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1 Introduction

In recent years lots of progress has been made in QCD lattice calculations. One important

progress in the light quark sector concerns the values of the quark masses that can now

be reached. These are very close to the physical ones making a controlled, i.e. trustable,

chiral extrapolation of the lattice results to the physical points possible. A very powerful

model-independent framework to perform this extrapolation is Chiral Perturbation Theory

(ChPT), the Effective Field Theory of QCD at low energies. Indeed it allows to calculate

low-energy QCD processes in terms of the light pseudoscalar mesons masses. Hadron

properties are presently actively studied on the lattice and chiral extrapolations to their

physical values are performed, see for example [1–3].

At the same time lots of effort is put into testing the Standard Model (SM). In order

to do so one has to have very precise determinations of the QCD quantities which gener-

ally enter the different processes under consideration. Two very interesting quantities in

this respect are the strangeness changing scalar f0 and vector f+ form factors which are

measured in Kl3 decays [4]. Indeed a measurement of the Kℓ3 inclusive decay rate leads to

the extraction of the product of the vector form factor at zero momentum transfer f+(0)

and of the CKM matrix element |Vus|. Consequently the knowledge of f+(0) allows to

extract this matrix element and thus to test the unitarity relation between the elements

of the first row of this matrix. Another test comes from the values of this form factor at

the Callan-Treiman point [5] and at its soft-kaon analog [6]. Indeed, at these particular

points the scalar form factor has a well-known value as dictated by SU(Nf )× SU(Nf ) low

energy theorems, with Nf = 2 and Nf = 3, respectively. Combining this information with

experimental results from semi-leptonic decays one can determine the values of the scalar

form factor at these two points in the SM. Thus a departure from these values would be

a sign for physics beyond the SM such as right-handed quark couplings to the W [5, 7] or

charged Higgs effects, see for example the discussion in [4](and references therein) and [8].

However, in order to have a reliable and accurate test of the SM one should know very
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precisely the corrections to the Callan-Treiman theorem and its soft kaon analog which are

only exact in the soft meson limit. They are usually calculated in ChPT [9]. In ref. [6]

the one-loop result from ref. [9] was used and an estimation of the higher order effects was

done since at next-to-leading order some low-energy constants (LECs) contribute which

are not very precisely known at present. Experimentally there has recently been interest

in trying to obtain the value of the scalar form factor at the Callan-Treiman point. The

three collaborations NA48 [10], KLOE [11] and KTeV [12] have reanalysed their data so

as to extract this value using in their analysis a dispersive representation of the form fac-

tors proposed in refs. [5, 6]. With the current experimental precision the data from the

last two collaborations show a good/marginal agreement with the SM while NA48 has a

4.5σ deviation.

The scalar form factor has been studied on the lattice. Some parameterization of its

momentum-dependence plus the knowledge of the one-loop ChPT result at zero momentum

transfer is used to extract f+(0). Here we will fit the lattice data from ref. [13] for the

scalar form factor using a ChPT calculation at two loop order [14]. Furthermore, we will

not only consider the scalar form factor but at the same time we will fit the ratio of the

kaon to the pion decay constants FK/Fπ [15, 16] since, as we will see, similar LECs enter

the two quantities. This will allow us to determine some LECs at two-loop order (O(p6))

and thus not only obtain f+(0) and determine |Vus| but also the value of the scalar form

factor at the Callan-Treiman point and at its soft-kaon analog. Of course one should keep

in mind that we are dealing here with SU(3) quantities which involve the strange quark

mass. The question is whether one should consider the strange quark as light compared

to the QCD scale Λ ∼ 200 MeV or should it be treated as heavy. Related to that is

the question whether standard SU(3) ChPT which assumes that the quark condensate

is large, is a well converging series, the relevant expansion parameter being in that case

(mK/Λχ)2 ∼ 0.42. Also s̄s sea quark pairs may play a significant role in chiral dynamics

leading to different patterns of chiral symmetry breaking in Nf = 2 and Nf = 3 chiral

limits [17–21]. For example, lattice QCD seems to indicate a problem in the extrapolation

of FK/Fπ to its physical value when using SU(3) ChPT to one loop order [16] while a fit

within “Kaon ChPT” [22] where the kaon is treated as a heavy particle (for an application

of that framework see for example [23]) leads to good agreement. The mass dependence

of the scalar form factor has been studied within this scheme in ref. [24]. We will use here

standard ChPT to two loops and we will study the convergence of the chiral expansion. We

will also discuss the leading order O(p4) LEC Lr
4 which is related to the Okubo-Zweig-Iizuka

(OZI) rule violation.

In section 2, we discuss briefly the scalar form factor at two loops in ChPT. We present

the lattice calculations in section 3 and discuss our fits and results in section 4. We conclude

in section 5.

2 ChPT to two loops

The strangeness changing form factors are defined from the K → π matrix element of the

vector current Vµ = s̄γµu

〈π(pπ)|s̄γµu|K(pK)〉 = (pπ + pK)µ f+(t) + (pK − pπ)µ f−(t), (2.1)
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where t ≡ q2 = (pK−pπ)2. The vector form factor f+(t) represents the P-wave projection of

the crossed channel matrix element 〈0|s̄γµu|Kπ〉 whereas the S-wave projection is described

by the scalar form factor defined as

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t) . (2.2)

At zero momentum one has

f0(0) = f+(0) . (2.3)

These form factors were calculated to two loops in ChPT in ref. [14]. These authors

introduced the quantity

f̃0(t) = f+(t) +
t

m2
K −m2

π

(

f−(t) + 1 −
FK

Fπ

)

= f0(t) +
t

m2
K −m2

π

(

1 −
FK

Fπ

)

. (2.4)

The two-loop expressions of the two decay constants FK and Fπ can be found in ref. [15].

They involve two Li, L
r
4 and Lr

5, at O(p4) and the four O(p6) Ci, C
r
14, C

r
15, C

r
16 and Cr

17.

Assuming that the LEC Lr
4 is small, which is in principle the case in the standard scenario

of ChPT, one can expand, as usually done, the denominator in the ratio of the two decay

constants so that its contribution to order p4 cancels and one is left with the contribution

from Lr
5 and two combinations of three Ci as detailed below:

FK/Fπ = 1 +
4

F 2
π

(m2
K −m2

π)Lr
5 +

8

F 2
0

[

−m4
π(Cr

15 + 2Cr
17) (2.5)

+2m2
πm

2
K

(

−(Cr
14 + Cr

15) +
1

2
(Cr

15 + 2Cr
17)

)

+ 2m4
K(C14 + C15)

]

+ δ ,

where F0 is the pion decay constant in the chiral limit. We will come back to the discussion

of this equation in section 4. δ contains the loops and the contributions of the Li at O(p6).

Interestingly the dependence on these LECs is exactly the same in f0(t), see ref. [14]. Thus

the main advantage in considering f̃0 is that this quantity has no dependence on the Lr
i

at order p4, only via order p6 contributions and furthermore, it only depends on the two

O(p6) LECs Cr
12 and Cr

34. Its explicit dependence on those is given by

f̃0(t) = 1 −
8

F 2
0

(Cr
12 + Cr

34)
(

m2
K −m2

π

)2
+ 8

t

F 2
0

(2Cr
12 + Cr

34)
(

m2
K +m2

π

)

−
8

F 2
0

t2Cr
12 + ∆(t) + ∆(0) , (2.6)

where we used the notations of ref. [14]. As before, the quantities ∆(t) and ∆(0) have

contributions from loops and from the LECs Lr
i at O(p6) and can in principle be calculated

to order p6 accuracy with the knowledge of the Lr
i to order p4. Parameterizations of these

quantities in the physical region of Kℓ3 decays can be found in ref. [14].

Eq. (2.4) is in fact inspired by the Callan-Treiman theorem [25, 26] which predicts

the value of f0(t) at the so called Callan-Treiman point, t ≡ ∆Kπ = m2
K − m2

π in the

SU(2) × SU(2) chiral limit. One has

f0(∆Kπ) =
FK

Fπ
+ ∆CT , (2.7)
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where ∆CT is a correction of O (mu,d). It has been estimated within ChPT at next-to-

leading order (NLO) in the isospin limit [9] with the result

∆NLO
CT = (−3.5 ± 8.0) · 10−3 , (2.8)

where the error is a conservative estimate assuming some typical corrections of O(mu,d)

and O(ms). From eq. (2.6) one can calculate the contribution from the O(p6) LECs to

∆CT . It reads

∆CT |Ci
=

16

F 2
0

(2Cr
12 + Cr

34)m
2
π(m2

K −m2
π) . (2.9)

O(p6) calculations [27] using some estimates for the LECs Cr
12 and Cr

34 give results con-

sistent with eq. (2.8). Strong isospin breaking as well as electromagnetic effects have also

been evaluated [27, 28].

Another interesting quantity is the soft-kaon analog of the Callan-Treiman theorem [29]

f0(∆̃Kπ) =
Fπ

FK

+ ∆̃CT , (2.10)

with ∆̃Kπ ≡ −∆Kπ. A one loop calculation of the SU(3) correction ∆̃CT in the isospin

limit [9] gives ∆̃CT = 0.03. This is larger than its soft-pion analog ∆CT , see eq. (2.8), by a

factor m2
K/m

2
π, however, rather small for a first order SU(3)×SU(3) breaking effect, which

is expected to be of the order of about 25%.

The value of Vud, the first element of the CKM matrix is very accurately known from

superallowed 0+ → 0+ nuclear β-decays [30]

|Vud| = 0.97425 ± 0.00022 . (2.11)

Combining this value with the experimental value of the branching ratio ΓKl2(γ)
/Γπl2(γ)

[31]

and assuming the standard couplings of quarks to the W-boson allows to determine the

ratio of the decay constants FK/Fπ. Using instead the inclusive decay rate ΓKLe3(γ)
[31],

one obtains the value of the vector form factor at zero momentum transfer f+(0). From

these information and eqs. (2.7), (2.10), one can deduce the value of the normalized form

factor at the Callan Treiman point C ≡ f0(∆Kπ)/f+(0) and at ∆̃Kπ. For the explicit

formulae and more details see for example ref. [31]. One has the following updated values

in the SM

f+(0)|SM = 0.959 ± 0.005 , (2.12)

FK/Fπ|SM = 1.192 ± 0.006 ,

lnC|SM = 0.2169 ± 0.0034 + ∆CT /f+(0) ,

f0(∆̃Kπ)/f+(0)|SM = 0.8302 ± 0.0074 + ∆̃CT /f+(0) .

Deviations from these SM predictions would thus be a sign of new physics. For example

at NLO within the minimal not-quite decoupling electroweak low-energy effective theory

(LEET) [32–34], in the light quark sector one has two combinations of parameters of

spurionic origin describing the couplings of quarks to the W -boson to be determined from

– 4 –
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Fit 10 [36] πK Roy Steiner [37] Prelim. Fit All(*) [53] Lattice [16]

set a set b

103Lr
1 0.432 1.05 ± 0.12 0.99 ± 0.13 −

103Lr
2 0.735 1.32 ± 0.03 0.60 ± 0.21 −

103Lr
3 −2.35 −4.53 ± 0.14 −3.08 ± 0.47 −

103Lr
4 0 0.53 ± 0.39 0.70 ± 0.66 0.33(0.13)

103Lr
5 0.97 3.19 ± 2.40 0.56 ± 0.11 0.93(0.073)

103Lr
6 0 0.14 ± 0.70 -

103Lr
7 −0.31 −0.21 ± 0.15 -

103Lr
8 0.6 0.38 ± 0.17 -

103(2Lr
6 − Lr

4) 0.032 (0.062)

103(2Lr
8 − Lr

5) 0.050(0.043)

Table 1. O(p4) LECs at a scale µ = 0.77GeV.

experiment [6, 35]. While the knowledge of the scalar form factor at the CT point measures

one combination, its knowledge at ∆̃Kπ measures the other one. A precise determination of

∆CT and ∆̃CT would thus help to settle the issue of the presence of right-handed couplings

of quarks to the W -boson.

In order to have a very precise determination of f+(0) as well as ∆CT and ∆̃CT ,

one needs to have a very precise determination of all the LECs Lr
i and Cr

i which enter

eqs. (2.5), (2.6).

• The Li, i = 1 . . . 8, have been determined in ref. [36] from a fit to the masses and

to Kl4-decay data from the E865 experiment, assuming that Lr
4 and Lr

6 are 1/Nc

suppressed and using as input FK/Fπ = 1.22 and ms/m̂ = 24, with ms and m̂

the strange and the average of the u, d quark masses, respectively.1 Matching the

dispersive results for the subthreshold expansion parameters of πK scattering with

their chiral expansion at order p4 [37] leads to somewhat different results, especially

Lr
4 is suggestive of a significant violation of the OZI rule in the scalar sector, see

table 1. This is in agreement with a determination of some of the LECs in an

analysis of J/ψ decays into vector mesons and two pseudoscalars [38].

• In ref. [39] it was shown that it was possible to reproduce the values of the Li in

terms of properties of the light meson resonances (masses and coupling constants).

The idea of using resonance saturation also for the O(p6) LECs was thus taken up and

the Ci are presently mostly estimated in that framework [40–42]. There are, however,

a few problems. First the scale at which they are obtained is not known. It is usually

assumed to be given by the lightest scalar nonet that survives in the large Nc limit,

MS = 1.48 GeV. The value at another scale, typically the ρ mass scale, is obtained

using renormalization group equations. Furthermore, a test of the naturalness of

the Ci [43] shows that some of them are in fact not dominated by the resonance

1In this fit some of the Ci are taken from resonance saturation, the others are set to zero, see ref. [15].
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contributions. Also the LECs we are interested in have important contributions

from the scalar sector where one knows that the OZI rule is strongly violated and

where the presence of the wide scalar σ and κ mesons makes the calculation in

terms of tree level diagrams from a resonance Lagrangian not really appropriate.

Considering more specifically Cr
12 and Cr

34, several calculations have been performed

based on the study of the scalar form factor with ∆S = 0 [44] or ∆S = 1 [45, 46].

In the literature these two LECs, eq. (2.6), lie in the range −10−3 GeV−2 to a few

10−4 GeV−2. The four other O(p6) LECs (Cr
14, C

r
15 C

r
16 and Cr

17), eq. (2.5), needed

in our study are not very well known. In ref. [47] where the Ci have been recently

determined within a quark model, one finds Cr
15 = Cr

16 = 0, Cr
17 = 0.01 · 10−3 GeV−2

and Cr
14 = −0.83 · 10−3 GeV−2 which is smaller than what is found in resonance

saturation Cr
14 = −4.3 · 10−3 GeV−2.

With the progress of lattice QCD it becomes also possible to extract the LECs from a chiral

extrapolation of the lattice data. Already some of the O(p4) ones have been obtained mostly

within SU(2) (li). Note that relations between the SU(2) and the SU(3) LECs allows to

determine the li from the Li [48, 49] (for similar relations between the Ci see ref. [50, 51]).

Results from the RBC/UKQCD collaboration are shown in table 1. As can be seen from

this table most of the O(p4) LECs are still not well enough determined for a very precise

test of the SM. A global fit of all the low-energy constants of Chiral Perturbation theory

at next-to-next-to-leading order currently performed [52, 53] will hopefully help to settle

the values of these LECs much more precisely. Some preliminary results [53] which differ

from fit 10 by using some more recent data, by letting Lr
4 and Lr

6 free and by adding some

constraints from πK scattering show better agreement with the analysis of ref. [37] as the

comparison between the second and third column of table 1 shows.

3 Lattice

Following the pioneering work of ref. [54] different collaborations have extracted the vector

form factor at zero momentum transfer either with Nf = 2 [55–58] or Nf = 2 + 1 [13]

flavours. The idea is to first evaluate the scalar form factor f0(t) at the momentum transfer

tmax = (mK −mπ)2. This can be very efficiently done calculating a double ratio of three-

point correlation functions [54]. Then a phenomenologically motivated interpolation is

performed up to zero momentum transfer2 and the Ademollo-Gatto theorem is used to

obtain a rather precise value for f+(0). Let us consider the chiral expansion of f+(0)

f+(0) = 1 + f2 + f4 + · · · , (3.1)

where fn = O((mK,π/(4πFπ))n) and the first term is equal to one due to gauge invariance.

The Ademollo-Gatto theorem [59] states that the deviation from unity of f+(0) is predicted

to be second order in SU(3) symmetry breaking, i.e. of order (ms − m̂)2 so that the O(p2)

2A new technique has been developed in ref. [60] which will allow to directly simulate at t = 0 on

the lattice.
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term f2 in the chiral expansion of f+(0) is free of any LECs.3 The different collaborations

generally take this term from a one-loop ChPT calculation [9]

f2 = −0.0227 , (3.2)

obtained for pion, kaon and eta masses taken at their physical values and in the isospin

limit and determine the difference

∆f = f+(0) − 1 − f2 . (3.3)

This difference contains of course all terms starting at the order O(p6). Also used is the

partially quenched expression derived in ref. [61]. An expression for f2 using NLO SU(2)

ChPT can be found in ref. [24]. The first determination of ∆f in a quark model framework

gave ∆f = −0.016(8) [62].

The RBC/UKQCD collaboration for example [13, 16] simulates with Nf = 2 + 1

flavors of dynamical domain wall quarks. In order to determine f+(0), they performed a

simultaneous fit to both the t and quark mass dependences using the ansatz

f0(t,m
2
π,m

2
K) =

1 + f2 + (m2
K −m2

π)2(A0 +A1(m
2
K +m2

π))

1 − t/(M0 +M1(m
2
K +m2

π))2
. (3.4)

This formula motivated by the Ademollo-Gatto theorem has four fit parameters A0, A1,

M0, M1 and f2 is the NLO term, eq. (3.3). They have also used a second order Taylor

expansion as parameterization of the t-dependence of the form factor.4 They obtain

f+(0) = 0.9644 ± 0.0033stat ± 0.0037syst . (3.5)

The same collaboration has also extracted the ratio FK/Fπ [16]

FK/Fπ = 1.205 ± 0.018stat ± 0.062syst . (3.6)

A summary of other lattice results can be found in refs. [31, 63–66]. In the unquenched

simulations they fall in the range between 1.189 and 1.218 for the central value of FK/Fπ

and between 0.956 and 0.968 for the one of f+(0). While the errors on the former are very

small, they are larger on the latter. All these numbers should be compared to the Standard

Model values, eq. (2.12).

4 Chiral extrapolation

We now turn to the central point of the paper, namely the chiral extrapolation of the

lattice data on FK/Fπ and f+(0) based on the two-loop ChPT calculations [14]. We use

3Note, however, that despite this theorem the light quark mass difference mu 6= md can modify f+(0)

to first order.
4This parameterization and the pole one are usually assumed either in lattice calculations or in most of

the experimental analyses. One should note, however, that the pole parameterization has no real physical

motivation in the case of the scalar form factor. Also it has been shown [6, 12] that in order to get a very

precise parameterization of the scalar form factor in the physical region of Kl3 decay (m2
ℓ < t < tmax), an

expansion up to third order had to be done.
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the results from the RBC/UKQCD collaboration since this is the only collaboration which

has calculated both these quantities with Nf = 2 + 1 flavors. We take the data performed

on the 243×64 volume with an inverse lattice spacing of a−1 = 1.73(3) GeV and a simulated

strange quark mass, ams = 0.04 close to its physical value. We do not correct for finite

volume effects (FV) or lattice artefacts (LA). They have been estimated for FK/Fπ [16]

where the error bars they quote for these effects are roughly equal (FV) or even larger (LA)

than the statistical ones. We only included the statistical errors in our fits. Also we did not

include the correlations between FK and Fπ since they are not available. Lattice results

have been obtained for four values of the light quark masses which correspond to pion (first

number in parenthesis) and kaon masses (second number) equal to (0.329, 0.575) GeV (set

(I)) (0.416, 0.604) GeV (set (II)), (0.556, 0.663) GeV (set (III)) and (0.671, 0.719) GeV.

Clearly, ChPT cannot be valid at too high pion and kaon masses so we completely discard

the last set in our fits and mostly use sets (I) and (II). For each pion mass they have

calculated the scalar form factor at five values of t going from ∼ −0.4 GeV2 to tmax. Again

for the fits we only use the three smallest absolute values of t.

A quantity O at two loops has typically the following form after renormalization of

the pion decay constant

O(mπ,mK ,mη) = OLO +
ONLO

F 2
π

+
ONNLO

F 4
0

, (4.1)

where OLO, ONLO and ONNLO are the contribution at leading order (LO), next-to-leading

order (NLO) and next-to-next-to-leading order (NNLO), respectively. Here, Fπ is the pion

decay constant calculated at O(p4) at the value of the pion mass and of the kaon mass under

consideration and F0 is the pion decay constant in the chiral SU(3) limit. When working

at the physical pion and kaon masses one usually replaces everywhere the decay constant

by its physical value, since the difference is of higher order. This is the procedure which

has been used to determine the LECs, set (a) and (b) of table 1. If this is mostly justified

for set (a) where the difference between Fπ and F0 is small, this is more questionable

for set (b) where F0 = 67.1 MeV but allows, of course, for a better convergence of the

chiral series. Also going away from the physical point the difference between Fπ and F0

might become again too large for this procedure to be entirely satisfying. Here we will just

replace F0 by the physical value of Fπ in the NNLO term in order to be consistent with

the determination of the LECs. Also to be consistent with their determination we will use

eq. (2.5) for determining FK/Fπ. Again if this is justified for set (a) where the convergence

of this quantity is rather good as we will see below, this is more questionable for set (b).

In the expression eq. (4.1), the mass of the η enters the NLO and NNLO terms. In the

calculation of ONLO its NLO expression is used while in ONNLO the η mass is given by the

Gell-Mann-Okubo relation.

We have performed several fits to the lattice data and determined from these fits results

for f+(0), the slope of the scalar form-factor at zero momentum transfer λ0, FK/Fπ, ∆CT

and ∆̃CT . We have taken F0 as a parameter of the fit using the value of the physical pion

decay constant as input. Apart from Fit (VI) they are done with the two lattice data sets

with the smallest pion values, sets (I) and (II). All the fits are done for the three smallest
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Fit I Fit II Fit III Fit IV Fit V Fit VI

C12 5.77 ± 0.56 7.84 ± 0.58 4.69 ± 0.95 5.74 ± 0.95 4.69 ± 0.56 4.43 ± 0.88

C34 2.54 ± 0.43 −1.28 ± 0.44 3.76 ± 0.95 1.07 ± 0.96 3.76 ± 0.43 3.50 ± 0.94

C14 0∗ 0∗ 0.65 ± 1.38 0.71 ± 1.42 0.65∗ −0.93 ± 0.67

2C17 0∗ 0∗ 0.31 ± 3.31 1.92 ± 3.36 0.31∗ 4.16 ± 1.56

F0 89.8 ± 0.1 69.2 ± 0.0 89.8 ± 0.1 69.3 ± 0.0 89.8∗ 89.8 ± 0.1

f+(0) 0.956 0.963 0.956 0.961 0.956 0.958

FK/Fπ 1.20 1.19 1.20 1.19 1.20 1.19

lnC 0.22 0.20 0.22 0.21 0.22 0.21

f0(∆̃Kπ) 0.75 0.75 0.75 0.76 0.75 0.77

103∆CT 1.00 −2.14 0.27 −3.65 0.18 −0.32

102∆̃CT −9.00 −9.86 −8.24 −8.18 −8.11 −7.03

103λ0 18.08 17.77 18.24 17.66 18.18 16.71

χ2 1.40/4 0.96/4 1.67/4 1.29/4 3.01/4 4.8/7

Table 2. Result of the fits to the lattice data. The first five quantities are the parameters of the

fits. The star denotes an input quantity. The Ci’s are in units 10−4 GeV−2 and F0 is in MeV. In

Fits (I) and (II) the lattice data on FK/Fπ are not included.

absolute values of t. The values of the LECs Li, i = 1 . . . 8, are taken from sets (a) and

(b) of table 1 and L9 = 5.93 · 10−3 as determined from the pion charge radius. These sets

correspond to a value ofms/m̂ = 24 as discussed previously. In ref. [52] another preliminary

set is given using a somewhat larger value ms/m̂ = 27.8 as obtained by MILC [67] and

HPQCD/UKQCD [68]. It leads to an even smaller value of F0 = 62.7 MeV and will not be

discussed here. The results of the fits are given in table 2. The ones from this other set

are comparable to the ones of set (b).

• Fits (I) and (II) are three parameter fits of f0(t) using sets (a) and (b) respectively.

The Ci are the one used in the determination of the O(p4) LECs, fit 10, namely

Cr
14 = Cr

15 = Cr
16 = Cr

17 = 0. For set (a) FK/Fπ = 1.22 whereas for set (b)

FK/Fπ = 1.19. Slightly different values are given in the table for set (a) since, as

explained below eq. (4.1) we did not use the physical value of Fπ in the calculation

of this quantity in the NLO term but rather its NLO expression.

• Fits (III) and (IV) are combined fits of FK/Fπ and f0(t) using sets (a) and (b),

respectively, as in the previous fits but now the combinations Cr
14+Cr

15 and Cr
15+2Cr

17

which appear in FK/Fπ are left free. Since we need to determine F0, we, in principle,

need to know Cr
16 and the combination Cr

15 − 2Cr
16. We will assume them equal to

zero, this is consistent with the results in ref. [47]. Thus we do in fact determine Cr
14

and Cr
17.

• Fit (V): here we fix the combinations Cr
14 + Cr

15 and Cr
15 + 2Cr

17 from Fit (III) and

we fit the quantity f̃0(t).
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Figure 1. Momentum-dependence of the scalar form factor. The results of Fit (VI) are displayed

(solid line) for set (I) (left panel) and set (III) (right panel). The convergence of the chiral expansion

is also displayed: the dash-dotted line is the result at LO, the dashed line displays the one up to NLO.

• Fit (VI) is the same as Fit (III) but with the lattice data for f0(t) from set (III) also

included.

As can be seen from table 2, we obtain very good fits of the lattice data. Fits (I) and

(II), however, do not reproduce well the two lattice points for FK/Fπ from sets (I) and

(II). Fits (III) and (IV) which correspond to two very different values of Lr
4 are comparably

good, but an order of magnitude larger value of Cr
17 is in fact needed in order to compensate

for the larger value of Lr
4 in Fit (IV) compared to Fit (III). Cr

14 and Cr
17 are at least an

order of magnitude smaller than what is expected from resonance saturation in the scalar

sector which leads to typical values ∼ 10−3. One has for example [15]

C14 ∼
cdcmdm

M4
S

∼ −4.3 · 10−3 GeV−2 (4.2)

where cd, cm and dm are coefficients of the scalar chiral Lagrangian. MS and dm are

obtained from the masses of the scalars K∗

0 (1430) and a0(980) and cm = 0.042 GeV and

cd = 0.032 GeV. The results of Fit (VI) do not differ much from Fit (III), only C14 and C17

are larger in absolute value and the slope of the scalar form factor is somewhat smaller.

This fit is shown on figure 1 for sets (I) and (III). Even though we only fit the three smallest

points in absolute value, the t-dependence of set (III) is remarkably well reproduced by

ChPT to two loops.

Fitting f0(t) leads to strong anticorrelations between C12 and C34 on the one hand and

C14 +C15 and C15 + 2C17 on the other one, typically of the order of −0.8 while in Fit (V)

the correlations between C12 and C34 are reduced by a factor of two. Also a comparison

of Fits (III) and (V) shows that the error bars on these two LECs are smaller in the latter

case. Thus a rather good determination of the LECs C12 and C34 is obtained by fitting

the function f̃0. Their order of magnitude is the one expected from resonance saturation.

Note that the value obtained for C12 +C34 is rather independent of the fits within one set,

one gets ∼ 8 · 10−4 GeV−2 for set (a) and ∼ 6 · 10−4 GeV−2 for set (b).
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The results for FK/Fπ, f+(0) and lnC are consistent with the values obtained assuming

the standard quark couplings to the W -boson, eq. (2.12). We refrain to give error bars

here since one should have a more precise knowledge of the Li as well as lattice data at

lower pion and kaon masses to really be able to pin down these quantities very precisely.

Difference between the various sets gives an idea of the errors. The value of λ0 turns out to

be rather large compared to the experimental results, the lattice determination of ref. [58]

or to what is obtained from the formula obtained in a dispersive parameterization of the

form factor [5, 6]

λ0 =
m2

π

(m2
K −m2

π)
(lnC −G(0)), G(0) = 0.0398 ± 0.0044 , (4.3)

where G(t) is a dispersive integral of the phase of the form factor which is identified in

the elastic region with the s-wave, I = 1/2 Kπ scattering phase according to Watson’s

theorem. In the analysis [5, 6] it was taken from [37] where a matching of the solution

of the Roy-Steiner equations with the Kπ → Kπ , ππ → KK̄ and ππ → ππ scattering

data available at higher energies has been performed. Note that in this analysis the LECs

obtained, second column of table 1, are more consistent with the values used in Fit (IV),

especially a large violation of the OZI rule was found. This large value of λ0 can be traced

back to the too large value of the combination 2C12 + C34 which enters its expression

within ChPT, see eq. (2.6). It is however compensated by a small curvature λ′0 leading

to a value of the scalar form factor at the Callan-Treiman point in agreement with the

SM value. Typically one obtains λ′0 ∼ 1 · 10−4 instead of ∼ 6 · 10−4 as expected from

experiments and dispersive analyses [5, 69]. Again C12 has a too large positive value. Note

that stringent constraints on slope and curvature have recently been obtained using the

method of unitarity bounds [70, 71].

Let us study the convergence of the results. In figure 1 is shown f0(t) as obtained

in Fit (VI) at LO (dot dashed line), NLO (dashed line) and NNLO (full line). On the

left-hand-side (l.h.s.) set (I) is displayed and on the right-hand-side (r.h.s.) set (III), in

order to compare the dependence on the pion and the kaon masses. Clearly, as expected,

the convergence of f0(t) worsens as one increases the absolute value of t (l.h.s. , set (I)) and

as one increases mπ and mK . At the physical pion and kaon masses one has from Fit (III),

f+(0) = 1 − 0.019 − 0.026 + . . . ,

FK/Fπ = 1 + 0.140 + 0.061 + . . . ,

f0(∆Kπ) = 1 + 0.139 + 0.063 + . . . , (4.4)

∆CT = 0 − 0.0025 + 0.0028 + . . . ,

∆̃CT = 0 + 0.024 − 0.106 + . . . ,
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and from Fit (IV)

f+(0) = 1 − 0.019 − 0.019 + . . . ,

FK/Fπ = 1 + 0.113 + 0.081 + . . . ,

f0(∆Kπ) = 1 + 0.110 + 0.081 + . . . ,

∆CT = 0 − 0.0033 − 0.0003 + . . . ,

∆̃CT = 0 + 0.021 − 0.103 + . . . , (4.5)

where the first, second and third terms are the O(p2), O(p4) and O(p6) contributions,

respectively, and the ellipses denote terms of order p8 and higher. Note that by definition

∆CT and ∆̃CT have no LO contribution. The convergence is rather good/not very good

for FK/Fπ and f0(∆Kπ) for set (a) and set (b) respectively while the one for ∆CT is good

for set (b) and not for set (a). One should however keep in mind that the NLO correction

for this last quantity is small being an SU(2)× SU(2) one. Also the NNLO contribution of

∆CT is of the expected size of the corrections, eq. (2.8). The convergence of f+(0) and ∆̃CT

is bad whatever the set. However the convergence looks again worse than it is in reality.

Indeed for both quantities the contribution at NLO is smaller than naively expected. For

f+(0) this is essentially due to the Ademollo-Gatto theorem, as we have seen in the previous

section. In both cases the NNLO term is of the expected size. Let us look in a bit more

details at the diverse contributions for f+(0), FK/Fπ and f0(∆Kπ). One has for Fit (III)

f+(0) = 1 + (−0.019 + 0.000) + (0.012 − 0.003 − 0.034) + . . . ,

FK/Fπ = 1 + (0.057 + 0.083) + (−0.005 + 0.045 + 0.021) + . . . ,

f0(∆Kπ) = 1 + (0.055 + 0.083) + (−0.001 + 0.047 + 0.017) + . . . , (4.6)

and for Fit (IV)

f+(0) = 1 + (−0.027 + 0.008) + (0.012 − 0.002 − 0.029) + . . . ,

FK/Fπ = 1 + (0.086 + 0.027) + (−0.005 + 0.078 + 0.009) + . . . ,

f0(∆Kπ) = 1 + (0.083 + 0.026) + (−0.001 + 0.063 + 0.019) + . . . . (4.7)

The first brackets give the contribution from the loops and the Li at fourth order and the

second brackets represent the one at sixth order from the two-loops, the one-loop with one

Li insertion plus tree graphs with two Li and the tree graphs ∼ Ci, in order. One sees

that the large contribution of f+(0) at NNLO is due to big corrections of the dimension

six operators, as was the case for the slope and the curvature, see the discussion before.

It could be that the corresponding LECs Ci are larger than they are in nature mocking

up some higher order effects. The contributions from the two-loop and the one-loop ∼ Li

topologies do converge. In the case of FK/Fπ and f0(∆Kπ) it is the terms proportional to

Li which are responsible for their not so good convergence in the case of set (b), explaining

the difference between the two sets. Let us consider also the convergence of FK/Fπ at

larger pion and kaon masses. One has for Fit (IV)

FK/Fπ = 1 + 0.043 + 0.093 + . . . = 1.136 + . . . , set (I)

= 1 + 0.023 + 0.076 + . . . = 1.099 + . . . , set (II). (4.8)
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For comparison the lattice data are:

FK/Fπ = 1.134 ± 0.011, set (I)

= 1.101 ± 0.010, set (II). (4.9)

As already stated for the scalar form factor and as expected, the convergence gets worse

when increasing the values of mπ and mK . This bad convergence could be an artefact of

the use of lattice data obtained at still too high pion and kaon masses for ChPT to really

be valid.

5 Conclusion

We have done here a first exploratory study using a two-loop ChPT calculation to fit the

lattice data. Certainly finite volume effects for example should be taken into account in

a more refined treatment. However, before this can be done, a better knowledge of the

Li are necessary and more lattice data at smaller masses are needed. This is important

for checking the convergence of the SU(3) ChPT calculations as well as for a more precise

determination of the quantities studied here. Also if the result of set (a) is not very sensitive

to the treatment of the NNLO term, see discussion below eq. (4.1), this is clearly not the

case for set (b) and our results here are certainly not the final ones. Indeed, if large values

for Lr
4 and Lr

6 as expected from a large violation of the OZI rule were confirmed in the

future then the use of standard ChPT as done here would not really be appropriate. A

way of solving the problem could be for example to work within resummed ChPT [72, 73].

A study along this line is in progress [74].
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