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1 Introduction

Given the existing evidence for the triviality of the Higgs sector [1–7] of the Standard

Model, the latter theory can only be considered as an effective description of Nature valid

at most up to some cutoff scale Λ. The Higgs sector is thus intrinsically connected with a

finite, but unknown cutoff parameter Λ that cannot be removed. Beyond that threshold

an extension of the theory will finally be required. Apriori, the size of this scale Λ, at

which the Standard Model would need such an extension, is unspecified. However, the

potential discovery of the Higgs boson at the LHC (as well as its non-discovery together

with corresponding exclusion limits) can shed light on this open question. This can, for

instance, be achieved by comparing the experimentally revealed Higgs boson mass or its

exclusion limits, respectively, with the cutoff-dependent upper and lower Higgs boson mass

bounds arising in the Higgs sector of the Standard Model.

Besides the obvious interest in narrowing the interval of possible Higgs boson masses

consistent with phenomenology, the latter observation was the main motivation for the

great efforts spent on the determination of cutoff-dependent upper and lower Higgs boson

mass bounds. In perturbation theory such bounds have been derived from the criterion

of the Landau pole being situated beyond the cutoff of the theory (see e.g. [8–10]), from

unitarity requirements (see e.g. [11–13]) and from vacuum stability considerations (see

e.g. [8, 14–18]), as reviewed in ref. [19].

However, the validity of the perturbatively obtained upper Higgs boson mass bounds

is unclear, since the corresponding perturbative calculations had to be performed at rather

large values of the renormalized quartic coupling constant. The latter remark thus makes
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Figure 1. The cutoff dependence of the upper Higgs boson mass bound is presented in panel (a) as

obtained from the infinite volume extrapolation results in table 5. The dashed and solid curves are

fits of the data arising from the full Higgs-Yukawa model (HY) and the pure Φ4-theory, respectively,

with the analytically expected cutoff dependence in eq. (7.2). Panel (b) shows the aforementioned

fit curves extrapolated to larger values of the cutoff Λ. In both panels the highlighted bands reflect

the uncertainty of the respective fit curves.

the upper Higgs boson mass bound determination an interesting subject for non-perturbative

investigations, such as the lattice approach.

The main objective of lattice studies of the pure Higgs and Higgs-Yukawa sector of

the electroweak Standard Model has therefore been the non-perturbative determination of

the cutoff dependence of the upper Higgs boson mass bounds [4–6, 20–22]. There are two

main developments that warrant the reconsideration of these questions. First, with the

advent of the LHC, we are to expect that the mass of the Standard Model Higgs boson,

if it exists, will be revealed experimentally. Second, there is, in contrast to the situation

of earlier investigations of lattice Higgs-Yukawa models [23–29], which suffered from their

inability to restore chiral symmetry in the continuum limit while lifting the unwanted

fermion doublers at the same time, a consistent formulation of a Higgs-Yukawa model with

an exact lattice chiral symmetry [30] based on the Ginsparg-Wilson relation [31]. This

new development allows to maintain the chiral character of the Higgs-fermion coupling

structure of the Standard Model on the lattice while simultaneously lifting the fermion

doublers, thus eliminating manifestly the main objection to the earlier investigations. The

interest in lattice Higgs-Yukawa models has therefore recently been renewed [32–39]. In

particular, the phase diagram of the new, chirally invariant Higgs-Yukawa model has been

discussed analytically by means of a large Nf calculation [35, 37] as well as numerically

by direct Monte-Carlo computations [36]. Moreover, the lower Higgs boson mass bounds

derived in this lattice model have been presented in ref. [38]. A comprehensive review of

these results can be found in ref. [39].
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In the present paper we intend to determine the dependence of the upper Higgs boson

mass bound on the cutoff parameter Λ by direct Monte-Carlo calculations. In sections 2

and 3 we begin this venture by introducing the considered chirally invariant lattice Higgs-

Yukawa model and discussing the actual simulation strategy, respectively. Details about

the determination of the properties of the Goldstone and Higgs boson, in particular their

renormalized masses, are then given in sections 4 and 5. As a crucial step towards the final

determination of the upper mass bound we confirm in section 6 that the largest Higgs boson

masses are indeed obtained at infinite bare quartic coupling, as expected from perturbation

theory. We then present our results on the cutoff dependence of the upper Higgs boson

mass bound in section 7 and examine also the encountered finite volume effects. Eventually,

the lattice data on the Higgs boson mass bounds are extrapolated to the infinite volume

limit, yielding then our final result already presented in figure 1.

2 The SU(2)L × U(1)Y lattice Higgs-Yukawa model

The model that will be considered in the following, is a four-dimensional, chirally invariant

SU(2)L×U(1)Y lattice Higgs-Yukawa model based on the Neuberger overlap operator [40,

41], aiming at the implementation of the chiral Higgs-fermion coupling structure of the

pure Higgs-Yukawa sector of the Standard Model reading

LY = yb
(
t̄, b̄
)

L
ϕbR + yt

(
t̄, b̄
)

L
ϕ̃tR + c.c., (2.1)

with ϕ̃ = iτ2ϕ
∗, τi being the Pauli matrices, and yt,b denoting the bare top and bottom

Yukawa coupling constants. In this model the consideration is restricted to the top-bottom

doublet (t, b) interacting with the complex Higgs doublet ϕ, which is a reasonable simpli-

fication, since the Higgs dynamics is dominated by the coupling to the heaviest fermions

(apart from its self-coupling).

The fields contained within the lattice model are thus the scalar field ϕ, encoded here

however in terms of the four-component, real scalar field Φ for the purpose of a convenient

lattice notation, as well as Nf top-bottom doublets represented by eight-component spinors

ψ(i) ≡ (t(i), b(i)), i = 1, . . . , Nf . In this approach the chiral character of the targeted

coupling structure in eq. (2.1) will be preserved on the lattice by constructing the fermionic

action SF from the Neuberger overlap operator D(ov) acting on the aforementioned fermion

doublets. The overlap operator is given as

D(ov) = ρ

{

1 +
A√
A†A

}

, A = D(W ) − ρ, 0 < ρ < 2r (2.2)

where ρ is a free, dimensionless parameter within the specified constraints that determines

the radius of the circle formed by the entirety of all eigenvalues of D(ov) in the complex

plane. The operator D(W ) denotes here the Wilson Dirac operator defined as

D(W ) =
∑

µ

γµ∇s
µ −

r

2
∇b
µ∇f

µ, (2.3)
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where ∇f,b,s
µ are the forward, backward and symmetrized lattice nearest neighbor difference

operators in direction µ, while the so-called Wilson parameter r is chosen here to be r = 1

as usual.

The overlap operator was proven to be local in a field theoretical sense also in the

presence of QCD gauge fields at least if the latter fields obey certain smoothness condi-

tions [42, 43]. The locality properties were found to depend on the parameter ρ and the

strength of the gauge coupling constant. At vanishing gauge coupling the most local oper-

ator was shown to be obtained at ρ = 1. Here, the notion ’most local’ has to be understood

in the sense of the most rapid exponential decrease with the distance |x−y| of the coupling

strength induced by the matrix elements D(ov)
x,y between the field variables at two remote

space-time points x and y. For that reason the setting ρ = 1 will be adopted for the rest

of this work.

Exploiting the Ginsparg-Wilson relation [31] as proposed in ref. [30] one can then write

down a chirally invariant SU(2)L × U(1)Y lattice Higgs-Yukawa model according to

Z =

∫

DΦ DψDψ̄ e−SΦ[Φ]−SF [Φ,ψ,ψ̄] with (2.4)

SF [Φ, ψ, ψ̄] =

Nf∑

i=1

ψ̄(i)
[

D(ov) + P+φ
† diag (ŷt, ŷb) P̂+ + P− diag (ŷt, ŷb)φP̂−

]

︸ ︷︷ ︸

M

ψ(i), (2.5)

where the particular form of the O(4)-symmetric purely bosonic action SΦ[Φ] will be given

later. It is further remarked that the four-component scalar field Φx, defined at the Eu-

clidean site indices x = (t, ~x) of a L3
s×Lt-lattice, has been rewritten here as a quaternionic,

2 × 2 matrix φx = Φµ
xθµ, θ0 = 1, θj = −iτj with ~τ denoting the vector of Pauli matrices,

acting on the flavour index of the fermion doublets. The so far unspecified left- and right-

handed projection operators P± and their lattice modified counterparts P̂± associated to

the Neuberger Dirac operator are given as

P± =
1 ± γ5

2
, P̂± = 1±γ̂5

2 , γ̂5 = γ5

(

1− 1

ρ
D(ov)

)

. (2.6)

The action in eq. (2.5) now obeys an exact global SU(2)L×U(1)Y lattice chiral symmetry.

For ΩL ∈ SU(2) and ǫ ∈ IR the action is invariant under the transformation

ψ → URP̂+ψ + ULΩLP̂−ψ, ψ̄ → ψ̄P+Ω†
LU

†
L + ψ̄P−U

†
R, (2.7)

φ → UφφΩ†
L, φ† → ΩLφ

†U †
φ (2.8)

with UL,R,φ ≡ exp(iǫY ) denoting the respective representations of the global U(1)Y sym-

metry group. Employing the explicit form of the hypercharge Y being related to the isospin

component I3 and the electric charge Q according to Y = Q−I3, the above U(1)Y matrices

can explicitly be parametrized as

UL =

(

e+iǫ/6

e+iǫ/6

)

, UR =

(

e2iǫ/3

e−iǫ/3

)

, Uφ =

(

e+iǫ/2

e−iǫ/2

)

, (2.9)
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for the case of the considered top-bottom doublet. For clarification it is remarked that the

right-handed fields are isospin singlets and have only been written here in form of doublets

for the sake of a shorter notation. Note also that in the mass-degenerate case, i.e. ŷt = ŷb,

the above global symmetry is extended to SU(2)L × SU(2)R. In the continuum limit the

modified projectors P̂± converge to P± and the symmetry in eq. (2.7)–(2.8) thus recovers

the continuum SU(2)L×U(1)Y global chiral symmetry such that the lattice Higgs-Yukawa

coupling becomes equivalent to eq. (2.1) when identifying

ϕx = C ·
(

Φ2
x + iΦ1

x

Φ0
x − iΦ3

x

)

, ϕ̃x = iτ2ϕ
∗
x = C ·

(

Φ0
x + iΦ3

x

−Φ2
x + iΦ1

x

)

, yt,b =
ŷt,b
C

(2.10)

for some real, non-zero constant C.

The so far unspecified purely bosonic action SΦ is chosen here to be the lattice version

of the Φ4-action parametrized in terms of the hopping parameter κ and the lattice quartic

coupling constant λ̂ according to

SΦ = −κ
∑

x,µ

Φ†
x [Φx+µ + Φx−µ] +

∑

x

Φ†
xΦx + λ̂

∑

x

(

Φ†
xΦx −Nf

)2
, (2.11)

which is a convenient parametrization for the actual numerical computations. However,

this form of the lattice action is fully equivalent to the lattice action in continuum notation

Sϕ[ϕ] =
∑

x,µ

1

2
∇f
µϕ

†
x∇f

µϕx +
∑

x

1

2
m2

0ϕ
†
xϕx +

∑

x

λ
(

ϕ†
xϕx

)2
, (2.12)

given in terms of the bare mass m0, the bare quartic coupling constant λ, and the lattice

derivative operator ∇f
µ. The aforementioned connection can be established through a

rescaling of the scalar field Φ and the involved coupling constants according to

ϕx =
√

2κ

(

Φ2
x + iΦ1

x

Φ0
x − iΦ3

x

)

, λ =
λ̂

4κ2
, m2

0 =
1 − 2Nf λ̂− 8κ

κ
, yt,b =

ŷt,b√
2κ
. (2.13)

Finally, the potential appearance of a sign problem in the framework of the introduced

Higgs-Yukawa model shall be briefly addressed. In the mass-degenerate case, i.e. for yt = yb,

one finds that det(M) ∈ IR, since all eigenvalues of M come in complex conjugate pairs

according to

VMV † = M∗, with V = γ0γ2γ5τ2. (2.14)

This is in contrast to the general case with yt 6= yb, where the above relation no longer

holds. Throughout this work we will therefore only consider the aforementioned mass-

degenerate scenario, where the top and bottom quarks are assumed to have equal masses,

to certainly exclude any complex-valued phase of the fermion determinant. This, however,

still leaves open the possibility of an alternating sign of det(M). We have therefore ex-

plicitly monitored the sign of det(M) but did never encounter any sign alteration in our

actually performed Monte-Carlo computations, meaning that the numerical calculations in

the mass-degenerate case are perfectly sane. A more detailed discussion of the phase of

the fermion determinant in the non-degenerate case can be found in ref. [39].

– 5 –
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3 Simulation strategy and considered observables

The eventual aim of this work is the non-perturbative determination of the cutoff-dependent

upper bound of the Higgs boson mass. The general strategy that will be applied for

that purpose is to scan through the whole space of bare model parameters searching for

the largest Higgs boson mass attainable within the pure Higgs-Yukawa sector at a fixed

value of the cutoff, while being in consistency with phenomenology. This will be done by

numerically evaluating the finite lattice model of the Higgs-Yukawa sector introduced in

the preceding section and extrapolating the obtained results to the infinite volume limit.

The crucial idea is that the aforementioned requirement of reproducing phenomenology

restricts the freedom in the choice of the bare model parametersm2
0, yt,b, λ. For that purpose

we exploit here the phenomenological knowledge of the renormalized quark masses and the

renormalized vacuum expectation value of the scalar field (vev). For the reasons given in

the previous section, however, the top and bottom quarks will be considered to be mass-

degenerate. Throughout this work mt/a ≡ mb/a = 175GeV and vr/a = 246GeV will be

assumed. Here mt, mb, and vr are the renormalized top and bottom quark masses as well

as the renormalized vev in dimensionless lattice units, while a denotes the lattice spacing.

The aforementioned three conditions leave open an one-dimensional freedom in the bare

parameters, which can be parametrized in terms of the bare quartic self-coupling constant

λ. However, aiming at the upper Higgs boson mass bounds, this remaining freedom can be

fixed, since it is expected from perturbation theory that the lightest Higgs boson masses are

obtained at vanishing self-coupling constant λ = 0, while the heaviest masses are attained

at infinite coupling constant λ = ∞, respectively. That this conjecture actually holds

also in the non-perturbative regime of the model, i.e. at large values of λ, is explicitly

demonstrated in section 6, allowing then to restrict the search for the upper mass bound

to the setting λ = ∞.

Furthermore, the model has to be evaluated in the broken phase, i.e. at 〈ϕ〉 6= 0, to

respect the observation of spontaneous symmetry breaking, however close to a second order

phase transition to a symmetric phase to allow for arbitrarily large correlation lengths as

required in any attempt of pushing the cutoff parameter to arbitrarily large values.

However, in the given lattice model the expectation value 〈ϕ〉 would always be identical

to zero due to the symmetries in eq. (2.7)–(2.8). The problem is that the lattice averages

over all ground states of the theory, not only over that one which Nature has selected in the

broken phase. To study the mechanism of spontaneous symmetry breaking nevertheless,

one usually introduces an external current J , selecting then only one particular ground

state. This current is finally removed after taking the thermodynamic limit, leading then

to the existence of symmetric and broken phases with respect to the order parameter 〈ϕ〉 as

desired. An alternative approach, which was shown to be equivalent in the thermodynamic

limit [44–46], is to define the vacuum expectation value (vev) v as the expectation value of

the rotated field ϕrot given by a global transformation of the original field ϕ according to

ϕrotx = U [ϕ]ϕx (3.1)

– 6 –
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with the SU(2) matrix U [ϕ] selected for each configuration of field variables {ϕx} such that

∑

x

ϕrotx =





0
∣
∣
∣
∣

∑

x
ϕx

∣
∣
∣
∣



 . (3.2)

Here we use this second approach. According to the notation in eq. (2.12), which already

includes a factor 1/2, the relation between the vev v and the expectation value of ϕrot is

then given as

〈ϕrot〉 =

(

0

v

)

. (3.3)

In this setup the unrenormalized Higgs mode hx and the Goldstone modes g1
x, g

2
x, g

3
x, can

then directly be read out of the rotated field according to

ϕrotx =

(

g2
x + ig1

x

v + hx − ig3
x

)

. (3.4)

The great advantage of this approach is that no limit procedure J → 0 has to be performed,

which simplifies the numerical evaluation of the model tremendously.

The physical scale of the lattice computation, i.e. the inverse lattice spacing a−1, can

then be determined by comparing the renormalized vev vr = v/
√
ZG measured on the

lattice with its phenomenologically known value according to

246GeV =
vr
a

≡ v√
ZG · a, (3.5)

where ZG denotes the Goldstone renormalization constant. The cutoff parameter Λ of the

underlying lattice regularization, which is directly associated to the lattice spacing a, can

then be defined as

Λ = a−1. (3.6)

Of course, this definition is not unique and other authors use different definitions, for

instance Λ = π/a motivated by the value of the momenta at the edge of the Brillouin

zone. However, since the quantities that actually enter any lattice calculation are rather

the lattice momenta p̃µ = sin(pµ) instead of the momenta pµ, which are connected through

the application of a sine function, it seems natural to choose the definition of the cutoff Λ

given in eq. (3.6).

Next, the extraction technique for the Goldstone renormalization constant entering

eq. (3.5) needs to be determined. In the Euclidean continuum the Goldstone and Higgs

renormalization constants, more precisely their inverse values Z−1
G and Z−1

H , are usually

defined as the real part of the derivative of the inverse Goldstone and Higgs propagators

in momentum space with respect to the continuous squared momentum p2
c at some scale

p2
c = −µ2

G and p2
c = −µ2

H , respectively. The restriction to the real part is introduced

to make this definition applicable also in the case of an unstable Higgs boson, where the

massless Goldstone modes induce a branch cut with discontinuous complex contributions

– 7 –
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to the propagator at negative values of p2
c . This is the targeted definition that shall also

be adopted to the later lattice calculations.

On the lattice, however, the propagators are only defined at the discrete lattice mo-

menta pµ = 2πnµ/Ls,t, nµ = 0, . . . , Ls,t − 1 according to

G̃H(p) = 〈h̃ph̃−p〉, (3.7)

G̃G(p) =
1

3

3∑

α=1

〈g̃αp g̃α−p〉, (3.8)

where the Higgs and Goldstone fields in momentum representation read

h̃p =
1√
V

∑

x

e−ipxhx and g̃αp =
1√
V

∑

x

e−ipxgαx (3.9)

with V = L3
s · Lt denoting the lattice volume.

Computing the derivative of the lattice propagators is thus not a well-defined operation.

Moreover, the lattice propagators are not even functions of p2, since rotational invariance

is explicitly broken by the discrete lattice structure. To adopt the above described concept

to the lattice nevertheless, some lattice scheme has to be introduced that converges to the

continuum definitions of ZG and ZH in the limit a → 0. Here, the idea is to use some

analytical fit formulas fG(p), fH(p) derived from renormalized perturbation theory in the

Euclidean continuum to approximate the measured lattice propagators G̃G(p) and G̃H(p)

at small momenta p̂2 < γ (with p̂2
µ ≡ 4 sin2(pµ/2)) for some appropriate value of γ such

that the discretization errors are acceptable. The details of this fit procedure are discussed

in sections 4 and 5. One can then define the analytically continued lattice propagators as

G̃cG(pc) = fG(pc) and G̃cH(pc) = fH(pc). (3.10)

In the on-shell scheme the targeted Goldstone and Higgs renormalization constants ZG and

ZH can then be defined (implicitly assuming an appropriate mapping pc ↔ p2
c) as

Z−1
G (µ2

G) =
d

dp2
c

Re

([

G̃cG(p2
c)
]−1
) ∣
∣
∣
p2c=−µ2

G

, (3.11)

Z−1
H (µ2

H) =
d

dp2
c

Re

([

G̃cH(p2
c)
]−1
) ∣
∣
∣
p2c=−µ2

H

, (3.12)

with µ2
G = m2

G and µ2
H = m2

H , where the underlying physical masses mG, mH are given

by the poles of the respective propagators on the second Riemann sheet. To adopt this

definition to the introduced lattice scheme we define the Higgs boson mass mH , its decay

width ΓH , and the mass mG of the stable Goldstone bosons through

[

G̃cH,II(imH + ΓH/2, 0, 0, 0)
]−1

= 0, and
[

G̃cG(imG, 0, 0, 0)
]−1

= 0, (3.13)

where G̃cH,II(pc) denotes the analytical continuation of G̃cH(pc) onto the second Riemann

sheet.

– 8 –
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Extracting the Higgs boson mass mH and its decay width ΓH from simulation data

according to this definition would, however, require an explicit analytical continuation of

the Higgs propagator onto the second Riemann sheet, which is beyond our ambitions in

this study.

Following the proposal in ref. [3] the Goldstone and Higgs renormalization factors are

rather determined at the scales µ2
G = m2

Gp and µ2
H = m2

Hp given by the masses mHp and

mGp, which will be referred to in the following as propagator masses in contrast to the pole

masses mH and mG. We thus define

ZG ≡ ZG(m2
Gp) and ZH ≡ ZH(m2

Hp), (3.14)

where the propagator masses mHp, mGp are defined through a vanishing real-part of the

inverse propagators according to

Re

([

G̃cG(p2
c)
]−1
) ∣
∣
∣
p2c=−m2

Gp

= 0 and Re

([

G̃cH(p2
c)
]−1
) ∣
∣
∣
p2c=−m2

Hp

= 0. (3.15)

The reasoning for selecting these latter definitions of the Higgs and Goldstone masses is,

that the required analytical continuation in the case of the Higgs propagator is much more

robust, since it only needs to extend the measured lattice propagator to purely negative

values of p2
c in contrast to the situation resulting from the definition in eq. (3.13). It is

remarked here that the Goldstone propagator mass mGp was only introduced for the sake

of an uniform notation, since mG is identical to mGp, due to the Goldstone bosons being

stable particles.

As for the unstable Higgs boson, however, one finds that the discrepancy between the

pole mass mH and the propagator mass mHp is directly related to the size of the decay

width ΓH . In the weak coupling regime of the theory the two mass definitions mH and mHp

can thus be considered to coincide up to small perturbative corrections, due to a vanishing

decay width in that limit. For the pure Φ4-theory the deviation between mHp and mH has

explicitly been worked out in renormalized perturbation theory [3]. In infinite volume the

finding is

mH = mHp ·
(

1 +
π2

288
(n− 1)2

[
4! · λr
16π2

]2

+O(λ3
r)

)

, (3.16)

where λr denotes the renormalized quartic self-coupling constant and n is the number of

components of the scalar field Φ, i.e. n = 4 for the here considered case. This calculation

was performed in the pure Φ4-theory, thus neglecting any fermionic degrees of freedom,

and for exactly massless Goldstone particles. However, one learns from this result that

the definition of mHp in eq. (3.15) as the Higgs boson mass is very reasonable at least for

sufficiently small values of the renormalized coupling constants. The actual discrepancy

between mH and mHp as obtained by direct lattice computations of their respective defini-

tions in eq. (3.13) and eq. (3.15) will explicitly be examined in section 5 for some physically

relevant parameter setups. It will then indeed be found to be negligible with respect to

the reachable statistical accuracy.
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The definition of the renormalized quartic self-coupling constant λr that was used in

the derivation of eq. (3.16) is

λr =
m2
Hp −m2

Gp

8v2
r

, (3.17)

which shall also be taken over to the considered Higgs-Yukawa model. In principle, it would

also be possible to determine the renormalized quartic coupling constant λr through the

evaluation of the amputated, connected, one-particle-irreducible four-point function at a

specified momentum configuration as it is usually done in perturbation theory. However,

the signal to noise ratio of the corresponding lattice observable is suppressed by the lattice

volume. It is thus extremely hard to measure the renormalized quartic coupling constant

in lattice calculations by means of the direct evaluation of such four-point functions [47].

Instead, the alternative definition of λr given in eq. (3.17) will be adopted here. It is further

remarked that this definition was shown [3] to coincide with the bare coupling parameter

λ to lowest order in the pure Φ4-theory.

Regarding the top and bottom quark fields, we are here only interested in the corre-

sponding masses mt,mb. These can directly be obtained by studying the fermionic time

correlation functions Cf (∆t) at large Euclidean time separations ∆t, where f = t, b denotes

the quark flavour here. On the lattice the latter time correlation functions can be defined as

Cf (∆t) =
1

Lt · L6
s

Lt−1∑

t=0

∑

~x,~y

〈

2Re Tr
(
fL,t+∆t,~x · f̄R,t,~y

)〉

, (3.18)

where the left- and right-handed spinors are given through the projection operators ac-

cording to
(

t

b

)

L

= P̂−

(

t

b

)

and (t̄, b̄)R = (t̄, b̄)P−. (3.19)

It is remarked that the given fermionic correlation function would be identical to zero due

to the exact lattice chiral symmetry obeyed by the considered Higgs-Yukawa model, if one

would not rotate the scalar field ϕ according to eq. (3.1) as discussed above. This rotation

is implicitly assumed in the following. Furthermore, it is pointed out that the full all-to-all

correlator as defined in eq. (3.18) can be trivially computed. This all-to-all correlator yields

very clean signals for the top and bottom quark mass determination.

The lacking definition of the renormalized Yukawa coupling constants can now be

provided as

yt,r =
mt

vr
and yb,r =

mb

vr
, (3.20)

reproducing the bare Yukawa coupling constants yt,b at lowest order. According to the pre-

sented simulation strategy the aim would thus be to tune the above renormalized Yukawa

coupling constants such that their physically known values would be reproduced in the ac-

tual lattice computations. However, for having some initial guess for the latter adjustment

at hand the tree-level relation

yt,b =
mt,b

vr
(3.21)
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Figure 2. Illustration of the diagrams that contribute to the continuous space-time Goldstone

propagator G̃G(pc) in the Euclidean pure Φ4-theory at one-loop order.

will be used throughout this work to set the bare Yukawa coupling constants in the lattice

computations. Comparing the physical fermion masses actually generated in these lattice

calculations with the targeted ones would then allow to fine tune the Yukawa coupling

constants in an iterative refinement approach. However, it turns out that this tree-level

fixation ansatz already yields quite satisfactory results regarding the discrepancy between

the targeted and the actually observed quark masses with respect to the reached statisti-

cal accuracy.

4 Analysis of the Goldstone propagator

The Goldstone renormalization constant ZG is required for determining the renormalized

vacuum expectation value vr of the scalar field. It is thus needed for the fixation of the

physical scale a−1 of a given Monte-Carlo run according to eq. (3.5). This renormalization

constant has been defined in eq. (3.14) through a derivative of the inverse Goldstone propa-

gator. As already pointed out in section 3 computing this derivative requires an analytical

continuation G̃cG(pc) of the discrete lattice propagator, which was proposed to be obtained

via a fit of the discrete lattice data.

The idea here is to construct an appropriate fit function fG(p) based on a perturba-

tive calculation of the Goldstone propagator G̃G(pc) in continuous Euclidean space-time.

In this study the aforementioned fit function will only play the role of an effective de-

scription of the numerical data to allow for the necessary analytical continuation. For its

construction we can therefore impose a set of simplifications. In particular, we restrict the

consideration here to the pure Φ4-theory. The reasoning behind this simplification is that

the purely bosonic four-point interaction is expected to yield the dominant contributions

to the Goldstone propagator in the targeted strong coupling regime with infinite bare λ

but only moderate values of the bare Yukawa coupling constants. To one-loop order the

only momentum dependent contribution to the Goldstone propagator is thus given by the

mixed Higgs-Goldstone loop illustrated on the right-hand side of figure 2, where the system

has been assumed to be in the broken phase, as desired. At one-loop order the result for

the renormalized Goldstone propagator then reads

G̃−1
G (pc) = p2

c +m2
G + 8π−2λ2

rv
2
r ·
[
I(p2

c,m
2
H ,m

2
G) − I(−m2

G,m
2
H ,m

2
G)
]

(4.1)
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where the one-loop contribution I(p2
c ,m

2
H ,m

2
G) is given as

2I(p2
c ,m

2
H ,m

2
G) =

√
q

p2
c

· arctanh

(
p2
c +m2

G −m2
H√

q

)

+
m2
G −m2

H

2p2
c

· log
(
m2
H

m2
G

)

(4.2)

+

√
q

p2
c

· arctanh

(
p2
c +m2

H −m2
G√

q

)

with

q =
(
m2
G −m2

H + p2
c

)2
+ 4m2

Hp
2
c . (4.3)

Concerning the singularities of this expression it is noteworthy to add that the given formula

can be shown to be finite at pc = 0 for mG 6= 0, as desired.

In principle, one can directly employ the expression in eq. (4.1) as the sought-after fit

function f−1
G (p). For clarification it is remarked at this point that instead of fitting the

lattice propagator G̃G(p) itself with fG(p), it is always the inverse propagator G̃−1
G (p) that

is fitted with f−1
G (p) ≡ 1/fG(p) in the following. However, for the actual fit procedure of

the lattice data a modified version of eq. (4.1) is used given as

f−1
G (p2) =

p2 + m̄2
G +A ·

[
I(p2, m̄2

H , m̄
2
G) − I(0, m̄2

H , m̄
2
G)
]

Z0
, (4.4)

where an appropriate mapping p2 ↔ p is implicit and A, Z0, m̄G, m̄H are the free fit

parameters. Two modifications have been applied here to the original result. Firstly, the

constant term I(−m̄2
G, m̄

2
H , m̄

2
G) in eq. (4.1) has been replaced by I(0, m̄2

H , m̄
2
G) simply

for convenience. Since the Goldstone mass is close to zero anyhow, this simplification is

insignificant for a practical fit procedure. For clarification it is recalled that in the presented

approach the Goldstone mass mG is actually not determined through the nominal value

of the latter fit parameter m̄G itself, but through the pole of the resulting analytical

continuation G̃cG(pc) according to eq. (3.13). This is also indicated by the chosen notation

introducing the symbol m̄G in addition to the actual Goldstone mass mG.

More interestingly, however, a global factor Z0 has been included in the denominator

of eq. (4.4) in the spirit of a renormalization constant. This modification is purely heuristic

and its sole purpose is to provide an effective description of the so-far neglected fermionic

contributions, which is all we need at this point.

Of course, it would be more appropriate to construct a fit ansatz from the renormalized

result of the Goldstone propagator derived in the full Higgs-Yukawa sector. This would

indeed place the fit procedure on an even better conceptual footing. However, it will turn

out, that the given ansatz already works satisfactorily well for our purpose, which is not

too surprising, due to the aforementioned dominance of the quartic coupling term in that

model parameter space being of physical interest here.

More important seems to be the question what part of the lattice Goldstone propagator

G̃G(p) one should actually include into the fit procedure. It was already pointed out in

section 3 that the consideration of the lattice propagator has to be restricted to small lattice

momenta in order to suppress contaminations arising from discretization effects. For that

purpose the constant γ has been introduced specifying the set of momenta underlying

the fit approach according to p̂2 ≤ γ. In principle, one would want to choose γ as small
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L3
s × Lt Nf κ λ̂ ŷt ŷb/ŷt v Λ

324 1 0.30039 ∞ 0.55139 1 0.1008(3) 2373.0 ± 6.4GeV

324 1 0.30400 ∞ 0.55038 1 0.1547(1) 1548.1 ± 1.8GeV

Table 1. The model parameters of the Monte-Carlo runs constituting the testbed for the sub-

sequently discussed computation schemes are presented together with the obtained values of the

vacuum expectation value v and the cutoff Λ determined by eq. (3.6). The degenerate Yukawa

coupling constants have been chosen here according to the tree-level relation in eq. (3.21) aiming

at the reproduction of the phenomenologically known top quark mass.

as possible. In practice, however, the fit procedure becomes increasingly unstable when

lowering the value of γ, because less and less data are then included within the fit. In

the following example lattice computations, demonstrating the evaluation approach for ZG
and mG, we will consider the settings γ = 1, γ = 2, and γ = 4. To make the discretization

effects associated to these not particularly small values of γ less prominent in the intended

fit procedure, the inverse lattice propagator G̃−1
G (p) is actually fitted with f−1

G (p̂2) instead

of f−1
G (p2), being a function of the squared lattice momentum p̂2, which is completely

justified in the limit γ → 0.

The Goldstone propagators obtained in the lattice calculations specified in table 1 are

presented in figure 3. These numerical data of the inverse Goldstone propagator G̃−1
G (p)

have been fitted with the fit formula f−1
G (p̂2) given in eq. (4.4). One can observe already

from the graphical presentation in figure 3 that the considered fit ansatz fG(p̂2) describes

the numerical data significantly better than the simple linear fit formula

l−1
G (p̂2) =

p̂2 +m2
G

ZG
, (4.5)

which is additionally considered here for the only purpose of demonstrating the quality of

the applied fit ansatz fG(p̂2).

To find an optimal setting for the threshold value γ, the dependence of the fit results

on the latter parameter is listed in table 2, where the presented Goldstone mass mG and the

renormalization factor ZG have been obtained according to eq. (3.13) and eq. (3.14) from

the analytical continuation of the lattice Goldstone propagator given by G̃cG(pc) = fG(pc)

and G̃cG(pc) = lG(pc), respectively.

At first glance one notices that the linear ansatz lG(p̂2) yields more stable results

than fG(p̂2). These results are, however, inconsistent with themselves when varying the

parameter γ. One can also observe in table 2 that the associated average squared residual

per degree of freedom χ2/dof significantly differs from one at the selected values of γ,

making apparent that the simple linear fit ansatz is not suited for the reliable determination

of the Goldstone propagator properties.

In contrast to that the more elaborate fit ansatz fG(p̂2) yields much better values of

χ2/dof being close to the expected value of one as can be seen in table 2. Moreover, the

results on the renormalization constant ZG and the Goldstone mass mG obtained from this

ansatz remain consistent with respect to the specified errors when varying the constant

γ. In the following the aforementioned quantities ZG and mG will therefore always be
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Figure 3. The inverse lattice Goldstone propagators calculated in the Monte-Carlo runs specified

in table 1 are presented versus the squared lattice momenta p̂2 together with the respective fits

obtained from the fit approaches f−1

G (p̂2) in eq. (4.4) (red solid line) and l−1

G (p̂2) in eq. (4.5) (blue

dashed line) with γ = 4.0. From left to right the three panel columns display the same data zooming

in, however, on the vicinity of the origin at p̂2 = 0.

fit ansatz fG(p̂2) linear fit ansatz lG(p̂2)

κ γ ZG mG χ2/dof ZG mG χ2/dof

0.30039 1.0 0.9380(107) 0.027(15) 1.00 0.9422(5) 0.067(2) 2.61

0.30039 2.0 0.9431(52) 0.028(11) 0.81 0.9507(3) 0.089(2) 4.79

0.30039 4.0 0.9457(27) 0.033(8) 0.94 0.9585(2) 0.114(2) 6.19

0.30400 1.0 0.9400(90) 0.029(10) 1.41 0.9403(4) 0.066(1) 4.40

0.30400 2.0 0.9426(36) 0.032(7) 1.07 0.9476(2) 0.084(1) 6.53

0.30400 4.0 0.9478(18) 0.038(4) 1.06 0.9559(1) 0.111(1) 9.67

Table 2. The results on the Goldstone renormalization factor ZG and the Goldstone mass mG,

obtained from the fit approaches fG(p̂2) and lG(p̂2) as defined in eq. (4.4) and eq. (4.5), are listed

for several settings of the parameter γ together with the corresponding average squared residual

per degree of freedom χ2/dof associated to the respective fit. The underlying Goldstone lattice

propagators have been calculated in the Monte-Carlo runs specified in table 1.

determined by means of the here presented method based on the fit ansatz fG(p̂2) with a

threshold value of γ = 4, since this setting yields the most stable results, while still being

consistent with the findings obtained at smaller values of γ.
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5 Analysis of the Higgs propagator

Concerning the analysis of the Higgs propagator we will follow the same strategy as in the

previous section. Examples of the lattice Higgs propagator as obtained in the Monte-Carlo

runs specified in table 1 are presented in figure 4. These numerical data have been fitted

with the ansatz

f−1
H (p̂2) =

p̂2 + m̄2
H +A ·

[
36
(
J (p̂2, m̄2

H) −DH0

)
+ 12

(
J (p̂2, m̄2

G) −DG0

)]

Z0
, (5.1)

derived from renormalized perturbation theory in the Euclidean pure Φ4-theory at one-loop

order. The restriction to the pure Φ4-theory is again motivated by the same arguments

already discussed in the preceding section. In the above formula the one-loop contribution

J (p2, m̄2) is defined as

J (p2, m̄2) =
arctanh (q)

q
, q =

√

p2

4m̄2 + p2
, (5.2)

the constants DH0, DG0 are given as

DH0 = J (0, m̄2
H) = 1, (5.3)

DG0 = J (0, m̄2
G) = 1, (5.4)

and m̄2
H , A, Z0 are the free fit parameters. The parameter m̄2

G is not treated as a free

parameter here. Instead it is fixed to the value of mG resulting from the analysis of

the Goldstone propagator by the method described in the previous section. The sole

purpose of this approach is to achieve higher stability in the considered fit procedure,

which otherwise would yield here only unsatisfactory results with respect to the associated

statistical uncertainties.

Again, one can observe, however less clearly as compared to the previously discussed

examples of the case of the Goldstone propagator, that the more elaborate fit ansatz fH(p̂2)

describes the lattice data more accurately than the simple linear fit approach

l−1
H (p̂2) =

p̂2 +m2
H

ZH
. (5.5)

This is better observable in the lower row of figure 4 than in the upper row, where the

differences tend to be rather negligible. The reason why the observed differences between

the two fit approaches are less pronounced here, as compared to the situation in the pre-

ceding section, simply is, that the threshold value γ was chosen here to be γ = 1 which

will be motivated below. This setting of γ is much smaller than the value underlying the

previously discussed examples of the Goldstone propagators and causes the linear fit to

come closer to the more elaborate ansatz fH(p̂2).

The Higgs propagator mass mHp defined in eq. (3.15) and the Higgs pole mass mH

together with its associated decay width ΓH given by the pole of the propagator on the

second Riemann sheet according to eq. (3.13) can then be obtained by defining the ana-

lytical continuation of the lattice propagator as G̃cH(pc) = fH(pc) and G̃cH(pc) = lH(pc),
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Figure 4. The inverse lattice Higgs propagators calculated in the Monte-Carlo runs specified

in table 1 are presented versus the squared lattice momenta p̂2 together with the respective fits

obtained from the fit approaches f−1

H (p̂2) in eq. (5.1) (red solid line) and l−1

H (p̂2) in eq. (5.5) (blue

dashed line) with γ = 1.0. From left to right the three panel columns display the same data zooming

in, however, on the vicinity of the origin at p̂2 = 0.

respectively. The results arising from the considered fit procedures are listed in table 3 for

several values of the threshold value γ. However, since the linear function lH(pc) can not

exhibit a branch cut structure, the pole mass equals the propagator mass and the decay

width is identical to zero when applying the linear fit approach. That is the reason why

only the Higgs boson mass mH is presented in the latter scenario. We further remark that

the values of ΓH arising along with the determination of mH are — as expected — rather

unstable due to the required analytical continuation of the propagator onto the second

Riemann sheet. We therefore do not present these numbers here.

One observes in table 3 that the Higgs boson masses obtained from the linear fit ansatz

lH(p̂2) are again inconsistent with the respective results obtained at varying values of the

threshold parameter γ, thus rendering this latter approach unsuitable for the description

of the Higgs propagator. This becomes also manifest through the presented values of the

average squared residual per degree of freedom χ2/dof associated to the linear ansatz,

which are clearly off the expected value of one (with the exception of the case of γ = 0.5).

Again the situation is very different in case of the more elaborate fit ansatz fH(p̂2)

yielding significantly smaller values of χ2/dof . The presented results on the propagator

mass mHp as well as the pole mass mH are also in much better agreement with the cor-

responding values obtained at varied threshold parameter γ. Moreover, the values of mHp
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Fit ansatz fH(p̂2) Fit ansatz lH(p̂2)

κ γ mHp mH χ2/dof mH χ2/dof

0.30039 0.5 0.253(2) 0.296(83) 1.17 0.253(2) 1.13

0.30039 1.0 0.252(2) 0.253(2) 1.20 0.261(2) 1.62

0.30039 2.0 0.246(2) 0.249(2) 1.09 0.273(1) 2.58

0.30400 0.5 0.405(3) 0.406(3) 1.43 0.399(2) 1.75

0.30400 1.0 0.409(1) 0.410(1) 1.16 0.409(1) 2.23

0.30400 2.0 0.409(1) 0.412(1) 1.27 0.423(1) 4.63

Table 3. The results on the Higgs propagator mass mHp and the Higgs pole mass mH obtained

from the fit approaches fH(p̂2) in eq. (5.1) and lH(p̂2) in eq. (5.5) are listed for several settings of the

parameter γ together with the corresponding average squared residual per degree of freedom χ2/dof

associated to the respective fit. For the linear fit ansatz lH(p̂2) only the pole mass is presented,

since one finds mHp ≡ mH when constructing the analytical continuation G̃c
H(pc) through lH(pc).

The underlying Higgs lattice propagators have been calculated in the Monte-Carlo runs specified

in table 1.

and mH are consistent with each other with respect to the given errors, finally justifying

the identification of the Higgs boson mass with the propagator mass mHp.

From the findings presented in table 3 one can conclude that selecting the threshold

value to be γ = 1 for the analysis of the Higgs propagator is a very reasonable choice,

which leads to consistent and satisfactory results. This is the setting that will be used

for the subsequent investigation of the upper Higgs boson mass bounds to determine the

propagator mass mHp. It is further remarked that the here chosen value of γ is much

smaller than the value γ = 4 selected in the preceding section for the analysis of the

Goldstone propagator. While this large setting worked well in the latter scenario, it leads

to less consistent results in the here considered case and has therefore been excluded from

the given presentation.

6 Dependence of the Higgs boson mass on the bare coupling constant λ

We now turn to the question whether the largest Higgs boson mass is indeed obtained

at infinite bare quartic coupling constant for a given set of quark masses and a given

cutoff Λ as one would expect from perturbation theory. Since perturbation theory may

not be trustworthy in the regime of large bare coupling constants, the actual dependence

of the Higgs boson mass on the bare quartic coupling constant λ in the scenario of strong

interactions is explicitly checked here by means of direct Monte-Carlo calculations. The

final answer of what bare coupling constant produces the largest Higgs boson mass will then

be taken as input for the investigation of the upper mass bound in the subsequent section.

For this purpose some numerical results on the Higgs propagator mass mHp are plotted

versus the bare quartic coupling constant λ in figure 5a. The presented data have been

obtained for a cutoff that was intended to be kept constant at approximately Λ ≈ 1540GeV

by an appropriate tuning of the hopping parameter, while the degenerate Yukawa coupling

constants were fixed according to the tree-level relation in eq. (3.21) aiming at the reproduc-
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Figure 5. The Higgs boson mass mHp and the renormalized quartic coupling constant λr are

shown versus the bare coupling constant λ in panels (a) and (b), respectively. These results have

been obtained in direct Monte-Carlo calculations on a 163 × 32-lattice with the degenerate Yukawa

coupling constants fixed according to the tree-level relation in eq. (3.21) aiming at the reproduction

of the top quark mass. The hopping parameter was tuned with the intention to hold the cutoff

constant, while the actually obtained values of Λ fluctuate here between 1504 GeV and 1549 GeV.

The horizontal lines depict the corresponding results at infinite bare coupling constant λ = ∞, and

the highlighted bands mark the associated statistical uncertainties.

tion of the top quark mass. One clearly observes that the Higgs boson mass monotonically

rises with increasing values of the bare coupling constant λ until it finally converges to the

λ = ∞ result, which is depicted by the horizontal line in the presented plot. From this

result one can conclude that the largest Higgs boson mass is indeed obtained at infinite

bare quartic coupling constant, as expected. The forthcoming search for the upper mass

bound will therefore be restricted to the scenario of λ = ∞.

Furthermore, the corresponding behaviour of the renormalized quartic coupling con-

stant λr as defined in eq. (3.17) is presented in figure 5b. As expected one observes a

monotonically rising dependence of λr on the bare coupling constant λ, eventually con-

verging to the λ = ∞ result depicted by the horizontal line.

7 Results on the upper Higgs boson mass bound

We now turn to the actually intended non-perturbative determination of the cutoff-dependent

upper Higgs boson mass bound mup
H (Λ). Given the knowledge about the dependence of the

Higgs boson mass on the bare quartic self-coupling constant λ the search for the desired

upper mass bound can safely be restricted to the scenario of an infinite bare quartic cou-

pling constant, i.e. λ = ∞. Moreover, we will restrict the investigation here to the mass

degenerate case with yt = yb, since the fermion determinant det(M) can be proven to be

real in this scenario as discussed in section 2.

Concerning the cutoff parameters Λ that are reachable with the intended lattice calcu-

lations, a couple of restrictions limit the range of the accessible energy scales. On the one
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hand all particle masses have to be small compared to Λ to avoid unacceptably large cutoff

effects, on the other hand all masses have to be large compared to the inverse lattice side

lengths to bring the finite volume effects to a tolerable level. As a minimal requirement we

demand here that all particle masses m̂ ∈ {mt,mb,mH} in lattice units fulfill

m̂ < 0.5 and m̂ · Ls,t > 2, (7.1)

which already is a rather loose condition in comparison with the common situation in QCD,

where one usually demands at least m̂ · Ls,t > 3. In this model, however, the presence of

massless Goldstone modes is known to induce algebraic finite size effects, which is why it is

not meaningful to impose a much stronger constraint in eq. (7.1), since the quantity m̂ ·Ls,t
only controls the strength of the exponentially suppressed finite size effects caused by the

massive particles.

Employing a top mass of 175GeV and a Higgs boson mass of roughly 700GeV, which

will turn out to be justified after the upper mass bound has eventually been established,

it should therefore be feasible to reach energy scales between 1400GeV and 2800GeV on

a 324-lattice.

For the purpose of investigating the cutoff dependence of the upper mass bound a series

of direct Monte-Carlo calculations has been performed with varying hopping parameters

κ associated to cutoffs covering approximately the given range of reachable energy scales.

At each value of κ the Monte-Carlo computation has been rerun on several lattice sizes

to examine the respective strength of the finite volume effects, ultimately allowing for the

infinite volume extrapolation of the obtained lattice results. In addition, a corresponding

series of Monte-Carlo calculations has been performed in the pure Φ4-theory, which will

finally allow to address the question for the fermionic contributions to the upper Higgs

boson mass bound. The model parameters underlying these two series of lattice calculations

are presented in table 4.

However, before discussing the obtained lattice results, it is worthwhile to recall what

behaviour of the considered observables is to be expected from the knowledge of earlier

lattice investigations. For the pure Φ4-theory and neglecting any double-logarithmic contri-

butions the cutoff dependence of the Higgs boson mass as well as the renormalized quartic

coupling constant has been found in refs. [3, 48, 49] to be of the form

mHp

a
= Am ·

[
log(Λ2/µ2) +Bm

]−1/2
, (7.2)

λr = Aλ ·
[
log(Λ2/µ2) +Bλ

]−1
, (7.3)

where µ denotes some unspecified scale, and Am,λ ≡ Am,λ(µ), Bm,λ ≡ Bm,λ(µ) are con-

stants. Since this result has been established in the pure Φ4-theory, it is thus worthwhile

to ask whether these scaling laws still hold in the considered Higgs-Yukawa model includ-

ing the coupling to the fermions. In that respect it is remarked that the same functional

dependence has also been observed in other analytical studies, for instance in ref. [37]

examining a Higgs-Yukawa model in continuous Euclidean space-time based, however, on

an one-component Higgs field. In that study the running of the renormalized coupling
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κ Ls Lt Nf λ̂ ŷt ŷb/ŷt 1/v Λ

0.30039 12,16,20,24,32 32 1 ∞ 0.55139 1 ≈ 7.7 ≈ 2370GeV

0.30148 12,16,20,24,32 32 1 ∞ 0.55239 1 ≈ 6.5 ≈ 1990GeV

0.30274 12,16,20,24,32 32 1 ∞ 0.55354 1 ≈ 5.6 ≈ 1730GeV

0.30400 12,16,20,24,32 32 1 ∞ 0.55470 1 ≈ 5.0 ≈ 1550GeV

0.30570 12,16,20,24,32 32 1 ∞ 0 – ≈ 9.0 ≈ 2810GeV

0.30680 12,16,20,24,32 32 1 ∞ 0 – ≈ 7.1 ≈ 2220GeV

0.30780 12,16,20,24,32 32 1 ∞ 0 – ≈ 6.2 ≈ 1910GeV

0.30890 12,16,20,24,32 32 1 ∞ 0 – ≈ 5.5 ≈ 1700GeV

0.31040 12,16,20,24,32 32 1 ∞ 0 – ≈ 4.9 ≈ 1500GeV

Table 4. The model parameters of the Monte-Carlo runs underlying the subsequent lattice calcu-

lation of the upper Higgs boson mass bound are presented. In total, a number of 45 Monte-Carlo

runs have been performed for that purpose. The available statistics of generated field configurations

NConf varies depending on the respective lattice volume. In detail we have NConf ≈ 20, 000 for

12 ≤ Ls ≤ 16, NConf ≈ 10, 000 − 15, 000 for Ls = 20, NConf ≈ 8, 000 − 16, 000 for Ls = 24,

NConf ≈ 3, 000− 5, 000 for Ls = 32. The numerically determined values of 1/v and Λ are also ap-

proximately given. These numbers vary, of course, depending on the respective lattice volumes and

serve here only for the purpose of a rough orientation. The degenerate Yukawa coupling constants

in the upper four rows have been chosen according to the tree-level relation in eq. (3.21) aiming at

the reproduction of the phenomenologically known top quark mass. In the other cases it is exactly

set to zero recovering the pure Φ4-theory.

constants with varying cutoff has been investigated by means of renormalized perturba-

tion theory in the large Nf -limit. Furthermore, the scaling behaviour of the renormalized

Yukawa coupling constant has also been derived. It was found to be

yr = Ay ·
[
log(Λ2/µ2) +By

]−1/2
, (7.4)

where Ay ≡ Ay(µ) and By ≡ By(µ) are again so far unspecified constants and yr stands here

for the renormalized top and bottom Yukawa coupling constants yt,r and yb,r, respectively,

as defined in eq. (3.20).

Now, the numerically obtained Higgs boson massesmHp resulting in the above specified

lattice calculations are finally presented in figure 6, where panel (a) refers to the full Higgs-

Yukawa model while panel (b) displays the corresponding results in the pure Φ4-theory.

To illustrate the influence of the finite lattice volume those results, belonging to the same

parameter sets, differing only in the underlying lattice size, are connected by dotted lines

to guide the eye. From these findings one learns that the model indeed exhibits strong

finite volume effects when approaching the upper limit of the defined interval of reachable

cutoffs, as expected.

In figure 6a one sees that the Higgs boson mass seems to increase with the cutoff Λ

on the smaller lattice sizes. This, however, is only a finite volume effect. On the larger

lattices the Higgs boson mass decreases with growing Λ as expected from the triviality

property of the Higgs sector. In comparison to the results obtained in the pure Φ4-theory

shown in figure 6b the aforementioned finite size effects, being of order 10% here, are much
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Figure 6. The Higgs propagator mass mHp is presented in units of the vacuum expectation value

v versus 1/v. These results have been determined in the direct Monte-Carlo calculations specified

in table 4. Those runs with identical parameter sets differing only in the underlying lattice volume

are connected via dotted lines to illustrate the effects of the finite volume. The dashed curves depict

the fits of the lattice results according to the finite size expectation in eq. (7.7) as explained in the

main text. Panel (a) refers to the full Higgs-Yukawa model, while panel (b) shows the corresponding

results of the pure Φ4-theory.

stronger and can thus be ascribed to the influence of the coupling to the fermions. This

effect directly arises from the top quark being the lightest physical particle in the here

considered scenario.

At this point it is worthwhile to ask whether the observed finite volume effects can

also be understood by some quantitative consideration. For the weakly interacting regime

this could be achieved, for instance, by computing the constraint effective potential [50,

51] (CEP) in terms of the bare model parameters for a given finite volume as discussed

in ref. [38], which then allowed to predict the numerical lattice data for given bare model

parameters. In contrast to that scenario the same calculation is not directly useful in the

present situation, since the underlying (bare) perturbative expansion would break down

due to the bare quartic coupling constant being infinite here. This problem can be cured

by parametrizing the four-point interaction in terms of the renormalized quartic coupling

constant. Starting from the definition of λr in eq. (3.17) one can directly derive an estimate

for the Higgs boson mass in terms of λr according to

m2
He = 8λrv

2 − 1

v

d

dv̆
UF [v̆]

∣
∣
∣
∣
∣
v̆=v

+
d2

dv̆2
UF [v̆]

∣
∣
∣
∣
∣
v̆=v

(7.5)

UF [v̆] =
−2Nf

L3
s · Lt

·
∑

p

log

∣
∣
∣
∣
ν+(p) + ytv̆

(

1 − 1

2ρ
ν+(p)

)∣
∣
∣
∣

2

+
−2Nf

L3
s · Lt

·
∑

p

log

∣
∣
∣
∣
ν+(p) + ybv̆

(

1 − 1

2ρ
ν+(p)

)∣
∣
∣
∣

2

, (7.6)
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which respects all contributions of order O(λr). It is remarked that the above contribution

UF [v̆] contains all fermionic loops in the background of a constant scalar field and has

already been discussed in ref. [38], while the underlying definition of the eigenvalues ν±(p)

of the free overlap operator with ±Im(ν±(p)) ≥ 0 has been taken from ref. [35].

Combining the above result with the expected scaling law given in eq. (7.3) a crude

estimate for the observed behaviour of the Higgs boson mass presented in figure 6 can be

established according to

m2
He =

8v2A′
λ

log(v−2) +B′
λ

− 1

v

d

dv̆
UF [v̆]

∣
∣
∣
∣
∣
v̆=v

+
d2

dv̆2
UF [v̆]

∣
∣
∣
∣
∣
v̆=v

, (7.7)

where double-logarithmic terms have been neglected and A′
λ, B

′
λ are so far unspecified

parameters.

Since the value of the renormalized quartic coupling constant λr is not known apriori,

the idea is here to use the result in eq. (7.7) as a fit ansatz with the free fit parameters A′
λ

and B′
λ to fit the observed finite volume behaviour of the Higgs boson mass presented in

figure 6. These lattice data have been given in units of the vacuum expectation value v,

plotted versus 1/v, to allow for the intended direct comparison with the analytical finite

volume expression in eq. (7.7). The resulting fits are depicted by the dashed curves in

figure 6, where the free parameters A′
λ and B′

λ have independently been adjusted for every

presented series of constant lattice volume in the full Higgs-Yukawa model and the pure Φ4-

theory, respectively. Applying the above fit ansatz simultaneously to all available data does

not lead to satisfactory results, since the renormalized quartic coupling constant itself also

depends significantly on the underlying lattice volume, as will be seen later in this section.

One can then observe in figure 6 that this fit approach can describe the actual finite

volume cutoff dependence of the presented Higgs boson mass satisfactorily well, unless

the vacuum expectation value v becomes too small. In that case the model does no longer

exhibit the expected (infinite volume) critical behaviour in eq. (7.2)–(7.3) which the deriva-

tion of the above fit ansatz was built upon. Staying away from that regime, however, the

observed finite volume behaviour of the Higgs boson mass can be well understood by means

of the analytical expression in eq. (7.7).

To obtain the desired upper Higgs boson mass bounds mup
H (Λ) these finite volume

results have to be extrapolated to the infinite volume limit and the renormalization factor

ZG has to be properly considered. For that purpose the finite volume dependence of the

Monte-Carlo results on the renormalized vev vr = v/
√
ZG and the Higgs boson mass mHp,

as obtained for the two scenarios of the full Higgs-Yukawa model and the pure Φ4-theory,

is explicitly shown in figure 7. One sees in these plots that the finite volume effects are

rather mild at the largest investigated hopping parameters κ corresponding to the lowest

considered values of the cutoff Λ, while the renormalized vev as well as the Higgs boson

mass itself vary strongly with increasing lattice size Ls at the smaller presented hopping

parameters, as expected.

It is well known from lattice investigations of the pure Φ4-theory [44–46] that the

vev as well as the mass receive strong contributions from the Goldstone modes, inducing
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Figure 7. The dependence of the renormalized vev vr = v/
√
ZG and the Higgs propagator mass

mHp on the squared inverse lattice side length 1/L2
s is presented in the upper and the lower panel

rows, respectively, as determined in the direct Monte-Carlo calculations specified in table 4. Panels

(a) and (c) show the results for the full Higgs-Yukawa model, while panels (b) and (d) refer to the

pure Φ4-theory. In all plots the dashed curves display the parabolic fits according to the fit ansatz

in eq. (7.9), while the solid lines depict the linear fits resulting from eq. (7.8) for the two lower

threshold values L′

s = 16 (red) and L′

s = 20 (black).

finite volume effects of algebraic form starting at order O(L−2
s ). The next non-trivial finite

volume contribution was shown to be of order O(L−4
s ). In figure 7 the obtained data are

therefore plotted versus 1/L2
s. Moreover, the aforementioned observation justifies to apply

the linear fit ansatz

f (l)
v,m(L−2

s ) = A(l)
v,m +B(l)

v,m · L−2
s (7.8)

to extrapolate these data to the infinite volume limit, where the free fitting parameters

A
(l)
v,m and B

(l)
v,m with the subscripts v and m refer to the renormalized vev vr and the Higgs

boson mass mHp, respectively.
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Vacuum expectation value v

κ A
(l)
v , L′

s = 16 A
(l)
v , L′

s = 20 A
(p)
v vr

0.30039 0.1004(3) 0.1003(6) 0.1004(5) 0.1004(5)(1)

0.30148 0.1215(5) 0.1209(6) 0.1216(8) 0.1213(6)(4)

0.30274 0.1410(1) 0.1408(1) 0.1408(1) 0.1409(1)(1)

0.30400 0.1579(2) 0.1575(1) 0.1576(2) 0.1577(2)(2)

0.30570 0.0857(4) 0.0852(4) 0.0848(2) 0.0852(3)(5)

0.30680 0.1099(4) 0.1094(2) 0.1089(1) 0.1097(3)(5)

0.30780 0.1282(3) 0.1278(1) 0.1277(2) 0.1279(2)(3)

0.30890 0.1443(5) 0.1438(5) 0.1436(4) 0.1439(5)(4)

0.31040 0.1634(2) 0.1630(1) 0.1625(2) 0.1630(2)(5)

Higgs propagator mass mHp

κ A
(l)
m , L′

s = 16 A
(l)
m , L′

s = 20 A
(p)
m mHp

0.30039 0.2356(41) 0.2382(70) 0.2344(67) 0.2361(61)(19)

0.30148 0.2943(29) 0.2908(39) 0.2928(40) 0.2926(36)(18)

0.30274 0.3524(20) 0.3510(38) 0.3489(23) 0.3508(28)(18)

0.30400 0.4042(14) 0.4030(25) 0.4018(15) 0.4030(19)(12)

0.30570 0.1964(10) 0.1971(16) 0.1940(25) 0.1958(18)(16)

0.30680 0.2633(42) 0.2568(20) 0.2552(30) 0.2584(32)(41)

0.30780 0.3130(17) 0.3110(14) 0.3087(7) 0.3109(13)(22)

0.30890 0.3589(17) 0.3568(3) 0.3552(10) 0.3570(12)(19)

0.31040 0.4145(8) 0.4139(14) 0.4105(15) 0.4130(13)(20)

Table 5. The results of the infinite volume extrapolations of the Monte-Carlo data of the renor-

malized vev vr and the Higgs boson mass mHp are presented as obtained from the parabolic ansatz

in eq. (7.9) and the linear approach in eq. (7.8) for the considered lower threshold values L′

s = 16

and L′

s = 20. The final results on vr and mHp, displayed in the very right column, are determined

here by averaging over the parabolic and the two linear fit approaches. An additional, systematic

uncertainty of these final results is specified in the second pair of brackets taken from the largest

observed deviation among all respective fit results.

To take the presence of higher order terms in 1/L2
s into account only the largest lattice

sizes are included into this linear fit. Here, we select all lattice volumes with Ls ≥ L′
s. As

a consistency check, testing the dependence of the resulting infinite volume extrapolations

on the choice of the fit procedure, the lower threshold value L′
s is varied. The respective

results are listed in table 5. Moreover, the parabolic fit ansatz

f (p)
v,m(L−2

s ) = A(p)
v,m +B(p)

v,m · L−2
s + C(p)

v,m · L−4
s (7.9)

is additionally considered. It is applied to the whole range of available lattice sizes. The

deviations between the various fitting procedures with respect to the resulting infinite vol-

ume extrapolations of the considered observables can then be considered as an additional,

systematic uncertainty of the obtained values. The respective fit curves are displayed in fig-

ure 7 and the corresponding infinite volume extrapolations of the renormalized vev and the
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Higgs boson mass, which have been obtained as the average over all presented fit results,

are listed in table 5.

The sought-after cutoff-dependent upper Higgs boson mass bound, and thus the main

result of this paper, already presented in figure 1, can then directly be obtained from the

latter infinite volume extrapolation. The bounds arising in the full Higgs-Yukawa model

and the pure Φ4-theory are jointly presented in figure 1a. In both cases one clearly observes

the expected decrease of the upper Higgs boson mass bound with rising cutoff Λ. Moreover,

the obtained results can very well be fitted with the expected cutoff dependence given in

eq. (7.2), as depicted by the dashed and solid curves in figure 1a, where Am, Bm are the

respective free fit parameters.

Concerning the effect of the fermion dynamics on the upper Higgs boson mass bound

one finds in figure 1a that the individual results on the Higgs boson mass in the full

Higgs-Yukawa model and the pure Φ4-theory at single cutoff values Λ are not clearly

distinguishable from each other with respect to the associated uncertainties. Respecting

all presented data simultaneously by considering the aforementioned fit curves also does

not lead to a much clearer picture, as can be observed in figure 1a, where the uncertainties

of the respective fit curves are indicated by the highlighted bands. At most, one can infer a

mild indication from the presented results, being that the inclusion of the fermion dynamics

causes a somewhat steeper descent of the upper Higgs boson mass bound with increasing

cutoff Λ. A definite answer regarding the latter effect, however, remains missing here due

to the size of the statistical uncertainties. The clarification of this issue would require

the consideration of higher statistics as well as the evaluation of more lattice volumes to

improve the reliability of the above infinite volume extrapolations.

On the basis of the latter fit results one can extrapolate the presented fit curves to

very large values of the cutoff Λ as illustrated in figure 1b. It is intriguing to compare

these large cutoff extrapolations to the results arising from the perturbative consideration

of the Landau pole presented, for instance, in ref. [19]. One observes good agreement with

that perturbatively obtained upper mass bound even though the data presented here have

been calculated in the mass degenerate case and for Nf = 1. This, however, is not too

surprising according to the observed relatively mild dependence of the upper mass bound

on the fermion dynamics.

For clarification it is remarked that a direct quantitative comparison between the

aforementioned perturbative and numerical results has been avoided here due to the dif-

ferent underlying regularization schemes. With growing values of Λ, however, the cutoff

dependence becomes less prominent, thus rendering such a direct comparison increasingly

reasonable in that limit.

Furthermore, the question for the cutoff dependence of the renormalized quartic cou-

pling constant λr and — in the case of the full Higgs-Yukawa model — the top quark

mass with its associated value of the renormalized Yukawa coupling constant yt,r shall be

addressed. For that purpose we follow exactly the same steps as above. The underlying

finite volume lattice results on the renormalized quartic coupling constant and the top

quark mass are fitted again with the parabolic and the linear fit approaches in eq. (7.8)

and eq. (7.9) as presented in figure 8.

– 25 –



J
H
E
P
0
4
(
2
0
1
0
)
0
9
4

κ = 0.30400
κ = 0.30274
κ = 0.30148
κ = 0.30039

1/L2

s

R
en

o
rm

a
li
ze

d
co

u
p
li
n
g

co
n
st

a
n
t
λ

r

0.0080.0060.0040.0020

0.86

0.84

0.82

0.8

0.78

0.76

0.74

0.72

0.7

0.68 κ = 0.31040
κ = 0.30890
κ = 0.30780
κ = 0.30680
κ = 0.30570

1/L2

s

R
en

o
rm

a
li
ze

d
co

u
p
li
n
g

co
n
st

a
n
t
λ

r

0.0080.0060.0040.0020

0.85

0.8

0.75

0.7

0.65

0.6

0.55
κ = 0.30400
κ = 0.30274
κ = 0.30148
κ = 0.30039

1/L2

s

T
o
p

q
u
a
rk

m
a
ss
m

t

0.0080.0060.0040.0020

0.12

0.11

0.1

0.09

0.08

0.07

0.06

(a) (b) (c)

Figure 8. The dependence of the renormalized quartic coupling constant λr as well as the top

quark mass mt on the squared inverse lattice side length 1/L2

s is presented as calculated in the

direct Monte-Carlo calculations specified in table 4. Panels (a) and (c) show the results for the full

Higgs-Yukawa model, while panel (b) refers to the pure Φ4-theory. In all plots the dashed curves

display the parabolic fits according to the fit ansatz in eq. (7.9), while the solid lines depict the

linear fits resulting from eq. (7.8) for the two lower threshold values L′

s = 16 (red) and L′

s = 20

(black).

Renormalized quartic coupling constant λr

κ A
(l)
λ , L′

s = 16 A
(l)
λ , L′

s = 20 A
(p)
λ λr

0.30039 0.6827(280) 0.7043(460) 0.6775(452) 0.6882(406)(134)

0.30148 0.7291(118) 0.7116(66) 0.7166(134) 0.7191(110)(88)

0.30274 0.7791(79) 0.7731(139) 0.7638(81) 0.7720(103)(77)

0.30400 0.8164(71) 0.8074(97) 0.8047(67) 0.8095(79)(59)

0.30570 0.6609(182) 0.6760(288) 0.6590(288) 0.6653(258)(85)

0.30680 0.7171(201) 0.6882(149) 0.6862(182) 0.6972(179)(155)

0.30780 0.7482(56) 0.7414(37) 0.7346(24) 0.7414(41)(68)

0.30890 0.7716(47) 0.7660(17) 0.7612(34) 0.7663(35)(52)

0.31040 0.8051(23) 0.8061(45) 0.7919(88) 0.8010(59)(71)

Top quark mass mt

κ A
(l)
t , L′

s = 16 A
(l)
t , L′

s = 20 A
(p)
t mt

0.30039 0.0701(2) 0.0704(4) 0.0704(3) 0.0703(3)(2)

0.30148 0.0844(3) 0.0843(6) 0.0845(4) 0.0844(5)(1)

0.30274 0.0983(1) 0.0984(2) 0.0984(1) 0.0984(1)(1)

0.30400 0.1104(1) 0.1106(1) 0.1105(2) 0.1105(1)(1)

Table 6. The results of the infinite volume extrapolations of the Monte-Carlo data of the renor-

malized quartic coupling constant λr and the top quark mass mt are presented as obtained from the

parabolic ansatz in eq. (7.9) and the linear approach in eq. (7.8) for the considered lower threshold

values L′

s = 16 and L′

s = 20. The final results on λr and mt, displayed in the very right column, are

determined here by averaging over the parabolic and the two linear fit approaches. An additional,

systematic uncertainty of these final results is specified in the second pair of brackets taken from

the largest observed deviation among all respective fit results.

– 26 –



J
H
E
P
0
4
(
2
0
1
0
)
0
9
4

The corresponding infinite volume extrapolations are listed in table 6, where the fi-

nal extrapolation result is obtained by averaging over all performed fit approaches. An

additional systematic error is again estimated from the deviations between the various fit

procedures.

The sought-after cutoff dependence of the aforementioned renormalized coupling con-

stants can then directly be obtained from the latter infinite volume extrapolations. The

respective results are presented in figure 9 and within the achieved accuracy one observes

the renormalized coupling parameters to be consistent with the expected decline when

increasing the cutoff Λ as expected in a trivial theory. Again, the obtained numerical

results are fitted with the analytically expected scaling behaviour given in eq. (7.3) and

eq. (7.4). As already discussed for the case of the Higgs boson mass determination, the

individual measurements of λr in the two considered models at single cutoff values Λ are

not clearly distinguishable. Respecting the available data simultaneously by means of the

aforementioned fit procedures also leads at most to the mild indication that the inclusion

of the fermion dynamics results in a somewhat steeper descent of the renormalized quar-

tic coupling constant with rising cutoff Λ as compared to the pure Φ4-theory. A definite

conclusion in this matter, however, cannot be drawn at this point due to the statistical

uncertainties encountered in figure 9.

Finally, the renormalized Yukawa coupling constant is compared to its bare counter-

part depicted by the horizontal line in figure 9b. Since the latter bare quantity was chosen

according to the tree-level relation in eq. (3.21) aiming at the reproduction of the physi-

cal top quark mass, one can directly infer from this presentation how much the actually

measured top quark mass differs from its targeted value of 175GeV. Here, one observes

a significant discrepancy of up to 2%, which can in principle be fixed in follow-up lattice

calculations, if desired. According to the observed rather weak dependence of the upper

Higgs boson mass bound on the Yukawa coupling constants, however, such an adjustment

would not even be resolvable with the here achieved accuracy.

8 Summary and conclusions

The aim of the present work has been the non-perturbative determination of the cutoff-

dependent upper mass bound of the Standard Model Higgs boson based on first principle

computations, in particular not relying on additional information such as the triviality

property of the Higgs-Yukawa sector. The motivation for the consideration of the afore-

mentioned mass bound finally lies in the ability of drawing conclusions on the energy scale

Λ at which a new, so far unspecified theory of elementary particles definitely has to substi-

tute the Standard Model, once the Higgs boson and its mass mH will have been discovered

experimentally. In that case the latter scale Λ can be deduced by requiring consistency be-

tween the observed mass mH and the upper and lower mass bounds mup
H (Λ) and mlow

H (Λ),

intrinsically arising from the Standard Model under the assumption of being valid up to

the cutoff scale Λ.

The Higgs boson might, however, very well not exist at all, especially since the Higgs

sector can only be considered as an effective theory of some so far undiscovered, extended
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Figure 9. The cutoff dependence of the renormalized quartic and Yukawa coupling constants is

presented in panels (a) and (b), respectively, as obtained from the infinite volume extrapolation

results in table 6. The dashed and solid curves are fits with the respective analytically expected

cutoff dependence in eq. (7.3) and eq. (7.4). The horizontal line in panel (b) indicates the bare

degenerate Yukawa coupling constant underlying the performed lattice calculations.

theory, due to its triviality property. In such a scenario, a conclusion about the validity

of the Standard Model can nevertheless be drawn, since the non-observation of the Higgs

boson at the LHC would eventually exclude its existence at energies below, lets say, 1TeV

thanks to the large accessible energy scales at the LHC. An even heavier Higgs boson is,

however, definitely excluded without the Standard Model becoming inconsistent with itself

according to the results in section 7 and the requirement that the cutoff Λ be clearly larger

than the mass spectrum described by that theory. In the case of non-observing the Higgs

boson at the LHC after having explored its whole energy range, one can thus conclude on

the basis of the latter results, that new physics must set in already at the TeV-scale.

For the purpose of establishing the aforementioned cutoff-dependent mass bound, the

lattice approach has been employed to allow for a non-perturbative investigation of a

Higgs-Yukawa model serving as a reasonable simplification of the full Standard Model,

containing only those fields and interactions which are most essential for the Higgs boson

mass determination. This model has been constructed on the basis of Lüscher’s proposals

in ref. [30] for the construction of chirally invariant lattice Higgs-Yukawa models adapted,

however, to the situation of the actual Standard Model Higgs-fermion coupling structure,

i.e. for ϕ being a complex doublet equivalent to one Higgs and three Goldstone modes. The

resulting chirally invariant lattice Higgs-Yukawa model, constructed here on the basis of

the Neuberger overlap operator, then obeys a global SU(2)L × U(1)Y symmetry, as desired.

The fundamental strategy underlying the determination of the cutoff-dependent up-

per Higgs boson mass bounds has then been the numerical evaluation of the maximal

Higgs boson mass attainable within the considered Higgs-Yukawa model in consistency
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with phenomenology. The latter condition refers here to the requirement of reproducing

the phenomenologically known values of the top and bottom quark masses as well as the

renormalized vacuum expectation value vr of the scalar field, where the latter condition

was used here to fix the physical scale of the performed lattice calculations. Owing to the

potential existence of a fluctuating complex phase in the non-degenerate case, the top and

bottom quark masses have, however, been assumed to be degenerate in this work. Apply-

ing this strategy requires the evaluation of the model to be performed in the broken phase,

but close to a second order phase transition to a symmetric phase, in order to allow for the

adjustment of arbitrarily large cutoff scales, at least from a conceptual point of view.

As a first step it has explicitly been confirmed by direct lattice calculations that the

largest attainable Higgs boson masses are indeed observed in the case of an infinite bare

quartic coupling constant, as suggested by perturbation theory. Consequently, the search

for the upper Higgs boson mass bound has subsequently been constrained to the bare

parameter setting λ = ∞. The resulting finite volume lattice data on the Higgs boson mass

turned out to be sufficiently precise to allow for their reliable infinite volume extrapolation,

yielding then a cutoff-dependent upper bound of approximately mup
H (Λ) = 630GeV at a

cutoff of Λ = 1500GeV. These results were moreover precise enough to actually resolve

their cutoff dependence as demonstrated in figure 1, which is in very good agreement with

the analytically expected logarithmic decline, and thus with the triviality picture of the

Higgs-Yukawa sector.

It is remarked here, that this achievement has been numerically demanding, since the

latter logarithmic decline of the upper boundmup
H (Λ) is actually only induced by subleading

logarithmic contributions to the scaling behaviour of the considered model close to its phase

transition, which had to be resolved with sufficient accuracy. By virtue of the analytically

expected functional form of the cutoff-dependent upper mass bound, which was used to

fit the obtained numerical data, an extrapolation of the latter results to much higher

energy scales could also be established, being in good agreement with the corresponding

perturbatively obtained bounds [19]. A direct comparison has, however, been avoided due

to the different underlying regularization schemes.

The interesting question for the fermionic contribution to the observed upper Higgs bo-

son mass bound has then been addressed by explicitly comparing the latter findings to the

corresponding results arising in the pure Φ4-theory. For the considered energy scales this

potential effect, however, turned out to be not very well resolvable with the available accu-

racy of the lattice data. The performed fits with the expected analytical form of the cutoff

dependence only mildly indicate the upper mass bound in the full Higgs-Yukawa model to

decline somewhat steeper with growing cutoffs than the corresponding results in the pure

Φ4-theory. To obtain a clearer picture in this respect, higher accuracy of the numerical

data and thus higher statistics of the underlying field configurations would be needed.
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