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1 Introduction

The study of black holes in supergravity and string theory has been of general interest

for many years. Research topics range from fundamental aspects of quantum gravity and

microscopic state counting in string theory, to applications of black hole thermodynamics

in strongly coupled field theories via the AdS/CFT correspondence. Many properties of

black holes depend on the asymptotic spacetime they live in, which can be flat, de Sitter,

or anti-de Sitter (AdS). Most studies focus on asymptotically flat or AdS spacetimes, and

in this work we focus on the latter.

In this paper we analyze a class of static supersymmetric (BPS), asymptotically AdS4

black holes with a spherical horizon in gauged N = 2 supergravity. Static BPS solutions

with other horizon topologies, as well as stationary rotating solutions, are known to exist
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for long time in such theories [2, 3].1 However, until recently static BPS black holes

with spherical horizons were thought not to exist, at least not for the choices of gauging

and Killing spinor ansätze studied in e.g. [4]. While this is the case in minimally gauged

supergravity with a bare cosmological constant [5], the first example of proper static BPS

solution in the presence of vector multiplets and a scalar potential was derived in [1],

building on earlier work [6, 7].

Just like in [1], we concentrate on gaugings with Fayet-Iliopoulos (FI) terms. We do

not consider hypermultiplets, but in certain cases the hypermultiplet gaugings allow for

truncations to the models we consider here [8]. As we will explain, the FI terms determine

the electric charges of the gravitini and are subject to a Dirac quantization in the presence

of any magnetic charges. The black holes we study in this paper are magnetically charged,

and have an entropy that depends on both magnetic charges and FI terms. The fact that

they are quantized will therefore be important for the microscopic state counting.

The complete set of BPS conditions were written down in [1], with no constraint

on the topology of the horizon and no assumption on the form of the Killing spinors.

While this covers the most general case, the equations are somewhat cumbersome and

difficult to analyze unless one specifies to detailed examples. Here, we aim to understand

better the case of spherical horizons only, for which the BPS conditions simplify once

we restrict to a particular class of Killing spinors. In this way, one recovers attractor-like

equations that are similar to the ones describing asymptotically flat black holes in ungauged

supergravity [9–11]. We also extend the analysis beyond the standard electrically gauged

N = 2 supergravity, by allowing magnetic gaugings. In such models, we can describe more

general black hole solutions that have both electric and magnetic charges on equal footing.

As an illustration, we consider the case of one vectormultiplet. This example was also

studied in [1], where a spherically symmetric black hole with no naked singularity was

found. We discuss further the properties of this black hole, such as the entropy formula

and the attractor mechanism. Furthermore, we also comment on the mass of the black

hole and describe the embedding into eleven-dimensional supergravity.

The plan of the paper is as follows. First, in section 2 we discuss the known static

AdS black holes in four dimensions and explain how the solutions described in this pa-

per fit in the general picture. In section 3 we briefly outline some details about gauged

N = 2 supergravity and explain our notations. In section 4 we specify in full detail our

assumptions for spacetime and gauge fields and make a particular ansatz for the Killing

spinors in order to simplify the BPS conditions. In section 5 we show how to solve the

equations for the metric and scalar fields in terms of harmonic functions. We then proceed

in section 6 to explain how the embedding tensor formalism [12] restores electromagnetic

duality and propose a more general solution in an arbitrary electromagnetic frame. In

section 7 we give some explicit examples of prepotentials leading to black hole solutions

and give more details about the physical properties of these black holes and the attractor

flow. In the last part of the paper, we show in section 8 how one can embed these new

1Note that, unlike the case for asymptotically flat static black holes, the topology of the horizon of AdS4

black holes is not unique. The horizon can be a Riemann surface of any genus as explained in [2].
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black holes in D = 4 N = 8 supergravity and in M-theory, thus suggesting a way to study

their microscopic origin. In section 9 we comment on the mass of the black holes and their

behavior in the large charge limit, which shows some quite unusual and puzzling behavior.

We conclude with some further remarks and suggestions for future study. Some details

about our gamma matrix conventions are left for the appendix.

Note added. Just before this paper was submitted, we received reference [39] that has

some overlap with our results in the sections discussing the dyonic solutions with electro-

magnetic gauging and the attractor mechanism.

2 Static AdS black holes

We focus on static spherically symmetric spacetimes with metrics of the form (the signature

is (+,−,−,−) in our conventions)

ds2 = U2(r) dt2 − U−2(r) dr2 − h2(r) (dθ2 + sin2 θdϕ2) , (2.1)

for some functions U(r) and h(r) to be determined from the BPS conditions and/or the

equations of motion.

For Minkowski spacetime, we have U = 1 and h = r, and for four-dimensional anti-de

Sitter spacetime, one has

AdS4 : U2(r) = 1 + g2r2 , h(r) = r , (2.2)

where g is related to the cosmological constant of AdS4 through the scalar curvature relation

R = −12g2. So, in the standard conventions the cosmological constant is Λ = −3g2. For

the Reisnner-Nordström black hole solution in AdS4 (RN-AdS), with mass M and electric

and magnetic charges Q and P , we have

RN-AdS4 : U2(r) = 1 − 2M

r
+
Q2 + P 2

r2
+ g2r2 , h(r) = r . (2.3)

Imposing BPS conditions leads to exactly two different possibilities in pure supergravity

without vector multiplets, as analyzed long ago in [5]. One solution is usually referred to

as “extreme RN-AdS electric solution”, it is half-BPS and it requires M = Q, P = 0, hence

extreme electric RN-AdS4 : U2(r) =

(

1 − Q

r

)2

+ g2r2 h(r) = r . (2.4)

The function U(r) has no zeroes and therefore the spacetime has no horizon. The point

r = 0 is then a naked singularity. The other solution is referred to as an “exotic AdS

solution” and is only quarter-BPS, imposing M = 0, P = 1/(2g),

exotic AdS4 : U2(r) =

(

gr +
1

2gr

)2

+
Q2

r2
, h(r) = r . (2.5)

This case has no flat space limit for g → 0 and is therefore very different in behavior from

the first solution. Still, the solution has a naked singularity.
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The aim of this paper is to find a generalization of the second solution within N = 2

gauged supergravity with a number of vector multiplets such that this naked singularity is

resolved due to non-trivial scalar behavior. We will focus on extending the exotic solution

since the extension of the extreme RN-AdS solutions for many vector multiplets and non-

trivial scalars has been investigated in [4] with the outcome of nakedly singular spacetimes

once again. Some generalizations of the exotic solution also exist in the literature, e.g.

in [13], but these set the scalars to constants and are thus not general enough to resolve

the naked singularity. Our strategy will be to replace the cosmological constant with a

nontrivial potential for the vector multiplet scalars that contains Fayet-Iliopoulos terms.

Anticipating our results, we now briefly explain how the exotic solution is modified

to make proper black holes in AdS4. We set the electric charges to zero but allow for

non-trivial scalars, which will in the end result in changing the metric function U to be:2

U2(r) =

(

gr +
c

2gr

)2

, (2.6)

with a constant c 6= 1 that depends on the explicit running of the scalars. The important

outcome from this is that in certain cases we will have c < 0, and then a horizon will

appear at rh =
√

−c
2g2 to shield the singularity. In this way, one can find a static quarter-

BPS asymptotically AdS4 black hole with nontrivial scalar fields.

3 Gauged supergravity with Fayet-Iliopoulos parameters

In this work we focus on abelian gauged N = 2 supergravity in four dimensions in the ab-

sence of hypermultiplets. We consider nV vector multiplets and keep the same conventions

for metric signatures and field strenghts as in [8, 14]. For some background material on

gauged N = 2 supergravity, see e.g. [15–20]. As the gauge group is abelian, the vector mul-

tiplet scalars are neutral, and the only charged fields in the theory are the two gravitinos.

This is usually referred to as Fayet-Iliopoulos (FI) gauging. The gauge fields that couple

to the gravitinos appear in a linear combination of the graviphoton and the nV vectors

from the vectormultiplets, ξΛA
Λ
µ , with Λ = 0, 1, . . . , nV . The constants ξΛ are called FI

parameters.3 The bosonic part of the Lagrangian for such a system is

L =
1

2
R(g) + gi̄∂

µzi∂µz̄
̄ + IΛΣF

Λ
µνF

Σ µν +
1

2
RΛΣǫ

µνρσFΛ
µνF

Σ
ρσ − g2V (z, z̄) , (3.1)

where

V =
(

gi̄fΛ
i f̄

Σ
̄ − 3L̄ΛLΣ

)

ξΛξΣ (3.2)

2Here, the discussion is only schematic in order to underline the main point, the actual solution is

more involved as we explain in sections 5–7. There we also comment further on the other function in the

metric, h(r).
3The FI terms may also be understood from the triplet of quaternionic moment maps P x

Λ in the absence

of hypermultiplets. Using the local SU(2)R symmetry, we can rotate them such that P x
Λ = δx,3ξΛ, leaving a

U(1) ⊂ SU(2)R as a residual symmetry. One often uses the terminology that this part of the R-symmetry

group is gauged.
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is the scalar potential. Here, the complex scalar fields zi (i = 1, . . . , nV ) are expressed in

terms of holomorphic symplectic sections (XΛ(z), FΛ(z)) (see [20] for a review), and the

matrices RΛΣ and IΛΣ are the real and imaginary parts, respectively, of the period matrix

defined by

NΛΣ ≡
(

DiFΛ

F̄Λ

)

·
(

DiX
Σ

X̄Σ

)−1

, (3.3)

with Di ≡ (∂i + Ki).
4 The Kähler potential

K(z, z̄) = − ln
[

i(X̄Λ(z̄)FΛ(z) −XΛ(z)F̄Λ(z̄))
]

(3.4)

determines the metric of the scalar field moduli space gi̄ = ∂zi∂z̄̄K ≡ Ki̄. In case a

prepotential exists, it is given by FΛ = ∂F/∂XΛ, which we use in the examples discussed

in section 7. We will further make use of the quantities

(LΛ,MΛ) ≡ eK/2(XΛ, FΛ) , (fΛ
i , hΛ,i) ≡ eK/2(DiX

Λ,DiFΛ) . (3.5)

The supersymmetry variations for the gaugino and gravitino fields, respectively, are:

δελ
iA = i∂µz

iγµεA − gij̄ f̄Λ
j̄ IΛΣF

Σ−
µν γµνǫABεB + iggi̄f̄Λ

̄ ξΛσ
3,ABεB , (3.6)

δεψµA = ∇µεA + 2iFΛ−
µν IΛΣL

ΣγνǫABε
B − g

2
σ3

ABξΛL
Λγµε

B , (3.7)

up to higher order terms in the fermions. This is sufficient for solutions where all fermions

are set to zero. The upper index “−” on the fields strengths denotes their antiselfdual part.

The supercovariant derivative of the spinor reads:

∇µεA =

(

∂µ − 1

4
ωab

µ γab

)

εA +
1

4

(

Ki∂µz
i −Kῑ∂µz̄

ῑ
)

εA +
i

2
gξΛA

Λ
µσ

3
A

BεB , (3.8)

and similarly for the gravitino’s

∇µψν A = ∂µψν A + . . . +
i

2
gξΛA

Λ
µσ

3
A

Bψµ B . (3.9)

The fact that only σ3 appears in the supersymmetry transformation rules and covariant

derivatives reflects the fact that the SU(2)R symmetry is broken to U(1), as referred to in

footnote 3.

We have to stress that the above theory is gauged only electrically, since we have used

only electric fields AΛ
µ for the gauging of the gravitino. Thus the FI parameters can be

thought of as the electric charges ±eΛ of the gravitino fields, with

eΛ = gξΛ . (3.10)

4More explicitly, the period matrix can be computed by

NΛΣ = FΛΣ + 2i
Im(FΛΓ)XΓIm(FΣ∆)X∆

XΓIm(FΓ∆)X∆
, FΓ∆ ≡

∂FΓ

∂X∆
.
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The fact that the gravitinos have opposite electric charge finds its origin from the eigenval-

ues of σ3. Generically in such a theory one encounters a Dirac-like quantization condition

in the presence of magnetic charges pΛ,

2eΛp
Λ = n , n ∈ Z , (3.11)

as explained in more detail in [5]. Clearly, (3.11) is not a symplectic invariant, due to

the choice of the gauging. Later, in section 6, we generalize this to include also magnetic

gaugings.

4 Black hole ansatz and Killing spinors

As already stated in section 2, we look for a supersymmetric solution similar to the “exotic

AdS solution” of [5], but with nonconstant scalar fields. We start with the general static

metric ansatz

ds2 = U2(r) dt2 − U−2(r) dr2 − h2(r) (dθ2 + sin2 θdϕ2) , (4.1)

and corresponding vielbein

eaµ = diag
(

U(r),U−1(r), h(r), h(r) sin θ
)

. (4.2)

The non-vanishing components of the spin connection turn out to be:

ω01
t = U∂rU , ω12

θ = −U∂rh , ω13
ϕ = −U∂rh sin θ , ω23

ϕ = − cos θ . (4.3)

We further assume that the gauge field strengths are given by

FΛ
tr = 0 , FΛ

θϕ =
pΛ

2
sin θ , (4.4)

or alternatively

AΛ
t = AΛ

r = AΛ
θ = 0 , AΛ

ϕ = −pΛ cos θ , (4.5)

which are needed in the BPS equations below. If we allow also electric charges, we then

should use an electromagnetic basis FΛ
µν , Gµν,Λ,5 and require

GΛ,θϕ =
qΛ
2

sin θ , FΛ
θϕ =

pΛ

2
sin θ . (4.6)

These automatically solve the Maxwell equations and Bianchi identities in full analogy to

the case of ungauged supergravity6 [21]. However, we start with a purely electric gaug-

ing (3.1) and we set the electric charges of the black hole to zero since otherwise we cannot

directly solve for the gauge fields AΛ
t that are needed for the BPS equations. This is a

particular choice we make at this point in view of the BPS conditions we derive below. In

section 6 we will explain how to explicitly find a solution also with electric charges in a

more general electromagnetic gauging frame.

5The magnetic field strengths can be defined from the Lagrangian to be

GΛµν ≡ RΛΣFΣ

µν −
1

2
IΛΣ ǫµνγδF

Σγδ .

6Notice that the vector field part of the Lagrangian (3.1) is the same as in the ungauged theory, so they

have the same equations of motion. The only difference appears in the coupling to the gravitinos.
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4.1 Killing spinor ansatz

With the gamma matrix conventions spelled out in appendix A we make the following

ansatz for the (chiral) Killing spinors:

εA = eiα ǫABγ
0εB , εA = ±eiα σ3

AB γ
1 εB , (4.7)

where α is an arbitrary constant phase, and the choice of sign in the second condition

will lead to two distinguishable Killing spinor solutions with corresponding BPS equations.

This Killing spinor ansatz corresponds (in our conventions for chiral spinors) to the Killing

spinor projections derived in [5] for the exotic solutions. Note that the choice of phase α

is irrelevant due to U(1)R symmetry, i.e. any value of α leads to the exact same physical

solution. It will nevertheless amount to putting the symplectic sections of the vector

multiplet moduli space in a particular frame, as we explain in more detail in the next

subsection. Furthermore, from the above equations one can deduce that the Killing spinor

can be parametrized as follows. Using our convention from appendix A, one finds that,

∀a ∈ C, for the upper sign (which we call type I) in (4.7):

εI1 = a(x)











1

i

−i
−1











, εI2 = ā(x)eiα











−i
1

1

−i











. (4.8)

For the negative sign (type II) one finds,

εII
1 = a(x)











1

i

i

1











, εII
2 = ā(x)eiα











i

−1

1

−i











. (4.9)

This type of Killing spinors explicitly break 3/4 of the supersymmetry. The two degrees

of freedom of the complex function a give the remaining two supercharges.

We look for spacetimes that are static and spherically symmetric, so in particular

invariant under the rotation group. This rotation group acts on spinors, and can in general

leave or not leave our Killing spinor ansatz invariant. It will be a check on our explicit

solution for the Killing spinors that they should be also rotationally invariant, just as in

the original case for exotic solutions [5].

Note that our choice of Killing spinors makes them timelike, i.e. they give rise to a

timelike Killing vector (see [22–24] for more details about Killing spinor identities). One

can then show [8] that, to obtain a supersymmetric solution, one needs to check only the

Maxwell equations and Bianchi identities in addition to the BPS conditions. The equations

of motion for the other fields then follow, due to the timelike Killing spinor.

4.2 BPS conditions and attractor flow

With the above ansätze for the spacetime and the Killing spinors one can show that the

gaugino and gravitino variations (3.6), (3.7) simplify substantially but do not yet vanish

identically.

– 7 –
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From the gaugino variation we obtain the following radial flow equations for the scalar

fields:

e−iαU∂rz
i = gij̄ f̄Λ

j̄

(

2IΛΣp
Σ

h2
∓ gξΛ

)

, (4.10)

where the two different signs correspond to the two types of Killing spinors in the given

order.

If we require the gravitino variation (3.7) to vanish, we derive four extra equations that

need to be satisfied (one for each spacetime index). The equations for t and θ determine

the radial dependence of the metric components,

eiα∂rU = −2LΛIΛΣp
Σ

h2
± gξΛL

Λ , (4.11)

eiα
U

h
∂rh =

2LΛIΛΣp
Σ

h2
± gξΛL

Λ . (4.12)

The ϕ component of the gravitino variation further constrains

2gξΛp
Λ = ∓1 , (4.13)

and the radial part gives a differential equation for the Killing spinor, solved by

a(r) = a0

√

U(r) e−
i
2

R

Ar(r) dr, (4.14)

with

Ar(r) = − i

2

(

Ki∂rz
i −Kj̄∂rz

j̄
)

(4.15)

the U(1) Kähler connection. These results are in agreement with rotational symmetry

since the Killing spinor is only a function of r. The solution is 1/4 BPS and has two

conserved supercharges, corresponding to the two free numbers of the complex constant

a0. We further see that (4.14) does not give an extra constraint on the fields, but can be

used to determine the explicit radial dependence of the Killing spinor parameter a(r). One

can always evaluate the integral of A(r) for a given solution and thus the Killing spinor

can be explicitly found once the BPS equations (4.10)–(4.13) are satisfied.

Notice also that (4.13) is in accordance with the generalized Dirac quantization condi-

tion (3.11) with the smallest non-zero integer n = ±1. It will be interesting to understand

how one can generate other solutions with higher values of n or whether supersymmetry

always strictly constrains n as in the present case. Furthermore, it is easy to see that in the

limit g → 0 where the gauging vanishes one recovers the well-known first order attractor

flow equations of black holes in ungauged N = 2 supergravity [9–11]. The presence of the

extra terms due to the gauging is precisely where the difference between ungauged and

gauged black holes lies. Thus we believe the BPS equations are now written in a simpler

and more suggestive form compared to [1].

A short comment on the phase α is in order. One can see in eqs. (4.11), (4.12) that the

quantities e−iαLΛ must always be real. Thus, if e.g. α = 0 then LΛ will need to be real,

while if α = π
2 , LΛ have to be imaginary. This U(1)R symmetry of the BPS conditions

is of course well understood in the ungauged case and there are generally two ways of

– 8 –
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proceeding. One can just fix the phase to a particular value and go on to write down the

solutions, as originally done in [21], or one can also put explicitly the phase factor in the

definition of the sections as done in [25]. Here we choose to fix α = 0 for the rest of the

paper as it will minimize the factors of i in what follows (note that [21] makes the opposite

choice and thus the solutions are given for the imaginary instead of the real parts of the

sections). It should be clear how one can always plug back the factor of e−iα and choose

a different phase if needed in different conventions. In particular this choice implies that

(after adding (4.11) and (4.12))

ξΛIm(XΛ) = 0 . (4.16)

5 Black hole solutions

Now we would like to find explicit solutions to eqs. (4.10)–(4.12). We already know (by

assumption) the solution for the vector field strengths (4.4), so we search for solutions of

the metric functions U(r), h(r) and the symplectic sections XΛ(r), FΛ(r) that determine

the scalars. We propose the following form for the solution of the BPS equations in the

electric frame (for the choice of phase α = 0):

1

2

(

XΛ + X̄Λ
)

= HΛ ,
1

2

(

FΛ + F̄Λ

)

= 0 , (5.1)

HΛ = αΛ +
βΛ

r
,

and

U(r) = eK/2

(

gr +
c

2gr

)

, h(r) = re−K/2 , (5.2)

where K is the Kähler potential

e−K = i
(

X̄ΛFΛ −XΛF̄Λ

)

, (5.3)

and c some constant. The line element of the spacetime is then

ds2 = eK
(

gr +
c

2gr

)2

dt2 − e−Kdr2
(

gr + c
2gr

)2 − e−Kr2dΩ2
2 . (5.4)

The constant c above is not specified yet and depends explicitly on the chosen model.

This is also the case for the constants αΛ, βΛ that may eventually be expressed in terms

of the FI parameters ξΛ and the magnetic charges pΛ. We give some explicit examples in

section 7. Here we just use the above results to show how the BPS equations simplify to

a form where they can be explicitly solved given a particular model with a prepotential

(we further assume that (5.1) implies Im(XΛ) = 0 in accordance with (4.16)). Eqs. (4.11)–

(4.12), together with (5.1)–(5.2), lead to:

ξΛα
Λ = ±1 , ξΛβ

Λ = 0 , (5.5)

FΛ

(

−2g2rβΛ + cαΛ + 2gpΛ
)

= 0 . (5.6)
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Multiplying (4.10) with fΛ
i we eventually obtain

(

gr +
c

2gr

)

(

FΣX
Σ∂rX

Λ −XΛFΣ∂rX
Σ
)

= − 1

r2
FΣ

(

XΣpΛ −XΛpΣ
)

+ gFΣX
Σ
(

XΛ ± iFΠX
Π(I−1)ΛΓξΓ

)

.

(5.7)

We chose to rewrite it in this form in order to have equations only for the symplectic sec-

tions, as standardly done also in ungauged black holes literature [21]. In principle however

fΛ
i is non-invertible and thus (5.7) does not strictly speaking imply (4.10). Practically this

never seems to be an issue since in fact (5.7) gives one extra equation. In all cases we solved

explicitly the equations, we found that the condition coming from the gaugino variation is

already automatically satisfied after solving (5.5) and (5.6). Unfortunately, we were not

able to prove that it must vanish identically with the above ansatz.

Using (5.1) it is straightforward to prove that the Kähler connection (4.15) vanishes

identically (c.f. eq. (29) of [21]). Thus the functional dependence of the Killing spinors

becomes

a(r) =
√

U(r) a0 , (5.8)

just as in the original solution without scalars [5].

Note that with (5.1) one can now also show that the field strengths (4.4) identically

solve the Bianchi identities and the Maxwell equation as they fall in the form (4.6) with

qΛ = 0. Thus any solution of (5.5)–(5.7) will be a supersymmetric solution of the theory

with no further constraints.

One particular solution (the only one in absence of vector multiplets) of the above

equations that is always present, is when αΛ = −2gpΛ, βΛ = 0, for all Λ, and c = 1.

This solution is in fact the one discovered in [13] with constant scalars (XΛ is constant

when βΛ = 0). However, this solution has a naked singularity, since c > 0. A horizon

is not present in this case, since generally it will appear at r2h = − c
2g2 and thus only for

c < 0. We will see in section 7 that indeed there exist solutions of the above equations in

which c < 0, such that a proper horizon shields the singularity. These solutions however

necessarily have nonzero βΛ’s. Thus a proper black hole can only form in the presence of

some sort of attractor mechanism for the scalar fields.

6 Black holes with electric and magnetic charges

We now explain how one can restore the broken electromagnetic duality invariance of the

theory (3.1). As discussed in section 3, the electric gaugings break electromagnetic invari-

ance, i.e. performing symplectic rotations leads us to a new Lagrangian that will be of

different form from (3.1). One then needs to allow for both electric and magnetic gaugings

and change the form of the scalar potential in order to recover the electromagnetic invari-

ance of the ungauged theory. There have been various proposals in literature for extending

it to gauged supergravity [26–28]. It turns out that the correct approach to introducing real

magnetic gaugings is the embedding tensor formalism, and we closely follow the analysis

of [12]. It restores full electromagnetic duality invariance of the gauge theory (when the
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electric and magnetic charges are mutually local) by introducing additional tensor fields

in the Lagrangian. Unfortunately the theory is not yet fully developed in general for su-

pergravity (for rigid N = 2 supersymmetry, see [29]), but we will nevertheless be able to

write down particular solutions due to the fact that we can do duality transformations on

the solutions of the electrically gauged theory.

Even though we cannot give the most general Lagrangian and susy variations for

the theory with electric and magnetic gaugings, we know how the bosonic part of the

Lagrangian should look like in this very special case of FI gaugings. It is most instructive to

integrate out the additional tensor field that has to be introduced, following the procedure

of section 5.1 of [12]. Exactly half of the gauge fields (we will originally have both electric

and magnetic gauge fields, (AΛ
µ , Aµ,Λ)) will also be integrated out in this process. One

first splits the index Λ in two parts, {Λ} = {Λ′,Λ′′}, for the non-vanishing electric and

magnetic gauge fields respectively. The Lagrangian will then consist only of AΛ′

µ , AΛ′′,µ,

while AΛ′′

µ , AΛ′,µ are integrated out together with the additional tensor field. Thus the

linear combination of fields used for the U(1) FI gauging is ξΛ′AΛ′

µ − ξΛ
′′

AΛ′′,µ. The ξΛ
′′

’s

are the magnetic charges of the gravitinos, and the new generalized Dirac quantization

condition for electric and magnetic charges (qΛ, p
Λ) of any solution is

2
(

eΛ′pΛ′ −mΛ′′

qΛ′′

)

= n , n ∈ Z , (6.1)

with electric and magnetic gravitino charges eΛ′ ≡ gξΛ′ and mΛ′′ ≡ gξΛ
′′

. The scalar

potential is then of the form

V =
(

gi̄fΛ′

i f̄Σ′

̄ − 3L̄Λ′

LΣ′)

ξΛ′ξΣ′ −
(

gi̄hi,Λ′′ h̄̄,Σ′′ − 3M̄Λ′′MΣ′′

)

ξΛ
′′

ξΣ
′′

. (6.2)

The main point about electromagnetic invariance is that the equations of motion are now

invariant under the group Sp(2(nV +1),R), which at the same time rotates the Lagrangian

from a purely electric gauging frame to a more general electromagnetic gauging. The

symplectic vectors transforming under the symmetry group are the sections (FΛ,X
Λ) and

the FI parameters (ξΛ, ξ
Λ), as well as the vector field strengths FΛ

µν , Gµν,Λ (which come

from the respective electric and magnetic gauge potentials (AΛ
µ , Aµ,Λ)). One can then see

how natural equations (6.1), (6.2) are if we start from a purely electric frame with only

ξΛ, F
Λ
µν nonzero and then perform an arbitrary symplectic transformation. The important

message is that once we have found a solution to the purely electric theory we can always

perform any symplectic transformation of the theory to see how the solution looks like in

a more general electromagnetic setting.

It is in fact easy to guess how the solution looks like in a more general theory with

electric and magnetic gaugings. We have not proven the existence of such a BPS solution

due to the lack of a properly defined Lagrangian and supersymmetry variations, but we can

nevertheless indirectly find it by symplectic rotations. This procedure leads to a solution,

where the metric is again given by (5.4), together with

FΛ′

tr = 0 , FΛ′

θϕ =
pΛ′

2
sin θ ,

GΛ′′,tr = 0 , GΛ′′,θϕ =
qΛ′′

2
sin θ ,

(6.3)
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and harmonic functions that determine the sections

1

2

(

XΛ′

+ X̄Λ′

)

= HΛ′

,
1

2

(

FΛ′ + F̄Λ′

)

= 0 ,

1

2

(

XΛ′′

+ X̄Λ′′

)

= 0 ,
1

2

(

FΛ′′ + F̄Λ′′

)

= HΛ′′ , (6.4)

HΛ′

= αΛ′

+
βΛ′

r
, HΛ′′ = αΛ′′ +

βΛ′′

r
. (6.5)

The above should give solutions provided that the following identities (coming from the

BPS conditions) are satisfied,

2g
(

ξΛ′pΛ′ − ξΛ
′′

qΛ′′

)

= ∓1 , (6.6)

ξΛ′αΛ′ − ξΛ
′′

αΛ′′ = ±1 , ξΛ′βΛ′ − ξΛ
′′

βΛ′′ = 0 , (6.7)

FΛ′

(

−2g2rβΛ′

+ cαΛ′

+ 2gpΛ′

)

−XΛ′′ (−2g2rβΛ′′ + cαΛ′′ + 2gqΛ′′

)

= 0 , (6.8)

together with the symplectic invariant version of (5.7) coming from contraction with fΛ
i .

This expression becomes lengthy and cumbersome to check and we will not write it down

explicitly. In this case it will be easier to explicitly check the symplectic invariant version

of (4.10) by first defining the complex vector multiplet scalars from the sections. Of course

in case of confusion one can always take a model and rotate it to the electric frame where

the susy variations are clearly spelled out ((3.6)–(3.7)).

7 Explicit black hole solutions

7.1 nV = 1 with F = −2i
√

X0(X1)3

This is the simplest prepotential in the ordinary electrically gauged theory that leads to a

black hole solution. We have one vector multiplet with the prepotential

F = −2i
√

X0(X1)3 , (7.1)

thus one findsX0 = α0+ β0

r ,X
1 = α1+ β1

r from (5.1). This theory exhibits an AdS4 vacuum

at the minimum of the scalar potential (corresponding to the cosmological constant)

V ∗ = Λ = −2g2

√
3

√

ξ0ξ31 (7.2)

at z∗ =
√

3ξ0
ξ1

(defining z ≡ X1

X0 ). This can be easily deduced using the results of [14].

Going through the BPS equations (5.5)–(5.6), we can fix all the constants of the solution

in terms of the FI parameters ξ0, ξ1 apart from one free parameter (here we leave β1 to be

free for convenience, but it can be traded for one of the magnetic charges or for β0). We

obtain that the magnetic charges are given by:

p0 = ∓ 1

gξ0

(

1

8
+

8(gξ1β
1)2

3

)

, p1 = ∓ 1

gξ1

(

3

8
− 8(gξ1β

1)2

3

)

, (7.3)
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for spinor I and II respectively. The other constants in the solution are

β0 = −ξ1β
1

ξ0
, α0 =

±1

4ξ0
, α1 =

±3

4ξ1
, c = 1 − 32

3
(gξ1β

1)2 . (7.4)

Using the definition of the gravitino charges (3.10), eΛ = gξΛ, these relations imply

eΛα
Λ = ±g , eΛβ

Λ = 0 , 2eΛp
Λ = ∓1 , (7.5)

and one can check that the complete solution is a function of the variables eΛ, p
Λ and

g. Note that in fact the dependence on g is artificial since it can always be absorbed in

the definition of the coordinates. In particular, the rescaling gr → r, t → gt makes the

metric and the scalar flow dependent only on eΛ, p
Λ as is also the form of the solution

presented in [1].

Interestingly, one can verify that the condition coming from the gaugino varia-

tion, (5.7), is automatically satisfied with no further constraints. One can see that the

two spinor types in the end amount to having opposite magnetic charges and to flipping

some signs for the solution of the sections.

We now analyze the physical properties of the solution. In this case it is important

to give explicitly the metric function in front of the dt2 term. Using the form of the line

element in (5.4), the specific form of the sections with constants given in (7.4), one can

explicitly compute:

gtt =
2
√

ξ0ξ31r
2
(

gr + 1
2gr − 16g

3r (ξ1β
1)2
)2

√

(r ∓ 4ξ1β1)(3r ± 4ξ1β1)3
. (7.6)

The leading terms of the (infinite) asymptotic expansion of the metric for r → ∞ are then

gtt(r → ∞) = −Λr2

3

(

1 +
1

2g2
(1 + c)

1

r2
− 256(ξ1β

1)3

27

1

r3
+ O

(

1

r4

))

. (7.7)

Clearly, the metric has the correct AdS4 asymptotics. Although the constant term of the

asymptotic expansion is not exactly 1 when we compare to the RN-AdS metric of section 2,

we are still tempted to think that the coefficient in front of the 1/r term determines the

physical mass of the black hole,

M = −128

81
Λ(ξ1β

1)3 . (7.8)

The issue of defining the mass is a bit more subtle in asymptotically AdS spacetimes and

we address it more carefully in section 9, where we verify our expectation.

One can also notice that there are some subtleties for the radial coordinate that usually

do not appear for black hole spacetimes. In particular, r = 0 is neither a horizon (where

gtt = 0), nor a singularity (where gtt → ∞). In fact the point r = 0 is never part of the

spacetime, since the singularity is always at a positive r, where the space should be cut

off. Thus the r coordinate does not directly correspond to the radial coordinate from the

singularity. The horizon for both signs is at

rh =

√

16

3
(ξ1β1)2 − 1

2g2
, (7.9)
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while genuine singularities will appear at rs = ±4ξ1β
1,∓4

3ξ1β
1. The spacetime will then

continue only until the first singularity is encountered. If we want to have an actual

black hole spacetime we must insist that the horizon shields the singularity, i.e. rh > rs,

otherwise we again have a naked singularity and the sphere at rh will not be part of the

spacetime. This requirement further sets the constraints |gξ1β1| > 3
8 , with ξ1β

1 < 0 for

solution I (upper sign) and ξ1β
1 > 0 for solution II (lower sign). Since the parameter

β1 is at our disposal, it can always be chosen to be within the required range, thus the

singularity can be shielded by a horizon in a particular parameter range for β1. So, putting

together both solutions, we know that a proper black hole with a horizon will form in case

gξ1β
1 ∈ (−∞,−3

8 )
⋃

(3
8 ,∞), with the corresponding relations given above between the

magnetic charges and ξ1β
1 for the two intervals. In between, we are dealing with naked

singularities, which are of no interest for us at present. The constant c is always negative,

and satisfies

c < −1

2
, (7.10)

which reflects again the existence of a horizon, as announced in section 2.

Let us now investigate further the properties of these new black holes. Their entropy

is proportional to the area of the black hole at the horizon,

S =
A

4
=

3

4Λ

√

(rh − rs,1)(rh − rs,2)3 =

√

(rh ∓ 4ξ1β1)(3rh ± 4ξ1β1)3

8
√

ξ0ξ
3
1

, (7.11)

so the entropy is effectively a function of ξ0, ξ1, β
1, which can be rewritten in terms of the

FI-terms and magnetic charges. Thus the entropy is a function of the black hole charges

pΛ and the gravitino charges eΛ. One can further observe that in case of fixed gravitino

charges eΛ, the entropy scales quadratically with the parameter β1 and thus linearly with

the charges p0 or p1 in the limit of large charges. The opposite limit of fixed magnetic

charges shows that the entropy remains constant for large gravitino charge.

It is interesting to note that the fact that the scalars at the horizon are fixed in terms

of the gravitino and black hole charges is not directly obvious from the general form of

the solution. The scalars depend on the constants αΛ, βΛ that might not always be fully

determined by ξΛ, p
Λ. One example of this is for the prepotential F = −iX0X1 where

the magnetic black hole charges are fully fixed in terms of FI parameters and either β0 or

β1 can be freely chosen. However, one can show that in this case there is no parameter

range for the βΛ’s where the singularity is shielded by the horizon, thus black holes with

spherical symmetry do not exist. In all the cases for which we checked that a black hole

is possible we could verify that indeed the scalar values at the horizon can be expressed in

terms of the charges and FI parameters, but we have no general proof of this.7

7The BPS equations (5.5)–(5.7) can be relatively easily solved in full generality for a prepotential of the

form F = (X0)n(X1)2−n. The outcome is that spherically symmetric black holes exist for n ∈ (0, 1). The

solution for general n is in full analogy to the one presented here. There is only certain n dependence in the

way the various constants depend on each other, which does not lead to any qualitative differences. Here

we chose to explicitly describe the case with n = 1/2 since it is the most relevant case from a string theory

point of view as we will see in the next section.
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Another interesting question is what the near-horizon geometry of this black hole is.

It is natural to expect that a static four dimensional BPS black hole has a near-horizon

geometry of AdS2 × S2 and this is indeed the case. The radii of the two spaces are

RS2 = rhe
−K/2|r=rh

, RAdS2
=
e−K/2|r=rh

2
√

2g
, (7.12)

and it can be shown that RS2 >
√

2RAdS2
from the constraints on having a horizon. As

the radii are inversely proportional to the scalar curvature of these spaces, it follows that

the overall AdS2 × S2 space has a negative curvature, as expected for asymptotically AdS4

black holes. Thus it is clear that near the horizon we do not observe a supersymmetry

enhancement to a fully BPS vacuum as is the case for the asymptotically flat static BPS

black holes.8 Nevertheless, there could be a supersymmetry enhancement from a 1/4 BPS

overall solution to a 1/2 BPS vacuum near the horizon.

7.2 F = (X1)3

X0 in a mixed electromagnetic frame

In order to give an example of black hole solutions in a more general electromagnetic frame,

one can rotate the sections and FI parameters of the previous example by the symplectic

matrix

S =











1 0 0 0

0 0 0 1/3

0 0 1 0

0 −3 0 0











, (7.13)

such that the prepotential after rotation corresponds to the well-studied in ungauged su-

pergravity T 3 model with prepotential

F =
(X1)3

X0
, (7.14)

and the non-vanishing FI parameters are ξ0, ξ
1. The theory will then be electrically gauged

with A0
µ and magneticaly gauged with A1,µ. This prepotential cannot lead to an AdS BPS

black hole in the purely electric gauging, because it does not exhibit a supersymmetric AdS4

vacuum, as one can find using the methods of [14]. However, in this mixed electromagnetic

gauging, the T 3 model does have a proper fully supersymmetric AdS vacuum.

Now we can follow the more general procedure outlined in section 6. In this case it

turns out that X0 = α0 + β0

r , F1 = α1 + β1

r . The black hole solution will then have one

magnetic charge p0 and one electric charge q1. Going through the BPS equations (6.6)–

(6.8), we can fix all the constants of the solution in terms of the FI parameters ξ0, ξ
1, apart

from one free parameter which we choose to be β1. The charges are given by:

p0 = ∓ 1

gξ0

(

1

8
+

8(gξ1β1)
2

3

)

, q1 = ± 1

gξ1

(

3

8
− 8(gξ1β1)

2

3

)

, (7.15)

for spinor I and II respectively. The other constants in the solution are

β0 =
ξ1β1

ξ0
, α0 = ± 1

4ξ0
, α1 = ∓ 3

4ξ1
, c = 1 − 32

3
(gξ1β1)

2 , (7.16)

8AdS2 × S2 is maximally supersymmetric only for RS2 = RAdS2
as shown in [14].
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and one can see that the metric and scalar profile in this case are analogous to the example

in the previous subsection, as expected. This confirms the consistency of the results in

section 6. The entropy of the black hole is now a function of the electric and magnetic

gravitino charges, e0 = gξ0 and m1 = gξ1, and the black hole charges p0 and q1.

Note that we could have for instance rotated the frame from a fully electric to a fully

magnetic frame, by the symplectic matrix

S =











0 0 −1 0

0 0 0 −1/3

1 0 0 0

0 3 0 0











, (7.17)

and it turns out that the prepotential F = −2i
√

X0(X1)3 is in fact invariant under this

transformation. The resulting solution will be the same, but there will be two electric

instead of two magnetic charges.

8 M-theory lift

An explicit string theory example of abelian gauged N = 2, D = 4 supergravity with

FI terms was found by a consistent truncation of M-theory on S7 in [30, 31]. A standard

Kaluza-Klein compactification on S7 leads initially to an SO(8) gauged N = 8 supergravity

in four dimensions. To avoid some of the complications of non-abelian gauge fields, the

authors of [30, 31] further defined a consistent truncation of this theory to an U(1)4 gauged

N = 2 supergravity. The 11-dimensional metric ansatz is given by:

ds211 = ∆2/3ds24 + 2g−2∆−1/3
3
∑

Λ=0

a−1
Λ

(

dµ2
Λ + µ2

Λ

(

dφΛ +
g√
2
AΛ

)2)

, (8.1)

where ∆ =
∑

Λ aΛµ
2
Λ with the µΛ’s satisfying

∑

Λ µ
2
Λ = 1. They can be parameterized

by the angles on the 3-sphere as explained in more detail in [30, 31]. The remaining 4

angles φΛ together with the µΛ describe the internal space, while xµ are coordinates of the

four-dimensional spacetime on which the resulting N = 2,D = 4 gauged supergravity is

defined. The factors aΛ depend on the four-dimensional axio-dilaton scalars τi = e−ϕi + iχi

(defined below) and the gauge fields AΛ = AΛ
µdx

µ are exactly the ones appearing in the

four-dimensional theory. Note that if all the gauge fields are vanishing and the scalars are

at the minimum of the potential, the internal space becomes exactly S7. Apart from the

metric, the field strength of the 11-dimensional three form field is given by:

F4 =
√

2g
∑

Λ

(a2
Λµ

2
Λ − ∆aΛ)ǫ4 +

1√
2g

∑

Λ

a−1
Λ ∗̄daΛ ∧ d(µ2

Λ)

− 1

g2

∑

Λ

a−2
Λ d(µ2

Λ) ∧
(

dφΛ +
g√
2
AΛ

)

∧ ∗̄dAΛ ,

(8.2)

with ∗̄ the Hodge dual with respect to the four-dimensional metric ds4, and ǫ4 the corre-

sponding volume form.
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With these identifications, the four-dimensional N = 2 bosonic Lagrangian, written in

our conventions, reads

L =
1

2
R(g) +

1

4

3
∑

i=1

(

(∂ϕi)
2 + e2ϕi(∂χi)

2
)

+ Im(M)ΛΣF
Λ
µνF

Σ µν

+
1

2
Re(M)ΛΣǫ

µνρσFΛ
µνF

Σ
ρσ + 2g2

3
∑

i=1

(

coshϕi +
1

2
χ2

i e
ϕi

)

.

(8.3)

One can then check explicitly (using also the particular result for the matrix M given

in [30, 31]) that the above Lagrangian is indeed of the form of (3.1) with prepotential

F = −2i
√
X0X1X2X3 , (8.4)

where the sections XΛ define the three scalars τi by X1

X0 ≡ τ2τ3,
X2

X0 ≡ τ1τ3,
X3

X0 ≡ τ1τ2. The

FI parameters take the particularly simple form

ξ0 = ξ1 = ξ2 = ξ3 = 1 . (8.5)

In this theory one can find a black hole solution in analogy to the example in section 7.1.

Following the general results in section 5, XΛ = αΛ + βΛ

r , and from (5.5)–(5.6) one can find

the full solution with α0 = α1 = α2 = α3 = ±1
4 and three arbitrary parameters β1, β2, β3

(or equivalently p1, p2, p3). We will not write down the full solution as the expressions for

the constant c and the magnetic charges in terms of the βΛ’s are very long and do not lead

to further insight. It is clear that the particular solution when we choose β1 = β2 = β3 in

fact coincides precisely with the solution in section 7.1 and this means that in any case a

genuine black hole of the M-theory reduction exists particularly when the three complex

scalars are equal. In the full solution of course there is a wider range of values for β1, β2, β3

that will lead to a black hole, but this will suffice for our purposes here.

We now comment on the meaning of these four-dimensional black holes from the point

of view of M-theory as a first step towards constructing the corresponding microscopic

theory. It is notable that the particular M-theory reduction we have leads to an electrically

gauged N = 2 supergravity and thus the resulting solution has only magnetic charges. This

in fact makes the higher dimensional interpretation a bit more involved. There are two

main points one can notice about the full 11-dimensional geometry from the form in (8.1).

First, due to the nonconstant scalars τi, the full space is a warped product of the internal

seven-dimensional space with the AdS4 black hole spacetime. Second, due to the non-

vanishing gauge fields AΛ
ϕ = −pΛ cos θ, there is an explicit mixing between the four angles

φΛ of the internal space and the four-dimensional angle ϕ. This leads to four topological

charges of the 11-dimensional spacetime, in analogy to NUT charges. Note that in case the

charges were only electric, i.e. AΛ
t = qΛ

r , the time coordinate would mix with the internal

angles and we would obtain four angular momenta, leading to the interpretation of the

spacetime as arising from the decoupling limit of rotating M2-branes as explained in detail

in [30, 31]. In the present case however the interpretation of the four-dimensional black

holes from M-theory is more involved because apart from M2-branes we need to have some
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Kaluza-Klein monopoles in the M-theory solution, in order to account for the topological

charge coming from the magnetic charges in four dimensions. Unfortunately we were not

able to find an explicit example for this type of solutions in the literature, which probably

is also related to the fact that they would break almost all supersymmetry.

9 Black hole mass

In eq. (7.8) we proposed a formula for the black hole mass. In this section we provide

more evidence for this using using holographic renormalization. The computation is in

fact somewhat complicated due to the fact that it is hard to define an energy, respectively

mass, for asymptotically AdS black holes with running scalars. A more detailed discussion

on the complications due to the scalars can be found in [32]. The correct approach to the

problem was developed in a series of papers [33–36], combining holographic regularization

close to the AdS boundary with the Hamilton-Jacobi method for finding the appropriate

counterterms. These results were collected by [37] in a form we can readily use for our

purposes. For the particular class of black holes given by (5.4), we can apply the formulas

of [37] and find the regularized energy to be

Ereg = −2ω2

(

gr0 +
c

2gr0

)2

r0

(

− r0
2
K′(r0) + 1

)

, (9.1)

where ω2 is the volume element of a unit 2-sphere and the cutoff r0 has to be eventually

taken to infinity. This expression clearly diverges, so one has to add to it the counterterm

energy given by

Ect = ω2e
−K/2

(

gr0 +
c

2gr0

)(

r20W (φ) +
eK

g
+ O(r−2

0 )

)

. (9.2)

The expression W (φ) requires some further explanation. It specifies the counterterms

coming from the scalar fields and is referred to as “superpotential” due to its resemblance

with the usual meaning of superpotential in supergravity. It should be derived from the

scalar potential via

V = 2Gij(φ)
∂W

∂φi

∂W

∂φj
− 3

2
W 2 . (9.3)

However, this expression does not rely on any supersymmetry and is not necessarily unique

as explained in more detail in [38] in the five-dimensional case. The important point is that

one needs a set of real scalar fields φi which is not a priori the case in N = 2 supergravity.

However, it might turn out in practice that the solution effectively truncates the real or

imaginary part of the original complex scalars and thus one should be in principle able to

find the superpotential. This is indeed what happens e.g. in the black hole solution coming

from the N = 8 truncation described above. Due to the importance of this particular

M-theory reduction, the theory was investigated and the corresponding superpotential

already found in [37]. Let us first properly give the full solution in our conventions in

order to be able to describe precisely the relation between mass and charges. We choose

X1 = X2 = X3 = α + β
r as explained in the previous section, and additionally have
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X0 = α0 − 3β
r . All the FI parameters are equal and set to one, thus the BPS equations

result eventually in the following expression for the charges:

p0 = ±1

g

(

1

4
− 48g2β2

)

, p1 = p2 = p3 = ∓1

g

(

1

4
− 16g2β2

)

, (9.4)

for spinor I and II respectively. The other constants in the solution are

α0 = ±1

4
, α = ±1

4
, c = 1 − 96g2β2 . (9.5)

The horizon is then found at rh =
√

48β2 − 1
2g2 and requiring a genuine black hole with

horizon constrains gβ ∈
(

−∞,−1
8

)

for spinor I and gβ ∈
(

1
8 ,+∞

)

for spinor II. Again, we

find that c < −1
2 . One can compute the superpotential to be

W =
g

2

(

(±r + 4β)3/4

(±r − 12β)3/4
+ 3

(±r − 12β)1/4

(±r + 4β)1/4

)

. (9.6)

Plugging this in (9.1)–(9.2) leads to

Eren = (Ereg + Ect)r0→∞ = ∓ω2(512g
2β3) , (9.7)

so we can define the mass to be

M = ∓512g2β3 , (9.8)

which is strictly bigger than zero for the black holes with horizon. In fact we obtain the

following interesting relation after plugging in the possible ranges of β:

M >
1

g
. (9.9)

This inequality seems to be generic enough independent of the technical details of the

particular solution, so we expect that it holds in general for the new class of black holes.

It is very interesting to observe that the same value for the black hole mass can be

derived in a straightforward way from the asymptotic expansion of the metric. In this case,

U2(r → ∞) = 4g2r2 + 4(1 − 48g2β2) ± 1024g2β3

r
+ O

(

1

r2

)

. (9.10)

Assuming that the coefficient in front of 1/r is indeed −2M as in (2.3), we get back the

same expression for the mass, (9.8). This is a nice independent confirmation that the

procedure of holographic renormalization is well-defined.

As already shown in [33–37], the standard laws of black hole thermodynamics hold

with the above definition of holographically renormalized energy. We can then summarize

that the new black hole solutions behave quite differently than the usual case. All physical

parameters of the solution are fixed in terms of the gauge coupling g and the constants β

(that can be related to the charges). The solutions are singular in the limits g → 0 and

g → ∞. The limit of large charges corresponds to large β and this will be the parameter
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that is easier to work with. Schematically, the physical parameters in the large β limit for

fixed g (i.e. fixed AdS4 radius) are

(rh − rs) ∼ β , p ∼ β2 , M ∼ β3 , S ∼ β2 , (9.11)

with rh − rs the radius of the black hole. It is then clear that the entropy in fact scales

linearly with the charges, while the mass scales as p3/2. This behavior is very atypical

for black holes and it would be interesting to justify it on more general grounds from the

supersymmetry algebra in AdS.

10 Outlook

From this work it should be clear that one implicit assumption about solutions in gauged

supergravities is in fact incorrect. There do exist qualitatively very different types of space-

time solutions in gauged supergravity with vector multiplets compared to the minimally

gauged supergravity case. As examples, we discussed supersymmetric, static AdS4 black

holes with spherical symmetry in gauged supergravity with Fayet-Iliopoulos terms. To

achieve a full classification of black holes in gauged supergravity, one has to consider a

general supergravity setup with arbitrary number of vector multiplets and also potentially

hypermultiplets and tensor multiplets. The present work is in this respect a small step

towards a broader understanding of such black hole solutions.

Further it is clear that the solutions described here are a very particular type and

one can imagine different extensions to, e.g., rotating 1/2 and 1/4 BPS black holes with

nontrivial scalars along with higher dimensional analogues of the static solution. The role

and exact meaning of the attractor mechanism in AdS4 black holes must also be better

understood, an issue related with the construction of M-brane or D-brane description of

these black holes. In this sense it is important to understand clearly the physical reason why

the entropy of the black holes depends also on the gravitino charges. The thermodynamic

description and the precise BPS bounds also need a more solid basis. It will be interesting

to extend the present solutions also to extremal non-BPS and finite temperature analogues.

We hope to address at least some of these issues in the future.

Acknowledgments

We would like to thank G. Barnich, B. de Wit, S. Katmadas, D. Klemm, P. Nedkova,

C. Toldo, and T. Ort́ın for helpful discussions and correspondence. We acknowledge support

by the Netherlands Organization for Scientific Research (NWO) under the VICI grant 680-

47-603.

A Gamma matrix conventions

The Dirac gamma-matrices satisfy

{γa, γb} = 2ηab ,

[γa, γb] ≡ 2γab ,

γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 .

(A.1)
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In addition, they can be chosen such that

γ†0 = γ0 , γ0γ
†
i γ0 = γi , γ†5 = γ5 , γ∗µ = −γµ . (A.2)

An explicit realization of such gamma matrices is the Majorana basis, given by

γ0 =

(

0 σ2

σ2 0

)

, γ1 =

(

iσ3 0

0 iσ3

)

, γ2 =

(

0 −σ2

σ2 0

)

,

γ3 =

(

−iσ1 0

0 −iσ1

)

, γ5 =

(

σ2 0

0 −σ2

)

, (A.3)

where the σi; i = 1, 2, 3 are the Pauli matrices. Their SU(2) matrix indices A,B can be

lowered or raised with the antisymmetric tensor. We then obtain the following set of

matrices:

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

, indicesA
B.

(A.4)

σ1 =

(

1 0

0 −1

)

, σ2 =

(

−i 0

0 −i

)

, σ3 =

(

0 −1

−1 0

)

, ǫ =

(

0 1

−1 0

)

, indicesAB.

(A.5)

σ1 =

(

−1 0

0 1

)

, σ2 =

(

−i 0

0 −i

)

, σ3 =

(

0 1

1 0

)

, ǫ =

(

0 1

−1 0

)

, indicesAB.

(A.6)

Notice the property (σi
AB)∗ = −σi AB.
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