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Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy
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by two dimensionless parameters, both depending on the ’t Hooft coupling λh at the scale

set by the temperature T : ǫh ∼ λhNf/Nc, weighting the backreaction of the flavor fields

and δ̃ ∼ λ
−1/2
h nb/(NfT

3), where nb is the baryon density. For small values of these two

parameters the solution is given analytically up to second order. We study the thermody-

namics of the system in the canonical and grand-canonical ensembles. We then analyze the

energy loss of partons moving through the plasma, computing the jet quenching parameter

and studying its dependence on the baryon density. Finally, we analyze certain “optical”

properties of the plasma. The whole setup is generalized to non abelian strongly coupled

plasmas engineered on D3-D7 systems with D3-branes placed at the tip of a generic singu-

lar Calabi-Yau cone. In all the cases, fundamental matter fields are introduced by means

of homogeneously smeared D7-branes and the flavor symmetry group is thus a product of

abelian factors.
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1 Introduction and summary

Heavy ion collision experiments at RHIC and LHC allow us to explore a relevant corner of

the QCD phase diagram (high temperature and relatively small baryon chemical potential),

where the theory is expected to be deconfined. Both the results collected during the ten-

year run of RHIC [1–4] and the preliminary ones at LHC [5–7] actually indicate that a

quark-gluon “fireball” is formed and behaves like a strongly coupled system: a liquid with

very small viscosity over entropy density ratio. Holographic methods provide interesting

tools to analyze these kind of systems. The simplest and best studied example is the

conformal N = 4 SYM plasma which, unexpectedly, has proven to share some properties

with the QCD one. This fact has stimulated further research works with the aim of refining

this master holographic model, for example by adding fundamental matter fields. The latter

has been performed mainly in the quenched approximation.

In [8] some of the authors have presented a ten dimensional black-hole solution dual

to the non conformal plasma of N = 4 SYM coupled to Nf ≫ 1 massless flavors.1 The

latter were introduced by means of homogeneously smeared D7-branes [11–13], extended

1All the hydrodynamic transport coefficients of the model were derived in [9, 10].
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along the radial direction up to the black hole horizon. The smearing reduces the flavor

symmetry group to a product of abelian factors and allows a simple way to account for the

backreaction of the D7-branes and thus to explore the “unquenched” regime in the dual

field theory.2 The analysis was also generalized to N = 1 non abelian plasmas engineered

on D3-D7 systems with D3-branes placed at the tip of a generic singular Calabi-Yau cone.

In the zero temperature limit, the resulting backgrounds coincide with those found in [28].3

In the present paper we extend the above construction to include a finite baryon density

(or chemical potential, in the alternative thermodynamical ensemble) for the flavor fields.

Working on this problem with holographic techniques is especially interesting, taking also

into account that there is no systematic way of dealing with finite baryon density in strongly

coupled QCD (lattice QCD suffering from the so-called sign problem).

We provide a novel gravity solution, dual to the above class of flavored plasmas in

the planar limit at strong ’t Hooft coupling. While the equations of motion we derive are

completely general, the solution can be given in closed analytic form up to second order

in ǫh ∼ λhNf/Nc (where λh is the ’t Hooft coupling at the temperature T of the plasma)

and δ̃ ∼ λ
−1/2
h nb/(NfT

3), where nb is the baryon density. The gauge theories we focus

on become pathological at some UV scale, developing a Landau pole. This is signaled,

for example, by a running dilaton (accounting for the breaking of conformal invariance

induced by the flavor fields) blowing up at a finite radial value. Correspondingly, the dual

gravity solutions are not reliable close to that scale. Keeping ǫh small allows both to focus

on a regime where the solutions are reliable and to decouple the IR physics — which is the

regime we focus on — from the pathological UV behavior.

We also consider the regime of non-large baryon density, δ̃ ≪ 1, both because it is

the relevant regime for the RHIC and LHC experiments and because it allows to derive an

analytic solution. Exploring the δ̃ ∼ 1 regime requires a numerical analysis, that we plan

to provide in the near future.

The main results and the outline of the paper are as follows. In section 2 we present the

action and the ansatz for the D3-D7 setup at finite baryon density. A set of second order

differential equations is given in terms of the functions of the radial variable appearing in

the ansatz. In section 3 we solve the equations analytically, in a perturbative expansion in

ǫh and δ̃ up to second order in both parameters. In section 4 we perform the study of the

thermodynamics of the system in the canonical and grand-canonical ensembles, checking

the (non-trivial) closure of the various thermodynamic relations. We then explore the

effects of the baryon number density on the energy loss of probes through the plasma, in

particular on the jet quenching parameter. While the overall effect of flavors is to enhance

the jet quenching [8], the effect of finite baryon density depends on the specific choice of

comparison scheme of different theories. We finally provide some considerations on certain

“optical” properties of the plasma, thinking about the possible gauging of the global U(1).

Section 5 contains some concluding remarks. We also provide an appendix with some

details on the ten-dimensional action, the equations of motion, the Bianchi identities and

their solutions.
2For other holographic studies of thermal unquenched flavors, see [14–27].
3Other solutions employing the smearing technique appear in [29–53].
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The backgrounds we provide correspond to charged black holes in (slightly deformed)

AdS, the charge being dual to a finite baryon density. The regime of validity is completely

specified and the solution is totally reliable in that regime — there are no uncontrolled

approximations. It is the first solution of this kind in the literature and thus it is suitable

for the study of a number of physical effects of the baryon density. We hope to explore

further the physics of this system in the future.

2 Ansatz and effective Lagrangian

The field theories we focus on are realized on the 4d intersection of Nc “color” D3 and

Nf homogeneously smeared “flavor” D7-branes. The D3-branes are placed at the tip of a

Calabi-Yau (CY) cone over a Sasaki-Einstein manifold X5, the latter being a U(1) fiber

bundle over a four dimensional Kähler-Einstein (KE) base. The ambient spacetime, a

product of 4d Minkowski and the CY cone, will be deformed by the backreaction of both

kind of branes which respectively source a (self dual) F5 and a F1 RR field. As a result the

10d metric will be in the form of a warped product and there will be a running dilaton.

Moreover, the backreaction of the D7-branes will induce a squashing between the KE base

of the Sasaki-Einstein manifold and the fibration [28].

Finite temperature is realized by placing a black hole in the center of the back-

ground [8]. The D7-branes extend along the radial direction up to the black hole horizon.

Their embedding is described by a constant profile, implementing massless flavor fields in

the dual gauge theories. In this work we are interested in switching on a chemical poten-

tial for the U(1)B baryon symmetry, which is the diagonal subgroup of the U(1)Nf flavor

symmetry group left over by the smearing of the D7-branes.4 The dual picture involves

a non-vanishing profile for the temporal component At of the worldvolume gauge field on

the D7-branes [54, 55]. Through the Chern-Simons coupling, this field can source F3 and

H3 form fields.

All in all we will be dealing with a general type IIB action given, in Einstein frame, by

S =
1

2κ2
10

[

∫

d10x
√−g

(

R− 1

2
(∂Φ)2 − e−Φ

2
H2

3 − e2Φ

2
F 2

1 − eΦ

2
F 2

3 − 1

4
F 2

5

)

−
∫

C4 ∧H3 ∧ F3

]

+ Sfl , (2.1)

where

Sfl = −T7

Nf
∑

∫

D7
d8χ eΦ

√

− det(ĝ + e−Φ/2F) + µ7

Nf
∑

∫

D7
Ĉq ∧

(

e−F
)

8−q
(2.2)

4The fundamental fields introduced by means of the D7-branes and the baryonic composites they can

form, are thus charged under U(1)B . Moreover, in the generic case we analyze, the vacuum turns out to be

charged through a net baryon density, both in the canonical and the grand-canonical ensemble. Fields and

composites of the original unflavored models are, of course, uncharged under this U(1)B .
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is the contribution of the flavor D7-branes. The gravitational constant and D7-brane

tension and charge are, in terms of string parameters

1

2κ2
10

=
T7

gs
=
µ7

gs
=

1

(2π)7g2
sα

′4
. (2.3)

The smearing procedure [11, 12] amounts to a replacement

Nf
∑

∫

D7
X8 →

∫

M10

X8 ∧ Ω2 , (2.4)

for any form X8 defined on the brane worldvolume.5 Here Ω2 is a form orthogonal to

the individual location of the D7-branes. For an arbitrary Sasaki-Einstein space X5, it is

proportional to the Kähler form JKE of the Kähler-Einstein 4d basis [28]

gsΩ2 = −2QfJKE . (2.5)

For massless flavors, Qf is a constant encoding the density of D7-branes in the relative

quotient space X5/X3 with X3 the subspace wrapped by each of the branes

Qf =
Vol(X3)gsNf

4Vol(X5)
. (2.6)

The equations of motion and Bianchi identities that follow from the action (2.1), (2.2) are

given in appendix A.

Concerning the metric, we will consider the following ansatz, which includes a family

of generalized squashed Sasaki-Einstein manifolds

ds210 = h−1/2[−b dt2 + dxidxi] + h1/2[bS8F 2dσ2 + S2ds2KE + F 2(dτ +AKE)2] , (2.7)

where the Kähler two-form of the four dimensional base is given in terms of the connection

one-form as JKE = dAKE/2. The ansatz (2.7) contains two squashing functions F (σ)

and S(σ) (with dimension of length), whose quotient F/S parameterizes the effect of the

flavor backreaction. The dimensionless functions h(σ) and b(σ) account for the warping

and the blackening of the spacetime, respectively. Thus, in particular, an ansatz with

b = 1 is appropriate for the zero-temperature, uncharged solution. We have used the

invariance under diffeomorphisms to choose a convenient holographic radial direction, σ

(with dimension of length−4), and as we will see, σ → −∞ (0) in the IR (UV). Given the

smearing procedure (2.4) all the functions in our ansatz depend only on the radial variable.

The finite baryon density is dual to a nontrivial worldvolume U(1) gauge field,

F = 2πα′A′
t(σ) dσ ∧ dt . (2.8)

A consistent ansatz for the other fields is

Φ = Φ(σ) , B2 = 0 , F1 = Qf (dτ +AKE) , F5 = Qc(1 + ∗)V(X5) , (2.9)

F3 = F123dx
1 ∧ dx2 ∧ dx3 − J ′e−Φ

S4F 2
dt ∧ Ω2 + 8QfJe

−ΦbF 2 dt ∧ dσ ∧ (dτ +AKE) . (2.10)

5The smearing of the DBI part of the flavor branes is described at length in [28].
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In these expressions, V(X5) is the volume form of X5, Qc is proportional to the number

of colors

Qc =
(2π)4gsα

′2Nc

Vol(X5)
, (2.11)

F123 is a constant (of dimension length−1) which we will show to be related to the baryon

density, whereas J = J(σ) is a function (of dimension length3) that describes the effects of

the backreaction;6 its contribution is dictated by the C6 potential

C6 = J(σ) dx1 ∧ dx2 ∧ dx3 ∧ (dτ +AKE) ∧ Ω2 , (2.12)

which is the natural D5 charge sourced on the world-volume of the D7-branes by the gauge

field through the last term in (2.2).7 In [56] the system without backreacting flavors was

studied, and an ansatz for F3 was used that only contained the piece proportional to F123.

However, for our equations of motion to be consistent, we need the presence of the other

components; thus, we see that J(σ) naturally contains the effects of the backreaction of

the flavors.

Inserting the whole ansatz into the 10d equations of motion and Bianchi identities one

finally arrives at a system of equations which the reader can find in formulas (A.13)–(A.19).

It is possible to describe the whole system in terms of an effective one-dimensional action

from which the equations of motion can be derived

S =
Vol(X5)V1,3

2κ2
10

∫

L1Ddσ , (2.13)

where V1,3 denotes the (infinite) integral over the Minkowski coordinates, and

L1D = −1

2
(log′ h)2 + 12(log′ S)2 + 8 log′ F log′ S − 1

2
Φ′2

+
log′ b

2

(

log′ h+ 8 log′ S + 2 log′ F
)

− 4Q2
f

J ′2

F 2S4
(2.14)

−bQ
2
c

2h2
− 4bF 4S4 + 24bF 2S6 − 1

2
F 2

123e
Φbh2F 2S8 − 1

2
Q2

fe
2ΦbS8

−4eΦ/2FQfS
2
√

−(2πα′A′
t)

2 + eΦb2F 2S8 − 32Q2
fe

−ΦbF 2J2 − 8Q2
f (2πα′A′

t)J .

The constraint equation (A.20) is the zero energy condition H = 0 for the Hamiltonian

H = −L1D +
∑

i

ψ′
i

dL1D

dψ′
i

, ψi = {b, h, F, S,Φ, At, J} . (2.15)

Since the gauge field At enters only through its derivative it leads to a “constant of motion”.

In principle this is a new free parameter which is related to the charge density. However

the equations of motion link this to the value of F123 in the ansatz for F3 in (2.9) as we

now show. Let us fix this constant of motion as follows

∂L1D

∂A′
t

≡ 2πα′QcF123 . (2.16)

6Obviously, J(σ) 6= JKE .

7Notice that, with the smearing,
X

Nf

Z

M8

Ĉ6 ∧ F →
Z

M10

C6 ∧ F ∧ Ω2.
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Solving for A′
t it gives

2πα′A′
t =

(QcF123 + 8Q2
fJ)bFS4

√

16Q2
fF

2S4 + e−Φ(QcF123 + 8Q2
fJ)2

. (2.17)

Exactly the same expression is obtained from the equation of motion for the form field H3

(see eq. (A.13)). Thus, by enforcing the integration constant as in (2.16) for consistency,

we are putting the system partially on shell. On the other hand, this obscures the anal-

ysis when it comes to computing the thermodynamical potentials holographically, since it

means that the canonical momentum conjugate to A′
t was already present in the original

Lagrangian. We will comment on this later on.

It is natural to use equation (2.17) to eliminate A′
t in favor of F123 and this is usually

done in one of two ways: obtaining the equations of motion from (2.14) and then imposing

eq. (2.17), or else, performing a Legendre transformation to the Lagrangian

L̃1D = L1D − δL1D

δA′
t

A′
t

∣

∣

∣

∣

∣

A′
t=A′

t(F123)

, (2.18)

and then taking the Euler-Lagrange equations from the transformed action. Either way

the equations of motion coincide and are given by (A.13)–(A.19) in appendix A.

3 The perturbative solution

In the uncharged case A′
t = F123 = J = 0, the following exact solutions for the functions b

and h are readily found [8]: b = e4r4
0σ, h = Qc(1 − e4r4

0σ)/(4r40), where r0 is an integration

constant of dimension of length. The black hole horizon is at σ → −∞ and the extremal

limit is reached sending r0 → 0. In terms of a more standard radial coordinate r, defined

in such a way that h = R4/r4 with R4 = Qc/4, one gets b = 1− (r0/r)
4 precisely as for the

unflavored AdS5 black hole. The horizon radius rh = r0 is related to the temperature of

the black hole. The whole solution in [8] also depends on the dimensionless combination

ǫ = Qfe
Φ, which weighs the backreaction of the D7-branes and, in fact, can be read as a

flavor-loop counting parameter in the dual field theory.

Now, ǫ runs as the dilaton and thus (as a common feature of backreacted D3-D7 setups)

it blows up at a finite scale rLP (corresponding to a UV Landau pole in the dual field

theory), rendering the supergravity approximation not reliable. Keeping ǫ small requires

restricting the validity range of our solution up to an arbitrary cutoff r∗ ≪ rLP , such that

ǫ∗ = Qfe
Φ∗ =

Vol(X3)

16πVol(X5)
λ∗
Nf

Nc
≪ 1 , (3.1)

where λ∗ = 4πgse
Φ∗Nc ≫ 1, Nc, Nf ≫ 1, Φ∗ = Φ(r∗) and we have used (2.11).8 In

8Placing a cutoff in the radial direction does not imply that we are considering a compactified version

of our model, which would imply a coupling with 4d gravity and a gauging of the flavor symmetry group.

The point is that we do not really have a finite volume smooth internal space, but we place ”artificially”

a cutoff in a geometry that we do not control in the UV (the dilaton diverges). The correct treatment of

the boundary conditions and the status of the holographic dictionary in holographic duals of effective field

theories is by itself a very interesting line of research that is so far poorly developed.
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the uncharged case [8], this condition was used to find an analytic perturbative solution,

up to order ǫ2∗, for the remaining functions S,F,Φ appearing in the ansatz. The related

integration constants were fixed requiring regularity at the horizon and matching with

the T = 0 solution [28] at the UV cutoff r∗. The resulting functions thus contained the

dimensional (resp. dimensionless) parameters rh, r∗ (resp. ǫ∗). The UV cutoff dependent

terms resulted to be of the form of both power-like and logarithmic corrections. Formally

sending the arbitrary cutoff scale r∗ to infinity, the first kind of corrections drops out, while

the second kind can be handled taking into account that the function ǫ has a logarithmic

running (accounting for the breaking of conformal invariance induced at the quantum level

by the massless flavors) such that

ǫh ≡ Qfe
Φ(rh) = ǫ∗

(

1 + ǫ∗ log
rh
r∗

)

+ O(ǫ3∗) . (3.2)

This procedure allows to decouple the IR physics from the UV one and to write down a

set of solutions containing just rh and ǫh as parameters.

In the present charged case, we are going to follow the very same procedure. Here we

have a further parameter to deal with: we will call it δ̃, and we will show that it is related

to the dimensionless combination of temperature and baryon chemical potential (or charge

density, depending on the thermodynamical ensemble). We will then derive an analytical

perturbative solution taking both ǫ∗ and δ̃ to be much smaller than one, deforming the

finite temperature flavor backreacted solution obtained in [8].

As a first step, let us introduce a dimensional parameter δ and consider the following

redefinitions

F123 = δ

√

ǫ∗Qf

Qc
, J(σ) = δ

ǫ
3/2
∗

Q
3/2
f

J̃(σ) . (3.3)

The reason behind this choice will be clear in a moment. Inserting these expressions

into (A.14)–(A.19) and rewriting the dilaton as Φ(σ) = Φ∗ + φ(σ), with φ(σ∗) = 0, one

readily arrives at the following system of equations

(log b)′′ = 4 ǫ∗δ
2 X

Y
+ 64 ǫ2∗δ

2 e−φ bF 2J̃2 + 8 ǫ2∗δ
2 e−φ J̃ ′2

F 2S4
+ ǫ2∗δ

2 Z ,

(log h)′′ = −Q2
c

b

h2
+ 2 ǫ∗δ

2 X

Y
+ 32 ǫ2∗δ

2 e−φ bF 2J̃2 + 4 ǫ2∗δ
2 e−φ J̃ ′2

F 2S4
+ ǫ2∗δ

2 3

2
Z ,

(log S)′′ = −2bF 4S4 + 6bF 2S6 − ǫ∗ e
3φ/2 b

2F 3S10

Y
− 16 ǫ2∗δ

2 e−φ bF 2J̃2 − ǫ2∗δ
2 1

4
Z ,

(logF )′′ = 4bF 4S4 − 1

2
ǫ2∗e

2φbS8−ǫ∗δ2
X

Y
+16ǫ2∗δ

2e−φbF 2J̃2−2ǫ2∗δ
2e−φ J̃ ′2

F 2S4
−ǫ2∗δ2

1

4
Z ,

(φ)′′ = ǫ2∗e
2φ bS8 + 2 ǫ∗ e

3φ/2 b
2F 3S10

Y
+ 2 ǫ∗ e

φ/2FS2Y − 32 ǫ2∗δ
2 e−φ bF 2J̃2

−4 ǫ2∗δ
2 e−φ J̃ ′2

F 2S4
+ ǫ2∗δ

2 1

2
Z ,

[

e−φJ̃ ′

S4F 2

]′

=
(1 + 8ǫ∗J̃)bFS4

√

16F 2S4 + δ2e−φ(1 + 8ǫ∗J̃)2
+ 8e−φbF 2J̃ , (3.4)
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with

X =
(1 + 8ǫ∗J̃)2eφ/2b2F 3S10

16F 2S4 + δ2e−φ(1 + 8ǫ∗J̃)2
, (3.5)

Y =

√

b2eφF 2S8 − δ2(1 + 8ǫ∗J̃)2b2F 2S8

16F 2S4 + δ2e−φ(1 + 8ǫ∗J̃)2
, (3.6)

Z =
eφ bh2F 2S8

Q2
c

. (3.7)

The constraint equation (A.20) reads

0 = −1

2
log′ h log′ b+

1

2
(log′ h)2 − 12(log′ S)2 − 4 log′ b log′ S

− log′ b log′ F − 8 log′ F log′ S +
1

2
φ′2

−bQ
2
c

2h2
− 4bF 4S4 + 24bF 2S6 − ǫ∗

4e3φ/2b2F 3S10

Y
− ǫ2∗

1

2
e2φbS8

+ǫ2∗δ
2

(

−32be−φF 2J̃2 +
4e−φJ̃ ′2

F 2S4
− 1

2
Z

)

. (3.8)

The system (3.4)–(3.8) allows for a systematic expansion of all the functions in powers

series of ǫ∗ and δ2. This is essentially the main effect of the scaling relations (3.3). Once

all the functions have been solved for, the worldvolume gauge field can be obtained from

the following relation

2πα′A′
t = δeΦ∗/2 (1 + 8ǫ∗J̃)bFS4

√

16F 2S4 + δ2e−φ(1 + 8ǫ∗J̃)2
, (3.9)

which is already first order in δ. From this, we also deduce (as previously announced) that

J(σ) takes the effects of the flavor backreaction into account.

In order to integrate the system (3.4)–(3.8) it is easier to switch to a radial coordinate

y = e4r4
0σ with r0 an arbitrary parameter of dimension of length. The dimensionless

parameter δ̃ referred to as above is then defined as

δ̃ =
δ

4r30
, (3.10)

where the factor 4 is introduced in order to make it precisely δ̃ = d̃ of ref. [54, 55] (see also

the equation (4.7) in this paper). We keep the greek symbol, however, in order to stress

that our parameter is going to be perturbatively small.

Following the same procedure as in the uncharged case, we are now able to provide

analytic solutions to the equations above, in a perturbative expansion in ǫ∗ and δ̃. We will

skip here the intermediate step where the solutions contain cutoff-dependent terms (this

can be found in appendix A up to order ǫ∗ δ̃
2 in eqs. (A.22) to (A.26)) and focus on their

effective IR expressions. Introducing the IR parameter ǫ0 = ǫ(r0) and the radial variable r
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(defined again in such a way that the warp factor keeps the standard AdS form), they read

h(r) =
R4

r4
, (3.11)

b(r) =

(

1 − r40
r4

)

− δ̃2ǫ0
2

((

2 − r40
r4

)(

r20
r2

− log

[

1 +
r20
r2

]))

(3.12)

+
δ̃2ǫ20
12

(

17
r20
r2

− 9
r40
r4

− 5

2

r60
r6

− 17

2

(

2 − r40
r4

)

log(1 +
r20
r2

)

)

+ ... ,

S(r) = r

[

1 +
ǫ0
24

+ ǫ20

(

9

1152
− 1

24
log

r0
r

)

(3.13)

+
ǫ0δ̃

2

40

(

3 − 2
r2

r20
− 3

(

1 − 2
r4

r40

)

log

[

1 +
r20
r2

]

− 1

2
G(r)

)

+
ǫ20δ̃

2

320

(

−33 + 22
r2

r20
+ 33

(

1 − 2
r4

r40

)

log

[

1 +
r20
r2

]

+
11

2
G(r)

)

+ ...

]

, (3.14)

F (r) = r

[

1 − ǫ0
24

+ ǫ20

(

17

1152
+

1

24
log

r0
r

)

(3.15)

+
ǫ0δ̃

2

40

(

3 − 22
r2

r20
+ 5

r20
r2

− 3

(

1 − 2
r4

r40

)

log

[

1 +
r20
r2

]

+ 2G(r)

)

+
ǫ20δ̃

2

192

(

−21 + 154
r2

r20
− 35

r20
r2

+ 21

(

1 − 2
r4

r40

)

log

[

1 +
r20
r2

]

− 14G(r)

)

+ ...

]

,

Φ(r) = Φ0 + ǫ0 log
r

r0
− ǫ20

48

(

8

(

1 + 3 log
r

r0

)

log
r0
r

− 3Li2

[

1 − r40
r4

])

(3.16)

+
ǫ20δ̃

2

120

(

26

(

1 − r2

r20

)

− 2π − 15
r20
r2

+

(

11 + 18
r4

r40

)

log

[

1 +
r20
r2

]

− 14 log 2

+G(r) + ...
)

,

J̃(r) = −r
3
0

8
+ ... , (3.17)

At(r) =
r0

4πα′
δ̃eΦ0/2

(

1 − ǫ0
6

)

(

1 − r20
r2

)

+ ... , (3.18)

where G(r) = 2π
r6
0

r6 2F1

(

3
2 ,

3
2 , 1, 1 − r4

0

r4

)

is an hypergeometric function and Li2(u) ≡
∑

∞

n=1
un

n2 is a polylogarithmic function. Notice that J enters at order ǫ20 in the equations,

hence only the leading contribution in J̃ is relevant in the solution.

The above solution must be supplemented with a Jacobian factor for the change of

radial coordinate Y (r) = dσ/dr which will show up in the coefficient of dr2

Y (r) =
1

r(r4 − r40)
+

δ̃2

4r3(r4 − r40)
2

[

ǫ0

(

r20(2r
2 − r20)(r

2 + r20) − 2r6 log

(

1 +
r20
r2

))

+
ǫ20
12

(

−7r60 + 19r40r
2 − 34r20r

4 + 34r6 log

(

1 +
r20
r2

))]

+ ... (3.19)
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4 Physical properties of the dual plasmas

4.1 Thermodynamics

In the previous section we have derived a solution that, in essence, is a black hole dressed

by a set of scalar (dilaton), vector (Maxwell), as well as higher rank tensor fields. Now we

are going to extract the thermodynamical properties of the solution, providing, in turn,

a first non trivial validity check of the latter by verifying the closure of the standard

thermodynamical formulae. As in [8], all quantities are obtained in power series of our

perturbative expansion parameters and, therefore, the relevant thermodynamic relations

can only be verified up to the relevant order.

To begin with, let us stress that r0 does not coincide with the horizon radius rh. This

radius is defined by b(rh) = 0 + O(ǫ30, δ̃
4) and is perturbatively shifted by the baryon

density9

rh = r0

(

1 +
ǫ0δ̃

2

8
(1 − log 2) − ǫ20δ̃

2

96
(11 − 17 log 2) + ...

)

. (4.1)

Notice that rh > r0. Notice moreover that

ǫh ≡ ǫ(rh) = ǫ0 + O(ǫ30) , eΦh ≡ eΦ(rh) = eΦ0

(

1 +
ǫ20
8
δ̃2(1 − log 2)

)

, (4.2)

so that we can trade ǫ0 for ǫh, δ̃eΦ0 for δ̃eΦh , and so on, in all of our expressions. In

particular, looking at (3.18), we get, to leading order in our expansion

At(r) =
rh

4πα′
δ̃eΦh/2

(

1 − ǫh
6

)

(

1 − r2h
r2

)

, (4.3)

which vanishes at the horizon as required to ensure IR regularity.

The temperature can be computed in the usual way giving

T =
r0
πR2

(

1 − ǫh
8

(

1 + δ̃2
)

− 13

384
ǫ2h

(

1 − 2

13
δ̃2
)

+ ...

)

. (4.4)

The entropy density is derived from the horizon’s area

s =
1

2

π5

Vol(X5)
N2

c T
3

[

1 +
1

2
ǫh(1 + δ̃2) +

7

24
ǫ2h(1 + δ̃2)

]

. (4.5)

As for other thermodynamical variables, this expression, at first order in ǫh and δ̃2, precisely

reproduces (for the case of massless flavors) the one found in the probe approximation

in [54, 55]. The O(ǫ2h) terms are instead completely new.

9In fact, there are two radii r± that solve b(r±) = 0 + O(ǫ30, δ̃
4). This is reminiscent of the case in the

Reissner-Nordstrom black hole. The value presented here corresponds to the external radius rh = r+, i.e.

the event horizon. Numerically we have checked that as δ̃ increases these two radii approach each other.

However, a potentially extremal black hole r− = r+ cannot be obtained within the range of validity of our

solution, which is perturbative in δ̃.
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Concerning the charge density, a proper value is given by the integration constant

in (2.16), as its definition coincides precisely with the electric field displacement. In terms

of scaling constants we have, to leading order

dS

dFtσ
=

Vol(X5)

2κ2
10

∂L1D

∂A′
t

=
Vol(X5)

(2π)7g2
sα

′4
2πα′eΦh/2Qf δ̃ 4r3h , (4.6)

and making use of (2.6) as well as (4.4) this may be casted in the form

nq = π7/2 N2
c

Vol(X5)1/2

T 3

√
λh

ǫhδ̃

(

1 +
3

8
ǫh

)

. (4.7)

Using (3.1) with r∗ → rh this can be written as

nq =
π5/2

16
NfNc

Vol(X3)

Vol(X5)3/2

√

λhT
3δ̃

(

1 +
3

8
ǫh

)

. (4.8)

At leading order, and for the case Vol(S3) = 2π2 and Vol(S5) = π3, we exactly recover

formula (A.11) in [54, 55].10 In the expressions above, nq is the quark density of the system,

related to the baryon density nb by the number of colors nq = Nc nb.

4.2 Thermodynamical potentials

We proceed now to the calculation of the Helmholtz and Gibbs free energies, F and Ω

respectively.11 These can be either directly evaluated starting from the expression for

the entropy density and using the standard thermodynamical relations, or they can be de-

duced holographically. In the latter case they are identified with the (renormalized) on-shell

boundary action for the gravity background, evaluated in the corresponding ensemble. Con-

sistency of the solution requires that whatever method is chosen the results are the same.12

A quick look at the 1D effective Lagrangian given in (2.14) reveals that on one hand

At is a cyclic coordinate and, on the other hand, F123 is a Lagrange multiplier. Amusingly

enough, the fact that the equations of motion for H3 and At are consistent with one another

imposes (2.16), which is nothing but the statement that, up to constant factors, F123 and

At are canonically conjugate variables. Hence, as it stands, L1D contains both A′
t and

F123, hence velocities and momenta. As a consequence the associated action corresponds

to neither the canonical nor the grand-canonical ensemble.

4.2.1 Canonical ensemble

The Legendre transformed Lagrangian L̃1D given in (2.18) is the natural one to describe the

system in the canonical ensemble, since it is fully expressed in terms of the baryon density

parameter F123. Therefore, evaluating the associated action on-shell we should obtain the

10Beware that λours = 4πgse
ΦNc = 2λtheirs.

11The difference of these quantities with respect to the forms defined in section 2 should be clear from

the context.
12In the following we will not report the details of the holographic calculations, but we will just give a

sketch of the needed ingredients. Needless to say, we have verified that the results deduced from thermo-

dynamical relations agree with those found from holography.
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Helmholtz free energy, F . As it is well-known, the action has to be supplemented with the

standard Gibbons-Hawking term to deal with a well-posed variational problem. Even with

this addition, the evaluation presents divergences which we deal with by subtracting the

same quantity evaluated on the Euclidean solution at the same temperature but without

a horizon and also with no chemical potential. This procedure is explained in appendix B

of [8], where we refer the reader for details. We obtain the Helmholtz free energy density

f =
F
V3

= −1

8

π5

Vol(X5)
N2

c T
4

[

1 +
1

2
ǫh

(

1 − 2δ̃2
)

+
1

6
ǫ2h

(

1 − 7

2
δ̃2
)]

, (4.9)

which, consistently, satisfies the thermodynamic relation −∂f/∂T = s. To check this

relation it is very important to consider the dependence of ǫh and δ̃ on T .

The logarithmic running of ǫ = Qfe
Φ(r) (see also eq. (3.2)) and the map between the

horizon radius and T give [8]

∂ǫh
∂T

=
ǫ2h
T

+ O(ǫ3h, δ̃
2) . (4.10)

Moreover, for λh(T ) = 4πgse
Φh(T )Nc one gets by the same token

∂λh

∂T
= ǫh

λh

T
+ O(ǫ2h, δ̃

2) . (4.11)

In the canonical ensemble we must keep the physical (dimensional) charge density invariant.

From equation (4.8) we see that the dependence of δ̃ on T at fixed nb comes from solving as

δ̃(T ) =
nb α√
λhT 3

(1 + O(ǫh) + ...) , (4.12)

with α a T -independent constant. Using (4.11) we obtain

(

d δ̃(T )

dT

)

nb

= − δ̃

T

(

3 +
ǫh
2

+ O(ǫ2h)
)

. (4.13)

Using (4.10) and (4.13) it is straightforward to check that −∂f/∂T = s with f and s given

in (4.9) and (4.5) respectively. This is a strong proof of consistency.

Next we can evaluate the ADM energy density of the plasma, again subtracting the

contribution from the zero temperature and baryon density setup to get rid of the diver-

gences. Following appendix B in [8] the final result is

ε =
EADM

V3
=

3

8

π5

Vol(X5)
N2

c T
4

[

1 +
1

2
ǫh

(

1 + 2δ̃2
)

+
1

3
ǫ2h

(

1 +
7

4
δ̃2
)]

, (4.14)

which satisfies the relation ε = f + sT . From here, and taking again into account (4.10)

and (4.13), we obtain the heat capacity at fixed baryon number density

cV,nq =

(

∂ε

∂T

)

V,nb

=
3

2

π5

Vol(X5)
N2

c T
3

[

1 +
1

2
ǫh

(

1 − δ̃2
)

+
1

24
ǫ2h

(

11 − 7δ̃2
)

]

. (4.15)
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4.2.2 Grand-canonical ensemble

We would like to obtain the thermodynamic quantities corresponding to the grand-

canonical ensemble. It would be tempting to think that the correct Lagrangian density

to use here is the original one L1D in (2.14). However, this is not the case. As mentioned

before, the fact that we have identified the canonical momentum conjugate to A′
t with F123

interferes with the Legendre transform, since we see that this parameter already appears

in L1D. Were it not for this fact, the following inverse Legendre transform

˜̃L1D = L̃1D − ∂L̃1D

∂F123
F123

∣

∣

∣

∣

∣

F123(At)

, (4.16)

where F123(A
′
t) comes from solving

A′
t =

∂L̃1D

∂F123
, (4.17)

would bring us back to the original lagrangian ˜̃L1D = L1D. However, notice the presence

of the term with F 2
123 in (2.14), which upon (4.16) will change sign. Therefore, the relevant

Lagrangian for the computation of the Gibbs free energy is given in (2.14) with a sign flip in

the term with F 2
123. Doing that, and following the same steps as for f , we arrive at the result

ω =
Ω

V3
= −p = −1

8

π5

Vol(X5)
N2

c T
4

[

1 +
1

2
ǫh

(

1 + 2δ̃2
)

+
1

6
ǫ2h

(

1 +
7

2
δ̃2
)]

, (4.18)

where p is the pressure. Now we can compare this expression with the one for the energy

density given in (4.14). The interaction energy, given by

ε− 3p

T 4
=

π2N2
c

16Vol(X5)
ǫ2h , (4.19)

is just the same as in the uncharged case. Hence, charge density of massless flavors does

not contribute to the breaking of conformal invariance. This is not unexpected in field

theory and, in a dual gravity picture, it is the same as what happens in the case of the

Reissner-Nordström AdS black hole, where the presence of a net charge does not spoil the

relation ε = 3p.

We now would like to check the thermodynamic relations in the present ensemble.

Notice that the interpretation of δ̃ has changed and, henceforth, also its behavior with

the temperature. The reason is that the physical parameter to fix in the grand-canonical

ensemble is the dimensional chemical potential, µ. The difference among the two thermo-

dynamical potentials gives

µnq = f − ω =
π5

4Vol(X5)
N2

c T
4ǫhδ̃

2

(

1 +
7

12
ǫh

)

. (4.20)

Using (4.7) we can extract the chemical potential13

µ =
π3/2

4Vol(X5)1/2

√

λh T δ̃

(

1 +
5

24
ǫh

)

. (4.21)

13Using the particular value of Vol(X5) = π3 we get the same expression at leading order in ǫh as in eq.

(A.10) in [54, 55] after identifying µ̃ = δ̃/2.
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Now, the value of the world-volume gauge field in the UV (i.e. at r ≫ rh) is (see

eq. (4.3))

At,UV =
1

4

√

λh

πVol(X5)
π2 T δ̃

(

1 − ǫh
24

)

. (4.22)

Comparing the variation of the grand potential with respect to At,UV

δω

δAt,UV
= −π7/2 N2

c

Vol(X5)1/2

T 3

√
λh

ǫhδ̃

(

1 +
5

8
ǫh

)

, (4.23)

with the relation
δω

δµ
= −nb , (4.24)

and taking into account formula (4.7), we get the connection between the UV value of the

gauge field and the chemical potential

At,UV = µ

(

1 − 1

4
ǫh

)

. (4.25)

Note that this differs at subleading order from the result At,UV = µ as obtained in [54, 55];

this is thus an effect of the backreaction of the flavors.

From (4.21) we see that for fixed µ, δ̃ acquires now a dependence on T like

δ̃(T ) =
4

π2

√

πVol(X5)

λh(T )

µ

T

(

1 − 5

24
ǫh

)

. (4.26)

Using (4.10) again and (4.26) we now get
(

d δ̃

dT

)

µ

= − δ̃

T

(

1 +
ǫh
2

+ O(ǫ2h)
)

. (4.27)

With this scaling (and equation (4.10)) it is easy to check that the thermodynamic relation

−∂ω/∂T = s holds at the required order. Using again (4.27) we can obtain readily the

heat capacity at fixed chemical potential

cV,µ =

(

∂ε

∂T

)

V,µ

=
3

2

π5

Vol(X5)
N2

c T
3

[

1 +
1

2
ǫh

(

1 + δ̃2
)

+
1

24
ǫ2h

(

11 + 7δ̃2
)

]

, (4.28)

from which we can extract the speed of sound

c2s =
s

cV,µ
=

1

3

(

1 − 1

6
ǫ2h

)

. (4.29)

The parameter δc = 1 − 3c2s is related to the breaking of conformality as before. As it

happens for the interaction energy, it does not receive corrections from the presence of

finite baryon density. Using the arguments in [8], this suggests that the bulk viscosity is

not affected by the presence of a finite baryon density on the system.14

14There is some mismatch between our results for the speed of sound and the heat capacities and cor-

responding results found in the literature in the probe approximation. The precise closure of the thermo-

dynamical relations and the consistent independence of the conformality breaking effects from the baryon

chemical potential in the massless flavored case, let us be confident of the correctness of our results.
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Susceptibilities. The “quark” susceptibility15 is

χ = −∂
2ω

∂µ2
=
∂nq

∂µ
=
πVol(X3)

4Vol(X5)
NfNc T

2

(

1 +
1

6
ǫh

)

. (4.30)

At leading order this matches with the result obtained in the probe approximation in [57]

for the flavored N = 4 SYM case (where Vol(X3) = 2π2 ,Vol(X5) = π3). The other three

susceptibilities are

− ∂2ω

∂T 2
=
∂s

∂T
=

3π5

2Vol(X5)
N2

c T
2

(

1 +
1

2
ǫh +

11

24
ǫ2h

)

+
πVol(X3)

4Vol(X5)
NfNc µ

2

(

1 +
1

6
ǫh

)

,

(4.31)

and

− ∂2ω

∂µ∂T
= − ∂2ω

∂T∂µ
=
πVol(X3)

2Vol(X5)
NfNc µ T

(

1 +
1

6
ǫh

)

. (4.32)

The determinant of the susceptibility matrix equals χC where

C =
3π5

2Vol(X5)
N2

c T
2

(

1 +
1

2
ǫh +

11

24
ǫ2h

)

− 3πVol(X3)

4Vol(X5)
NfNc µ

2

(

1 +
1

6
ǫh

)

. (4.33)

The second term is parameterically smaller than the first one, thus the theory is thermo-

dynamically stable.

4.3 Probe parton energy loss

In order to estimate how the finite charge density or chemical potential influences the energy

loss of an energetic probe parton traveling through the plasma, we will make use of the re-

sults in [58–60]. In this approach, the parton looses energy through bremsstrahlung due to

its interactions with the strongly coupled medium. The amount of energy loss, which is ulti-

mately the cause of the jet quenching in the strongly coupled plasma, is encoded in a trans-

port coefficient termed q̂, the “jet-quenching parameter”. The latter can be derived, using

the eikonal approximation at high energy, as the coefficient of L2 in an almost light-like

Wilson loop with dimensions L− ≫ L. The Wilson loop is easily calculated in string theory.

In [61] a formula to extract the jet quenching parameter from a general dual gravity

background was derived.16 On our solution, rewritten in the variable y = exp(4r40σ), the

formula gives

q̂−1 = π α′

∫ 1

0
e−

Φ
2

√
gyy

gxx
√
gxx + gtt

dy = π

∫ 1

0

1

4r40ye
Φ

2

√

b

1 − b
hFS4dy , (4.34)

where in particular gxx is the metric coefficient in the spatial direction involved in the

trajectory of the parton. For our purposes, it will be enough to analyze the result up to

order ǫhδ̃
2, which reads

q̂ =
π3

√
λhΓ(3

4 )
√

Vol(X5) Γ(5
4)
T 3

[

1 +
2 + π

8
ǫh

(

1 + c δ̃2
)

]

, (4.35)

15As usual, “quark” is an abuse of language for “fundamental matter”.
16We took into account a different factor of

√
2 between the definitions in [59, 60] and [61].
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with a positive constant c = 0.867565.17

4.3.1 Comparison schemes

Formula (4.35), without any prescription to compare different theories, would imply that

a finite charge density (or chemical potential) increases the jet quenching. This conclusion

would depend on considering the jet quenching parameter in theories with different numbers

of degrees of freedom. From a phenomenological perspective, it is more useful to compare

theories keeping the number of degrees of freedom fixed. In order to fully appreciate the

effects of flavors at finite charge density, we will compare our flavored theory with the

unflavored N = 4 SYM.

For an estimate of the number of degrees of freedom, the most used observables are

the entropy density (4.5), and the energy density (4.14). In large Nc theories, it makes

sense to keep one of these two quantities fixed by either fixing the number of colors Nc and

changing the temperature T , or the other way around. First, let us consider the fixed Nc,

varying T comparison scheme, used for example in [62]. For the sake of definitiveness, we

also keep the energy density fixed; the qualitative result which will follow is unchanged if

we fix the entropy density instead. We get

Tf = Tu

[

1 − ǫh
8

(

1 + 2δ̃2
)]

, (4.36)

where the subindex refers to either the f lavored or the unflavored N = 4 theory. Plugging

this result in formula (4.35) we read

q̂f
q̂u

∼
√

λf

λu

[

1 +
π − 1

8
ǫh

(

1 − 0.719 δ̃2
)

]

, (4.37)

where both ’t Hooft couplings λf , λu are evaluated at the horizon. Since Nc is fixed,18 if

we keep the coupling αs fixed, we obtain the result that while the jet quenching parameter

is enhanced by the addition of flavors [8], the finite charge density (or chemical potential)

actually reduces the enhancement.19

This qualitative result is unchanged if, following strictly [62], we also allow for the

variation of αs. The latter can be adjusted in such a way that the force between two external

quarks at the screening length Lc,u of the unflavored plasma, αqq = 3L2
c,uV

′(Lc,u)/4, is

kept fixed. The potential V (L) is calculated numerically by standard formulas, reported

for example in [63]. We calculate αqq for different values of Nf (equivalently, ǫh) and δ̃.

At zero charge density, as we increase Nf , αqq increases, so in order to keep it fixed the

coupling λf must be decreased.20 But the effect is small, so as anticipated we get in (4.37)

17The constant c is related to the result of the integral

Z 1

0

−(8 − 3
√

1 − y + 2y)(1 − y) +
√

1 − y(3 + 2y)(2arctanh[
√

1 − y] + log y)

(1 − y)9/4
√

y
dy .

18Remember that λ ∼ αsNc.
19Remember that the term in ǫhδ̃2 is by definition a perturbation of the one in ǫh.
20This corrects a statement in footnote 20 of [8].
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that the jet quenching parameter is enhanced by the addition of flavors. Along the same

lines, if we switch on the charge density, we find that this enhancement is reduced.

We can now analyze what happens if we use the alternative comparison scheme intro-

duced in [8], where the temperature T is kept fixed and the number of degrees of freedom

is kept constant by varying the number of colors Nc. By fixing the energy density (4.14)

we get

Nc,f = Nc,u

[

1 − 1

4
ǫh

(

1 + 2δ̃2
)

]

. (4.38)

Keeping fixed also the coupling constant αs for simplicity, we obtain

q̂f
q̂u

∼ 1 +
π + 1

8
ǫh

(

1 + 0.594 δ̃2
)

. (4.39)

Thus, while again the overall effect of the flavors is to enhance the jet quenching, in this

case the charge density actually increases the enhancement. The result is qualitatively the

same if we keep fixed the entropy density (4.5) instead of the energy density.

To summarize, while in all the cases the effect of fundamental flavors is to enhance the

jet quenching [8], the net effect of a finite charge density (or chemical potential) actually

depends on how we compare different theories. Namely, we found that the charge density

reduces (resp. increases) the enhancement of the jet quenching due to flavors in the varying

T , fixed Nc (resp. fixed T , varying Nc) comparison scheme. We currently have no intuitive

explanation for this behavior.

4.4 Remarks on “optical” properties

The solution presented in this paper is dual, in the hydrodynamic limit, to a charged rel-

ativistic fluid. Recently, it has been observed in [64, 65] that, generically, this kind of

fluids has interesting uncommon optical properties, such as negative refractive index, and

exhibits exotic phenomena, like the propagation of additional light waves in certain fre-

quency regimes. It is understood that one can speak of “propagation of light” by thinking

of gauging the global U(1) charge: a gravity solution such as the one presented above

(which accounts instead for a global U(1)) allows anyway for the calculation of the current

correlators (which can be treated as external, non-dynamical ones, in linear response the-

ory) involved in the optical analysis. Alternatively, one could maybe think about “optical

properties” of baryon charge waves (e.g. dispersion relations).

To be concrete, in [64] it was shown that every relativistic fluid with finite charge

density ρ (nq in our solution), having a dispersive pole in the (transverse) current retarded

correlator21

GT (ω, k) ∼ iωB
iω −Dk2

+ P (0, k) , (4.40)

displays negative refraction, i.e. the phase and group velocities have opposite directions,

for small enough frequencies ω2 < 4πq2B, where q is the U(1) gauge coupling, if the

term P (0, k) can be discarded. The latter requirement was verified by explicit gravity

21Clearly, here ω, k are the frequency and wave vector.
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Figure 1. The real part of the two refractive indexes n1 (upper line) and n2 (bottom line), with

the effective one neff (central line), as functions of the frequency (we are using unit temperature).

The plot refers to the N = 4 theory with the following parameter choice: Nc = 100, Nf = 20, λh =

50, q = 1, δ̃ = 0.1.

calculations in [64–66]. In formula (4.40) one has

B =
ρ2

ε+ p
, D =

η

ε+ p
, (4.41)

where η is the shear viscosity of the fluid. In the case at hand22

B =
πVol(X3)

8Vol(X5)
NfNc T

2ǫhδ̃
2 , D =

1

4πT
− ǫhδ̃

2

8πT

(

1 +
1

12
ǫh

)

. (4.42)

Thus, assuming again that the term P (0, k) does not affect the result, the charged D3-D7

Plasmas would exhibit negative refraction for

ω2
c < q2

π2Vol(X3)

2Vol(X5)
NfNc T

2ǫhδ̃
2 . (4.43)

Actually, in a medium with large spatial dispersion, there is the possibility of the

propagation of two “light waves” for each incident wave, due to the fact that the dispersion

relation admits two different solutions23 [65]

n2
1,2 =

D + i
ω ±

√

16iπq2BD+ω(Dω−i)2

ω3

2D . (4.44)

This effect is due to the coupling of the incident wave with “exciton” quasi-particles in

the medium, which in the dual gravity description are quasi-normal modes. One of the

two indexes should correspond to negative refraction for small ω, while the other one is

22We make use of the relation η/s = 1/4π [67].
23Again, assuming that P (0, k) is ineffective.
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connected to the existence of an additional light wave. The propagation of both waves in

certain frequency regimes could be inferred from the study of an “effective refractive index”

neff =
1 + n1n2

n1 + n2
. (4.45)

The results for the real part of the two refractive indexes and the effective one are

summarized in figure 1.24 One of the two indexes displays negative refraction for ω < ωc,

with ωc given precisely by (4.43).25 The interpolation of the effective index neff from one

refractive index at small frequencies to the other one at large frequencies, which can be seen

in the plot, signals that in the intermediate regime both light waves actually propagate.

In conclusion, the outcome has very similar features to the ones found in the analysis

of the RN black hole cases in [64–66]. Thus, we seem to see the expected features already

at the level of hydrodynamics. It would be very interesting to study the Green functions

directly in the gravity setting to understand whether this behavior is confirmed and to

what extent the hydrodynamic approximation is reliable.

5 Conclusions

Following the strategy initiated in [8], in the present paper we give the crank another turn,

by introducing a new deformation that encodes holographically the backreaction of charged

degrees of freedom at finite density. Following the same logic we provide an analytic solution

which is perturbative in the deformation parameters, and explicitly write it down up to

second order in both ǫh and δ̃. Moreover it is an effective solution. This means that only

IR quantities can be reliably computed from it. In this case, the IR energy scale, µIR, is

set by the temperature, and all results have to be understood as being correct up to terms

of order µIR/µUV = T/µUV where µUV is an ultraviolet cutoff energy scale above which

the ultraviolet completion sets in. Still a lot of phenomenologically interesting prediction

can be made both for thermodynamic quantities as well as for transport coefficients. We

have shown that the thermodynamics is consistent, and we are in a stable phase. So far,

nothing can be said about phase transitions. The solution contains two horizons, and

has the potential to exhibit an extremal solution that would allow to explore the zero

temperature — finite chemical potential axis. However such a systematic search of the

phase space in the (T, µ) plane lies outside the domain of validity of the analytic solution

presented here. It would require the use of numerical techniques, along the lines of the

recent work [68] and certainly constitutes a natural continuation of the present work.

Concerning transport phenomena, we have studied the jet quenching parameter and

found that the effect of the net baryon density is positive or negative depending on the way

one compares different theories with and without flavor. In the present context this effect

24We thank A. Amariti, D. Forcella and A. Mariotti for their crucial observations on the results.
25The imaginary part of one of the two indexes, Im[n2], would be negative for ω < ωc. This means that

we have to choose, for ω < ωc, the negative branch of the square root of n2
2 in (4.44), which results in

the negative refraction. We also find a particular value of ωp > ωc for which the two indexes exchange

(i.e. the continuous functions are made by gluing the two indexes at ωp). This is probably an artifact of

Mathematica.
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is subdominant as compared to the one driven by the presence of flavor. Again, the fate of

this at higher finite values of the charge density can only be established numerically, and its

importance is evident from the fact that this is one of the few windows to phenomenology

for a rather wide class of models. It is also worth comparing this result with the information

one can obtain from the evaluation of the drag force.

Last but not least, we have analyzed the possibility of exotic optical phenomena in

the case that the global U(1) could be gauged and treated as the electromagnetic one.

Following [64, 65], we have checked the presence of a negative refractive index and the

propagation of additional light waves in certain frequency regimes. Our analysis concerns

the expectations for the optical properties, based on hydrodynamic considerations. It would

be very interesting to go beyond the hydrodynamic approximation by the explicit gravity

calculation of the relevant retarded Green functions.
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A Technical details

A.1 Equations of motion from the ten dimensional action

The equations of motion derived from the action S as given in (2.1) and (2.2) are [53]26

RMN − 1

2
gMNR =

1

2

(

∂MΦ∂NΦ − 1

2
gMN∂P Φ∂P Φ

)

+
1

2
e2Φ

(

F1MF1N − 1

2
gMNF

2
1

)

+
1

4
eΦ
(

F3MPQF
PQ

3N − gMNF
2
3

)

+
1

4
e−Φ

(

H3MPQH
PQ

3N − gMNH
2
3

)

26In our conventions F 2
p = 1

p!
(Fp)

a1a2...ap(Fp)a1a2...ap (also for H3). Notice moreover that self-duality of

F5 has been imposed.
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+
1

96
F5MPQRSF

PQRS
5N +

2κ2

√−g
δSfl

δgMN
, (A.1)

�Φ = e2ΦF 2
1 +

1

2
eΦF 2

3 − 1

2
e−ΦH2

3 − 2κ2

√−g
δSfl

δΦ
, (A.2)

d(e2Φ ∗ F1) = −eΦH3 ∧ ∗F3 −
1

24
F4 ∧ Ω2 , (A.3)

d(eΦ ∗ F3) = −H3 ∧ F5 +
1

6
F3 ∧ Ω2 , (A.4)

d(∗F5) = dF5 = H3 ∧ F3 −
1

2
F2 ∧ Ω2 , (A.5)

d(e−Φ ∗H3) = eΦF1 ∧ ∗F3 − F5 ∧ F3 + eΦ
δ

δF
√

− det(ĝ + e−Φ/2F)δ(2)(D7) , (A.6)

where the last term in the equation for H3 has to be meant as an eight-form: in particular

δ(2)(D7) is a short-hand notation for the form which arises taking the derivative w.r.t. F
of the smeared DBI action, where

√

− det(ĝ + e−Φ/2F)d8χ is replaced by

√

− det(g + e−Φ/2F)|Ω2|d10x . (A.7)

The expression for the modulus of the Ω2 form will be given in a moment.

The Bianchi identities read

dF1 = −gsΩ2 , (A.8)

dF3 = H3 ∧ F1 −F ∧ Ω2 , (A.9)

dH3 = 0 . (A.10)

Finally, the Bianchi identity and EOM for the brane field F are

dF = H3 , (A.11)

d

(

eΦ
δ

δF
√

− det(ĝ + e−Φ/2F)δ(2)(D7)

)

= d(· · · ) , (A.12)

where the dots represent the terms from the WZ part of the flavor action.

After inserting the ansatz introduced in (2.9) the equations of motion (A.3) (A.4)

and (A.5) as well as the Bianchi identities (A.8) and (A.10) are automatically satisfied.

The l.h.s. of the equation of motion (A.6) for H3 vanishes identically upon imposing the

ansatz, and from its right hand side (explicitly rewritten taking into account eq. (A.7),

with |Ω2| = 4Qfh
−1/2S−2) we can solve for A′

t to obtain

2πα′A′
t =

(QcF123 + 8Q2
fJ)bFS4

√

16Q2
fF

2S4 + e−Φ(QcF123 + 8Q2
fJ)2

. (A.13)

This is an important relation, and interestingly enough, it automatically solves the equation

of motion for At. This is because (A.12) is precisely the radial derivative of (A.6). The

Bianchi identity (A.11) is identically null.
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The Bianchi identity for F3 (A.9) gives a nontrivial relation between A′
t and J . Us-

ing (A.13) this can be expressed as an independent equation for J which we have added to

the list below as eq. (A.19).

Finally we come to the Einstein-dilaton equations of motion (A.1) and (A.2)

(log b)′′ = 4Qf
X

Y
+ 64Q2

f e
−Φ bF 2J2 + 8Q2

fe
−Φ J ′2

F 2S4
+ Z , (A.14)

(log h)′′ = −Q2
c

b

h2
+ 2Qf

X

Y
+ 32Q2

fe
−Φ bF 2J2 + 4Q2

fe
−Φ J ′2

F 2S4
+

3

2
Z , (A.15)

(log S)′′ = −2bF 4S4 + 6bF 2S6 −Qfe
3Φ/2 b

2F 3S10

Y
− 16Q2

fe
−Φ bF 2J2 − 1

4
Z , (A.16)

(logF )′′ = 4bF 4S4 − 1

2
Q2

fe
2Φ bS8 −Qf

X

Y
+ 16Q2

fe
−Φ bF 2J2 − 2Q2

fe
−Φ J ′2

F 2S4

−1

4
Z , (A.17)

(Φ)′′ = Q2
fe

2Φ bS8 + 2Qfe
3Φ/2 b

2F 3S10

Y
+ 2Qfe

Φ/2FS2Y − 32Q2
fe

−ΦbF 2J2 +
1

2
Z

−4Q2
fe

−Φ J ′2

F 2S4
, (A.18)

[

e−ΦJ ′

S4F 2

]′

=
(QcF123 + 8Q2

fJ)bFS4

√

16Q2
fF

2S4 + e−Φ(QcF123 + 8Q2
fJ)2

+ 8e−ΦbF 2J , (A.19)

and the constraint that comes from fixing the reparameterization gauge invariance in the

radial variable reads

0 = −1

2
log′ h log′ b+

1

2
(log′ h)2 − 12(log′ S)2 − 4 log′ b log′ S

− log′ b log′ F − 8 log′ F log′ S +
1

2
Φ′2

−bQ
2
c

2h2
− 4bF 4S4 + 24bF 2S6 − 1

2
Z − 1

2
be2ΦQ2

fS
8

−4b2e3Φ/2F 3QfS
10

Y
− 32be−ΦF 2Q2

fJ
2 +

4e−ΦQ2
fJ

′2

F 2S4
. (A.20)

In these expressions we defined

X = (2πα′A′
t)

2eΦ/2FS2 ; Y =
√

−(2πα′A′
t)

2 + b2eΦF 2S8 ; Z = F 2
123e

Φ bh2F 2S8 .

(A.21)

A.2 Solution with explicit UV cutoff

The solution with explicit dependence on the position of the radial cutoff r∗ to first order

in ǫ∗ reads

b(r) = 1 − r40
r4

− δ̃2ǫ∗
2

(

2 − r40
r4

)





(

1 − r2

r2∗

)

r20
r2

− log





1 +
r2
0

r2

1 +
r2
0

r2
∗







+ O(ǫ2∗) , (A.22)

S(r)

r
= 1 +

ǫ∗
36

3r4∗ − r4 − r40
2r4∗ − r40
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+
δ̃2ǫ∗
40

(

r4∗

(

6 − 4 r2

r2
0

)

+ r2
∗

r2
0

(

12r4 − 6r40
)

+
(

2r2r20 − 6r4
)

+
r2
0

r2
∗

(

r40 − 2r4
)

2r4∗ − r40

−4r4∗ − r40
r4∗

r2∗
r20

G0(r)

G0(r∗)
− 3

(

1 − 2
r4

r40

)

log





1 +
r2
0

r2

1 +
r2
0

r2
∗





)

+ O(ǫ2∗) , (A.23)

F (r)

r
= 1 − ǫ∗

36

3r4∗ + r4 − 2r40
2r4∗ − r40

+
δ̃2ǫ∗
40

(

r4∗

(

6 − 44 r2

r2
0

+ 10
r2
0

r2

)

+ r2∗r
2
(

12 r2

r2
0

− 6
r2
0

r2

)

− r4
(

6 − 22
r2
0

r2 + 5
r6
0

r6

)

2r4∗ − r40

−r
2
0

r2∗

2r4 − r40
2r4∗ − r40

+
16r4∗ − 4r40

r4∗

r2∗
r20

G0(r)

G0(r∗)
− 3

(

1 − 2
r4

r40

)

log





1 +
r2
0

r2

1 +
r2
0

r2
∗





)

+O(ǫ2∗) , (A.24)

Φ(r) = Φ∗ + ǫ∗ log

(

r

r∗

)

+ O(ǫ2∗) , (A.25)

J(r) = −r
3
0

8

r4∗ − r4

r4∗ + r40
+ O(ǫ∗) , (A.26)

with G0(r) = 2π
r6
0

r6 2F1

(

3
2 ,

3
2 , 1, 1 − r4

0

r4

)

.
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[12] R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories,

Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [SPIRES].
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