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1 Introduction

Theories of three-dimensional massive higher-derivative gravity [1–3] have received renewed

attention recently [4–8]. For certain ranges of the parameters, these theories have a per-

turbative spectrum consisting of massive gravitons that are propagated unitarily, making

them attractive as toy models for quantum gravity. Many of these theories are not unitary

at the non-perturbative level, typically due to the appearance of black holes with negative

energy. A notable exception is chiral gravity [4], which at least at the classical level admits

a truncation to a unitary subspace [8]. That unitary truncation relies on a split between

left and right moving degrees of freedom that is unique to AdS3.

When considered around an AdS background, massive gravities can lead to an interest-

ing spin-off. For certain so-called ‘critical’ values of the parameters, the massive gravitons

disappear from the perturbative spectrum. Such a ‘critical’ gravity theory instead propa-

gates new solutions that were called logarithmic modes. These are characterized by a log-

arithmic fall-off behavior (in suitable coordinates) towards the AdS boundary, in contrast

to the usual massive gravitons that show a power-like fall-off behavior. Critical gravities

are interesting in the light of the AdS/CFT correspondence [9–11]. Indeed, they were con-

jectured to be dual to logarithmic conformal field theories (LCFTs) [6, 12–14]. Although

typically non-unitary, LCFTs have found applications in condensed matter physics, where

they are used in the study of e.g. critical phenomena, turbulence and percolation. As such,

critical gravities might represent gravitational duals of certain strongly coupled condensed

matter systems.
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One could also try to make sense of critical gravities as toy models for quantum grav-

ity. Then, however, one has to deal with the non-unitarity of these theories. Note that

the logarithmic modes, that are responsible for the violation of unitarity, obey different

boundary conditions than the original massive gravitons. It has been proposed that by

imposing strict Brown-Henneaux boundary conditions one could get rid of the problem-

atic logarithmic modes and obtain a theory that is possibly unitary. This approach has

been taken recently in two particular three-dimensional higher-derivative gravity models in

AdS: Topologically Massive Gravity (TMG) and New Massive Gravity (NMG). Imposing

Brown-Henneaux boundary conditions on critical TMG leads to so-called chiral gravity,

that is dual to a two-dimensional chiral CFT [4]. In spite of an apparent non-unitarity at

the linear level [6, 7] the theory admits a chiral, unitary subsector at the classical level [8].

TMG however cannot be generalized to higher dimensions; the chiral splitting into right

and left movers is unique to a two-dimensional boundary.

New Massive Gravity instead can also be formulated in dimensions higher than three.

At the critical point it becomes a higher-dimensional critical gravity [15–19]. Imposing

strict Brown-Henneaux boundary conditions leads to a theory that is trivial in the following

sense: the full theory describes a massless graviton with zero on-shell energy and its black

holes have zero mass and entropy [15, 20]. Modding out these states leaves the vacuum as

the only physical state [19].1 In [20] it was argued that this triviality of four-dimensional

critical gravity is related to a recent proposal by Maldacena [22] that four-dimensional

conformal gravity, with specific boundary conditions, is equivalent to Einstein gravity with

a cosmological constant.

The aim of imposing specific boundary conditions is to obtain a consistent unitary

truncation of the full non-unitary critical theory. On the dual field theory side this means

that there should exist a consistent truncation of the LCFT that leads to an ordinary

CFT. LCFTs are characterized by the fact that there are fields with degenerate scaling

dimensions on which the Hamiltonian acts non-diagonally [23–25]. These degenerate fields

form so-called Jordan cells. One of the fields in a Jordan cell corresponds to a zero norm

state, while the other fields are referred to as logarithmic partners. The rank of the LCFT

then refers to the dimensionality of the Jordan cell. The LCFT dual to critical gravities

have rank 2 and operators thus have one logarithmic partner. The truncation mentioned

above then corresponds to truncating these logarithmic partners.

In this paper we study holographic scalar LCFTs of rank r > 2. The bulk side is

made of a scalar field toy model in a fixed AdS background with higher derivatives up to

order 2r. By introducing r − 1 auxiliary scalar fields, the model can be rewritten as a

two-derivative theory. The critical point then corresponds to the point in parameter space

where the masses of the r scalar fields degenerate. One can show that r − 1 higher-order

logarithmic modes appear and that these correspond to logarithmic partners of the Klein

Gordon scalar mode. For rank r = 2 the model reduces to the one studied in [26]. That

case resembles critical NMG in some respects. The theory describes one usual scalar field

mode and an associated logarithmic mode, just as in critical NMG. It has been shown that

1For a discussion of truncations away from the critical point see [20, 21].
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the dual field theory is a LCFT [27, 28]. For a special value of the scaling dimension, these

models describe singletons in AdS [29].

In this work we show that at the quadratic level, i.e. without introducing interactions,

the dual field theory of an odd-rank LCFT allows for a truncation to a unitary CFT. This

truncation is different from the one in the rank 2 case mentioned above in the sense that it

keeps modes that correspond to the null state plus half of the logarithmic modes, whereas

in the usual (rank 2) critical gravity proposals the single logarithmic mode is truncated. In

section 2 we calculate the 2-point functions of the dual LCFT via holographic methods and

show that they indeed agree with the usual form of a rank r LCFT. Next, we show that

applying the new truncation leads to the 2-point functions of an ordinary CFT. We also

calculate the LCFT scalar product and show that it is positive on the truncated subspace,

thus the truncated theory is unitary. In section 3, we make the discussion of section 2

explicit for the rank 3 case. Our conclusions, in particular the implications of our results

for critical gravity, can be found in section 4.

2 A scalar field dual of a rank r LCFT

In this section we propose a scalar field model dual to a rank r LCFT. The model consists

of r coupled scalar fields with degenerate masses. Using holographic methods, we calculate

two-point correlation functions on the boundary and we show that these agree with the

rank r LCFT two-point correlators. We proceed to calculate the scalar product in the bulk

and we point out the existence of a nontrivial subspace for odd rank with positive definite

inner product. The corresponding subspace of the higher-rank LCFT is unitary.

The model under consideration is given by the following action:

S = −1

2

∫

dd+1x
√
g

r
∑

i,j=1

(Aij∂µφi∂
µφj +Bijφiφj) , (2.1)

with the r-dimensional matrices given by:

Aij =















0 · · · 0 1
... 1 0

0 . .
. ...

1 0 · · · 0















, Bij =



















0 . . . 0 1 m2

... 1 m2 0

0 . .
.
. .
. ...

1 m2

m2 0 · · · 0



















. (2.2)

The equations of motion take the form:

(�−m2)φ1 = 0 , (2.3)

(�−m2)φi = φi−1 , for i = 2, . . . , r , (2.4)

which can be formulated in terms of a single scalar field obeying:

(�−m2)rφr = 0 . (2.5)
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The fields φl with l = 1, . . . , r− 1 can be seen as auxiliary fields used to lower the number

of derivatives in the action.

The equations of motion and the on-shell action are invariant under a shift of the scalar

fields by:

φi → φi +
i−1
∑

k=1

λkφi−k (2.6)

for general λk with 1 ≤ k ≤ i− 1. This symmetry is a bulk version of the well-known shift

symmetry in logarithmic CFTs.

We will consider this model on a fixed AdSd+1 background in the Euclidean Poincaré

patch:

ds2 =
1

z2
(

dz2 + dxadx
a
)

, (2.7)

with a = 1, . . . , d and the AdS length is set to one. We assume that the scalar field

configuration decouples from the metric equations of motions at least up to the order of

coefficients that contribute to any divergent terms in the bulk action. This assumption

justifies ignoring the back reaction of the scalars on the metric.

2.1 From r degenerate masses to a rank r LCFT

We will now calculate the two-point correlation functions on the boundary and show that

they form a rank r LCFT. The scalar fields are written in terms of bulk-to-boundary

propagators which relate the bulk solution to the pre-specified boundary fields φi(0):

φ1(z, x) =

∫

ddx′
(

φ1(0)(x
′)GKG(z, x; 0, x′)

)

, (2.8)

φi(z, x) =

∫

ddx′



φi(0)(x
′)GKG(z, x; 0, x′) +

i−1
∑

j=1

φj(0)(x
′)Glogi−j

(z, x; 0, x′)



 , (2.9)

for i = 2, . . . , r. The functions GKG, Glogk denote the bulk-to-boundary propagators of the

Klein-Gordon mode and the logk mode respectively. They satisfy the relation:

(�−m2)GKG = 0 , (2.10)

(�−m2)Glog = GKG , (2.11)

(�−m2)Glogk = Glogk−1

, for k = 2, . . . , r − 1 , (2.12)

The bulk-to-boundary propagator GKG can be obtained from solving the homogeneous

Klein-Gordon equation in an AdSd+1 background. The result is known from [11] and

given by:

GKG(z, x; 0, x′) =
z∆

(z2 + |x− x′|2)∆ , (2.13)

where ∆, the conformal dimension of the dual operator, is determined by the scalar field

mass as the larger root of the equation:

∆(∆− d) = m2 . (2.14)
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To find Glog(z, x; 0, x′) we use the fact that the d’Alembertian does not depend on m:

[

d

dm2
, (�−m2)

]

= −1 . (2.15)

Using this, together with (2.10), we can write GKG as:

GKG = −
[

d

dm2
, (�−m2)

]

GKG = (�−m2)
d

dm2
GKG . (2.16)

Comparing this with (2.11) gives:

Glog(z, x; 0, x′) =
d

dm2
GKG =

1

2∆− d
log

(

z

(z2 + |x− x′|2)

)

z∆

(z2 + |x− x′|2)∆ . (2.17)

The bulk-to-boundary propagator of the higher-order log modes can be obtained by suc-

cessive application of differentiation with respect to m2:

Glogi(z, x; 0, x′) =
1

2i−1

di

(dm2)i
GKG (2.18)

=
1

2i−1

1

(2∆− d)i
logi

(

z

(z2 + |x− x′|2)

)

z∆

(z2 + |x− x′|2)∆ (2.19)

+
i−1
∑

j=1

αj log
j

(

z

(z2 + |x− x′|2)

)

z∆

(z2 + |x− x′|2)∆ ,

where αj are ∆ dependent coefficients. They can be set to zero by adding to Glogi(z, x; 0, x′)

a linear combination of the bulk to boundary propagators Glogj(z, x; 0, x′), j < i.

From the explicit solutions we can calculate one- and two-point correlation functions

using AdS/CFT methods. The bulk action can be written as a surface integral on-shell by

integration by parts. At a regulated surface z = ǫ, the on-shell boundary action is:

S = lim
ǫ→0

−1

2

∫

ddx
√
γ

r
∑

i,j=1

Aijφi(~n · ~∇)φj , (2.20)

where Aij is given in (2.2). The normal derivative is (~n · ~∇) = z∂z and
√
γ = z−d, with

γ the induced metric on the boundary. This action still contains polynomial and logarith-

mic divergences in ǫ. These can be eliminated by means of holographic renormalization,

as outlined in [30]. Holographic renormalization affects the normalization of the 2-point

functions, but it does not change their structure. Since we are primarily interested in the

overall structure, we ignore the divergent terms in the action. The proper normalization

of the correlation functions may also be obtained using the renormalized result for rank 2,

obtained in [26] and a set of Ward-type identities relating these to the rank r correlation

functions. We refer to the appendix for the details of the normalization process.
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In terms of the sources for the boundary operators, i.e. the boundary fields, the on-shell

action (2.20) can be written as:

S =

∫

ddxddx′

[

r
∑

i=1

1

2
φi(0)(x)φr+1−i(0)(x

′)
∆

|x− x′|2∆ (2.21)

+
r−1
∑

k=1

r−k
∑

l=1

φl(0)(x)φr−k−l+1(0)(x
′)

ak
(2∆− d)k

∆

|x− x′|2∆×

×
(

logk
(

ǫ

|x− x′|2
)

+
bk
∆

logk−1

(

ǫ

|x− x′|2
))

]

,

where ak and bk are constants. Following the AdS/CFT logic, we couple the boundary

values of the fields to the dual operators as:

∫

ddx

(

φr(0)OKG +
r−1
∑

i=1

cr−iφi(0)Ologr−i

)

, (2.22)

where ck are constants which may depend on ∆. Then the one-point functions can be

determined by functional differentiation with respect to the boundary value of the scalar

fields:

δS

δφr(0)(x)
= 〈OKG(x)〉 =

∫

ddx′φ1(0)(x
′)

∆

|x− x′|2∆ , (2.23)

δS

δφr−i(0)(x)
= ci〈Ologi(x)〉 =

∫

ddx′

[

φi+1(0)(x
′)

∆

|x− x′|2∆ (2.24)

+
i
∑

k=1

φi−k+1(0)(x
′)

2ak
(2∆− d)k

∆

|x− x′|2∆
(

logk
(

ǫ

|x− x′|2
)

+
bk
∆

logk−1

(

ǫ

|x− x′|2
))

]

,

where now i = 1, . . . , r − 1. After performing the shift symmetry (2.6), the one-point

functions 〈Ologi(x)〉 can be brought into the following form:

ci〈Ologi(x)〉 =
∫

ddx′

[

φi+1(0)(x
′)

∆

|x− x′|2∆ (2.25)

+
i
∑

k=1

φi+1−k(0)(x
′)

∆

|x− x′|2∆
k
∑

l=1

(

Λk−l log
l

(

ǫ

|x− x′|2
)

+ Λk

)

]

,

where Λi are constants related to the arbitrary shift parameters λi. Finally, upon further

differentiation with respect to the sources, we find that the two-point functions are, up to

a normalization factor:

〈OKG(x)OKG(x′)〉 = 〈OKG(x)Ologn(x′)〉 = 0, for n = 1, . . . , r − 2 , (2.26)

cr−1〈OKG(x)Ologr−1

(x′)〉 ∼ ∆

|x− x′|2∆ , (2.27)

cicj〈Ologi(x)Ologj(x′)〉 ∼ ∆

|x− x′|2∆

[

δm0 +

m
∑

l=1

(

Λm−l log
l

(

ǫ

|x− x′|2
)

+ Λm

)

]

, (2.28)
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withm = i+j−r+1 and Λm = 0 form ≤ 0. To determine the correct normalization in these

two-point correlation functions note that it is sufficient only consider the normalization of

the leading order logarithmic term in (2.28). The freedom of redefining the scalar fields

by the shift symmetry (2.6) can be expressed at the field theory side as the following

redefinition of the logarithmic partner operators known in LCFT [25]:

Ologi → Ologi +
i
∑

j=1

λjOlogi−j

, (2.29)

where we take Olog0 = OKG. That this is indeed an allowed redefinition can be seen by

performing this shift of the operators in the coupling (2.22), together with the shift of the

fields (2.6). At the level of the two-point correlation functions this invariance allows us to

shift the subleading logarithmic terms to our convenience.

The correct normalization of the two-point functions is derived in the appendix. The

result is:

〈Ologi(x)Ologj (x′)〉 = (2∆− d)r
(−2)m

m!

logm |x− x′|
|x− x′|2∆ + subleading log-terms , (2.30)

with m = i+ j − r + 1 and it is valid for m ≥ 0. Correlation functions with m < 0 are all

null.

2.2 Comparison with known results

The two-point correlation functions of a two dimensional rank r LCFT are known from [24].

They are given by

〈Ologi(x)Ologj(x′)〉 = 1

|x− x′|2∆
i+j
∑

l=0

Di+j−l
(−2)l

l!
logl(|x− x′|) , (2.31)

where the Ds are constants that satisfy Dk = 0 for k < r−1. This implies that the leading

order log-term in any two-point function has the power i+ j− r+1, which agrees with the

result given in (2.30). The constants Dk can now be related to the scalar field mass m2 by

comparing (2.31) to (2.30). We find that:

Dr−1 = (2∆− d)r = 2r
(

1 +m2
)

r
2 . (2.32)

In the last equality we have used the fact that this only holds in two dimensions, since (2.31)

is a two dimensional result. This expression is valid for all r ≥ 2, so we have found the

holographic expression for the new anomaly in the rank r LCFT model.

Note that for odd rank r, requiring the new anomaly to be real is analogous to requiring

that the bulk scalar field satisfies the Breitenlohner-Freedman bound m2 ≥ −1 in two

dimensions with the AdS length set to one. In fact, when the BF-bound is saturated for

all rank r the couplings of the logarithmic partner operators diverge and the new anomaly

becomes zero. This was already remarked in the case of r = 2 in [27].

– 7 –
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2.3 A non-negative scalar product

The AdS/CFT duality, together with the state/operator duality [11], implies that the

normalizable modes of the bulk theory behaving asymptotically as φi+1 ∼ z∆ logi(z) are in

one-to-one correspondence with the logarithmic CFT states: Ologi . Therefore, their scalar

product must have the same property as the two-point function in eq. (2.31); namely, it

must be non vanishing whenever i + j − r + 1 ≥ 0. It is easy to check this property by

using the results of ref. [19], where a simple method to derive the scalar product of non-

diagonalizable quadratic theories was developed. In our case the method gives a particularly

simple result. Call φ+(φ−) the positive (negative) frequency part of the scalar field φ:

φ = φ++φ−; then the scalar product between two normalizable modes φ+, ψ+ is given by:

〈φ+|ψ+〉 =
∫

ddx
√
gg00

r
∑

i,j=1

(

Aijφ
+∗

i

↔

∂t ψ
+
j

)

, (2.33)

where x denotes the AdS spatial coordinates. In the maximally degenerate case, the matrix

Aij is given in equation (2.2). It is nonzero iff i+ j = r + 1. Now, the bulk mode dual to

Ologi is the normalizable field with asymptotic behavior z∆ logi(z). Its nonzero components

are the φl with l ≤ i+1. Likewise, the bulk dual of Ologj has nonzero components ψl with

l ≤ j + 1. So, the scalar product is nonzero only if i + 1 + j + 1 ≥ r + 1. This is the

same condition that holds for the Dk coefficients in the two-point correlator of a rank-r

logarithmic CFT, see eq. (2.31).

We now note that when r is odd, one can define a positive-norm subspace even in

the maximally degenerate theory. It is the subspace defined by φi = 0 for i < n, where

r = 2n− 1, modulo the equivalence relation φi ∼ φi +
∑n−1

l=1 λlφl. This is possible because

in this subspace the scalar product is non-negative. In particular all states except φn are

null vectors, as is evident from the scalar product formula:

〈φ+|ψ+〉 =
∫

ddx
√
gg00φ+∗

n

↔

∂t ψ
+
n . (2.34)

When ∆ is in the range d/2 + 1 > ∆ > d/2 − 1, an alternative quantization is possible

where the normalizable states behave as ∼ zd−∆ logi(z) [31]. The alternative quantization

gives similar results to the standard one. The case ∆ = d/2−1 requires a separate analysis,

which we shall discuss in the subsection below.

From the perspective of the AdS/CFT correspondence, the truncation φi = 0 for i < n

amounts to turning off the sources φi(0) for i < n in the boundary field theory. Such

a truncation can be achieved by imposing that the near boundary behavior of the fields

involves powers of log z of at most O(z∆ logn−1 z). Effectively we are throwing away half

of the logarithmic partner modes, while keeping the half which involves lower powers of

log z. The boundary action (2.21) reduces to:

S[φn(0)] = ∆

∫

ddxddx′
(

1

2
φn(0)(x)φn(0)(x

′)
1

|x− x′|2∆
)

. (2.35)

All logarithmic divergent terms have vanished. The boundary correlation functions are

now free of logarithmic singularities and they are either proportional to the ordinary CFT

– 8 –
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two-point function or they vanish. The final result, including the correct normalization is:

〈Ologn−1

(x)Ologn−1

(x′)〉 = (2∆− d)r

|x− x′|2∆ , (2.36)

while all other correlators are zero.

When r is even (r = 2m), a similar truncation would not work. If we set to zero all φi
for i ≤ m, the bulk scalar product (2.33) vanishes. Equivalently, setting the sources φi(0)
to zero for i ≤ m would render the boundary action (2.21) trivial and all boundary two

point correlators vanish. In the case of rank two, where our model is a spin-0 toy model

for critical gravity, this truncation is in essence the one discussed in [20]. Truncating the

logarithmic modes in critical gravity by imposing the appropriate boundary conditions will

lead to a theory where the surviving massless modes have zero energy and zero norm.

2.3.1 A special case: the singleton

When ∆ = d/2 − 1 and r = 2, the KG mode φ ∼ zd/2−1 is a singleton. When two modes

are identified modulo modes with asymptotic behavior zd/2+1, the KG theory describes

only boundary excitations. A “dipole” model for singletons was developed in [29]. Setting

the AdS radius to L = 1, the generalization to d dimensions of the action of ref. [29] is:

S =

∫

dd+1x
√
g

(

φ1[�+ (d2/4− 1)]φ2 −
1

2
φ21

)

+ SB. (2.37)

Except for the boundary term SB this is a r = 2 degenerate scalar with massm2 = −d2/4+
1, which does not allow for a unitary truncation. The boundary term is where the difference

lies. In the Poincaré coordinates of eq. (2.7) the metric reads ds2 = z−2(dz2 + ηµνdx
µdxν)

and the boundary term can be written as:

SB = lim
z→0

∫

ddxz2−dηµν∂µφ2∂νφ2. (2.38)

This boundary term is compatible with the asymptotic behavior:

φ1 ∼ 2A(x)zd/2+1, (2.39)

φ2 ∼ A(x)zd/2+1 log(z) +B(x)zd/2+1 + zd/2−1ϕ(x), with ∂µ∂
µϕ(x) = 0,

where A(x), B(x) are arbitrary functions of the boundary coordinates. The boundary

term allows for a singleton mode, but this mode must be a d-dimensional free massless

scalar. This is one way to see that the singleton, which saturates the unitarity bound for

a d-dimensional CFT, must be a free field.

Besides making room for a singleton, the boundary action SB also changes the scalar

product. An application of the formulas of [19] to the action (2.37) with boundary

term (2.38) and boundary conditions (2.39) gives:

〈φ+|φ′+〉 =
∫

ddx
√
gg00(φ+∗

1

↔

∂t φ
′+
2 + 1 ↔ 2) +

∫

dd−1xϕ+∗(x)
↔

∂t ϕ
′+(x). (2.40)

Roman letters denote the spatial coordinates of the d-dimensional boundary. With this

definition of the scalar product, the subspace φ1 = 0, quotiented by the identification

φ2 ∼ φ′2 iff ϕ = ϕ′ has a positive scalar product.
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3 Example: the rank 3 AdS/LCFT scalar model

To illustrate some of the points made in the previous section, it is instructive to take a

closer look at the specific case of r = 3. The bulk field configuration can be written as

three coupled scalar fields with degenerate masses or as a single scalar field obeying the

sixth-order differential equation

(�−m2)3φ = 0 . (3.1)

For two normalizable rank 3 fields φ and ψ, the inner product (2.33) becomes:

〈φ+|ψ+〉 =
∫

ddx
√
gg00

(

(�−m2)2ψ+∗∂0φ
+ + (�−m2)ψ+∗∂0(�−m2)φ+ (3.2)

+ ψ+∗∂0(�−m2)2φ+
)

.

If we decompose the φ into φ = φKG + φlog + φlog
2

it can be seen that, among others, the

following scalar products hold:

〈φ+KG|φ+KG〉 = 0 , (3.3)

〈φ+KG|φ+ log2〉 > 0 , 〈φ+ log2 |φ+ log2〉 > 0 . (3.4)

In analogy to [19], we can consider a state |φ+〉 = |φ+ log2〉+ α|φ+KG〉 such that the norm

〈φ+|φ+〉 = 〈φ+ log2 |φ+ log2〉+ 2Re(α〈φ+KG|φ+ log2〉) , (3.5)

can be tuned to be negative. Thus we must conclude that the theory is non-unitary.

There is, however, a non-trivial subspace with positive norm. It is constrained by

φlog
2

= 0; i.e. it contains only modes that satisfy the dipole equation (�−m2)2φ′ = 0. The

scalar product on this subspace reduces to:

〈φ+|ψ+〉 =
∫

ddx
√
gg00(�−m2)ψ′+∗∂0(�−m2)φ′+ , (3.6)

and the only nonzero inner product between the two modes is:

〈φ+ log|φ+ log〉 > 0 . (3.7)

Thus the norm of the rank 3 theory is positive definite on the rank 2 subspace, which still

contains the Klein Gordon and the log modes. This is to be contrasted with the pure rank

2 case, where the same modes can lead to a negative scalar product. In this case (2.33)

gives non-zero values for 〈φ+ log|φ+ log〉 and 〈φ+KG|φ+ log〉. Therefore, one can construct a

state |φ+〉 = |φ+ log〉+ α|φ+KG〉 such that:

〈φ+|φ+〉 = 〈φ+ log|φ+ log〉+ 2Re(α〈φ+KG|φ+ log〉) , (3.8)

can be negative. In the truncated rank 3 case 〈φ+KG|φ+ log〉 = 0, and no negative norm

states can be created.
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Note that this subspace still contains the Klein Gordon null states that allow for a

shift symmetry:

φ′ → φ′ + χ , (�−m2)χ = 0 . (3.9)

From the holographic point of view the truncation φlog
2

= 0 amounts to setting the source

φ1(0)(x) = 0. The remaining scalar fields reduce to:

φ2(z, x) =

∫

ddx′φ2(0)(x
′)GKG(z, x; 0, x′) , (3.10)

φ3(z, x) =

∫

ddx′
(

φ3(0)(x
′)GKG(z, x; 0, x′) + φ2(0)(x

′)Glog(z, x; 0, x′)
)

, (3.11)

where GKG and Glog are given in eqs. (2.13) and (2.17). These are the modes of the rank

2 theory embedded in a rank 3 theory whose action is given by eq. (2.1) for r = 3. This

embedding makes a non-negative scalar product possible, even though the pure r = 2

theory does not have a positive definite scalar product. The boundary action written in

terms of the field theory sources (2.21) simplifies to:

S[φi(0)] = ∆

∫

ddxddx′
(

1

2
φ2(0)(x)φ2(0)(x

′)
1

|x− x′|2∆
)

. (3.12)

The correlation functions of the truncated theory are either null, or proportional to the

unitary CFT correlation function:

〈OKG(x)OKG(x′)〉 = 〈OKG(x)Olog(x′)〉 = 0 , (3.13)

〈Olog(x)Olog(x′)〉 = (2∆− d)3

|x− x′|2∆ . (3.14)

This is to be contrasted with the correlation functions for the un-truncated rank 3 LCFT

model, which are given by:

〈OKG(x)OKG(x′)〉 = 〈OKG(x)Olog(x′)〉 = 0 , (3.15)

〈OKG(x)Olog2(x′)〉 = 〈Olog(x)Olog(x′)〉 = (2∆− d)3

|x− x′|2∆ , (3.16)

〈Olog(x)Olog2(x′)〉 = (2∆− d)3

|x− x′|2∆
(

−2 log |x− x′|+ Λ1

)

, (3.17)

〈Olog2(x)Olog2(x′)〉 = (2∆− d)3

|x− x′|2∆
(

2 log2 |x− x′|+ Λ1 log |x− x′|+ Λ2

)

. (3.18)

Effectively, truncating the theory sets all correlators involving Olog2 to zero.

4 Discussion

We constructed a free scalar field model in a fixed AdSd+1 background which, at the level

of two-point correlation functions, is dual to a rank r LCFT. For odd rank the theory has
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a unitary subspace which can be obtained by truncating half of the logarithmic modes.

An easy way to see how this works in the case of rank 3 is to consider the following.

Schematically, the two-point correlation functions are:

〈OiOj〉 ∼







0 0 CFT

0 CFT L

CFT L L2






, (4.1)

where i, j = KG, log, log2, CFT represents the CFT two point function (3.16), L repre-

sents (3.17) and L2 is (3.18). When we truncate the theory in the manner described in

this article, we throw away all modes which generate the third column and row of this

matrix. Hence the only non-zero correlation function is proportional to the ordinary CFT

correlation function. The remaining bulk modes have a non-negative scalar product and

the truncated theory is unitary. This method can be generalized to arbitrary odd rank,

but it fails for even rank LCFTs. By considering the rank 4 case in this manner it is

immediately clear why:

〈OiOj〉 ∼











0 0 0 CFT

0 0 CFT L

0 CFT L L2

CFT L L2 L3











. (4.2)

Truncating the log2 and the log3 amounts to removing the third and fourth row and column

of this matrix. All remaining correlators vanish and the theory only contains null states.

Truncating only the log3 mode is insufficient as the remaining theory still contains a rank

2 LCFT. Similar arguments apply for general even rank.

The model described in this paper is a toy model in the sense that it is a non-interacting

scalar field model. It remains to be seen whether similar statements can be made for

interacting spin-2 models. In order to shed more light on these matters, it could be useful

to look at gravitational theories with derivatives up to sixth order, that are described by a

Lagrangian of the schematic form

L ∼ Λ +R+R2 +R�R+R3 , (4.3)

where Λ denotes the cosmological constant and R schematically denotes a curvature tensor

or scalar. By suitably adjusting the coefficients of the Lagrangian (4.3), these theories can

admit a ‘tri-critical point’, where two massive gravitons degenerate with the massless one

and where the linearized equations of motion take the form (see [33] for an example in six

dimensions)

Gµν(G(G(h))) = 0 , (4.4)

where hµν , Gµν denote the perturbation of the metric, resp. the linearized Einstein tensor

around an AdS background. This linearized Einstein tensor plays a similar role as the Klein-

Gordon operator (�−m2) in the spin-0 model discussed in this paper and such a tri-critical

gravity theory can be seen as a spin-2 version of the rank 3 scalar field model discussed

– 12 –



J
H
E
P
0
4
(
2
0
1
2
)
1
3
4

above. In particular, apart from the usual massless graviton solutions, the equations of

motion (4.4) also have solutions obeying log- and log2-boundary conditions, just as in the

scalar field toy model. As in the spin-0 model, the CFT-dual is expected to have the

structure of a rank 3 logarithmic CFT. It would be interesting to study the structure of

the two-point functions of this logarithmic CFT and to see whether this structure allows

for a similar, non-trivial truncation as in the spin-0 toy model.

Note that the above outlined gravity model is fully non-linear and has interactions, that

are dictated by gauge invariance. Such gauge-invariant interactions can not be captured by

our spin-0 model. A spin-2 version of the toy model discussed in this paper, would thus also

be useful to study the fate of the truncations, described in this paper, in a fully interacting

model. In the spin-0 case, the truncation to the physical subspace can be described as a

truncation to modes that obey the asymptotic boundary conditions:

φn ∼ z∆ logn−1(z) for z → 0 r = 2n− 1. (4.5)

The difference between a free theory and an interacting one is that in the latter the bound-

ary conditions (4.5) may not be preserved by time evolution. This is reminiscent of the

three-dimensional critical Topologically Massive Gravity (TMG) case, where a truncation

that only retains modes that obey Brown-Henneaux boundary conditions leads to chiral

gravity. In this case, it was argued that the truncation can be rephrased as a truncation

to a superselection sector of the full theory, that only includes modes that have zero val-

ues for the conserved, left-moving Virasoro charges [8].2 The consistency of the boundary

conditions and their preservation under time evolution is then guaranteed by charge con-

servation. Whether a similar argument can be made in the context of the above proposed

spin-2 model for a truncation along the lines described in this paper, remains an open

question.
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A Normalization of the two-point functions

In section 2 we obtained an expression for the two-point correlation functions (2.26)–(2.28)

which is not properly normalized. This appendix is devoted to fixing the normalization

and obtaining the relation between the scalar field mass parameter and the normalization

found in the LCFT literature. In general, one needs to subtract divergences in the boundary

action by a local counterterm action. This procedure was done for rank 2 in [26], here we

will show how these results can be used to fix the normalization of the rank r two-point

correlation functions.
2Another possibility is to impose final state boundary conditions on a space-like boundary as in [22].
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A.1 Near-boundary expansion

From the structure of the bulk-to-boundary propagators (2.9) it is clear that we must relax

the usual Fefferman-Graham expansions of the fields to include logk(z) type behavior for

k = 1, . . . , i− 1. Allowing for these terms the expansion of the field φi(z, x) in powers of z

is of the type:

φi(z, x) = zd−∆



φ
(i)
i(0)(x) +

i−1
∑

j=1

φ
(i)
j(0)(x) log

i−j(z) + . . .



 (A.1)

+ z∆



φ̃
(i)
i(0)(x) +

i−1
∑

j=1

φ̃
(i)
j(0)(x) log

i−j(z) + . . .



 ,

where the dots represent terms of higher order in z2. We have used the superscript (i) to

denote that these are coefficients of the expansion of φi(z, x), while the subscripts i, j are

related to the power of the log(z)-term they are associated to.

In the rest of this section, we will show how the equations of motion determine most

of the coefficients in this near-boundary expansion in terms of two sets of undetermined

coefficients. In particular, the coefficients φ
(i)
j(0) with j < i ≤ r can be determined in terms

of the coefficients φ
(m)
m(0), with m = 1, · · · , r. Similarly, the coefficients φ̃

(i)
j(0) with j < i ≤ r

can be determined in terms of the coefficients φ̃
(m)
m(0), with m = 1, · · · , r. The coefficients

φ
(m)
m(0) are the boundary data and are, according to the AdS/CFT correspondence, identified

with the sources for the dual field theory operators. The coefficients φ̃
(m)
m(0) on the other

hand correspond to the 1-point functions of the dual field theory operators. They are not

determined by the near-boundary analysis. They can however be determined in terms of

the boundary data by examining the exact solution of the bulk field equations. We will do

this at the end of this section.

Using the metric (2.7), the equations of motion in the Poincaré patch of AdSd+1 are

found as:
(

z2∂2z − (d− 1)z∂z −m2 + z2�x

)

φi(z, x) = φi−1(z, x) , (A.2)

where we have set the AdS length to one and where �x = ∂a∂a. We can then use these

equations of motion to relate the coefficients of the expansion of φi(z, x) to the coefficients

of the expansion of φi−1(z, x). Plugging (A.1) into (A.2) one obtains at order zd−∆:

(d− 2∆)



(i− 1)φ
(i)
1(0) log

i−2(z) +
i−1
∑

j=2

(i− j)φ
(i)
j(0) log

i−j−1(z)



 (A.3)

+
i−1
∑

j=2

(i− j)(i− j + 1)φ
(i)
j−1(0) log

i−j−1(z) = φ
(i−1)
1(0) logi−2(z) +

i−1
∑

j=2

φ
(i−1)
j(0) logi−j−1(z) .

From this expression we can collect like powers of log(z) to obtain the following relation

between the coefficients φ
(i)
k(0) and φ

(i−1)
k(0) :

(d− 2∆)(i− k)φ
(i)
k(0) + (i− k + 1)(i− k)φ

(i)
k−1(0) = φ

(i−1)
k(0) , (A.4)
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for k = 2, . . . , i− 1. For φ
(i)
1(0) the relation is:

(d− 2∆)(i− 1)φ
(i)
1(0) = φ

(i−1)
1(0) . (A.5)

The last equation allows one to solve φ
(i)
1(0) recursively in terms of φ

(1)
1(0).

φ
(i)
1(0) =

1

(i− 1)!

1

(d− 2∆)i−1
φ
(1)
1(0) . (A.6)

Using this result and the iterative equation (A.4) for k = 2 one can then determine φ
(i)
2(0) in

terms of φ
(1)
1(0) and φ

(2)
2(0). Continuing in this manner all the coefficients φ

(i)
j(0), with j < i, in

the expansion of φi(z, x) can be determined in terms of φ
(k)
k(0), with 1 ≤ k < i. So for every

i, the expansion of φi(z, x) introduces a new undetermined leading order coefficient φ
(i)
i(0).

Since there are r scalar fields in total, there are also r independent coefficients, namely the

φ
(m)
m(0) for m = 1, . . . , r.

At order z∆ we can derive a similar recursion relation between the coefficients φ̃
(i)
k(0)

and φ̃
(i−1)
k(0) .

(2∆− d)(i− k)φ̃
(i)
k(0) + (i− k + 1)(i− k)φ̃

(i)
k−1(0) = φ̃

(i−1)
k(0) , (A.7)

for k = 2, . . . , i− 1, while for φ̃
(i)
1(0) the relation is:

(2∆− d)(i− 1)φ̃
(i)
1(0) = φ̃

(i−1)
1(0) . (A.8)

Again, for r scalar fields, there are r independent coefficients φ̃
(i)
i(0), with i = 1, . . . , r. These

are the precisely the coefficients of order z∆ (so with no log(z) behavior). In the following,

we will drop the superscript (i) from the φ̃
(i)
i(0) (but not yet from the φ

(i)
i(0)) and we will

simply denote these coefficients as φ̃i(0).

In order to calculate two-point correlation functions we need to determine φ̃i(0) as a

function of the sources φ
(i)
i(0). This can be done by examining the exact solutions given

in eqs. (2.8)–(2.9) for small z. Let us for convenience repeat the solution, including the

superscript (i):

φ
(i)
i (z, x) =

∫

ddx′



φ
(i)
i(0)(x

′)GKG(z, x; 0, x′) +

i−1
∑

j=1

φ
(i)
j(0)(x

′)Glogi−j

(z, x; 0, x′)



 , (A.9)

where the Green’s functions GKG, Glogi are given in (2.13), (2.17). Note that the boundary

data (boundary values) of the fields φ
(i)
i (z, x) can be read off from this expression as the

coefficients φ
(i)
i(0). It is thus in terms of these φ

(i)
i(0) that we will try to express φ̃i(0). Near

the boundary (for small z), the contributions of order z∆ are given by:

∫

ddx′
1

|x− x′|2∆







φ
(i)
i(0)(x

′) +
i−1
∑

j=1

φ
(i)
j(0)(x

′)
2

(2(2∆− d))i−j
logi−j

(

z

|x− x′|2
)







. (A.10)
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As outlined in the previous section, the independent coefficients φ̃i(0) are the components

in (A.10) that have no log(z) behavior:

φ̃i(0)(x) =

∫

ddx′







φ
(i)
i(0)(x

′)

|x− x′|2∆ +
i−1
∑

j=1

φ
(i)
j(0)(x

′)
2

(2(2∆− d))i−j

(−2 log |x− x′|)i−j

|x− x′|2∆







.

(A.11)

The sources which will be coupled to the field theory operators are the boundary data φ
(m)
m(0),

with m = 1, . . . , r, and we need to find an expression for φ̃i(0) in terms of these. To do

this we note that, as we are interested in the normalization of the two-point functions, we

are only interested in the leading logarithmic order of the two-point correlation functions.

This is because the subleading contributions may be shifted away by the invariance:

φi → φi +

i−1
∑

k=1

λkφi−k . (A.12)

In order to obtain the right relation for φ̃i(0) we may also obtain an expression for it using

the fact that φ̃
(i)
m(0) is the logi−m z component of (A.10). Using this and (A.7) and keeping

only the leading logarithmic terms for every φ
(k)
j(0), we arrive at the following expression for

φ̃i(0) as a function of the boundary fields φ
(i)
i(0):

φ̃i(0)(x) =

∫

ddx′
1

|x− x′|2∆







i
∑

j=1

φ
(j)
j(0)(x

′)
2

(i− j)!

(−2 log |x− x′|)i−j

(2∆− d)i−j







. (A.13)

Now that everything is defined in terms of the fields φ
(i)
i(0), we may drop the superscript (i)

to ease the notation. From the above expression the following identity may be derived.

∂φ̃i(0)

∂φj(0)
=

1

(i− j)

d

dm2

∂φ̃i(0)

∂φj+1(0)
+ subleading log terms , for j ≤ i− 1 . (A.14)

This relation will prove to be useful later on.

A.2 Normalization of the holographic 2-pt correlation functions

We are now ready to consider the boundary two-point correlation functions of this theory.

The sources are coupled to the dual operators according to (2.22) which we repeat here for

convenience:
∫

ddx

(

φr(0)OKG +
r−1
∑

i=1

cr−iφi(0)Ologr−i

)

. (A.15)

Here Ologi is the operator corresponding to the i-th logarithmic partner operator of OKG.

The ci are some normalization constants which may depend on ∆.

Following the holographic dictionary the two-point correlation functions are obtained

by functional differentiation of the on-shell renormalized action with respect to the sources:

cicj〈Ologi(x)Ologj(x′)〉 = −
δ2Sren[φk(0)]

δφr−i(0)(x)δφr−j(0)(x′)
. (A.16)
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This requires knowledge of the renormalized on-shell action as a function of the sources

φk(0) for k = 1, . . . , r − 1. Fortunately the renormalized one and two-point correlation

functions for r = 2 have already been calculated in [26]. They are:

〈OKG(x)〉r=2
ren = (d− 2∆)φ̃1(0)(x) , (A.17)

c1〈Olog(x)〉r=2
ren = (d− 2∆)φ̃2(0)(x) , (A.18)

〈OKG(x)OKG(x′)〉r=2
ren = 0 , (A.19)

c1〈OKG(x)Olog(x′)〉r=2
ren =

(2∆− d)

|x− x′|2∆ , (A.20)

c21〈Olog(x)Olog(x′)〉r=2
ren =

1

|x− x′|2∆
(

−2 log |x− x′|+ λ
)

, (A.21)

where φ̃i(0)(x) with i = 1, 2 are defined as in (A.11).

The standard normalization for the two-point functions of a rank 2 LCFT (in two

dimensions) is:

〈OKG(x)OKG(x′)〉r=2
ren = 0 , (A.22)

〈OKG(x)Olog(x′)〉r=2
ren =

D1

|x− x′|2∆ , (A.23)

〈Olog(x)Olog(x′)〉r=2
ren =

1

|x− x′|2∆
(

−2D1 log |x− x′|+ λ
)

. (A.24)

This can be matched with the holographic result by taking c1 = 1/(2∆−d). Then the new

anomaly D1 in two dimensions can be expressed in terms of the bulk scalar field mass as:

D1 = (2∆− d)2 = (d2 + 4m2) = 4(1 +m2) . (A.25)

The constant λ can be rescaled by shifting the operators Olog → Olog + λ′OKG. This

corresponds holographically to the reparameterization invariance of the bulk scalar fields

φ2 → φ2+λ
′φ1, as can be seen from the coupling of the operators to the sources in (A.15).

Thus the only normalization which needs to be fixed holographically to establish a well

defined dictionary is the value of the new anomaly.

The way we defined the φ̃i(0) in (A.11) is such that for any rank r, φ̃i(0) is the same.

The only difference is that the rank r theory will have more φ̃i(0) then any rank r′ theory

with r > r′. But since the renormalized one-point functions in (A.17) and (A.18) only

depend on φ̃1(0) and φ̃2(0), the result carries over to general rank r.

〈OKG(x)〉r=2
ren = 〈OKG(x)〉rren = (d− 2∆)φ̃1(0)(x) , (A.26)

c1〈Olog(x)〉r=2
ren = c1〈Olog(x)〉rren = (d− 2∆)φ̃2(0)(x) . (A.27)

This leads, by use of (A.16), to the renormalized two point function for general rank r:

cr−1〈OKG(x)Ologr−1

(x′)〉rren =
(2∆− d)

|x− x′|2∆ . (A.28)
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Then by using the identity (A.14) and by assuming that the one-point correlation functions

are all linear in φ̃i(0), i.e. assuming that the scalar field theory is free and that there are no

interactions or contact terms, one can derive a holographic Ward-type identity:

ci+1cj〈Ologi+1

(x)Ologj (x′)〉 = 1

i+ j − r + 2

d

dm2

(

cicj〈Ologi(x)Ologj (x′)〉
)

(A.29)

+O

(

logi+j−r+1 |x− x′|
|x− x′|2∆

)

.

Repeating this procedure while starting from 〈OKG(x)Ologr−1

(x′)〉 one can write down the

Ward identity:

cicr−1〈OlogiOlogr−1〉 = 1

i!

(

d

dm2

)i
(

cr−1〈OKGOlogr−1〉
)

+O

(

logi−1 |x− x′|
|x− x′|2∆

)

. (A.30)

This is valid for all i = 1, . . . , r − 1. From (A.28) it is apparent that differentiation with

respect to m2 of the two-point function will introduce log |x − x′| terms. Repeating the

differentiation will increase the power of these terms one step at the time. The leading

logarithmic term on the right hand side of (A.30) will thus be of order logi |x− x′|.
By applying the shift invariance (2.29) to (A.30) we learn that we may always add

terms of order logi−1 |x − x′| to the correlation function. So the only term for which we

need to fix the normalization is the logi |x−x′| term. This justifies restricting to the leading

order logarithmic terms earlier. Using (A.30) and (A.28) we find:

cicr−1〈Ologi(x)Ologr−1

(x′)〉 = 1

(2∆− d)i−1

(−2)i

i!

logi |x− x′|
|x− x′|2∆ +O

(

logi−1 |x− x′|
|x− x′|2∆

)

.

(A.31)

Once the normalization for these correlators is fixed, it is simultaneously fixed for all other

correlators. This can be seen from the two-point functions given in the paper (equation

(28)), from which one may derive that 〈OlogiOlogr−1〉 = 〈Ologi+kOlogr−1−k〉.
The above result may now be compared with the two-point correlation functions of

the two-dimensional rank r LCFT given in [24]:

〈Ologi(x)Ologj(x′)〉 = 1

|x− x′|2∆
i+j
∑

l=0

Di+j−l
(−2)l

l!
logl(|x− x′|) , (A.32)

with Dk = 0 for k < r − 1. The constants Dk are determined holographically in terms of

the scalar field mass, which is the only free parameter on the gravity side.

Comparing (A.28) to (A.32) with i = 0 and j = r − 1 we find that:

Dr−1 =
(2∆− d)

cr−1
. (A.33)

If we consider the correlation function with the highest order log operators possible, ac-

cording to (A.31) we have:

c2r−1〈Ologr−1

(x)Ologr−1

(x′)〉 = 1

(2∆− d)r−2

(−2)r−1

(r − 1)!

logr−1 |x− x′|
|x− x′|2∆ + subleading . (A.34)
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Comparing this to (A.32), now with i = j = r − 1 we have:

Dr−1
(−2)r−1

(r − 1)!
=

1

(2∆− d)r−2

(−2)r−1

(r − 1)!

1

c2r−1

. (A.35)

From (A.33) and (A.35) we may find an expression for Dr−1 in terms of the scalar field

mass:

Dr−1 = (2∆− d)r = 2r(1 +m2)
r
2 . (A.36)

This ends the comparison with the two-point correlation functions in two-dimensional rank

r LCFTs.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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[33] H. Lü, Y. Pang and C. Pope, Conformal Gravity and Extensions of Critical Gravity,

Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].

– 20 –

http://dx.doi.org/10.1007/JHEP03(2010)012
http://arxiv.org/abs/0910.5241
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5241
http://dx.doi.org/10.1103/PhysRevLett.106.181302
http://arxiv.org/abs/1101.1971
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.1971
http://dx.doi.org/10.1103/PhysRevD.83.061502
http://arxiv.org/abs/1101.4009
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4009
http://dx.doi.org/10.1103/PhysRevD.83.084052
http://arxiv.org/abs/1101.5891
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5891
http://dx.doi.org/10.1103/PhysRevD.83.104038
http://arxiv.org/abs/1102.4091
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4091
http://dx.doi.org/10.1103/PhysRevD.84.024013
http://arxiv.org/abs/1104.0674
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0674
http://dx.doi.org/10.1103/PhysRevD.84.064001
http://arxiv.org/abs/1106.4657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4657
http://dx.doi.org/10.1007/JHEP01(2012)054
http://arxiv.org/abs/1111.1175
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1175
http://arxiv.org/abs/1105.5632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5632
http://dx.doi.org/10.1016/0550-3213(93)90528-W
http://arxiv.org/abs/hep-th/9303160
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303160
http://dx.doi.org/10.1016/S0550-3213(02)00235-3
http://arxiv.org/abs/hep-th/0107242
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107242
http://dx.doi.org/10.1142/S0217751X03016859
http://arxiv.org/abs/hep-th/0111228
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111228
http://dx.doi.org/10.1007/JHEP09(2011)038
http://arxiv.org/abs/1106.6277
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.6277
http://dx.doi.org/10.1016/S0370-2693(99)00576-6
http://arxiv.org/abs/hep-th/9903162
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903162
http://dx.doi.org/10.1142/S0217751X99001287
http://arxiv.org/abs/hep-th/9807034
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807034
http://dx.doi.org/10.1007/BF01212320
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,108,469
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/hep-th/0209067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209067
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://arxiv.org/abs/hep-th/9905104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905104
http://arxiv.org/abs/hep-th/0112119
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112119
http://dx.doi.org/10.1103/PhysRevD.84.064001
http://arxiv.org/abs/1106.4657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4657

	Introduction
	A scalar field dual of a rank r LCFT
	From r degenerate masses to a rank r LCFT
	Comparison with known results
	A non-negative scalar product
	A special case: the singleton


	Example: the rank 3 AdS/LCFT scalar model
	Discussion
	Normalization of the two-point functions
	Near-boundary expansion
	Normalization of the holographic 2-pt correlation functions


