θ

4
4(θ

4
2 − θ44)

]

− 1

4

[
16R2 − 8R(5s2 − 6p) + 21s4 − 60s2p+ 31p2

]
(T1θ

4
4 − T2θ

4
2)E4

+
1

120960

[
2816R4 − 30464R3s2 + 39424R3p+ 67872R2s4 − 190848R2s2p

+ 94304R2p2 − 28400Rs6 + 134112Rs4p− 165664Rs2p2 + 47616Rp3

− 774144N(s2 − p) + 331776NR− 552960(T 2
1 + T1T2 + T 2

2 )

+ 3323s8 − 22216s6p+ 46862s4p2 − 34584s2p3 + 6615p4
]
E6 . (B.2)

By expanding the modular functions in powers of q as shown in appendix A, one can recover

the instanton terms in (B.1).
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C Reformulating the modular anomaly equations

The modular anomaly equation (3.30) implies the following relation:

Dϕ0 =
1

2
ϕ2
1 +

ǫ1ǫ2
2

ϕ2 (C.1)

where the functions ϕℓ’s have been defined in (4.13). Since the operators D and (−∂a)

commute, by applying the latter to (C.1) and remembering that ϕℓ+1 = −∂aϕℓ, it is

straightforward to obtain the action of D on any ϕℓ and verify that these functions form

a ring under it. For example, at the next step we obtain

Dϕ1 = ϕ1ϕ2 +
ǫ1ǫ2
2

ϕ3 = ϕ1

(
− ∂aϕ1

)
+

ǫ1ǫ2
2

∂2
aϕ1 . (C.2)

which is, up to rescalings, the viscous Burgers equation

∂tu = u∂xu+ ν∂2
xu (C.3)

with the viscosity ν proportional to ǫ1ǫ2.

In section 4 the S-duality requirements were formulated in terms of the quantities Σ(ℓ)

defined in (4.23), which we rewrite here for convenience as follows:

Σ(ℓ) =
∞∑

n=0

1

n! (2πiτ0)n
P (ℓ)
n (C.4)

with

P (ℓ)
n = (D + ζ ∂a)

n ϕℓ

∣∣∣
ζ=ϕ1

. (C.5)

From this definition it is easy to show that the following relation holds:

P (ℓ+1)
n = −∂aP

(ℓ)
n + nϕ2P

(ℓ+1)
n−1 . (C.6)

In turn, this implies that

Σ(ℓ+1) = −∂aΣ
(ℓ) +

ϕ2

2πiτ0
Σ(ℓ+1) . (C.7)

Recalling that 2πiτ0 − ϕ2 = 2πiτ (see (4.14c)), this is tantamount to the recursion rela-

tion (4.24), namely

Σ(ℓ+1) = −τ0
τ
∂aΣ

(ℓ) , (C.8)

which allows us to easily obtain the expression of any Σ(ℓ) once Σ(0) is known.

To determine Σ(0) we start considering the quantities P
(0)
n . Clearly, from (C.5) we

have P
(0)
0 = ϕ0. The next case is

P
(0)
1 =

(
D + ζ ∂a

)
ϕ0

∣∣∣
ζ=ϕ1

= Dϕ0 − ϕ2
1 = −1

2
ϕ2
1 +

ǫ1ǫ2
2

ϕ2 (C.9)

where the last step follows from (C.1). By further applications of the operator
(
D+ ζ ∂a

)
,

we get

P
(0)
2 =

ǫ1ǫ2
2

ϕ2
2 +

(ǫ1ǫ2
2

)2
ϕ4 ,

P
(0)
3 = ǫ1ǫ2 ϕ

3
2 +

(ǫ1ǫ2
2

)2 (
6ϕ2ϕ4 + 5ϕ2

3

)
+
(ǫ1ǫ2

2

)3
ϕ6 ,

(C.10)
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with similar expressions for higher values of n. In fact, it is possible to derive the general

expression of the P
(0)
n ’s at the first orders in their explicit dependence on ǫ1ǫ2:

P (0)
n

∣∣∣
0
= δn,0 ϕ0 − δn,1

ϕ2
1

2
,

P (0)
n

∣∣∣
1
=

(n− 1)!

2
ϕn
2 ,

P (0)
n

∣∣∣
2
=

(n− 1)!

4

(
1

2
ϕ4

(
∂

∂ϕ2

)2

+
5

12
ϕ2
3

(
∂

∂ϕ2

)3)
ϕn
2 .

(C.11)

Inserting these results into (C.4), we obtain

Σ(0)
∣∣∣
0
= ϕ0 −

ϕ2
1

2(2πiτ0)
,

Σ(0)
∣∣∣
1
= −1

2
log

(
1− ϕ2

2πiτ0

)
= −1

2
log

τ

τ0
,

Σ(0)
∣∣∣
2
=

1

8

ϕ4

(2πiτ)2
+

5

24

ϕ2
3

(2πiτ)3
,

(C.12)

where from the second equality on we have used that 2πiτ0 − ϕ2 = 2πiτ .

Applying the recursion formula (C.8) we can easily get the explicit expressions for the

Σ(ℓ)’s that are needed in the calculations presented in section 4 or in appendix D. They

are, for ℓ = 1:

Σ(1)
∣∣∣
0
= ϕ1 ,

Σ(1)
∣∣∣
1
= 2πiτ0

(
1

2

ϕ3

(2πiτ)2

)
,

Σ(1)
∣∣∣
2
= 2πiτ0

(
1

8

ϕ5

(2πiτ)3
+

2

3

ϕ3ϕ4

(2πiτ)4
+

5

8

ϕ3
3

(2πiτ)5

)
;

(C.13)

for ℓ = 2:

Σ(2)
∣∣∣
0
= 2πiτ0

(
ϕ2

2πiτ

)
,

Σ(2)
∣∣∣
1
= (2πiτ0)

2

(
1

2

ϕ4

(2πiτ)3
+

ϕ2
3

(2πiτ)4

)
;

(C.14)

for ℓ = 3:

Σ(3)
∣∣∣
0
= (2πiτ0)

3

(
ϕ3

(2πiτ)3

)
,

Σ(3)
∣∣∣
1
= (2πiτ0)

3

(
1

2

ϕ5

(2πiτ)4
+

7

2

ϕ3ϕ4

(2πiτ)5
+ 4

ϕ3
3

(2πiτ)6

)
;

(C.15)

for ℓ = 4 :

Σ(4)
∣∣∣
0
= (2πiτ0)

4

(
ϕ4

(2πiτ)4
+ 3

ϕ2
3

(2πiτ)5

)
; (C.16)

and finally for ℓ = 5 :

Σ(5)
∣∣∣
0
= (2πiτ0)

5

(
ϕ5

(2πiτ)5
+ 10

ϕ3ϕ4

(2πiτ)6
+ 15

ϕ3
3

(2πiτ)7

)
. (C.17)
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D S-duality at order (ǫ1ǫ2)
2

We start from the relation (4.18b) for n = 2, namely

τ0 S(X2)
∣∣∣
0
−X2 = −τ0S(ϕ1)

∣∣∣
2
− τ0S(X1)

∣∣∣
1
. (D.1)

From (4.22) we read that

τ0 S(ϕ1)
∣∣∣
2
= Σ(1)

∣∣∣
2
− X1

2πiτ0
Σ(2)

∣∣∣
1
− X2

2πiτ0
Σ(2)

∣∣∣
0
+

1

2

X2
1

(2πiτ0)2
Σ(3)

∣∣∣
0
. (D.2)

Substituting the expressions of the various Σ(ℓ)
∣∣∣
k
’s given in appendix C, and that of X1

given in (4.31), we get

τ0 S(ϕ1)
∣∣∣
2
= 2πiτ0

(
1

8

ϕ5

(2πiτ)3
+

13

24

ϕ4ϕ3

(2πiτ)4
+

13

32

ϕ3
3

(2πiτ)5

)
− ϕ2

2πiτ
X2 . (D.3)

On the other hand, from (4.31) it follows that

τ0 S(X1) =
1

8πiτ20

τ30 S(ϕ3)

S(τ)
. (D.4)

The numerator of this expression can be computed from (4.22), yielding

τ30 S(ϕ3) = Σ(3) − X

2πiτ0
Σ(4) + · · · = Σ(3)

∣∣∣
0
+ ǫ1ǫ2

(
Σ(3)

∣∣∣
1
− X1

2πiτ0
Σ(4)

∣∣∣
0

)
+ · · · (D.5)

= (2πiτ0)
3 ϕ3

(2πiτ)3
+ ǫ1ǫ2 (2πiτ0)

3

(
1

2

ϕ5

(2πiτ)4
+

13

4

ϕ3ϕ4

(2πiτ)5
+

13

4

ϕ3
3

(2πiτ)6

)
+ · · ·

where the last step follows from the results given in appendix C. For the denominator we

take into account that

S(τ) = S(τ0)−
S(ϕ2)

2πi
= − 1

τ0
− S(ϕ2)

2πi
. (D.6)

Resorting again to (4.22) to evaluate τ20 S(ϕ2), we obtain

S(τ) = − 1

τ0
− 1

2πiτ20

[
Σ(2)

∣∣∣
0
+ ǫ1ǫ2

(
Σ(2)

∣∣∣
1
− X1

2πiτ0
Σ(3)

∣∣∣
0

)
+ · · ·

]

= −1

τ
− ǫ1ǫ2

(
1

2

ϕ4

(2πi)2τ3
+

3

4

ϕ2
3

(2πi)3τ4

)
+ · · · .

(D.7)

Inserting (D.5) and (D.7) into (D.4) and extracting the term of order ǫ1ǫ2, we find

τ0 S(X1)
∣∣∣
1
= −(2πiτ0)

(
1

8

ϕ5

(2πiτ)3
+

11

16

ϕ3ϕ4

(2πiτ)4
+

5

8

ϕ3
3

(2πiτ)5

)
. (D.8)

Using this result and (D.3) into (D.1), we finally obtain the following constraint on X2:

τ0 S(X2)
∣∣∣
0
− 2πiτ0

(
X2

2πiτ

)
= (2πiτ0)

(
7

48

ϕ3ϕ4

(2πiτ)4
+

7

32

ϕ3
3

(2πiτ)5

)
. (D.9)
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Considering the structures involved in this relation, we can try an Ansatz such that X2 is

written as a total derivative:

X2 = ∂a

(
−λ1

ϕ4

(2πiτ)2
− λ2

ϕ2
3

(2πiτ)3

)

= λ1
ϕ5

(2πiτ)2
+ 2(λ1 + λ2)

ϕ3ϕ4

(2πiτ)3
+ 3λ2

ϕ3
3

(2πiτ)4
.

(D.10)

With this position we find straightforwardly, using the formulæ of appendix C, that

τ0 S(X2)
∣∣∣
0
− 2πiτ0

(
X2

2πiτ

)
= 2πiτ0

(
(6λ1 − 4λ2)

ϕ3ϕ4

(2πiτ)4
+ (9λ1 − 6λ2)

ϕ3
3

(2πiτ)5

)
. (D.11)

Comparing this result to the constraint (D.9), we obtain a single independent equation:

6λ1 − 4λ2 =
7

48
. (D.12)

Our Ansatz thus satisfies the requirement (D.9) with still one free parameter. In section 5

we chose to fix this arbitrariness by requiring that the modified prepotential F̂ introduced

in (5.2) differs from F by a series of corrections in powers of ǫ1ǫ2 whose coefficients only

involve ϕ3 and the modified effective coupling τ̂ defined in (5.5). It is easy to see that,

starting with X2 given in (D.10), the F̂ term of order (ǫ1ǫ2)
2 in (5.7) would contain a part

proportional to ϕ4 unless λ1 assumes a specific value which, by virtue of (D.12), fixes also

λ2. These values are:

λ1 =
1

16
, λ2 =

11

192
, (D.13)

which are those used in (5.1).
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