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1 Introduction

Metastable vacua appear to be a putative feature of supersymmetric gauge theories [1], and

the construction of such vacua in string theory has been the subject of much study. The

most direct way to obtain such vacua in supergravity is to put antibranes in a background

that has brane charge dissolved in flux.

This has been first done by Kachru, Pearson and Verlinde [2], who argued that probe

anti-D3 branes in a smooth Klebanov-Strassler solution [3] are metastable, and can decay

by annihilating against the positive D3 brane charge dissolved in flux via a process termed

“brane-flux annihilation.” Similarly, Klebanov and Pufu considered anti-M2 branes in a

smooth solution with M2 brane charge dissolved in fluxes [4], and found that in the probe

approximation these also give rise to metastable vacua [5]. While there is at this point
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some uncertainty about the fate of these antibrane constructions when full backreaction is

taken into account [6–10], it is clear that placing probe antibranes in flux backgrounds is

the most obvious starting point in hunting for metastable vacua.

Our purpose in this paper is to apply this procedure to supersymmetric black hole

microstate geometries and to argue that in the probe approximation antibranes give rise to

metastable solutions that should be interpreted as microstates of non-extremal black holes.

As is well-known (see [11] for a review) there exist huge families of supersymmetric

solutions that have the same charge, mass and angular-momentum as a black hole with

a macroscopically-large horizon area, and have no horizon or singularity. The singularity

of the extremal BPS black hole (that can be thought of as coming from the singular

brane sources) is resolved by a geometric transition that yields a geometry with many

“bubbles” threaded by fluxes. The charge of these “black hole microstate” solutions is

entirely dissolved in these fluxes.

The physics of these solutions strongly supports the fact that the timelike singularity

of extremal black holes is resolved by low-mass modes that correct the geometry on scales

comparable to the horizon scale, and completely excise the region between the singularity

and the horizon. This certainly disagrees with the standard textbook picture of extremal

Reissner-Nordström black holes, but on the other hand it is exactly identical to the way

string theory resolves other timelike singularities.1 Moreover, there is recent evidence from

numerical relativity studies of extremal and near-extremal black holes that the region inside

the horizon is unstable, and the instability yields a final configuration with essentially no

spacetime inside the horizon (see [17] for an overview, and [18–20] for earlier work).

Hence, there appears to be a growing consensus that extremal black hole singularities

are not resolved at Planck scale, but at horizon scale. While this fits very well with

Mathur’s conjecture,2 it leaves unanswered the question of what happens for non-extremal

black holes. Indeed, given the resolution mechanism of the extremal black hole singularity,

it is quite natural to expect that the timelike singularity of non-extremal black holes will be

resolved on the scale of the inner horizon, and thus that there will be no more spacetime in

the region from the singularity to the inner horizon; this also agrees with insights coming

from numerical relativity [19], and with ancient analytical work about the instability of

inner horizons [18, 20, 26].

Nevertheless, the fuzzball proposal, and in general the requirement that the information

paradox be vindicated [27] imply something much stronger: the singularity of non-extremal

black holes should be resolved all the way to the outer horizon, in the past of the singularity.

To understand whether this indeed happens, one must understand what happens to the

extremal black hole microstates when one tries to make them near-extremal. If they all col-

lapse behind a horizon, then most likely the singularity resolution scale is that of the inner

horizon, and these microstates do not help too much in solving the information paradox.3

1Many of the timelike singularities that we know how to resolve in string theory: LMM, Klebanov-

Strassler, the enhançon, the D1-D5 system, Polchinski-Strassler and its generalizations, are resolved by

low-mass modes that modify the physics at a large distance away from the singularity [3, 12–16].
2Also known as the fuzzball proposal, see [11, 21–25] for reviews.
3Though there might exist microstate geometries that differ from the black hole solution all the way to

the horizon, but still have a horizon [28].
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(a) Extremal RN spacetime. (b) Non-extremal RN spacetime.

Figure 1. Penrose diagrams for the extremal (left) and non-extremal (right) Reissner-Nordström

black hole. There is a growing body of work supporting the idea that the extremal black hole

singularity is resolved at horizon scale. For non-extremal black holes it is unclear whether the

singularity resolution extends to the inner horizon, or all the way to the outer horizon, as in

Mathur’s proposal.

On the other hand, if these microstates survive the near-extremal deformation and do not

collapse behind a horizon, this indicates that the singularity is resolved all the way to the

outer horizon, just like in the fuzzball proposal.

Note that settling the issue of the near-extremal fate of the microstate geometries is

suggestive for arguing that the fuzzball proposal applies to all non-extremal black holes:

the Penrose diagram of a large Schwarzschild black hole to which one adds one electron

is the same as the one of the near-extremal Reissner-Nordström black hole, and if the

singularity-resolution scale of the latter is the outer horizon, the causal structure suggests

that it could be the same for the former.

At this point only two classes of non-extremal microstate solutions are known: the

JMaRT [29, 30] and the running-Bolt [31, 32] solutions, and all the arguments so far that

the fuzzball proposal applies to non-extremal black holes have been based on the existence

and physics of these solutions [33–35]. Nevertheless, given that these solutions are very

special, and given the technical difficulty involved in finding new ones, it is in rather difficult

to take these arguments too far away.

Our purpose in this paper is to give a systematic method to construct and analyze

near-extremal non-supersymmetric microstate solutions. We propose that starting from

a generic extremal supersymmetric microstate solution one can build non-extremal mi-

crostates by adding certain branes with non-compatible supersymmetries. In particular

we focus on two-charge supertubes (which correspond to fluxed D4 branes upon reduction

to 4 dimensions), and find that a probe supertube can have both supersymmetric, as well

as non-supersymmetric metastable minima. We explain the mechanism by which the su-
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pertube can annihilate against some of the charge dissolved in fluxes, and decay into a

supersymmetric solution.

To prove the existence of metastable supertubes4 and to understand their decay mech-

anism, it is enough to focus on supertubes in BPS microstate geometries built upon a

Gibbons-Hawking base with two centers, and this is what we do in this paper. From the

physics we find, it is quite obvious that metastable supertubes will exist in generic multi-

center BPS three-charge geometries, and most likely also in non-BPS extremal multi-center

solutions; we leave such generalizations for future work.

In section 2 we compute the supertube Hamiltonian in an arbitrary three-charge so-

lution with a Gibbons-Hawking base, and explore its minima analytically. In section 3

we focus on a particular two-center background, and find that, depending on the super-

tube charges, it can have both supersymmetric and non-supersymmetric minima, as well

as metastable minima. In section 4 we describe how these metastable minima decay to the

supersymmetric ones via brane-flux annihilation, and in section 5 we discuss our results

and future directions.

Note: when this article was in the final stages of preparation, the preprint [36] appeared,

which investigates the physics of probe metastable branes near single non-extremal black

holes. The explicit system studied there is different from ours: we explore metastable con-

figurations that probe multi-center supersymmetric solutions and decay into supersym-

metric or non-supersymmetric solutions via brane-flux annihilation. In [36] the metastable

branes probe single-center non-extremal black holes, and decay by falling behind the hori-

zon. However, the physical conclusions of the two investigations point in the same direc-

tion: in the probe approximation there exist very large numbers of non-supersymmetric

metastable configurations, that can be long-lived, and that play an important role in the

physics of non-extremal black holes in string theory.

2 The supertube hamiltonian

The purpose of this section is to review the physics of supertubes in flat space, and to see

how this extends when supertubes are placed in three-charge solutions constructed from

a Gibbons-Hawking base, which descend in four dimensions to the multi-center solutions

of [37, 38].

2.1 Supertubes in flat space

A supertube is a brane configuration with two charges, a dipole charge, and angular mo-

mentum, that preserves 8 supersymmetries. In its original realization [39–41], the charges

correspond to D0 branes and F1 strings dissolved into a tubular D2 brane. The tube has

a non-trivial angular momentum in the space transverse to the strings which supports it

4We use the word supertube to refer to minima of the supertube Hamiltonian (or from a four-dimensional

perspective to fluxed D4 branes), even when these configurations are not supersymmetric. This is because

supertubes are locally-supersymmetric objects, and supersymmetry is broken because they are placed in a

background of the wrong orientation.
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from collapsing:

|J | =
∣∣∣∣QD0QF1

QD2

∣∣∣∣ . (2.1)

To establish the existence of the supertube, one can examine the Born-Infeld action of the

D2 brane with dissolved F1 and D0 charges, and find that the Hamiltonian of a tube of

radius R is

H =
QD2

R

√
Q2
D0/Q

2
D2 +R2

√
Q2
F1/Q

2
D2 +R2 . (2.2)

The Hamiltonian is minimized at

Rmin =

√
|QD0QF1|
|QD2|

(2.3)

and is equal to the sum of the F1 and D0 charges. Thus, the minimum describes a super-

symmetric tube.

2.2 Tubes in three-charge backgrounds

We now want to examine the dynamics of a supertube placed in a supersymmetric back-

ground geometry with three charges and three dipole charges, of the type that describe

black holes, black rings and their microstate geometries. The metric in the M-theory du-

ality frame in which the three charges correspond to M2 branes wrapping orthogonal T 2’s

inside T 6 is [42, 43]:

ds2
11 = −(Z1Z2Z3)−2/3(dt+ k)2 + (Z1Z2Z3)1/3ds2

4 + (Z1Z2Z3)1/3
∑
I

ds2
I

ZI
(2.4)

where ds2
I are unit metrics on the three othogonal T 2’s and ds2

4 is the metric of the hyper-

Kähler base space. When the latter metric is Gibbons-Hawking (GH) or Taub-NUT:

ds2
4 = V −1(dψ +A)2 + V ds2

3 with dA = ?3dV, (2.5)

the solution is completely determined by specifying 8 harmonic functions V,KI , LI ,M in

the GH base [44, 45]. In terms of these, the warp factors and rotation vector are given by

ZI = LI +
1

2
CIJKV

−1KJKK with CIJK = |εIJK | , (2.6)

k = µ(dt+ ω) +A with µ =
1

6
CIJKV

−2KIKJKK +
1

2
LIK

I +M ,

(2.7)

where ds2
3 is the flat metric on R3. The full details of the background geometry, including

the background four-form flux, are given in appendix A. Note that the inverse of the warp

factors ZI are also the electric potentials for the four-form and hence they determine the

M2 charges at each background center. The two charges Q1 and Q2 of the supertube

are parallel to those of the background and correspond to M2 branes along the first and

second T 2. The dipole charge, d3, corresponds to an M5 brane extended along those two

tori wrapping the fiber of the Gibbons-Hawking space. If the tube is supersymmetric,
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Figure 2. A smooth three-charge bubbling geometry with a supertube (red) placed on one of the

cycles along ψ.

then the fully-backreacted solution is again in the class (2.4); the warp factors Z1 and Z2

will have a singularity at the location of the tube, and the Born-Infeld description of the

supertube captures all the aspects of the backreacted solution [46].

However, since we are trying to study non-supersymmetric supertubes, for which no

fully-backreacted description has been constructed so far, we will work in a probe ap-

proximation, ignoring the backreaction of the supertube. This is best done in a duality

frame where the dynamics of the supertube can be described by a Born-Infeld action,

and such a frame is obtained for example by reducing the 11-dimensional system along

a torus direction.

We find that the Hamiltonian of a two-charge supertube in a multi-center three-charge

background with Gibbons-Hawking base is:5

H =

√
Z1Z2Z3V 3

d3(Z1Z2Z3V − µ2V 2)

√
Q̃2

1 + d2
3

Z1Z2Z3V − µ2V 2

Z2
2V

2

√
Q̃2

2 + d2
3

Z1Z2Z3V − µ2V 2

Z2
1V

2

+
µV 2

d3(Z1Z2Z3V − µ2V 2)
Q̃1Q̃2 −

1

Z1
Q̃1 −

1

Z2
Q̃2 −

d3µ

Z1Z2
+Q1 +Q2 ,

(2.8)

where we have introduced

Q̃1 ≡ Q1 + d3(K2/V − µ/Z2) , Q̃2 ≡ Q2 + d3(K1/V − µ/Z1) (2.9)

and the harmonic functions K1 and K2 encode two of the three dipole moments of the

background. Although the calculation yielding this result treats the two charges of the

supertube differently, the final Hamiltonian is symmetric under interchange of indices (1↔
2), which is a non-trivial check. In flat space, the Hamiltonian (2.8) reduces to (2.2): the

first term becomes the flat-space Hamiltonian and the terms in the second line vanish.

The combination Z1Z2Z3V − µ2V 2 gives the square of the radius of the GH fiber ψ

and hence the square of the radius of the tube. In a regular background, free of closed

timelike curves (CTC’s), this combination is always positive, and hence the Hamiltonian

is well-defined throughout the space. Furthermore, one can show that this Hamiltonian

is always larger than or equal to the sum of the supertube charges Q1 and Q2; for su-

persymmetric minima the equality comes about after a few non-trivial cancelations. The

5See appendix B for the derivation.
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Hamiltonian (2.8) describes tubes in the most general three-charge background. We expect

this Hamiltonian to have both supersymmetric and non-supersymmetric minima.

An important difference between the flat space (2.2) and the GH supertube Hamil-

tonian (2.8) is that the charges appearing in the latter are shifted from the actual brane

charges by a term proportional to the background magnetic fluxes.6

2.3 Minima of the supertube hamiltonian

Supersymmetric minima. The supersymmetric minima of the Hamiltonian have

VBPS = Q1 +Q2 . (2.10)

This value is obtained when the supertube radius is related to the supertube charges by

d2
3

Z3

V
=

(
Q1 + d3

K2

V

)(
Q2 + d3

K1

V

)
(2.11)

and provided that (
Q1 + d3

K2

V

)(
Q2 + d3

K1

V

)
≥ 0 . (2.12)

For this radius the Hamiltonian (2.8) reduces to

H = Q1 +Q2 +
Z1Z2Z3V

Z1Z2Z3V − µ2V 2

[ ∣∣∣∣Q̃1

Z1
+
Q̃2

Z2

∣∣∣∣− (Q̃1

Z1
+
Q̃2

Z2

)]
(2.13)

which saturates the BPS bound only if

Q̃1

Z1
+
Q̃2

Z2
≥ 0 . (2.14)

When the conditions (2.12) and (2.14) are not met, the Hamiltonian has no supersymmet-

ric minimum. The first condition (2.12) is needed for the absence of CTC’s: ZIV ≥ 0

(see appendix A, eq. (A.10)) implies that both sides of (2.11) have to be positive, which

is equivalent to (2.12). Similarly, if one is to construct the backreaction of the super-

tube, the warp factors near the supertube center (which we can take at r = 0) would

diverge [46] as
(
Q1,2 + d3K

2,1/V
)
/r. These divergences are controlled by the effective, or

enhanced M2 charges

Qeff
1 ≡ Q1 + d3

K2

V
and Qeff

2 ≡ Q2 + d3
K1

V
. (2.15)

If these charges do not have the same sign the solution has CTC’s.

6This shift is the crucial ingredient in the supertube entropy enhancement mechanism [47].
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Non-supersymmetric minima. Given the complicated nature of the Hamilto-

nian (2.8), and given that we are trying to construct metastable black hole microstates,

we focus from now on on supertubes in smooth bubbling multi-center solutions. The most

generic such solution has a multi-center Taub-NUT or GH four-dimensional base space,

with three non-trivial fluxes on the two-cycles stretching between every pair of Taub-NUT

or GH centers [48–50].

In order to study the existence of non-supersymmetric minima, we first expand the

Hamiltonian near one of the smooth centers:

H|ri→0 =

∣∣∣∣(Q1 + d3
K2

V

)(
Q2 + d3

K1

V

)∣∣∣∣√ vi
Z1Z2Z3

(ri)
−1/2 +O[(ri)

0] , (2.16)

where ri is the distance to the ith center and vi is the coefficient of the 1/ri pole in V .

When both (Q1 +d3K
2/V )|ri=0 and (Q2 +d3K

1/V )|ri=0 are non-zero this Hamiltonian

diverges near the centers7 and hence there is at least one minimum between the centers.

If (2.12) is satisfied, the minimum is supersymmetric. To find a non-supersymmetric

minimum one simply has to find a set of supertube charges such that at the minimum

(Q1 + d3K
2/V )(Q2 + d3K

1/V ) < 0.

When one of the effective charges vanishes, say (Q1 + d3K
2/V )|ri→0 = 0, then the

supertube radius is zero. The divergent term of the Hamiltonian vanishes, and the leading

term is:

H|ri→0 = Q1 +Q2 +

∣∣∣∣Q2 + d3K
1/V

Z2

∣∣∣∣− Q2 + d3K
1/V

Z2
. (2.17)

One might naively think that a supertube of zero radius is nothing but a collection of branes,

and may wonder why the dipole charge d3 still appears in the Hamiltonian. The answer

has to do with the existence of Dirac strings for the gauge field A(1) (given by eqs. (A.2)

and (A.6) in appendix A). Since the solution has non-trivial fluxes, to completely describe

the physics one must use multiple patches. The values of the gauge field A(1) differ from

patch to patch, and in a generic patch there will be Dirac strings at generic centers. In

particular, as we will discuss in detail in section 4, when K1/V is non-zero at the center, the

zero-sized supertube described by (2.17) wraps a Dirac string, and is not just a collection

of parallel branes. When removing the Dirac string, the supertube brane charges shift, and

become equal to the effective charges.

It is then the orientation of these effective charges with respect to the background that

determines whether supersymmetry is broken or not. In our example, when the effective

charge of the supertube, Q2 +d3K
1/V , has the same orientation as the charge of the back-

ground (proportional to Z2), the Hamiltonian is equal to the sum of the charges, and the

configuration is supersymmetric. When this effective charge has the opposite orientation,

the Hamiltonian is strictly larger than VBPS , and the configuration is a non-supersymmetric

minimum or maximum (depending on the sign of the next-to-leading order term).

Given that supersymmetric tubes have a critical worldvolume electric field, one may

attempt to analytically obtain a non-supersymmetric minimum using a supertube with a

7From a four-dimensional perspective, these supertubes are fluxed D4 branes with two non-zero fluxes,

and hence a non-zero D0 charge; these are repelled by the fluxed D6 centers.
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critical electric field oriented opposite to the background ((Q2 + d3
K1

V )/Z2ri < 0). When

one of the effective charges is zero, this naive guess yields a non-supersymmetric minimum

with energy

Vnon−BPS = Q1 +Q2 − 2
Q2 + d3K

1/V

Z1
. (2.18)

which agrees with (2.17)! Thus the naive guess gives the correct energy of the zero-radius

non-supersymmetric configuration. The naive guess also gives a radius relation:

− Z3

V
=

(
Q1 + d3

K2

V
− 2d3

µ

Z2

)(
Q2 + d3

K1

V

)
, (2.19)

which is satisfied trivially for degenerate supertubes. Unfortunately, non-degenerate su-

pertubes do not have a critical electric field, and the naive minima obtained from (2.19)

do not agree with those of the Hamiltonian. It would be interesting to get a deeper under-

standing of why this naive guess describes correctly the metastable vacua with degenerate

supertubes but not the other ones.

To summarize this section, one can use the Hamiltonian (2.8) to infer analytically the

existence and properties of degenerate vacua, as well as the existence of non-degenerate

vacua. However, we could not find any easy analytic way to describe non-degenerate non-

supersymmetric vacua. Thus, we will now focus on a simple two-center bubbling solution,

and analyze the possible minima numerically.

3 Metastable supertubes in a two-center solution

In this section, we evaluate the Hamiltonian in a specific two-center solution. Depending on

the values of their charges Q1, Q2, the supertubes can have a rich structure of minima and

interesting decay patterns. We scan for the candidate charges yielding metastable vacua

by first plotting the supertube Hamiltonian on the axis between the centers. We find

examples with either one supersymmetric, or one non-supersymmetric, stable minimum.

There can also be two minima for a given set of supertube charges Q1, Q2. Either they are

both supersymmetric or one is stable (supersymmetric or non-supersymmetric) and the

other is metastable. We expect this rich minima structure to carry over to other smooth

background geometries with multi -center Taub-NUT base spaces. When the candidate

configuration is metastable, we also plot the Hamiltonian away from the axes to insure

that the supertube is not unstable to rolling away from the symmetry axis.

3.1 Details of the background

The Hamiltonian depends on the spacetime coordinates through the harmonic functions

V = v0 +
v1

|~r − ~r1|
+

v2

|~r − ~r2|
, M = m0 +

m1

|~r − ~r1|
+

m2

|~r − ~r2|
,

KI = kI0 +
kI1

|~r − ~r1|
+

kI2
|~r − ~r2|

, LI = `I,0 +
`I,1
|~r − ~r1|

+
`I,2
|~r − ~r2|

.

(3.1)

For an interpretation of the charges see table 1 in appendix A. We choose a cylindrical

coordinate system (ρ, z, θ) in three dimensions, where z runs along the axis through the

– 9 –
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center and ρ, θ are polar coordinates in the orthogonal plane. Since we have cylindrical

symmetry, the solution only depends on the coordinates z and ρ.

We consider a two-center background where the inter-center distance is r12 = |~r1 −
~r2| = 120 and we fix the two centers on the symmetry axis as z1 = −60, z2 = 60. We

choose KI = K all equal and the following charges and asymptotics in the harmonic

functions V,K:

v0 = 2 , v1 = 10 , v2 = −2 ,

k0 = −3 , k1 = 0 , k2 = 14 .
(3.2)

Because at spatial infinity V → v0 6= 0, the GH space is in fact a two-center Taub-NUT

space asymptotic to R3 × S1. Furthermore, K has a non-vanishing constant asymptotic

value, and hence the solution has non-trivial Wilson lines along the Gibbons-Hawking

fiber (which descend to axions upon reduction to four dimensions). This choice of charges

and asymptotic values is a representative choice that has the generic features of a smooth

geometry with a two-center Taub-NUT base space. Furthermore, with the choice k1 = 0,

there are no Dirac strings at center “1”.

Note that the harmonic functions M and LI are completely determined through the

regularity conditions on ZI and µ and the bubble equations (eqs. (A.11) and (A.12) in ap-

pendix A). Finally, without loss of generality we consider a tube with dipole charge d3 = 1.

3.2 Plots of the potential

We plot the Hamiltonian, shifted to H → H− (Q1 +Q2) (such that H = 0 for supersym-

metric tubes), in terms of the coordinate z at ρ = 0 (i.e. on the symmetry axis). Varying

the supertube charges, a rich structure of different minima arises:

3.2.1 One minimum

We first choose charges Q1, Q2 for which there is one minimum. When H = 0 the minimum

is supersymmetric, (see figure 3(a)), and the supertube generically sits close to one of the

centers. The supersymmetric minimum describes a supertube whose radius can be found

from eq. (2.11), and the backreaction of this configuration is a supersymmetric solution

with three centers [46].

A minimum with H 6= 0 describes a non-supersymmetric supertube (see figure 3(b)).

Given that this tube is locally-BPS, we expect its backreaction to yield a solution that

in the D1-D5-P duality frame is smooth at the supertube location. This smooth solution

should represent a microstate of a non-supersymmetric black hole. It is interesting to

ask whether the absolutely-stable non-supersymmetric minimum, which has no obvious

decay channel, may correspond to an extremal non-BPS black hole, and hence fit in the

recent classification of [51], or whether it will represent a very long-lived microstate of a

non-extremal black hole.

As explained analytically in the previous section, for some choices of charges there also

exist supersymmetric and non-supersymmetric stable minima where the supertube has zero

size. As expected, this happens when one of the effective M2 charges Qeff
I = QI +K/V is

zero (see figures 4(a) and 4(b)).
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(a) One supersymmetric minimum.
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(b) One non-supersymmetric minimum.

Figure 3. A single stable minimum between the two centers. When both charges are positive

and have the same orientation as the background (which has electric potential Z > 0 at the left

center), the minimum is supersymmetric. When one of the charges has the wrong orientation, the

minimum is non-supersymmetric. Note that the apparent second minimum outside the 2-center

range is connected to the one inside by a Mexican-hat-type potential around the center in the z−ρ
plane. As we will show below in figure 7, when supersymmetry is broken this Mexican-hat potential

is slightly tilted.
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(a) Degenerate supersymmetric minimum.
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H
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(b) Degenerate non-supersymmetric minimum.

Figure 4. When one of the effective charges is zero, the supertube degenerates. In this example,

we choose Q2 + K
V

∣∣
r1

= 0. (Remember we work in patch “1” where K
V

∣∣
r1

= 0.) When the other

charge has the same orientation as the background, the minimum is supersymmetric (a), when the

orientations are opposite, the minimum is non-supersymmetric (b).

3.2.2 Two minima

There is also a wide range of charges for which two minima appear. The first possibility is

to have two supersymmetric minima, which is depicted in figure 3.2.2.

Figure 5(a) illustrates two different positions (each one close to one of the background

centers) at which a supertube with fixed charges Q1, Q2 can be located. Again, one of

these minima can degenerate when one of the effective charges QI + K/V goes to zero

(figure 5(b)).
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Figure 5. Two supersymmetric minima between the centers. When Q2 = 0 in patch “1”, the

minimum close to the left center degenerates, and the supertube becomes a collection of parallel

branes. Again, the additional minima outside the 2-center range are connected to the ones inside

by a Mexican-hat-type potential around the respective center in the z − ρ plane.

The most interesting potentials arise when at least one of the two minima is non-

supersymmetric, as depicted in figure 6. These describe a metastable tube close to one

center that can decay to a stable tube close to the other center. The plots in figure 6 show

that the stable tube can be either supersymmetric or non-supersymmetric.

Note that near the metastable minimum the potential looks like a Mexican hat brim

that is very slightly tilted. This is hard to see from figure 6, and is shown in figure 7.

4 The decay of metastable supertubes

When the metastable supertube tunnels to the stable minimum, its quantized M2 charges

stay the same, but its effective M2 charges

Qeff
1 = Q1 + d3

K2

V
, Qeff

2 = Q2 + d3
K1

V
. (4.1)

change. Much like the decay of antibranes in backgrounds with charge dissolved in flux [2,

5], the decay of the metastable supertube can be understood as brane-flux annihilation.

However, since the supertube has multiple charges, and generically has a non-zero radius

both before and after the decay, the details are a bit more involved.

Recall that the solution has a non-trivial magnetic flux through the two-cycle between

the two GH points, given by

Π
(I)
12 =

1

4π

∫ r2

r1

dB(I) =
KI

V

∣∣∣∣
r2

− KI

V

∣∣∣∣
r1

. (4.2)

Since the supertube has a non-trivial d3 dipole charge which couples magnetically to B(3),

when the supertube sweeps out the two-cycle from the North Pole to the South Pole, the

amount of Π
(3)
12 flux on this two-cycle decreases by d3 units.
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(c) Contour Plot of 6(a) in a plane of fixed

polar angle around the symmetry axis (the

(z, ρ)-plane): darker colours mean lower en-

ergy, the color scales in the main figure and

the insets are not the same.
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(d) Contour Plot of 6(b) in the (z, ρ)-plane:

darker colours mean lower energy, the color

scales in the main figure and the insets are

not the same.

Figure 6. Metastable configurations. The supertube charges are given in the patch where there are

no Dirac strings at the left center (point “1”). At this center, the M2 charge of the background is

positive (Z > 0). When both charges are aligned with the background (left), the stable minimum is

supersymmetric. When at least one of the supertube charges has the wrong orientation, the lowest

minimum is non-supersymmetric.

Imagine now lowering from infinity a supertube to the metastable minimum. If this

minimum is, say, near the North Pole, in order to bring the supertube “into position” we

need to work in a patch where there is no Dirac string at this pole. The change of patch

in supergravity is realized by a gauge transformation [11, 52], which transforms the eight

harmonic functions via

V → V , LI → LI − CIJKγJKK − 1

2
CIJKγ

JγKV , (4.3)

KI → KI + γIV , M →M − 1
2γ

ILI +
1

12
CIJK

(
V γIγJγK + 3γIγJKK

)
,
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Figure 7. Two consecutives zooms on the minimum near z = 60 with Q1 = 6, Q2 = 2 of figure 6(c),

shows the “Mexican-hat” type potential, which is slightly tilted to the left. (Darker colours mean

lower energy.) The actual metastable minimum lies between the two centers on the symmetry axis.

where γI are constants, but leaves the warp factors, rotation vector and field strengths

invariant. To reach a patch where there are no Dirac strings at the point i, one has to

perform a gauge transformation such that the value of KI/V at this point is zero, or

alternatively KI has no pole. It is not hard to see that to go from a patch where there are

no Dirac strings at point i to a patch where there are no Dirac strings at the point j, the

gauge transformation parameters γI have to be equal to the flux between the two centers:

γIij =
KI

V

∣∣∣∣
ri

− KI

V

∣∣∣∣
rj

= −Π
(I)
ij . (4.4)

Thus, when changing patch, in order to make sure that one is describing the same

supertube, (with the same radius and energy), the effective supertube charges have to stay

the same. Hence the quantized charges have to shift by

Q1,j = Q1,i + d3 γ
2
ij = Q1,i − d3Π

(2)
ij ,

Q2,j = Q2,i + d3 γ
1
ij = Q2,i − d3Π

(1)
ij , (4.5)

where we have denoted by Q1,i and Q2,i the charges of the supertube in the patch where

there are no Dirac strings at the point i. Note that for supersymmetric minima, the super-

gravity “GH charges” of the backreacted supertubes are equal to the quantized charges [46],

and the shift of the quantized charges when one changes patch is the same as the shift of

the GH charges under the gauge transformation (4.3).

To summarize this discussion, in order to describe the dynamics and vacuum structure

of a supertube, one has to work in a fixed patch (in the examples above we have chosen

the one where there are no Dirac strings at the point “1”). However, to understand the

physics of a supertube minimum near one of the poles one has to change to a patch where

there are no Dirac strings at that pole.

Armed with the understanding of how to change patches, we are now ready to explain

how metastable supertubes decay. Let us first discuss the example where the metastable

supertube decays to a degenerate supersymmetric minimum, illustrated in figure (9). In
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the patch with no Dirac strings at the point “2”, the zero-radius supertube wraps the Dirac

string at point “1”. Hence, this tube is non-contractible (cannot be taken away). In order

to reveal that the zero-radius supertube is a bunch of parallel branes, one has to go to the

patch with no Dirac strings at point “1”, and the charges of the branes will shift as in (4.5).

These supersymmetric branes are now parallel to the background, and can be taken away

to infinity.

So in the gedanken experiment of lowering the supertube into position at the metastable

minimum, having it decay to the supersymmetric minimum and taking the decay products

back to infinity, the charge difference between the initial and the final probe branes is

∆Q1 = −d3Π
(2)
12 , ∆Q2 = −d3Π

(1)
12 , (4.6)

Furthermore, as we have explained above, when the supertube sweeps out the two-

cycle between the points “i” and “j” it lowers the Π(3) flux of the background by d3 units.

Hence, the charges of the background, which come entirely from the magnetic fluxes

Qbg
1 = Π

(2)
12 Π

(3)
12 Qbg

2 = Π
(1)
12 Π

(3)
12 (4.7)

are lowered by exactly the amount in (4.6). The net result of this process is that the

negative charges of the metastable tube have annihilated against the positive charges dis-

solved in flux.

On can repeat the same gedanken experiment with a metastable supertube that decays

into a non-degenerate minimum: to take away the decay product one needs again to change

patch, and thus shift the charges of the supertube as in (4.6). The change in charges of

the tube is again compensated by a change in the fluxes, which reduces the charges of the

background by the same amount.

5 Discussion and future directions

We have computed the Hamiltonian of supertubes in three-charge supersymmetric solu-

tions with a Gibbons-Hawking base space, and found that this Hamiltonian can have

both supersymmetric and non-supersymmetric minima. In the non-supersymmetric min-

ima one or both of the effective charges of the supertube are oriented opposite to the

background charges.

We have then focused on a specific two-center smooth solution, and found that a

probe supertube can have also metastable minima, which decay into both supersymmetric

and non-supersymmetric stable minima. We have then shown that during the decay, the

supertube charges are either partially or totally annihilated against the charges dissolved

in flux, much like it happens in other antibrane probe constructions [2, 5].

Although we have only illustrated the existence of metastable vacua for a very specific

example, we believe it is a generic phenomenon that can occur in all multi-center three-

charge backgrounds, and in particular in the smooth solutions with long throats that

give microstates of three-charge extremal supersymmetric black holes in five dimensions.

The resulting metastable configurations should then represent microstates of non-extremal
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Figure 8. Illustration of the tunneling process. Supertubes are depicted as red circles wrapping

the Gibbons-Hawking fiber ψ. A metastable supertube close to one center can tunnel to a stable

supertube close to the other center, reducing in the process the flux on the two-cycle between these

two centers.
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Figure 9. A metastable minimum and a degenerate supersymmetric at the center on the left. The

white region in the contour plot on the right is an artifact of the choice of range for the contour

plot; see the insets for a complete picture. The color scales in the insets and main contour plot

are different.
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black holes. It would be interesting to extend our proof-of-concept analysis to such more

complicated backgrounds, and to argue that the fuzzballs of extremal black holes survive

off-extremality.

Of course, to fully run this argument, and to understand the properties of non-extremal

microstates in the same regime of parameters where the classical black hole exists, one

would need to calculate the backreaction of the metastable supertubes, at least to first

order. One might argue by analogy with other antibrane backreaction calculations [6–

10] that this may completely wreck the structure of the solution. One counter-argument

might be that because our solutions are asymptotically flat, they will be less susceptible

to backreaction problems.

The calculation of the backreacted solution would also reveal whether the non-extremal

microstates obtained from metastable supertubes have ergospheres, as one expects [53] from

the JMaRT solution [29], or have other, more surprising properties.8 The existence of an

ergosphere would reveal an additional decay channel, on top of our tunneling instability

which is related to Hawking radiation.

The other possible issue is that supertube backreaction in a microstate solution with

a long throat will drive the throat to become longer, and will cause the fuzzball to collapse

behind a horizon. If this happens to the generic microstate, this would imply that the

singularity of non-extremal black holes is resolved by configurations that have at least an

outer horizon. It is clearly very important to understand the fate of these configurations

and whether or not they help to solve the information paradox.
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A Three-charge solutions

A.1 Three charge solutions in M-theory and type IIA duality frames

A.1.1 M-theory solution

We begin by reviewing supersymmetric three-charge solutions in the eleven-dimensional

“M-theory” duality frame in which the three asymptotic charges of the solution come from

8One might think that one can obtain a good estimate for the size of an ergoregion already in the

probe approximation. However, the results of [6–10] indicate that anti-brane backreaction can affect a large

region of spacetime around the antibranes, and the size of that region cannot be computed by the probe

approximation.
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M2 branes wrapped on three orthogonal T 2’s inside an internal T 6 [42]. The ansatz for the

metric and three-form is:

ds2
11 = −Z−2(dt+ k)2 + Z ds2

4 + Z

3∑
I=1

ds2
I

ZI
, (A.1)

A3 ≡
3∑
I=1

A(I) ∧ dTI =
3∑
I=1

(
−Z−1

I (dt+ k) +B(I)
)
∧ dTI , (A.2)

where Z = (Z1Z2Z3)1/3, ds2
I and dTI are, respectively, a unit metric and unit volume form

on the three T 2’s and ds2
4 is a four-dimensional hyper-Kähler metric. The one-form k is

supported on this four-dimensional base space and all functions appearing in the solution

only depend on the base coordinates. Note that the ansatz for the gauge fields relates the

warp functions ZI appearing in the metric to the electric potentials, the B(I) are magnetic

fields on the hyper-Kähler base.

We are interested in solutions whose four-dimensional base is with Gibbons-Hawking

(GH) or multi-center Taub-NUT

ds2
4 = V −1(dψ +A)2 + V ds2

3 , ?3dA = −dV, (A.3)

where V is a harmonic function and ds3 is the flat metric on R3. Solutions with a GH base

have a natural interpretation upon KK reduction along the GH fibre ψ (see below), and

many supersymmetric bubbling solutions can be constructed [48–50], for a review see [11].

See figure 2 for a cartoon of a bubbling geometry.

The most general supersymmetric 3-charge bubbling solution is determined by 8 har-

monic functions (V,KI , L
I ,M) on R3 which can have an arbitrary number, n, of sources:9

V = v0 +

n∑
i=1

vi
ri
, M = m0 +

n∑
i=1

m0,i

ri
,

KI = kI0 +

n∑
i=1

kIi
ri
, LI = `I,0 +

n∑
i=1

`I,i
ri

,

(A.5)

with the ith source sitting at position ~ri. For the interpretation of (v, kI ; lI ,m) as IIA

brane charges, see table 1.

The warp factors and magnetic fields of a supersymmetric solution are:

BI = V −1KI(dψ +A) + ξI , dξI = − ?3 dK
I (A.6)

ZI = LI +
1

2
CIJKV

−1KJKK (A.7)

9We follow the notation of the eleven-dimensional solution of [42]. To make contact to Denef’s multi-

center solutions in four dimensions [37, 38, 54], the dictionary is

V = −
√

2H0 , KI = −
√

2HI , LI =
√

2HI , M =
1√
2
H0 . (A.4)
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where CIJK = |εIJK |. The angular momentum one-form k has the form:10

k = µ(dψ +A) + ω, (A.8)

µ =
1

6
V −2CIJKK

IKJKK +
1

2
V −1KILI +M. (A.9)

A.1.2 Two reductions to type-IIA, and their charge interpretatins

A solution of the form presented above, carries eight types of charges. Six are brane charges

in eleven dimensions corresponding to three types of M2 branes, wrapped on three mutually

orthogonal T 2’s inside T 6 (and smeared in the other directions) and three types of M5

branes, wrapped on the dual 4-cycles inside T 6 and having one worldvolume direction inside

the hyper-Kähler base. When this base is Gibbons-Hawking, and the M2 and M5 branes

respect the GH isometry, one can define two additional ‘geometric’ charges: (angular)

momentum along the GH fiber ψ, (controlled by the harmonic function M , and Kaluza-

Klein monopole charge (controlled by the harmonic function V ).

When the GH harmonic function V asymptotes to a constant, the GH space becomes

multi-center Taub-NUT, which is asymptotically R3×S1. Upon KK reduction along the S1

the 11-dimensional supergravity solution becomes a four-dimensional CY or torus compact-

ification of type IIA string theory, and the eight charges of the five-dimensional geometry

become asymptotic electric and magnetic charges in four dimensions.

For convenience, in table 1 we list the interpretation of the eight M-theory charges

upon the ‘standard’ reduction to IIA along the GH coordinate ψ, and in an alternative

reduction to IIA, over one of the torus directions. The latter, which we call the IIA′ frame,

is the one we will use in the computation of the supertube Hamiltonian.

A.2 Physical conditions

There are several consistency conditions GH solutions have to satisfy which translate in

part to constraints on the eight constants in the harmonic functions. Fixing the asymp-

totics of the metric and gauge field further constrains those constants. We also require

a physical solution to be free of closed timelike curves (CTC’s), by demanding that the

metric component gϕϕ ≥ 0 for any periodically identified direction ϕ. If we furthermore

impose that the solution has to be smooth, this puts severe restrictions on the allowed

set of charges and gives an extra no-CTC condition. We summarize this conditions in the

following. (See [11] for a complete discussion.)

Physical conditions for stable multi-center configurations:

• Absence of CTC’s requires:

Z1Z2Z3V − µ2V 2 ≥ 0 , V ZI ≥ 0 . (A.10)

10The rotation vector ω is a solution to ?3dω = 〈H, dH〉 where 〈·, ·〉 is the antisymmetric symplectic inner

product and H the vector of harmonic functions as defined through (A.4). We do not need the form of ω

in the rest of this paper.
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Charge M theory IIA: M/Sψ IIA′: M/S1

V → vi KKm D6 KKm

KI → k1
i M5 D4 NS5

k2
i M5 D4 NS5

k3
i M5 D4 D4

LI → l1,i M2 D2 F1

l2,i M2 D2 D2

l3,i M2 D2 D2

M → mi Pψ D0 Pψ

Table 1. Interpretation in the M-theory and two IIA frames we use of the eight charges corre-

sponding to the eight harmonic functions V,KI , LI ,M . Sψ denotes the GH circle with coordinate

ψ, S1 one of the directions of torus T1 and Pψ stands for momentum along the ψ circle (spacetime

angular momentum).

The first condition follows from positivity of gψψ, the second set is equivalent to

having both the polar angle in the three-dimensional base and the T 6 directions not

to be timelike.11

• To have a smooth geometry, the warp factors and the function µ appearing in the

angular momentum one-form k must be regular as ri → 0.

This leaves only 4 out of the 8 charges at each center to be independent. In particular,

one finds the relations

lI,i = −1
2CIJK

kJi k
K
i

vi
, mi =

1

2

k1
i k

2
i k

3
i

q2
i

∀i (no sum) . (A.11)

• For such a smooth solution, there is a further restriction to ensure absence of CTC’s.

From the first condition in (A.10), namely Z1Z2Z3V − µ2V 2 ≥ 0, one notices that µ

has to vanish at each center, since for ri → 0 the ZI ’s tend to finite values while V −1

goes to zero:

µ|ri=0 = 0 . (A.12)

By explicitly performing the expansion around each center ~ri, the latter condition

gives N − 1 so-called bubble equations [11, 48, 49]12 . They relate the magnetic

flux (coming from dBI) through each bubble to the physical size of each bubble,

determined by the inter-center distances rij .

11The sufficient no-CTC condition, which insures the existence of a time function is Z1Z2Z3V − µ2V 2 ≥
ω2 [49].

12In more general solutions [37, 38, 54] these equations come from imposing that ω should have no

Dirac-Misner strings at the centers, but in smooth backgrounds this is equivalent to (A.12).
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Charge M theory IIA: M/Sψ IIA′: M/S6

d3 M5 D4 D4

Q1 M2 D2 F1

Q2 M2 D2 D2

J Jψ D0 Jψ

Table 2. Brane interpretation of the two-charge supertube in a three-charge background. The

fourth charge J is related to the others by |Q1Q2| = |Jd3|. Jψ denotes (angular) momentum along

the GH circle Sψ.

Depending on the asymptotics, more constraints need to be imposed on the constants

v0, k
I
0, `I,0,m0. For example, asymptotically R4,1 solutions must have v0 = 0 and ZI → 1

at spatial infinity, while asymptotically Taub-NUT solutions have v0 6= 0.

B Hamiltonian for a two-charge tube in a three-charge background

We want to describe two-charge supertubes in three-charge geometries. In the M-theory

frame, the two charges of the supertube, Q1 and Q2, correspond to M2 branes wrapped on

the two-tori T1 and T2 within the T 6. We study whether there are tubular configurations

where the two sets of M2 branes blow up into an M5 brane along the GH direction ψ. We

denote this tube as M2-M2 → M5. The method is to write down the Lagrangian (consisting

of a Born-Infeld and Wess-Zumino contribution) of an M5 brane with the lower-dimensional

charges (corresponding to the two M2 branes) and search for stable configurations. This is

done by looking for supersymmetric and non-supersymmetric (meta)stable minima in the

Hamiltonian which is obtained from the Lagrangian by a Legendre transform.

Since the M5 brane worldvolume Lagrangian is rather involved [55], we choose to go

to a frame that is more amenable to calculations. In particular, we reduce over one of

the torus directions, such that the supertube charges are D2 branes and F1 strings that

blow up into a D4 brane, and we will denote it henceforth as a “D2-F1 → D4” supertube.

This configuration is analogous (can be seen by two T-dualities) to the original supertube

D0-F1→ D2 [40, 41]: our D2’s couple to the magnetic Born-Infeld flux and the F1’s to the

electric one. For this setup, we know perfectly well how to obtain the Hamiltonian. For a

relation of the charges in the M-theory frame to that in the IIA frame, see table 2.

B.1 Reduction of the background along a torus direction

We work in the IIA′ duality frame of table 1. In the string frame, the NS-NS fields are [46]:

ds2
IIA,st = −(Z2Z3)−1/2Z−1

1 (dt+ k)2 + (Z2Z3)1/2ds2
4 (B.1)

+

(
Z1Z3

Z2
1

)1/2

dz2 + (Z2/Z3)1/2 ds2
2 + (Z3/Z2)1/2ds2

3 (B.2)

B2 = A(3) ∧ dx5 (B.3)

e4Φ =
Z1Z2

Z2
3

(B.4)
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In the RR sector, the non-trivial fields are C3 and C5. We only list the components we

need for computing the supertube Lagrangian:

C3 = −
[
(Z−1

2 − 1)dt+

(
K2

V
− µ

Z2

)
dψ

]
∧ dT2

C5 = −
[
K2

V Z1
+

(
K1

V
− µ

Z1

)]
dt ∧ dψ ∧ dz ∧ dT2 . (B.5)

B.2 Gibbons-Hawking hamiltonian

We consider F1-D2→ D4 tubes with the D4 worldvolume embedding given as

t = σ0, ψ = σ1, z = σ2 , (B.6)

and σ3, σ4 along the torus T 2.

The Lagrangian is

L = −ND4TD4

∫ √
g +B2 + F2 +ND4TD4

∫
(C5 + (B2 + F2) ∧ C3) , (B.7)

where F2 = 2πα′F2 and F2 is the induced abelian 2-form field strenght on the D4 world-

volume. The lower-dimensional brane charges are introduced by the worldvolume flux

F2 = Edσ0 ∧ dσ2 + Bdσ3 ∧ dσ4 (B.8)

The electric field E sources IIA string charge along z, while the magnetic field B induces

D2 brane charge along the torus T 2. The supertube Lagrangian (density) becomes

L = − d3

Z1V

√
[K3 + V (B − µ(1− E))]2 + V Z1Z2(1− E)(2− Z3(1− E))

+

(
1

Z1
− 1

)
d3B +

d3K
2

V Z1
+ d3

(
µ

Z1
+
K1

V

)
(1− E) , (B.9)

with the D4 dipole charge d3 = ND4TD4. This Lagrangian was obtained in a different

duality frame in [46] for d3 = 1. The Hamiltonian is obtained by the Legendre transform

of L with respect to the electric field E ,

H = ΠEE − L, (B.10)

where ΠE = δL
δE is the momentum conjugate to E .

After quite some algebra, one finds the Hamiltonian in terms of the F1 and D2 charges,

Q1 = ΠE and Q2 = d3B, and D4 dipole charge d3

H =

√
Z1Z2Z3V 3

d3(Z1Z2Z3V − µ2V 2)

√
Q̃2

1 + d2
3

Z1Z2Z3V − µ2V 2

Z2
2V

2

√
Q̃2

2 + d2
3

Z1Z2Z3V − µ2V 2

Z2
1V

2

+
µV 2

d3(Z1Z2Z3V − µ2V 2)
Q̃1Q̃2 −

1

Z1
Q̃1 −

1

Z2
Q̃2 −

d3µ

Z1Z2
+Q1 +Q2 ,

(B.11)

where we denote Q̃1 ≡ Q1 + d3(K2/V − µ/Z2) and analogous for (1↔ 2) .
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