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1 Introduction

The discovery of a new boson [1, 2] with a mass around 126GeV, based on excess events in

several Higgs search channels at the LHC, has reshaped the field of particle physics. The

leading candidate, by far, for the observed boson is the standard model (SM) Higgs boson.

It is important to study the production and decay rates of this new particle with high

precision to verify that they agree with the predictions of the SM: computing the Higgs

production and decay rates with higher precision within the SM, and performing precise

computations in continuous deformations away from the SM are necessary. At stake in

these studies are naturalness arguments that have been widely used to predict that there

should be new physics (NP) associated with electroweak (EW) symmetry breaking at scales

not far above the EW scale.

One aspect of the properties of the observed resonance that has attracted some at-

tention is the apparent excess in the Γ(h → γγ) decay rate. This excess may be just a

statistical fluctuation, or it may be due to the effects of NP modifying the properties of

a SM Higgs. Although this deviation from the SM expectation has received the most at-

tention to date, the properties of the observed resonance are not known experimentally to

be in detailed agreement with SM expectations in many search channels. If deviations of
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the properties of the observed state from SM expectations become statistically significant

in the signal strengths for the decays h → γγ,WW,ZZ,Zγ, a program of precision Higgs

phenomenology will be key to unraveling the physics beyond the SM.

In this paper, we will assume that the new boson corresponds to the Higgs boson and

that the NP scale is at least a few hundred GeV, so that the effect of new physics can be

captured by adding higher-dimension operators to the SM Lagrangian. If NP influences the

properties of the observed boson, one must consistently calculate the relationship between

the Wilson coefficients of the higher dimensional operators, at the low-energy EW scale

∼ v and the high-energy scale Λ — which corresponds to the mass scales of the NP

states that are integrated out of the effective theory. Systematically relating the Wilson

coefficients at these different scales requires determining the anomalous dimensions of the

operator basis, including the effects of operator mixing. In this paper, we determine the

anomalous dimension matrix for a set of operators that affect the decay of the SM Higgs to

gg,WW,ZZ,Zγ and γγ, and its production via gluon fusion gg → h. The operator basis

we focus on leads to tree-level modifications of the γγ and Zγ Higgs decays, which first arise

at one loop in the SM, and it also is constrained by electroweak precision data (EWPD).

We show that earlier investigations [3–7] relating the S parameter to higher dimensional

operators correctly capture some of the scale dependence of the operators. However, these

results need to be modified to take into account the full scale dependence of the operators

determined by the renormalization group equations (RGE). We study the constraints on

operator mixing from the S parameter in detail, deriving a new relation between the Higgs

decay rates and the S parameter.

The operator mixing matrix computed here allows for the identification of a new mech-

anism by which NP contributes to h→ γγ and h→ Zγ decays. These new contributions of

NP to one-loop Higgs decays can be much larger than naively expected when considering a

RGE effect — as we show in an explicit example. The key point is that an operator that is

matched onto at tree level when integrating out a NP sector, that subsequently mixes with

the operator corresponding to the one-loop Higgs production or decay process can lead to

a NP contribution that is of the same order as a direct matching contribution. Our results

demonstrate this general point: systematically accounting for the scale dependence of the

NP induced operators is essential for correctly calculating a one-loop Higgs process in an

effective action that reproduces the infrared of a NP theory extension of the SM.

The outline of this paper is as follows. Section 2 sets up our notation and defines the

operator basis that we renormalize. In section 3, we give the anomalous dimension matrix

of the dimension-six Higgs-gauge boson operators. The implications of our results for LHC

phenomenology, and for electroweak precision constraints are given in section 4. Finally,

we give our conclusions in section 5.

2 The operator basis

We assume that at the scale of the Higgs mass, µ ∼ Mh ∼ 126GeV, the theory is repre-

sented by the SU(3)× SU(2)×U(1) standard model (SM) with the minimal Higgs sector.

The new physics effects are given by gauge invariant local operators in terms of the SM
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fields. The lowest dimension operators are dimension-five lepton-number violating oper-

ators which give rise to neutrino masses. The operators which first affect the properties

of the Higgs boson occur at dimension six. A complete classification of the dimension-six

operators in the standard model is given in refs. [8, 9], the latter of which finds that there

are 59 independent operators (assuming baryon number conservation) after eliminating

redundant operators using the equations of motion. The choice of independent operators

is not unique, since certain linear combinations vanish by the equations of motion, and are

thus effectively of higher dimension.

In this paper, we will consider the impact of the following dimension-six operators

modifying the standard model Hamiltonian,

H(6) = −L(6) = cGOG + cB OB + cW OW + cWB OWB

+ c̃G ÕG + c̃B ÕB + c̃W ÕW + c̃WB ÕWB . (2.1)

The Hamiltonian H(6) is generated by new physics at some scale Λ. The operator basis for

H(6) is (using the notation of refs. [10, 11])

OG =
g23
2Λ2

H†H GAµνG
Aµν , ÕG =

g23
2Λ2

H†H GAµνG̃
Aµν ,

OB =
g21
2Λ2

H†H Bµ νB
µ ν , ÕB =

g21
2Λ2

H†H Bµ νB̃
µ ν ,

OW =
g22
2Λ2

H†HW a
µ νW

aµ ν , ÕW =
g22
2Λ2

H†HW a
µ νW̃

aµ ν ,

OWB =
g1 g2
2Λ2

H† σaHW a
µ νB

µ ν , ÕWB =
g1 g2
2Λ2

H† σaHW a
µ νB̃

µ ν .

(2.2)

Here, g1, g2 and g3 are the standard model gauge couplings, Bµν , W
a
µν and GAµν are the

corresponding field-strength tensors, and σa are the Pauli matrices for weak isospin. The

operators Oi are CP -even, and Õi are CP -odd. The dual field-strength tensors are defined

by F̃µν = (1/2) ǫµναβF
αβ , for F = B,W a, GA. Note that the ˜ can be on either field-

strength, since F1µνF̃2µν = F̃1µνF2µν . This observation will be useful later. Only the

product ci/Λ
2 enters H(6), but it is useful to write the operators in the form of eq. (2.2) so

that the coefficients ci in H(6) are dimensionless. A naive dimensional estimate [12] gives

ci of order unity. Nevertheless the relative importance of the various operators will depend

on the power counting of the NP model considered — we will discuss this point in more

detail in section 4.1.1.

The Higgs doublet field H has hypercharge Y = +1/2, and the Higgs potential is

V = λ

(
H†H − v2

2

)2

. (2.3)

With this normalization convention, v ∼ 246GeV and M2
h = 2λv2. Yukawa couplings

are normalized in the usual way, so that the fermion masses mf are given in terms of the

Yukawa couplings yf by mf = yfv/
√
2.

In section 3, we compute the anomalous dimension matrix for the subset of dimension-

six operators in eq. (2.2). The operator basis eq. (2.2) is closed under renormalization at

one loop for the diagrams in figure 1. The reason we focus upon the operators in H(6) is
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that they contribute at tree level to γγ and Zγ Higgs decays, which are one-loop processes

in the standard model. Thus, these operators are particularly important for the present

analysis and current phenomenology.

We note that other dimension-six operators, such as

ODB = (DµH)† (DνH) g1Bµ ν , ODW = (DµH)† σa (DνH) g2W
a
µ ν ,

Oφ =
∣∣∣H†DµH

∣∣∣
2
, OWWW = g32 ǫabcW

a
µ νW

b
ν ρW

c
ρ µ, (2.4)

are also of interest for precision EW phenomenology. These neglected dimension-six op-

erators also can mix with the operators eq. (2.2) under renormalization group scaling, so

a renormalization group analysis of the complete dimension-six operator basis is needed

to obtain all effects. The calculation of the 59 × 59 anomalous dimension mixing ma-

trix of dimension-six operators is beyond the scope of the present work, but merits future

investigation.

The basis we use, given by eq. (2.2), is sufficient to demonstrate the point we wish

to make on RGE effects due to operators that can come about due to NP at tree level.

It is well known that tree level NP effects can lead to contributions to the S parameter,

which corresponds to OWB. Note that while the operators ODB and ODW do appear in

the operator basis of refs. [4–6] and in the strongly interacting light Higgs (SILH) basis of

ref. [13], they do not appear in the basis of ref. [9] where they have been replaced in favour

of the two operators with fermionic currents:

i
(
H†σa

←→
DµH

) (
q̄Lγ

µσaqL + l̄Lγ
µσalL

)
, i

∑

ψ

(
H†←→DµH

) (
Yψψ̄γ

µψ
)
, (2.5)

where ψ = qL, dR, uR, lL, eR and Yψ are their hypercharges. We use little y for Yukawa

couplings. See ref. [14] for further discussion. These two fermionic current operators

correspond to oblique corrections. It is therefore preferable to choose an operator basis

which replaces them by purely bosonic operators as in refs. [4–6] and in ref. [13]. In the

basis of ref. [9], the three operators OB,OW and OWB will be generated at the loop-

level only. Conversely, in the basis we use, the operator OWB can receive a tree-level

matching due to NP. Thus, we consider the calculation we have performed to be sufficient

to demonstrate the importance of the RGE improvement of Higgs production and decay

operators when NP can lead to tree-level matching. Although the tree-level operator we

demonstrate this point with, OWB, is directly bounded by EWPD to be smaller than its

naive dimensional estimate, we emphasize that in integrating out a realistic new physics

sector one expects a number of tree level effects, unless the new sector is protected by an

exact discrete symmetry — such as in an exact R parity conserving SUSY model.

The classification of tree-level NP effects in the dimension-six operator basis was first

performed in refs. [15], which finds 45 operators can be induced at tree level in their chosen

basis. In the classification of ref. [9], 14 (+ 25 four fermion) operators can be induced by

tree-level NP effects (when baryon number is assumed conserved).1

1Our chosen basis is particularly useful to make the RGE effect we are demonstrating clear. A basis-

independent argument requires computing the full 59 x 59 anomalous dimension matrix of a complete

operator basis.
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3 Anomalous dimensions

In this section, we compute the one-loop anomalous dimension of the new physics Hamil-

tonian H(6). The computations are performed in the unbroken gauge theory with six

dynamical quark flavours. We use background field gauge and the MS subtraction scheme

in d = 4− 2 ǫ dimensions. In background field gauge, the product gAµ is not renormalized

due to background field gauge invariance, so that ZgZ
1/2
A = 1.2

In a gauge theory, the operators

O+ =
β(g)

2g
FAµνF

Aµν , O− = g2FAµνF̃
Aµν , (3.1)

are not multiplicatively renormalized to all orders in perturbation theory. The CP -even

operator O+ is not renormalized, because it is the trace of the conserved energy momentum

tensor. (A review can be found in ref. [18].) The CP -odd operator O− is not multiplica-

tively renormalized, because it is multiplied by the θ-angle in the Lagrangian, and θ is

periodic with periodicity 2π.3

In the standard model, we have multiple gauge fields, so the theorem on O+ only

applies to the sum of the three gauge contributions,

O+ =
β1(g1)

2g1
BµνB

µν +
β2(g2)

2g2
W a
µνW

aµν +
β3(g3)

2g3
GAµνG

Aµν . (3.2)

The coupling between the different gauge operators in eq. (3.2) only occurs through fermion

or scalar loops, so at the one-loop level, the separate terms are not renormalized. Thus, at

one-loop, we can use the result that both g2FAµνF
Aµν and g2FAµνF̃

Aµν are not renormalized,

which provides a useful check of our computation.

The one-loop graphs contributing to the anomalous dimension matrix are shown in

figure 1. (We have not shown the ghost graph that vanishes when using dimensional

regularization.) The graphs can be divided into three groups: the graphs of the first row

(a, b) couple only to the Higgs field part of the d = 6 operator insertion; the graphs of the

second row (c, d, e, f) couple only to the gauge part of the d = 6 operator; and the graphs

of the third row (g, h, i, j) couple to both the Higgs and gauge fields of the d = 6 operator

insertion. The RGE for the CP -even operators at one-loop split into two groups

µ
d

dµ
cG = γG cG, (3.3a)

µ
d

dµ



cB
cW
cWB


 = γWB



cB
cW
cWB


 , (3.3b)

2A review of the background field method can be found in ref. [16]. Zg and ZA are the renormalization

factors of the gauge coupling and field, g(0) = Zgg, A
(0)
µ = Z

1/2
A Aµ, respectively, where the superscript (0)

denotes bare quantities. For a recent review of NLO effective Lagrangians see ref. [17].
3It can mix with the divergence of the axial current. See appendix C of ref. [19].
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 1. One-loop diagrams for the renormalization of the operators in eq. (2.2). Graph (e) has

a partner graph where the loop is on the other gauge boson line. Graphs (g,h,i,j) have partner

graphs where the gauge bosons couple to the incoming scalar line. Wavefunction graphs have not

been shown. Here, the complex scalar field is shown as a dashed line, while the gauge fields are

shown as wavy lines; in each diagram, the gauge fields are the B, W a or GA fields depending on

the operator considered.

where the anomalous dimensions are

γG =
1

16π2

[
−3

2
g21 −

9

2
g22 + 12λ+ 2Y

]
, (3.4a)

γWB =
1

16π2




1
2g

2
1 − 9

2g
2
2 + 12λ+ 2Y 0 3g22

0 −3
2g

2
1 − 5

2g
2
2 + 12λ+ 2Y g21

2g21 2g22 −1
2g

2
1 +

9
2g

2
2 + 4λ+ 2Y


 ,

(3.4b)
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and

Y = Tr
[
3Y †

uYu + 3Y †
d Yd + Y †

e Ye

]
≈ 3y2t . (3.5)

Here, we expand Y in terms of the quark and lepton Yukawa coupling matrices. Numeri-

cally, the top quark Yukawa coupling is the most important contribution to the running.

The Yukawa coupling correction is a universal correction of the higher dimensional opera-

tors due to Higgs wave function renormalization. The one-loop β functions for the coupling

constants are given in appendix A.

The one-loop QCD running of OG vanishes because a factor of g23 is included in the defi-

nition of OG. The sum of graphs (c, d, e, f) vanish for OG, OW and OB because g2FAµνF
Aµν

is not renormalized. This is trivially true for the Abelian case, OB, since the graphs don’t

exist. The sum does not vanish for OWB, however, since the gauge field part g1g2W
a
µνB

µν

of OWB is not constrained by a non-renormalization theorem. The gauge field part of

OWB also is not a gauge invariant operator, so the subset of graphs (c, d, e, f) is not gauge

invariant for OWB.

The renormalization group equations for the CP -odd operators are

µ
d

dµ
c̃G = γG c̃G, (3.6a)

µ
d

dµ



c̃B
c̃W
c̃WB


 = γWB



c̃B
c̃W
c̃WB


 , (3.6b)

with the same anomalous dimensions γG, γWB as in the CP -even case. The equality of the

one-loop CP -even and CP -odd anomalous dimensions can be understood by the following

argument. The CP -odd operators involve the product of a field-strength tensor and a dual

tensor, F1µνF̃
2µν , where the dual can be applied to either F1 or F2. Thus, in computing

the graphs, we can choose to apply the dual to the external gauge field that does not

participate in the loop, and the graph becomes the same as the CP -even case. Because

of the freedom of applying the dual to either field-strength tensor, the only graphs where

the argument fails are graphs (c, d, e, f) where the loop involves gauge fields from both

field-strength tensors. Now, consider the renormalization of ÕG, ÕW and ÕB. The non-

renormalization of g2FF̃ means that the sum of graphs (c, d, e, f) vanishes for ÕG, ÕW
and ÕB. For ÕB, these diagrams again trivially do not exist. For the remaining graphs, at

most one gauge field takes part in the loop, so the field-strength tensor not including this

field can be chosen to be the dual one, and the graph has the same value as the CP -even

case. For ÕWB, the argument still holds for graphs (a, b) and (g, h, i, j), but there is no

non-renormalization theorem for g1g2W
a
µνB̃

µν to argue that graphs (c, d, e, f) sum to zero.

However, since W a and B gauge fields do not interact with each other, and Bµν is linear in

Bµ, graphs (c, d, f) do not exist for ÕWB. Graph (e) must have the two gauge bosons in the

loop be W fields from the field strength W a
µν , and the dual can be applied to Bµν . Thus,
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Figure 2. Plot of the top-Yukawa renormalization factor r(µ) vs µ in GeV.

graph (e) has the same value as the CP -even case. This concludes the proof.4 Clearly,

the argument depends crucially on the one-loop structure of the graphs, and will not hold

at higher loops. Even the operators g2F 2 and g2FF̃ in a non-abelian gauge theory have

different anomalous dimensions at two-loop order.

The renormalization group equations eq. (3.3) need to be integrated between the high-

energy scale Λ of new physics and the low-energy scale µ of order the Higgs mass. The

largest contribution to the anomalous dimension is the top quark Yukawa coupling term

in eq. (3.4), which is proportional to the unit matrix. This largest contribution to the

anomalous dimension is universal and can be integrated exactly by defining a function

r(µ) which satisfies

µ
d

dµ
r(µ) =

3y2t (µ)

8π2
r(µ) . (3.7)

Only ratios of r(µ) enter, so the overall scale of r is irrelevant. A plot of r(µ) normalized so

that r(µ = 125GeV) = 1 is shown in figure 2. The correction is about 8% to the amplitude

for the NP scale µ = 1TeV.

Writing ci(µ) ≡ r(µ)di(µ), one finds that di(µ) satisfy the renormalization group equa-

tions eq. (3.3) with anomalous dimension given by eq. (3.4) with Y → 0. Solving these

equations to first order in logµ gives

c(Mh) =
r(Mh)

r(Λ)

[
1− γWB(Y → 0) log

Λ

Mh

]
c(Λ). (3.8)

This equation is accurate to about 3% for Λ less than 10TeV. The anomalous dimension

matrix γWB(Y → 0) can be evaluated at either µ =Mh or Λ to this order. We will evaluate

it at Mh for the numerical results. More accurate results can be obtained by integrating

the RGE numerically, but we will use eq. (3.8) because it makes the subsequent analysis

clearer.

4The equality of the CP -even and CP -odd one loop anomalous dimensions also has been checked by

explicit computation.
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4 Impact on phenomenological studies

The RGE improvement of these NP effects can be of significant phenomenological impor-

tance, as we will show. In some cases, these previously neglected RGE effects can be the

dominant contribution of NP to various processes such as h → γγ. In this paper, we

restrict our attention to two applications of current interest: the RGE improvement of

NP contributions to the partial decay widths Γ(h → γγ) and Γ(h → Zγ), and the RGE

improvement of global EWPD fit constraints on the dimension-six operator basis.

4.1 LHC phenomenology

The Higgs decay rate Γ(h→ γγ) including H(6) is

µγγ ≡
Γ(h→ γγ)

ΓSM(h→ γγ)
≃
∣∣∣∣1−

4π2v2cγγ
Λ2Iγ

∣∣∣∣
2

+

∣∣∣∣
4π2v2c̃γγ
Λ2Iγ

∣∣∣∣
2

, (4.1)

following the conventions of ref. [10], where ΓSM is the SM rate, and

cγγ = cW + cB − cWB, c̃γγ = c̃W + c̃B − c̃WB . (4.2)

The SM amplitude is given by Iγ , which is defined in appendix B. For Γ(h → Zγ) decay,

the ratio to the standard model rate is

µγZ ≡
Γ(h→ γZ)

ΓSM(h→ γZ)
≃
∣∣∣∣1−

4π2v2cγZ
Λ2IZ

∣∣∣∣
2

+

∣∣∣∣
4π2v2c̃γZ
Λ2IZ

∣∣∣∣
2

, (4.3)

where

cγZ = cW cot θW − cB tan θW − cWB cot 2θW ,

c̃γZ = c̃W cot θW − c̃B tan θW − c̃WB cot 2θW , (4.4)

and the SM amplitude IZ is defined in the appendix B. Iγ and IZ are negative, so we see

from eqs. (4.1), (4.3) that h → γγ and h → γZ are enhanced if cγγ and cγZ are positive,

and suppressed if they are negative, when c̃γγ and c̃Zγ are neglected.

The renormalization group improved Higgs decay rates can be computed by using the

Wilson coefficients cγγ , c̃γγ , cγZ , c̃γZ in eqs. (4.1), (4.3) at the scale µ ∼ Mh. Using the

leading log approximation to the running, given in eq. (3.8), one finds

r(Λ)cγγ(Mh)

r(Mh)
=

[
1+

3

32π2
(
g21+3g22−8λ

)
log

Λ

Mh

]
cγγ(Λ)+

1

8π2
(
3g22−4λ

)
log

Λ

Mh
cWB(Λ),

(4.5a)

r(Λ)cγZ(Mh)

r(Mh)
=

[
1 +

1

32π2
(
g21 + 7g22 − 24λ

)
log

Λ

Mh

]
cγZ(Λ)

+
1

8π2
(
g1g2 + 4g22 cot 2θW − 4λ cot 2θW

)
log

Λ

Mh
cWB(Λ)

− b
(1)
0 g21 − b

(2)
0 g22

16π2
(cγγ(Λ) sin 2θW + cγZ(Λ) cos 2θW ) log

Λ

Mh
. (4.5b)
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The mixing angle θW in eq. (4.5b) is evaluated at µ =Mh. The last term in eq. (4.5b)

comes from the running of the mixing angle θW between Λ and Mh. Coefficients b
(1)
0 =

−1/6 − 20ng/9 = −41/6, b(2)0 = 43/6 − 4ng/3 = 19/6 are the leading coefficients of the

g1 and g2 β-functions, and ng = 3 is the number of generations. The running of the

CP -violating operator basis is identical at one loop.

4.1.1 A new contribution to Γ(h→ γγ)

As shown in eq. (4.5), the Wilson coefficient cγγ at µ = Mh depends not only on cγγ(Λ),

but also on cWB(Λ) due to operator mixing. There is no exact symmetry that forbids such

mixing in the anomalous dimension matrix. This mixing provides a demonstration of a

new mechanism for a modification of Γ(h → γγ) due to NP that has not been considered

previously, despite the fact that such effects can be as large as effects of NP which have

been examined traditionally.

When the new physics can be characterized by a single scale Mρ and a coupling gρ,

simple physical arguments lead to an interesting power counting for the Wilson coefficients

of our operator basis [13]. For coefficients c̄i ≡ civ2/Λ2, we find the power counting

c̄B, c̄W , c̄WB, c̄DB, c̄DW ∼ O
(
v2

M2
ρ

)
, (4.6)

c̄G, c̄γγ = c̄W + c̄B − c̄WB, c̄γZ =
c̄W

tan θW
− c̄B tan θW −

c̄WB
tan 2θW

∼ O
(

g2ρ
16π2

v2

M2
ρ

)
, (4.7)

where the last row follows from the fact that the Higgs boson cannot decay to γγ, Zγ and

gg at tree-level in any theory that satisfies the minimal coupling assumption. Note that,

when a discrete symmetry is present, there can be further suppression of the operators

in the first row, as is the case in R parity conserving SUSY scenarios where there is no

tree-level contribution to the S parameter. Also, if the Higgs boson emerges as a pseudo

Nambu-Goldstone boson of the new physics sector, the Higgs decays to γγ and gg can only

be obtained from a loop that involves couplings which break the global shift symmetry

of the pseudo Nambu-Goldstone boson. In that case, we obtain a further suppression of

g2SM/g
2
ρ [13], so

c̄G, c̄γγ ∼ O
(
g2SM
g2ρ

g2ρ
16π2

v2

M2
ρ

)
. (4.8)

Here, gSM denotes a combination of the SM couplings g1,2, yi. The simple power counting

above demonstrates the importance of the RGE mixing between the operators we are

considering:

cγγ(µ) ∼ cγγ(Λ) +
g2SM
16π2

log

(
Λ

µ

)
ci(Λ), (4.9)

and parametrically the ratio of the RGE contribution over the new physics contribution to

cγγ scales like (g2SM/g
2
ρ) log(Λ/µ) in the general case and is further enhanced to log(Λ/µ)

in models where the Higgs boson is a pseudo Nambu-Goldstone boson. Hence, the RGE

effect we want to compute can dominate over the new physics contribution at the matching

scale. Similar RGE enhancement is present in the mixing between the operators OWB and

– 10 –



J
H
E
P
0
4
(
2
0
1
3
)
0
1
6

∂µ|H|2∂µ|H|2 in ref. [20] and has been used to derive some bounds on the deviations of the

Higgs couplings to massive gauge bosons from electroweak precision data, see for instance

ref. [21]. Note that in the case of cZγ , the RGE effect is sizeable only in the case of weak

coupling gρ . gSM .

As a concrete example, consider the possibility that the Higgs is a pseudo Nambu-

Goldstone boson of a NP sector. Using the SILH formalism of ref. [13], a direct matching

giving cγγ(Λ) is suppressed by a common scale M2
ρ , corresponding to the mass scale of a

new strong sector. Here, Mρ ∼ gρ f , where f is the analog of the pion decay constant fπ,

and gρ is a coupling in the NP sector with gSM < gρ < 4π. One finds the matching

cγγ(Λ)
v2

Λ2
≃ g2SM

8π2
v2

M2
ρ

. (4.10)

Now consider the matching onto the operator OWB due to integrating out the strongly-

interacting NP sector. It is well known that the OWB operator receives a tree-level con-

tribution from integrating out new heavy vector bosons. When this occurs, the interesting

possibility arises that the mixing of cγγ with cWB due to renormalization group evolution

leads to the dominant effect of NP on h→ γγ decay. This possibility is supported by the

fact that the latter mixing effect also is enhanced by a large logarithm. Integrating out such

new spin-one resonances that induce this operator at tree level, one expects S ∼ 4πv2/M2
ρ ,

which gives

cWB(Λ)
v2

Λ2
≃ − v2

2M2
ρ

. (4.11)

Typically, S is positive, and cWB is negative. From these matchings, one sees that at the

scale Mh (neglecting the correction to cγγ in eq. (4.5a)),

cγγ(Mh)
v2

Λ2
≃ r(Mh)

r(Λ)

[
2g2SM − (3 g22 − 4λ) log

Mρ

Mh

]
v2

16π2M2
ρ

. (4.12)

Couplings gSM and g2 are of comparable size, so (3/2) log (Mρ/Mh) ≫ 1 is the degree

to which the new contribution to Γ(h → γγ) dominates over the previously known con-

tribution in pseudo Nambu-Goldstone boson Higgs models. Numerically, one finds that

(3/2) log (Mρ/Mh) ∼ 3 for Mρ ∼ 1TeV, so this term is expected to be the dominant

contribution. Even when the extra suppression ∼ g2SM is not present, as is the case for

non-Goldstone Higgs scenarios, it is reasonable to expect that the RGE driven contribution

we have identified will be significant. Thus, including this effect is of some importance in

constructing models of NP that attempt to explain any Γ(h→ γγ) deviation. Obviously, a

similar point holds for future studies of Γ(h→ Zγ) as well, as can be seen from eq. (4.5b).

Note that negative values of cWB lead to a suppression of µγγ and µγZ .

The matching condition S ∼ 4πv2/M2
ρ is a rough estimate based on dimensional

grounds. More precise matching conditions based on specific assumptions about the

unknown spectral function of the vector resonances can be utilized if desired, and the

conclusions are not significantly changed. For recent calculations along these lines, see

refs. [22, 23], where, in the framework of minimal composite Higgs models (MCHM [24]),
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more precise matchings are determined. The finite terms determined in refs. [22, 23] for

the particular examples considered in these papers affect this argument with roughly a

further loop factor suppression, so they do not significantly modify the conclusions. Nev-

ertheless, due to the general requirement of assuming a form of the unknown spectral

function that dictates the matching onto cWB(Λ), strong conclusions are not possible in a

model-independent fashion.5

One should note that there are also other modifications to Γ(h → γγ) in pseudo-

Goldstone Higgs models. These effects are discussed in ref. [13], and we briefly review

them here for completeness. In this class of models, one also expects modifications of stan-

dard model Higgs phenomenology due to NP in a strong sector that induces the following

operators added to the effective Lagrangian

OH = ∂µ(H†H) ∂µ(H
†H), Oy = H†H ψ̄LHψR + h.c., (4.13)

with coefficients cH/(2f
2) and cψ yψ/f

2, respectively. These effects are suppressed by the

scale f , not Mρ = gρ f , and lead to a suppression of Γ(h→ γ γ) given by [13]

Γ(h→ γγ)

Γ(h→ γγ)SM
= 1− v2

f2
Re

[
2ct + cH

1 + IW /(NcQ2
t It)

+
cH

1 + (NcQ2
t It)/IW

]
, (4.14)

neglecting terms suppressed by g2SM/g
2
ρ. It is known that one can obtain an enhancement

of h → γ γ if these corrections dominate over the SM contribution, or if ct is negative,

removing the need for any new states giving a large direct matching contribution (or

RGE contribution) to obtain a deviation in µγ γ . However, at the same time, negative

ct diminishes gg → h unless it is very large. See ref. [25] for a related discussion on the

consistency of this possibility with global data. Of course the parameters that lead to these

effects are modified by the inclusion of the RGE effects identified in this paper.

4.1.2 Inferring the NP scale from RGE modified Γ(h→ γγ)

The measured signal strength for γγ decay in terms of the ratio to the standard model rate

is given by ATLAS as [26]

µγγ = 1.80± 0.30(stat)+0.21
−0.15(syst)

+0.20
−0.14(theory), (4.15)

for Mh = 126.6± 0.3(stat)± 0.7(syst)GeV, while CMS reports [27]

µγγ = 1.56± 0.43 , (4.16)

for Mh = 125GeV. Neglecting the subtle issues of combining the results of different

experiments, and the different central values for the masses of the signal strengths reported,

one finds that a naive combination of these results gives µγγ ≃ 1.7 ± 0.3. If this excess

is attributed to the modifications of the Γ(h → γγ) amplitude due to cγγ , one finds two

solutions for the central value of cγγ ,

v2

Λ2
cγγ(Mh) ≃ −0.1, 0.01. (4.17)

5In particular the results of ref. [22] use µ ≪ Mρ which is associated with a flat spectral density used in

the calculation, as opposed to our matching at µ = Mρ.
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The second solution is preferred. The first solution is when cγγ switches the sign of the

standard model h→ γγ amplitude, which might lead to stability issues of the EW vacuum

as discussed in refs. [28, 29].

Further adopting the assumption that the new RGE contribution leads to the observed

enhancement in µγγ , we can identify the NP scale as a function of cWB, in this case

r(Mh)

r(Λ)

v2

Λ2
log

Λ

Mh
cWB(Λ) ≃ 1.3± 0.5, (4.18)

using the second solution in eq. (4.17). The quoted error in the above equation corresponds

to the 1σ range in the naive combined signal strength. It is clear from this equation that

the NP contribution, while enhanced by log Λ, still has the 1/Λ2 suppression characteristic

of higher dimension operators. Thus, one cannot make the γγ rate arbitrarily large by

taking Λ to infinity. The value µγγ ≃ 1.7 implies either a very low value for the NP scale

Λ, or a large value of cWB. If Λ ∼ 1TeV, eq. (4.18) gives cWB(Λ) ≃ 11 ± 4, compared to

the naive dimensional estimate that cWB ≃ 1. Alternatively, if cWB = ±1 then the h→ γγ

rate increases (decreases) by only 5% for Λ ∼ 1TeV.

It is possible that the current value of µγγ is biased due to an upward statistical

fluctuation (considering the discovery of a Higgs-like scalar as a prior). Eventually, a more

accurate measurement of the Higgs decay rate will determine how close µγγ is to unity.

The key question is how large an enhancement of the h → γγ rate is allowed by the

RGE contribution, given the current constraints on the S parameter from precision EW

measurements. The magnitude of this enhancement sets a benchmark for how accurately

µγγ needs to be measured to rule out NP models at the TeV scale. We examine this

question in the next section, using our determined anomalous dimension to improve the

constraints on this operator due to EW precision data.

4.2 Effect on EWPD and global constraints

The global constraints on the NP operators in eq. (2.2) are of increased interest if deviations

in any of the Higgs decays h→ γγ,WW,ZZ,Zγ becomes statistically significant. Carefully

accounting for the scale dependence of the operators, including the effects of mixing and

running, allows a more accurate treatment of global constraints. A more precise treatment

is particularly important when deviations, such as the current deviations in µγγ , are being

considered as possible hints of new physics. The RGE analysis of section 3 improves these

constraints.

In recent global studies [30, 31], the tree-level dependence on cWB is eliminated be-

cause it is strongly constrained by EWPD. The tree-level equations of motion are used to

eliminate OWB from the operator basis in ref. [30], while in ref. [31], the Wilson coefficient

of OWB is set to zero due to its strong constraint from EWPD. Running the operator basis

to other scales, the OWB operator is regenerated due to mixing if set to zero by hand or

eliminated using the equations of motion. The resulting Wilson coefficient will be loop

suppressed, but, because of the sensitivity of EWPD to OWB, this effect can still be phe-

nomenologically relevant. Part of the scale dependence of the operators is captured in the

standard equations based on refs. [4–6] used in these studies. Incorporating the running
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corrections using γWB includes the full effect of operator mixing for our basis, and allows

more accurate constraints to be drawn in future studies of precision Higgs phenomenology.

The RGE analysis includes contributions which were previously omitted, despite being of

the same order.

4.2.1 S parameter

The direct contribution of the H(6) operator basis to the EWPD parameters is known, see

refs. [4–6]. The S parameter is given by

S = −8π v2

Λ2

(
cWB(Λ)−

1

8π2
[
g22 cW (Λ) + g21 cB(Λ)

]
log

Λ

Mh

)
, (4.19)

where the log Λ/Mh terms come about due to the finite part of the one-loop contribution

of the OW ,OB operators to S. In contrast to eq. (4.19), note that eq. (3.8) gives

cWB(Mh) =
r(Mh)

r(Λ)
cWB(Λ)

[
1 +

g21 − 9 g22 − 8λ

32π2
log

Λ

Mh

]

− r(Mh)

r(Λ)

1

8π2
[
g22 cW (Λ) + g21 cB(Λ)

]
log

Λ

Mh
, (4.20)

which makes clear that the log Λ/Mh terms in eq. (4.19) arise from using the formula

S = −8π v2

Λ2
cWB(Mh) . (4.21)

However, the result eq. (4.19) only includes the second row of eq. (4.20). The correction

in the first row, as well as the top-Yukawa coupling contribution, are not included despite

being comparable in magnitude. The value of S consistent with operator renormaliza-

tion for our basis is given by using eq. (4.21) and RGE evolution, rather than eq. (4.19).

The answer using the approximate RGE integration of eq. (3.8) is to use eq. (4.21) and

eq. (4.20).6

A simple estimate of the impact of these improvements for phenomenological studies

is given by the ratio of S with and without the full one-loop mixing for our operator basis,

Swith

Swithout
∼ r(Mh)

r(Λ)

(
1 +

g21 − 9 g22 − 8λ

32π2
log

Λ

Mh

)
. (4.22)

Numerically, this ratio ranges from 0.93 at Λ = 500GeV to 0.86 at Λ = 2.5TeV, which is

a significant change in the precision electroweak constraint.

The limit on S gives a constraint on the space of coefficients cWB, cB, cW at the scale

Λ, which in turn constrains the value of µγγ . By incorporating the RGE effects we have

6Note that the effect of the higher dimensional operators in eq. (2.4) on STU are also included in the

analysis of refs. [4–6]. Until a complete one-loop renormalization of the entire operator basis is completed,

it is appropriate to use eq. (4.21) and eq. (4.20), and to add in the remaining contributions due to the other

operators on STU determined in refs. [4–6]. In particular corrections due to cH can be significant. The

coefficients of these other operators are however unknown until an underlying model is specified. In many

models, these additional operators are not as important as those in eq. (2.2), and our relations are sufficient

to study EWPD in these classes of models without the additional terms.
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Figure 3. Plots of cB(Λ)+ cW (Λ) = cγγ(Λ) and cB(Λ) vs. µγγ assuming cWB(Λ) = 0, as discussed

in the text. The first plot shows the allowed values of cB + cW as a function of µγγ on varying S

in its PDG 1σ range. The steeper curve is for Λ = 1TeV, and the flatter curve is for Λ = 0.75TeV.

The width of the allowed region is less than the thickness of the line. The second plot shows the

allowed region for cB on varying S is between the outer or inner pairs of lines, for Λ = 1TeV and

Λ = 0.75TeV, respectively.

calculated in this paper, limits on S also are directly related to limits on µγγ due to

EWPD. The more complete relationship between EWPD and µγγ is given in appendix C.

The numerical version of eq. (C.2) is

µγγ = 1− 0.02S log
Λ

Mh
+ 2.7

(
1TeV

Λ

)2{
1 + 0.0035 log

Λ

Mh

}
cγγ(Λ)

≃ 1− 0.02S log
Λ

Mh
+ 0.02

(
1TeV

Λ

)2 (
16π2cγγ(Λ)

)
(4.23)

where the second line emphasizes that 16π2cγγ(Λ) is expected to be order unity, because

cγγ(Λ) contains a one-loop suppression factor. Since log Λ/Mh is positive, enhancements of

µγγ are associated with negative values of S. A significant enhancement of µγγ is associated

with a large negative S parameter. A value of µγγ = 1.73 implies a large negative value

of S ∼ −10 (when 16π2cγγ(Λ) is set to unity), which is strongly excluded experimentally.

The Particle Data Group [32] quotes a value of S = 0.00+0.11
−0.10 as a result of a fit to S,

T , and U . Taking into account correlations, this value leads to S ≤ 0.17 at 95% C.L for

positive values of S — as expected in many models.

We can study the constraint on µγγ in a different way. Assume that to avoid the S

parameter constraint, one constructs a theory where cWB(Λ) = 0. Then eqs. (4.20), (4.21)

for S determine one linear combination of cW (Λ) and cB(Λ), and eq. (4.23) for µγγ de-

termines another linear combination, cγγ(Λ) in eq. (4.2). We can thus determine both cB
and cW in terms of S and µγγ . Plots of cB + cW and cB versus µγγ are shown in figure 3.

S is varied in the the PDG 1σ range −0.1 ≤ S ≤ 0.11. The signal strength µγγ strongly

constrains the linear combination cB(Λ)+ cW (Λ) = cγγ(Λ), as can be seen from eq. (4.23).

In the plot, we have used the full quadratic expression in eq. (C.1). Coefficients cB(Λ) and

cW (Λ) are individually not very constrained from the S parameter, and the allowed region

for cB is the wide band shown in the second plot of figure 3.
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A similar analysis for µγZ gives the numerical version of eq. (C.4)

µγZ = 1− 0.014S log
Λ

Mh

+ 1.56

(
1TeV

Λ

)2{[
1 + 0.0076 log

Λ

Mh

]
cγZ(Λ) + 0.012 log

Λ

Mh
cγγ(Λ)

}

≃ 1−0.014S log
Λ

Mh
+0.01

(
1TeV

Λ

)2[(
16π2cγZ(Λ)

)
+0.012 log

Λ

Mh

(
16π2cγγ(Λ)

)]
.

(4.24)

5 Conclusions

We have renormalized a subset of the dimension-six operators that encode the impact of

NP on the Higgs sector of the SM. Using these results, we have obtained the RGE results

for the effect of NP on the Higgs decay widths Γ(h → γγ) and Γ(h → Zγ) and on the S

parameter. We have demonstrated that the leading effect of NP on these decays has not

always been properly accounted for in previous studies. In addition, we have shown that

the relation between EWPD and the running coefficients of the dimension-six operators

contributing to these Higgs decays has not been consistently formulated previously.

The operator mixing mechanism we have identified makes clear that large excesses

in µγγ are difficult to reconcile with EWPD constraints, at least for the operators which

we have considered. Nevertheless, the possibility remains that there are additional RGE

effects which we have not computed due to other dimension-six operators (that we have

neglected) which arise from tree-level matching of the new physics and which also mix with

cγ γ at one loop. Such a scenario could possibly lead to a µγ γ enhancement due to the RGE

while not being directly constrained by EWPD. This mechanism remains a possibility, and

it is worthy of future study.

It also is worth emphasizing the generality of the observations of this paper, which

indicates the necessity of a reassessment of the standard expectations for the effects of NP

on many aspects of one-loop SM Higgs phenomenology. Our results show that a systematic

study of renormalization group running of the dimension-six operator basis is of crucial

importance for the future precision (SM+NP) Higgs physics program.

Finally, our results also illustrate an important point regarding the global analysis of

Higgs signal strengths. An analysis of signal strengths that is framed in terms of a sin-

gle effective Wilson coefficient for each effective Higgs decay is insufficient to characterize

underlying NP models in general. We have shown that the dominant effects can be misun-

derstood if the scale dependence of the operators is neglected. Conversely, the formalism

of a systematic EFT treatment allows one to incorporate the RGE effects that have been

shown to have some importance in Higgs phenomenology.
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A β-functions

The one-loop β-functions for the standard model couplings are

µ
d

dµ
g1 =

(
1

6
+

20

9
ng

)
g31

16π2
,

µ
d

dµ
g2 = −

(
43

6
− 4

3
ng

)
g32

16π2
,

µ
d

dµ
g3 = −

(
11− 4

3
ng

)
g33

16π2
,

µ
d

dµ
λ =

1

16π2

[
24λ2 − λ

(
3g21 + 9g22 − 12y2t

)
+

3

8
g41 +

3

4
g21g

2
2 +

9

8
g42 − 6y4t

]
,

µ
d

dµ
yt =

1

16π2

[
9

2
y2t −

17

12
g21 −

9

4
g22 − 8g23

]
yt, (A.1)

in the approximation where only the top quark Yukawa coupling is retained. Here ng = 3

is the number of generations. The full one-loop and two-loop results can be found in

refs. [33–36]. The couplings g1 and λ of ref. [36] (denoted by a prime) are related to the

ones used in this paper by

g′1 =

√
5

3
g1, λ′ = 2λ . (A.2)

The conventions for g2, g3, yt, v are the same as used here. From eq. (A.1), one finds that

the running of the weak mixing angle tan θW = g1/g2 is

µ
d

dµ
tan θW =

b
(2)
0 g22 − b

(1)
0 g21

16π2
tan θW , (A.3)

where b
(1)
0 = −1/6 − 20ng/9 and b

(2)
0 = 43/6 − 4ng/3 are the coefficients of the one-loop

β-functions for g1 and g2, respectively.

We have used the known result for the wavefunction renormalization of the scalar field:

ZH = 1 +
(3− ξ) (g21 + 3 g22)

64π2 ǫ
− Y

16π2 ǫ
, (A.4)

where ξ is the gauge parameter of Rξ gauge. The gauge dependence of eq. (A.4) cancels

the gauge dependence of the diagrams in figure 1.

B Feynman parameter integrals

The standard model amplitudes depend on the integration over the Feynman parameter

integrals defined in ref. [37]

Iγ = IγW

(
M2
h

4M2
W

, 0

)
+
∑

i

NiQ
2
i

(
1− αs

π

)
If

(
M2
h

4m2
i

, 0

)
, (B.1)
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where

If (a, b) =

∫ 1

0
dx

∫ 1−x

0
dy

1− 4xy

1− 4(a− b)xy − 4by(1− y)− i0+ , (B.2)

IγW (a, b) =

∫ 1

0
dx

∫ 1−x

0
dy

−4 + 6xy + 4axy

1− 4(a− b)xy − 4by(1− y)− i0+ . (B.3)

In eq. (B.1), the sum on i is over all fermions, and Ni is the number of colors, with Ni = 3

for quarks and Ni = 1 for leptons. Qi is the fermion charge. NLO QCD corrections have

been included. Similarly, the decay h→ Z γ depends on the integral

IZ = IZW

(
M2
h

4M2
W

,
M2
Z

4M2
W

)
+
∑

i

NiQigi

(
1− αs

π

)
If

(
M2
h

4m2
i

,
M2
Z

4m2
i

)
, (B.4)

where

IZW (a, b) =
1

tan θW

∫ 1

0
dx

∫ 1−x

0
dy

[
5− tan2 θW + 2a

(
1− tan2 θW

)]
xy −

(
3− tan2 θW

)

1− 4(a− b)xy − 4by(1− y)− i0+ ,

(B.5)

and gi = (T3i − 2 sin2 θWQi)/ sin 2θW .

The top quark is the dominant fermion contribution for both amplitudes and has

the opposite sign from the gauge boson contribution. One finds Iγ ≈ −1.64 and IZ ≈
−2.84 for Mh = 125GeV. The numerical values were computed using the PDG 2012 [32]

central values for the standard model parameters, αs(MZ) = 0.1184, α−1
em(MZ) = 127.944,

sin2 θW = 0.23116, MZ = 91.1876GeV, MW = 80.385GeV.

C Relation between h→ γγ, h→ γZ and S

Combining eq. (4.20) and eq. (4.21) for the S parameters with eq. (4.1) and eq. (4.5a), and

keeping terms only to first order in log Λ/Mh gives

µγγ ≃
∣∣∣∣∣1 +

(3 g22 − 4λ)

16π Iγ
S log

Λ

Mh

− r(Mh)

r(Λ)

4π2v2

Λ2Iγ

{
1 +

3

32π2

(
g21 + 3g22 − 8λ

)
log

Λ

Mh

}
cγγ(Λ)

∣∣∣∣∣

2

+

∣∣∣∣
r(Mh)

r(Λ)

4π2v2

Λ2Iγ

∣∣∣∣
2
∣∣∣∣∣

[
1 +

3

32π2

(
g21 + 3g22 − 8λ

)
log

Λ

Mh

]
c̃γγ(Λ) +

1

8π2

(
3g22 − 4λ

)
log

Λ

Mh

c̃WB(Λ)

∣∣∣∣∣

2

.

(C.1)

When the ci terms are small compared with the standard model contribution, one can

expand this expression retaining only terms linear in ci to obtain

µγγ ≃ 1 +
(3 g22 − 4λ)

8π
Re

(
1

Iγ

)
S log

Λ

Mh

− r(Mh)

r(Λ)

8π2v2

Λ2
Re

(
1

Iγ

){
1 +

3

32π2
(
g21 + 3g22 − 8λ

)
log

Λ

Mh

}
cγγ(Λ), (C.2)

where terms proportional to the c̃i have been neglected. A similar calculation for µγZ gives
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µγZ ≃
∣∣∣∣∣1 +

(g1g2 + 4g22 cot 2θW − 4λ cot 2θW )

16π IZ
S log

Λ

Mh

−r(Mh)

r(Λ)

4π2v2

Λ2IZ

{[
1+

1

32π2

[(
1−2b(1)0 cos 2θW

)
g21+

(
7+2b

(2)
0 cos 2θW

)
g22−24λ

]
log

Λ

Mh

]
cγZ(Λ)

− sin 2θW
16π2

(
b
(1)
0 g21 − b

(2)
0 g22

)
log

Λ

Mh

cγγ(Λ)

}∣∣∣∣∣

2

+

∣∣∣∣
r(Mh)

r(Λ)

4π2v2

Λ2IZ

∣∣∣∣
2
∣∣∣∣∣

[
1+

1

32π2

[(
1−2b(1)0 cos 2θW

)
g21+

(
7+2b

(2)
0 cos 2θW

)
g22−24λ

]
log

Λ

Mh

]
c̃γZ(Λ)

+
1

8π2

(
g1g2 + 4g22 cot 2θW − 4λ cot 2θW

)
log

Λ

Mh

c̃WB(Λ)

− sin 2θW
16π2

(
b
(1)
0 g21 − b

(2)
0 g22

)
log

Λ

Mh

c̃γγ(Λ)

∣∣∣∣∣

2

. (C.3)

To linear order in ci, neglecting c̃i, gives

µγZ ≃ 1 +
(g1g2 + 4g22 cot 2θW − 4λ cot 2θW )

8π
Re

(
1

IZ

)
S log

Λ

Mh

− r(Mh)

r(Λ)

8π2v2

Λ2
Re

(
1

IZ

)
×

{[
1 +

1

32π2

[(
1− 2b

(1)
0 cos 2θW

)
g21 +

(
7 + 2b

(2)
0 cos 2θW

)
g22 − 24λ

]
log

Λ

Mh

]
cγZ(Λ)

− sin 2θW
16π2

(
b
(1)
0 g21 − b

(2)
0 g22

)
log

Λ

Mh
cγγ(Λ)

}
. (C.4)
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