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1 Introduction

The identification of high-energy (Regge) dynamics in QCD processes has been long since

theoretically investigated. With the advent of high-energy colliders like HERA, Tevatron

and LHC such studies have become possible at experimental level too. The processes

which are expected to be more sensitive to this peculiar dynamical regime, where the

center-of-mass energy
√
s is much larger than all hard scales involved in the scattering, are

the so-called Mueller-Navelet (MN) jets at hadron-hadron colliders [1] and forward jets at

electron-hadron colliders [2, 3]. Both of them are defined by the presence of QCD jets at

large rapidity, accompanied by any hadronic activity which is inclusively collected in the

central region.

Such processes can be theoretically described by factorization formulae which involve

several ingredients: the partonic distribution functions (PDFs) of the incoming hadron(s),
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the gluon Green’s function (GGF) describing the high-energy dynamics of emitted and

exchanged partons — mostly (reggeized) gluons — and finally the so-called jet vertices,

describing the production of a forward jet from the interaction of one incoming parton and

a reggeized gluon. In the case of an incoming electron, an additional quantity, the photon

impact factor, has to be considered too.

At present, all ingredients are known at next-to-leading level in the respective param-

eters: the PDFs which resum logarithms of collinear type, the GGF resumming logarithms

of the energy, and the jet vertices (and impact-factors) which are computed at finite per-

turbative order.

Focusing for definiteness on MN jets in hadron-hadron collision, the process-dependent

part of the cross section is represented by the jet vertex [4, 5], which depends on the jet

variables and the actual jet algorithm. By following the work of Ivanov and Papa [6], in

this paper we reconsider the computation of the jet vertex in the small-cone approximation

(SCA), namely for jets whose extension in the rapidity-azimuthal angle (y, φ)-plane is small.

In particular we apply their method to determine the analytic expressions of the jet vertex

for two particular choices of jet algorithms: the kt algorithm1 [7] and the cone algorithm [8].

These are the mostly used algorithms in modern jet phenomenology, in particular the kt

one. On the contrary, the algorithm used in [6] can be traced back to the one considered by

Furman [9] in early studies of QCD radiation, but not used for practical purposes anymore,

being infra-red unsafe.

The aim of our work is twofold: on one hand we want to give a precise estimate of the

error introduced by the small-cone approximation in the description of QCD observables at

high energies, i.e., at large rapidities, so as to possibly justify its use in phenomenological

analyses. On the other hand, we want to estimate the differences occurring by choosing

different jet algorithms for the same process. The jet algorithm dependence has already

been studied in the past, and a detailed analysis of the cone and kt algorithms in the SCA

was presented in ref. [10, 11] in the context of collinear factorization. Here we carry out

a similar analysis in the framework of high-energy (kt-dependent) factorization, the basic

tool for the description of the Regge regime in perturbative QCD.

One should keep in mind that the small-cone expressions are fully analytic (before

their convolution with the PDFs) and compact, and allow a simple implementation in

numerical codes that run much faster than those with the exact jet vertices. For this

reason the SCA jet vertices have already been used [12, 13] in quantitative comparison

with available data [14]. However, the experimental results were extracted by clustering

jets with the kt algorithm, while the SCA jet vertices used for the theoretical calculation

were those obtained with the Furman algorithm by Ivanov and Papa (FIP). Also the small-

cone analysis performed in ref. [15] compared calculations with the exact jet vertices in the

kt algorithm versus the small-cone ones in the FIP algorithm.

Starting from these premises, and after reviewing in section 2 the theoretical setup for

the description of Mueller-Navelet jets in terms of the collinear and high-energy factoriza-

1Here kt algorithm denotes the whole class of clustering algorithms based on ref. [7], which may differ

in the details of the recombination scheme and of the resolution variable, like the anti-kt and the Cam-

brigde/Aachen versions.
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tion formulae, in section 3 we discuss in detail the differences among the three (kt, cone

and FIP) jet algorithms in the relevant case of two near particles and we determine the

kinematical configurations in the limit of small jet “radius” R.

We then derive the small-cone jet vertices for the kt and cone algorithms in section 4,

by computing their differences with respect to the FIP algorithm induced by the different

kinematical conditions.

In section 5 we perform a numerical study in order to asses the quantitative difference

between the exact and small-cone jet vertex in the kt algorithm, by comparing the vertices

themselves as well as a typical differential cross section for MN jets and some angular

coefficients measuring the azimuthal decorrelation between the jets. In addition we also

determine the discrepancies of the same quantities induced by a different choice of the jet

algorithm.

We discuss the results in section 6, where we conclude that the wrong choice of algo-

rithm causes sizeable errors on the predictions, while the SCA within the same algorithm

provides a good approximation to the exact quantities and can therefore be used as a

valuable tool for a quantitative description of MN and forward jets.

2 Theoretical setup

2.1 Factorization

The process we are considering was suggested long ago by Mueller and Navelet [1] in order

to study the high-energy behaviour of QCD. It is generated by the collision of two hadrons

HA,B — typically (anti)protons — and is characterized by the detection in the final state

of two hard jets J1,2 with large rapidity separation:

HA +HB → J1 + J2 +X (2.1)

where X represents any additional emission. Each jet Ji represents a cluster of particles

grouped together according to some given jet algorithm and is described by 3 variables:

the rapidity yi, the transverse energy Ei ≡ |kJ,i| and the azimuthal angle φi ≡ arg(kJ,i),

kJ,i being the i-th jet transverse momentum.

The kinematical region where one expects the high-energy QCD dynamics to play an

important role is given by

s ≡ (pA + pB)
2 ≫ E2

1 ∼ E2
2 ≫ Λ2

QCD , |Y | ≡ |y1 − y2| ≫ 1 , (2.2)

where the condition of hard jets (E2
i ≫ Λ2

QCD) is imposed for the applicability of pertur-

bation theory.

In the leading twist approximation, i.e., up to power suppressed correction in the

hard scale parameter Λ2
QCD/E

2 ≪ 1, the hadronic cross section σ can be factorized in

the (longitudinal momentum fraction) convolution of two partonic distribution functions

(PDFs) fa/H(x) and a partonic cross section σ̂

dσAB(s)

dJ1dJ2
=

∑

a,b

∫ 1

0
dx1dx2 fa/A(x1)fb/B(x2)

dσ̂ab(x1x2s)

dJ1 dJ2
, dJi ≡ dyi dEi dφi , (2.3)
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Figure 1. Diagrammatic representation of the collinear and high-energy factorization formula for

Mueller-Navelet jet production: fa,b represents the parton densities, Va,b the jet vertices and G the

gluon Green’s function.

where a, b ∈ {q, g} denote the parton flavours (quark or gluon) and xi the partonic momen-

tum fractions w.r.t. their parent hadrons. In turn, in the high-energy Regge regime we are

considering, the partonic cross section for jet production can be factorized in a (transverse

momentum) convolution of (process dependent) jet vertices V and a universal factor G

called gluon Green’s function (GGF)

dσ̂ab(x1x2s)

dJ1 dJ2
=

∫

d2k1 d
2k2 Va(x1,k1; J1)G(x1x2s,k1,k2)Vb(x2,k2; J2) , (2.4)

where ki denotes the (reggeized) gluon transverse momentum flowing out from the GGF

and entering the jet vertex, while ŝ ≡ x1x2s is the center-of-mass energy squared of the

partonic subsystem. The overall factorization structure is depicted in figure 1.

The PDFs are non-perturbative objects that depend also on the renormalization and

factorization scales µR, µF . While µR is introduced in the renormalization of UV diver-

gencies, µF enters in the treatment of the IR collinear divergencies which are absorbed by

the PDFs. The µF dependence of the PDFs is governed by the DGLAP equations [16–18],

and their evolution kernels (splitting functions) are known at next-to-next-to-leading or-

der (NNLO). By means of global fits they have been determined in a wide range of the

(x, µ2
F ) plane.

The GGF is the central object in high-energy QCD, in that it resums the log(s) to all

orders in perturbation theory. It obeys the BFKL equation [19–22]

ωGω(k1,k2) = δ2(k1 + k2) +

∫

d2k K(k1,k)Gω(k,k2) (2.5)

G(ŝ,k1,k2) =

∫ i∞

−i∞

dω

2πi

(

ŝ

s0

)ω

Gω(k1,k2) , (2.6)
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where Gω is the Mellin transform of G(ŝ), defined in terms of an arbitrary energy scale s0.

The BFKL kernel K = αsK
(0) + α2

sK
(1) is known in next-to-leading-logarithmic (NLL)

approximation. The coefficient K(1) depends on the choice of both µR and s0.

Finally, the jet vertices are perturbative finite objects without energy (
√
s) dependence,

and are known in NLO approximation: V = αsV
(0) + α2

sV
(1). They depend on the jet

variables y,E, φ and also on the arbitrary scales µR, µF , s0, in such a way that the hadronic

cross section be independent of those scales up to NLL terms, i.e., the scale dependence is

present only in the terms of relative order α2
s(αs log(s))

n.

It is apparent that the determination of the Mueller-Navelet (MN) jet cross section

involves quite a number of integrals, both in the factorization formulae (2.3), (2.4), and

in the determination of G and V , as can be checked from their explicit expressions [4, 5].

Furthermore, when comparing the theoretical predictions with experiments, one needs inte-

grated cross sections in some of the jet variables, in order to comply with the experimental

binning. Such integrations are mostly done numerically, and this would require a large

amount of computing resources or time for reaching a precision at the level of 1%.

In order to cope with such a problem, two techniques can be exploited so as to reduce

the computing time and improve convergence:

• to project the GGF and jet vertices on a complete set of functions which respects the

symmetries of the process (e.g., azimuthal invariance);

• to use an approximated and simpler version of the jet vertices.

These methods are often used in BFKL phenomenological analyses, and we shall illustrate

them in the following subsections: the former in order to set up the theoretical framework

and the main notations; the latter in order to introduce the main subject of this paper.

2.2 Representation in Mellin space

The first method to reduce computing time does not involve any approximation, at least

at the NLL level of accuracy we are working with. It is better illustrated in the LL

approximation, where the strong coupling αs is fixed and thus the BFKL kernel and jet

vertices, in addition of being invariant under azimuthal rotations, are also scale invariant.2

In this case, a Fourier-Mellin transform diagonalizes the transverse integrations and the

ensuing expressions are considerably simpler to evaluate.

One can proceed in this way: first of all, let’s exploit the fact that, in the LL approxima-

tion, each partonic momentum fraction coincides with the corresponding jet’s longitudinal

momentum fraction (because of a δ(x− xJ) in V (0)):

x = xJ ≡ Ee±y/
√
s (+,− for jet 1, 2) , (2.7)

so that ŝ = x1x2s = eY E1E2, where Y ≡ |y1−y2| is the rapidity distance between the jets.

If we adopt the convenient and natural choice of s0 = E1E2 as energy scale, the Green’s

2Strictly speaking, in our notations they are homogeneous functions of the transverse momenta k, kJ .
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function (2.6) is now independent of the partonic momentum fractions:

G(ŝ,k1,k2) =

∫ i∞

−i∞

dω

2πi
eωY Gω(k1,k2) ≡ G(Y,k1,k2) , (s0 = E1E2) (2.8)

Secondly, we introduce the impact factor by integrating a jet vertex with the corre-

sponding parton density:

ΦA(k; J) ≡
∑

a

∫ 1

0
dx fa/A(x)Va(x,k; J) . (2.9)

so that we can rewrite the factorization formula in the form

dσAB

dJ1 dJ2
=

∫

d2k1 d
2k2 ΦA(k1)G(Y,k1,k2)ΦB(k2) . (2.10)

At this point we project kernel and vertices onto the eigenfunctions of the LL BFKL

kernel

Enν(k) ≡
1√
2π

|k2|iν− 1

2 einφ , (n ∈ Z, ν ∈ R) , (2.11)

satisfying the completeness relation

∑

n∈Z

∫ ∞

−∞
dν Enν(k)E∗

nν(k
′) = δ2(k − k′) (2.12)

and providing the LL eigenvalue function χ
(0)
nν

[K(0)Enν ](k) ≡
∫

d2k′ K(0)(k,k′)Enν(k′) = χ(0)
nν Enν(k) (2.13)

χ(0)
nν = 2ψ(1)− ψ

(

1 + n

2
+ iν

)

− ψ

(

1 + n

2
− iν

)

. (2.14)

Finally, by inserting a completeness (2.12) between each pair of factors in (2.10), we

arrive at the convenient expression for the differential cross section

dσAB

dJ1 dJ2
=

∑

n

(−1)n
∫

dν ΦAnν Gnν(Y ) Φ∗
B nν , (2.15)

where in the last equality we have used the Fourier-Mellin transforms
∫

d2k Φ(k; J)Enν(k) ≡ Φnν(J) (2.16)
∫

d2k d2k′ E∗
nν(k)G(Y,k,k′)En′ν′(k

′) ≡ Gnν(Y )(−1)nδnn′δ(ν − ν ′) . (2.17)

The delta functions on the r.h.s. of eq. (2.17) are just a consequence of the azimuthal- and

scale-invariance of the kernel, and allow us to trade two bidimensional integrals for a sum

and a simple integral.

The azimuthal correlation of the MN jets is usually measured by means of the Fourier

coefficients (m ∈ Z)

Cm(E1, y1;E2, y2) ≡
∫ 2π

0
dφ1dφ2 cos

(

m(φ1 − φ2 − π)
) dσ

dJ1 dJ2
. (2.18)
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Because of the azimuthal- and scale-invariance of the vertices, it is easy to show that

Φnν(y,E, φ) = einφ(E2)iν−1Ψnν(xJ) , Ψnν = Ψ−nν (2.19)

where Ψ is dimensionless,3 thus obtaining a factorization formula with just one integration:

Cm =

(

2π

E1E2

)2 ∫

dν

(

E2
1

E2
2

)iν

ΨAmν Gmν(Y ) Ψ∗
Bmν . (2.20)

Such a structure is preserved in the NLL approximation too, provided the impact fac-

tors and GGF are suitably modified in order to take into account the loss of scale-invariance

due to the renormalization procedure and to the factorization of collinear singularities,

which translates in a dependence on log(E/µR), log(E/µF ) and log(E/
√
s0) of the GGF

and impact factors. The expression of the GGF in Mellin-space is very simply expressed

in terms of the eigenvalue χnν of the BFKL kernel:

Gnν(Y ) = eY χnν , χnν = ᾱsχ
(0)
nν + ᾱ2

sχ
(1)
nν (2.21)

However, the computation of Ψnν at NLL level involves several integrations. The main

advantage of this procedure is that such integrations can be done once and for all for each

set of one-jet variables. Nevertheless, such computations can still be rather lengthy, and

the use of an approximate expression of the impact factors — to be described in the next

subsection — turns out to be very convenient.

Let us conclude this section by noticing that the factorization formula (2.20) is very

useful also in the case of cross-section integrated in jet energies. In fact, a double integral

in E1 and E2 factorizes into the product of simple integrals of the impact factors (provided

the integration domain D = I1 × I2 can be factorized into the cartesian product of two

one-dimensional sets)

Cm(y1, y2) ≡
∫

D=I1×I2

dE1dE2 Cm (2.22)

= (2π)2
∫

dν Gmν(Y )

[
∫

I1

dE1 (E
2
1)

iν−1ΨAmν

] [
∫

I2

dE2 (E
2
2)

iν−1ΨBmν

]∗

≡ (2π)2
∫

dν Gmν(Y ) ΨAmν(y1) Ψ
∗
Bmν(y2) .

In this case, the integrated impact factors Ψ can be computed independently and stored in

suitable grids, thus reducing a lot the computational effort of the phase-space integration.

In the general case D 6= I1 × I2, however, the expression (2.20) has to be numerically

integrated in energy (and possibly in rapidity), and a suitable approximation (like the

SCA) could be a very valuable tool to diminish the computing demand.

2.3 Small-cone approximation

In order to study the behaviour of the jet vertex for small values of the “radius” R —

to be precisely defined later on — and possibly to speed up the computation of the jet

3We shall sometimes refer to the reduced impact factor Ψ as jet vertex.
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impact factor Ψnν and of its energy-integrated version Ψnν , one can use the small-cone

approximation (SCA), as suggested and derived in [6]. The dependence of the impact

factor on the jet radius R has the form [10, 11] (µ is a shorthand for µR, µR and
√
s0)

Ψnν

(

xJ , log
E

µ
;R

)

= Aν(xJ) log(R) +Bnν

(

xJ , log
E

µ

)

+O
(

R2
)

(2.23)

and the analytic expressions for the coefficients A,B were explicitly computed [6] for a

particular jet algorithm (FIP).

However, whereas the coefficient A of log(R) depends only on the incoming hadron

and is given in terms of the usual splitting functions as

Aν = −α2
s

√

N2
c − 1√

2π2Nc

xJ

∫ 1

xJ

dζ ζ−2iν

{

[

Pqq(ζ) + Pgq(ζ)
]

∑

a∈{q,q̄}

fa

(xJ
ζ

)

(2.24)

+
[

Pgg(ζ) + 2nfPqg(ζ)
]

fg

(xJ
ζ

)

}

, (2.25)

the constant term B depends also on the details of the jet algorithm. Ivanov and Papa [6]

computed such coefficient for an algorithm which was used in pioneering work on QCD jets

by Furman [9] — we shall refer to it as FIP algorithm — which, however, is no more used

in present day phenomenology.

The main purpose of our paper is to derive such coefficient for the two mostly used

algorithms of QCD analysis, namely the cone-algorithm and the kt-algorithm. The com-

putations can be repeated by following the procedure of [6].

The expressions for the jet vertices at LL and NLL level are extracted from the per-

turbative calculation of processes with two incoming partons producing 2-jet at LO and

NLO respectively. At LO the amplitudes have just two partons in the final states, each of

which is identified with a jet. The jets are emitted back-to-back in the azimuthal direction

and have no substructure. Therefore no dependence on the algorithm is found at LO.

The same is true at NLO as far as the virtual corrections are concerned. On the other

hand, the NLO real corrections involve 3 partons in the final state, therefore a jet can be

constituted by either one or two of them. In the case of 1-parton (simple) jet, all algorithms

are designed in such a way that no further emission is found within a region of radius R in

the (y, φ) plane around the position of that parton.

Therefore, the differences among the algorithms are to be found in the 2-parton (com-

posite) jet configurations. In the following section we will carefully compare the definitions

the cone, kt, and FIP jet algorithms and, from their differences, we shall compute the

small-cone impact factors for the cone and kt jets.

3 Jet algorithms

3.1 The cone algorithm

According to ref. [8], when two partons p1 and p2 are combined into one jet of radius R,

the resulting jet variables (y,E, φ) are defined to be

E = E1 + E2 , y =
y1E1 + y2E2

E
, φ =

φ1E1 + φ2E2

E
. (3.1)

– 8 –
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To determine whether the two partons are to be combined, we see if they fit in a cone

of radius R about the jet axis in the (y, φ) plane. In practice, by denoting with Ωij the

(y, φ)-distance

Ω2
ij ≡ (yi − yj)

2 + (φi − φj)
2 (3.2)

one requires Ω1J < R and Ω2J < R for the composite jet, which amounts the condition

Ω12 < R
E1 + E2

max(E1, E2)
. (3.3)

A simple jet can then be defined only if the two partons cannot be combined, i.e., provided

Ω12 > R
E1 + E2

max(E1, E2)
. (3.4)

3.2 The kt algorithm

According to ref. [7], the kt clustering algoritm consists in an iterative procedure which is

based on comparing a set of resolution variables of single-particle diB (B for beam) and

pairs dij

diB ≡ E2
i , dij ≡ min(E2

i , E
2
j )

Ω2
ij

R2
. (3.5)

One then considers the smallest one: if it is a diB, particle i is thrown in the beam basket

and removed from the list; if it is a dij then particles i and j are merged into a pseudoparticle

{ij} — e.g., by using the recombination scheme (3.1). The procedure is repeated from the

beginning, until all resolution variables are greater than some (hard) stopping parameter

dcut ≫ Λ2
QCD.

In the case of three partons in the final state there are these possibilities:

• One of the diB, say d1B is the smallest resolution variable.

– If d1B < dcut then particle 1 belongs to the beam and we are left with two

partons which, if not in the beam, form two simple jets;

– If d1B > dcut then the clustering stops and all three particles form simple jets;

• One of the dij , say d12 is the smallest resolution variable. In this case 1 and 2

are merged into a pseudoparticle {12} and one considers three resolution variables:

d{12}B , d3B and d{12}3.

– If the smallest is larger than dcut clustering stops and we have one simple jet

{3} and one composite jet {12};
– If the smallest is less than dcut, a (pseudo)particle belongs to the beam and we

cannot have two jets in the final state;

To summarize, we have a composite jet, say {12}, only if

d12 < diB ∀i =⇒ Ω12 < R . (3.6)

In the other case

Ω12 > R (3.7)

only simple jets are present.

– 9 –
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3.3 The Furman algorithm

In [6] Ivanov and Papa define a jet as a set of particles within a cone of radius R. To be

more precise, they require that:

• the jet’s momentum is the sum of the particles’ momenta;

• all and only the particles of the jet belong to a circle of radius R in the (y, φ) plane

and centered at the jet’s momentum.

This is just the jet definition of Furman [9] used in the ’80s for early phenomenology of

NLO QCD jets — we denote it “FIP algorithm”.

In the case under study, where at most two particles (1 and 2) can form a jet, the

condition for a composite jet is nothing but the prescription adopted in the cone algorithm:

two particles such that

Ω12 < R
E1 + E2

max(E1, E2)
(3.8)

can be considered as a composite jet. On the other hand, particle 1 can form a simple jet

if no other particle is found within a distance R from it, namely

Ω12 > R . (3.9)

This definition is somewhat pathological, because it may happen that a given configuration

can give rise to both a composite jet and two simple jets. This fact can be easily understood

in the case of two particles with the same transverse energy and whose distance satisfy

R < Ω12 < 2R. They can form simple jets because a cone of radius R centered on either

particle does not contain the other; on the other hand, a cone of radius R centered halfway

the two particles contains both of them. For this reason, it is not possible to extend such

jet definition into an IR-safe algorithm to all orders, i.e., with an arbitrary number of

particles, hence it has been abandoned in favour of better algorithms like the cone and

especially the kt one.

In any respect, this definition is different from both the cone algorithm (in the case

of simple jets) and the kt algorithm (in the case of composite jets), and yields different

results when used to defined any observable. It is the main purpose of this paper to derive

the correct expressions for the jet vertices in the SCA for the kt algorithm and also for the

cone one.

4 Small cone jet vertices

In this section we shall compute the SCA jet vertex in the cone and kt algoritm. The idea

is to identify and calculate the contributions differing from those of the original paper [6]

where the FIP algorithm was adopted.

As explained in the previous section, for dijet production at NLO, the differences

among jet algorithms occur only in the way that two partons can be combined to form

a jet. In the BFKL approach, two partons (1 and 2) in the fragmentation region of an
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Figure 2. Kinematics of the fragmentation region of hadron A: the collision of the incoming parton

(blue) and of the Regge gluon (red) produces a pair of outgoing partons (black). In parentheses

the longitudinal momentum fraction and the transverse momentum of each particle.

incoming hadron are produced by the interaction of a parton stemming from the hadron

and a reggeized gluon, as depicted in figure 2.

In the high-energy kinematics, the incoming parton has just a fraction x of the pure

longitudinal momentum of the hadron, while the reggeized gluon’s momentum q is essen-

tially transverse. Following Ivanov-Papa (IP) [6] we work in dimensional regularization

(D = 4+ 2ǫ) and we indicate with k1 (k2) the (2 + 2ǫ)-dimensional transverse momentum

of the outgoing parton 1 (2), and with ζ (ζ̄ ≡ 1 − ζ) its longitudinal momentum fraction

with respect to the incoming parton. In terms of these variables, the relative rapidity and

azimuthal angle between the two outgoing partons are

∆y =
1

2
log

ζ2k22
ζ̄2k21

, ∆φ = arccos
k1 · k2
|k1| |k2|

, ζ̄ ≡ 1− ζ . (4.1)

We shall present our results by using the notations of ref. [6], namely in term of their

“I” quantities, which are related to our definition of jet impact factor (2.16) by

Φnν(y,E, φ) = αs

√

N2
c − 1√
2πNc

xJ
E

I(n, ν; y,E, φ) , I =
∑

i,f

(IRi;f + IVi;f ) , (4.2)

where i (f) are labels for the initial (final) state of the sub-processes contributing to the

cross section, while the superscripts R and V denote real and virtual parts respectively.

4.1 Vertex for the cone algorithm

The condition for composite jet in the cone algorithm (3.3) coincides with the one adopted

by FIP (3.8), thus no difference is expected for the corresponding contributions.

In contrast, the conditions for simple jets (3.4) and (3.9) are different, causing different

contributions to the jet vertices. By using the notations of ref. [6], k = k1 is the transverse

momentum of the parton forming the simple jet, q − k = k2 is the transverse momentum

of the parton outside the jet (also called “spectator”), and one introduces the transverse

vector ∆

q =
k

ζ
+∆ (4.3)

which vanishes when the two partons are collinear. In fact, for small ∆, we have

Ω2
12 ≡ ∆φ2

12 +∆y212 ≃
ζ2

ζ̄2
∆2

k2
(4.4)

– 11 –
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and also

E1 + E2

max(E1, E2)
=

|k1|+ |k2|
max(|k1|, |k2|)

≃
|k|

(

1 + ζ̄
ζ

)

|k|max
(

1, ζ̄ζ

) =
1

max(ζ, ζ̄)
(4.5)

Therefore, the simple-jet condition (3.3) becomes

|∆| > ζ̄

ζ
|k| R

max(ζ, ζ̄)
, (4.6)

at variance with the FIP condition (3.8) which, expressed in terms of ∆, reads like eq. (4.6)

but without the denominator max(ζ, ζ̄) [6].

In order to identify the contributions of the FIP jet vertex that have to be modified

in the cone algorithm, let us recall that the simple jet configurations were computed in

two steps: 1) by allowing the spectator parton to span the whole phase space and then 2)

by subtracting the contribution stemming from the spectator parton inside the jet cone.

Therefore, we have to modify only the subtractions by replacing R → R/max(ζ, ζ̄).

The quark initiated jet vertex (quark+Regge-gluon → quark+gluon, see figure 2) has

two such subtractions, one for the quark-jet and one for the gluon-jet, whose results are re-

ported in eqs. (5.36) and (5.38) of ref. [6] respectively. In the gluon-jet term the substitution

R → R/max(ζ, ζ̄) is straightforward:

IRq;g,−q = (5.36)[1] → −αs

2π

Γ(1− ǫ)

ǫ(4π)e
Γ2(1 + ǫ)

Γ(1 + 2ǫ)
(k2)γ+ǫ−n

2 (k · l)n
∫ 1

xJ

dζ

ζ
ζ−2γ

∑

a=q,q̄

fa

(

xJ
ζ

)

×
(

R

max(ζ, ζ̄)

)2ǫ [

Pgq(ζ)

(

1 + 2ǫ log
ζ̄

ζ

)

+ ǫCF ζ

]

(4.7)

= IRq;g,−q −
αs

2π
(k2)γ−

n

2 (k · l)n
∫ 1

xJ

dζ

ζ
ζ−2γ

∑

a=q,q̄

fa

(

xJ
ζ

)

Pgq(ζ)2 log
(

max(ζ, ζ̄)
)

,

where γ ≡ iν − 1
2 and l ≡ e1 + ie2 is a complex vector lying only in the first two of the

2 + 2ǫ transverse dimensions.

In the quark-jet one has to proceed more carefully, because of the presence of a double

pole in ǫ multiplying (R/max(ζ, ζ̄))ǫ. This would generate, among other things, modified

simple poles and also finite double logs. However, since the double pole is multiplied by a

δ(1− ζ), for these terms max(ζ, ζ̄) = 1 and the outcome is identical to the FIP algorithm.

The only difference comes from the simple pole in front of the Pqq splitting function, and

we obtain

IRq;q,−g = (5.38)[1] (4.8)

→ IRq;q,−g −
αs

2π
(k2)γ−

n

2 (k · l)n
∫ 1

xJ

dζ

ζ
ζ−2γ

∑

a=q,q̄

fa

(

xJ
ζ

)

Pqq(ζ)2 log
(

max(ζ, ζ̄)
)

.

The gluon initiated jet vertex has two subtractions too, one for the qq̄ final state

and one for the gg final state, whose results are reported in eqs. (5.49)4 and (5.56) of

4We note a misprint in ref. [6]: in eqs. (5.48-49) the first subscript of IR should be g instead of q. Also

the last subscript in eq. (5.38) should be −g instead of −q.
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ref. [6] respectively. The situation is very similar to that of the quark initiated vertex: the

subtraction in the (anti)quark jet contains a simple pole times the Pqg(ζ) splitting function

in front of the R2ǫ factor, while the gluon jet contains both single and double poles, the

former with the Pgg(ζ) splitting function and the latter with the δ(1− ζ) distribution. For

both types of jets the substitution R → R/max(ζ, ζ̄) simply amounts to finite contributions

proportional to log
(

max(ζ, ζ̄)
)

:

IRg;q,−q̄ + IRg;q̄,−q + IRg;g,−g = (5.49)[1] + {q ↔ q̄}+ (5.56)[1]

→ IRg;q,−q̄ + IRg;q̄,−q + IRg;g,−g (4.9)

− αs

2π
(k2)γ−

n

2 (k · l)n
∫ 1

xJ

dζ

ζ
ζ−2γ

∑

a=q,q̄

fa

(

xJ
ζ

)

[2nfPqg(ζ) + Pgg(ζ)] 2 logmax(ζ, ζ̄) .

To sum up, the jet vertex for the cone algorithm in the small-cone approximation is

obtained by replacing R → R/max(ζ, ζ̄) in the final formulae (5.39) and (5.57) of [6]. The

complete expressions are written in eqs. (4.19), (4.20).

4.2 Vertex for the kt algorithm

The condition for simple jet in the kt algorithm (3.7) coincides with the one adopted by

FIP (3.9), while the conditions for composite jet (3.6) and (3.8) are different. In the

composite jet configuration the jet’s transverse momentum is k = k1 + k2 = q and it is

convenient to define the auxiliary transverse vector ∆ as

k1 = ζk +∆ (4.10)

thus obtaining

Ω2
12 =

∆2

k2ζ2ζ̄2
(4.11)

The composite jet condition (3.6) becomes

|∆| < ζζ̄|k|R , (4.12)

at variance with the FIP condition (3.8) which reads [6] |∆| < min(ζ, ζ̄)|k|R.

The corresponding contributions of [6], that have to be modified in order to recover the

jet vertex in the kt algorithm, are found in section 5.1.1.c for the quark initiated vertex and

sections 5.2.1.b and 5.2.2.b for the gluon initiated one. In all such cases the modification

amounts to replace

|∆max| = min(ζ, ζ̄)|k|R → ζζ̄|k|R , (4.13)

and finally to substitute min(ζ, ζ̄) → ζζ̄ in the ζ-integral with the relevant splitting func-

tion.

Explicitly, in the quark-initiated case, such integrals for the FIP and kt algoritms reads

respectively

I
R (FIP)
q;q+g ∝

∫ 1

0
dζ [min(ζ, ζ̄)]2ǫ

1 + ζ̄2 + ǫζ2

ζ
=

1

ǫ
− 3

2
+

(

7

2
− π2

3
+ 3 log 2

)

ǫ (4.14)

I
R (kt)
q;q+g ∝

∫ 1

0
dζ (ζζ̄)2ǫ

1 + ζ̄2 + ǫζ2

ζ
=

1

ǫ
− 3

2
+

(

13

2
− 2π2

3

)

ǫ . (4.15)
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Their difference (3 − π2/3 − 3 log 2)ǫ, when multiplied by the overall 1/ǫ pole, provides

a finite contribution that has to be added to the IP result in order to obtain the proper

expression for the kt algorithm:

IRq;q+g = (5.33)[1] → IRq;q+g +
αs

2π
(k2)γ−

n

2 (k · l)n
∑

a=q,q̄

fa(xJ)CF

(

3− π2

3
− 3 log 2

)

. (4.16)

In the gluon-initiated case the procedure is identical; here we have two contributions:

one from the qq̄ jet

IRg;q+q̄ = (5.47)[1] → IRg;q+q̄ +
αs

2π
(k2)γ−

n

2 (k · l)nCA

CF
fg(xJ) 2nfTR

(

2

3
log 2− 23

36

)

, (4.17)

and one from the gg jet

IRg;g+g = (5.54)[1] →IRg;g+g+
αs

2π
(k2)γ−

n

2 (k · l)nCA

CF
fg(xJ)CA

(

131

36
− π2

3
− 11

3
log 2

)

. (4.18)

The integrals (4.14), (4.15) and the analogous ones for the gluon-initiated contributions,

yielding eqs. (4.16)–(4.18), were already considered and computed [10, 11] in the first study

of the relation between the kt and the cone algorithm — the latter sharing with FIP the

condition of composite jet.

4.3 Final expressions of the jet vertices

The result of the jet vertex for the cone and kt algoritms is reported below, by adding to

the original expressions of IP [6] the modifications computed in the previous subsections

and here highlighted in boldface: 〈· · · 〉C for the cone and 〈· · · 〉K for the kt. The quark

part is

Iq =
αs

2π
(k2)γeinφ

∫ 1

xJ

dζ

ζ

∑

a=q,q̄

fa

(

xJ
ζ

)

{

[

Pqq(ζ) +
CA

CF
Pgq(ζ)

]

log
k2

µ2
F

+

− 2ζ−2γ [Pqq(ζ) + Pgq(ζ)] log
R

〈

max(ζ, ζ̄)
〉

C

− β0
2

log
k2

µ2
R

δ(1− ζ)

+ CAδ(1− ζ)

{

χ(0)
nν log

s0
k2

+
85

18
+

π2

2
+

1

2

[

ψ′
(

1 + γ +
n

2

)

− ψ′
(n

2
− γ

)

− χ(0) 2
nν

]

}

+ (1 + ζ2)

{

CA

[

(1 + ζ−2γ)χ
(0)
nν

2(1− ζ)+
− ζ−2γ

(

log(1− ζ)

1− ζ

)

+

]

+

(

CF − CA

2

)[

ζ̄

ζ2
I2 −

2 log ζ

ζ̄
+ 2

(

log(1− ζ)

1− ζ

)

+

]}

+ δ(1− ζ)

[

CF

(

3 log 2− π2

3
− 9

2
+

〈

3 −
π2

3
− 3 log 2

〉

K

)

− 10

9
nfTR

]

+ CAζ + CF ζ̄ +
1 + ζ̄2

ζ

[

CA
ζ̄

ζ
I1 + 2CA log

ζ̄

ζ
+ CF ζ

−2γ(χ(0)
nν − 2 log ζ̄)

]

}

, (4.19)
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where γ ≡ iν−1/2, β0 ≡ (11CA−4nfTR)/3, ψ is the digamma function, while the splitting

functions Pab(ζ) and the special functions Ij(n, γ, ζ) are reported in appendix A.

The gluon part is

Ig =
αs

2π
(k2)γeinφ

∫ 1

xJ

dζ

ζ
fg

(

xJ
ζ

)

CA

CF

{

[

Pgg(ζ) +
CA

CF
2nFPqg(ζ)

]

log
k2

µ2
F

+

− 2ζ−2γ [Pgg(ζ) + 2nfPqg(ζ)] log
R

〈

max(ζ, ζ̄)
〉

C

− β0
2

log
k2

4µ2
R

δ(1− ζ)

+ CAδ(1− ζ)

{

χ(0)
nν log

s0
k2

+
1

2

[

ψ′
(

1 + γ +
n

2

)

− ψ′
(n

2
− γ

)

− χ(0) 2
nν

]

+
1

12
+

π2

6
+

〈

131

36
−

π2

3
−

11

3
log 2

〉

K

}

+ 2CA(1− ζ−2γ)

[(

1

ζ
− 2 + ζζ̄

)

log ζ̄ +
log(1− ζ)

1− ζ

]

+ CA

[

1

ζ
+

1

(1− ζ)+
− 2 + ζζ̄

] [

(1 + ζ−2γ)χ(0)
nν − 2 log ζ +

ζ̄2

ζ2
I2

]

+ 2nfTR

[

2
CF

CA
ζζ̄ + (ζ2 + ζ̄2)

(

CF

CA
χ(0)
nν +

ζ̄

ζ
I3

)

+δ(1− ζ)

(

− 1

12
+

〈

2

3
log 2 −

23

36

〉

K

)]

}

. (4.20)

It is apparent from the above expression that the log(R) coefficient A of the jet vertex

is independent of the jet algorithm, while the constant coefficient B depends on it.

5 Numerical study

In this section we assess the quantitative difference among the jet vertices in the three

algorithms (cone, kt, FIP) that we considered, and also the corresponding accuracy of

their small-cone approximations (SCA). We shall use the term exact in the sense of

“without SCA”.

5.1 Jet vertices versus R

We start by evaluating the “exact” jet vertices in the three algorithms — we employ the

numerical code used in ref. [23] — for various values of the jet radius R, and we compare

them with their SCA. We expect the SCA to be better, the smaller the values of R,

and increasing discrepancy with increasing R. On the other hand, the differences among

different algorithms shouldn’t vanish with R, according to our analysis.

This is actually the case, as can be seen in figure 3, where we plot the exact (points) and

small-cone (lines) NLO part of the jet vertex versus R, in the three algorithms mentioned

before (for a given choice of the parameters n, ν, E, y). The common slope of the lines

represents the coefficient A of log(R), which is the same for the three algorithms, while

the intercepts at R = 1 give the constant coefficients B, which clearly depend on the

algorithm. A detailed study, carried out with several values of the parameters, shows that
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Figure 3. Dependence on the jet radius R of the NLO jet vertices Ψ in the three jet algorithms

discussed in the text: FIP (dashed red), cone (dotted green) and kt (solid blue). The big dots

correspond to the exact evaluation (the small error bars showing MonteCarlo integration uncer-

tainties), while the straight lines denote the small-cone approximation. Here n = 0, ν = 0, y = 3.6,

E = 35GeV.

the small-cone approximation works very well up to R of few tenths, with an error below

1% for R . 0.2 which increases up to 3–4% when R = 0.5.

5.2 SCA versus algorithm choice

Next, we specialize our analysis to realistic values of the jet radius and energy. Since

the typical phenomenological studies on MN jets use R ≃ 0.5 and jet transverse energies

E & 35GeV, in the following all quantities will be evaluated at R = 0.5 and E = 35GeV.

In addition, nowadays the mostly used jet algorithm is the kt. Therefore we adopt “exact”

quantities, computed in the kt algorithm, as reference quantities, and we estimate the

deviations to them introduced by the SCA.

To some extent, adopting the SCA at fixed R is a sort of choosing a jet algorithm.

The natural question then arises: how does the discrepancy introduced by the small-cone

approximation

(exact-kt)− (SCA-kt) (5.1)

compare with the discrepancy caused by different choices of jet algorithm, i.e.,

(SCA-kt)− (SCA-FIP) ? (5.2)

In order to answer this question, we compute the exact NLO part5 of jet vertex ΨNLO
nν

in the kt algorithm as function of ν, and compare it with the SCA in the same algorithm

and also with the SCA in the FIP algorithm.

Figure 4 shows such a comparison for n = 1. We can see that the exact result in the

kt algorithm is much better approximated by the SCA in the same algorithm rather than

5We recall that the LO part is independent of the jet algorithm.
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Figure 4. Comparison of the NLO exact jet vertex in the kt algorithm (points) with its SCA in the

same algorithm (solid blue) and in the FIP algorithm (dashed red). Here R = 0.5, n = 1, y = 3.6,

E = 35GeV.

by the FIP choice, in particular at small values of ν, which are the most important in the

ν integrals of eqs. (2.20), (2.22) — since the GGF is peaked around ν = 0.

This conclusion is further supported by analysing the whole (LO+NLO) ν-integrand

of eq. (2.22), again by comparing exact-kt, SCA-kt and SCA-FIP, as in figure 5. The

discrepancy introduced by the SCA in the wrong FIP algorithm is about three times larger

than that introduced by the SCA in the proper kt algorithm, the latter being of the

order of 5%.

Actually, the relative error due to the SCA is slightly larger for the full (LO+NLO)

quantities than for the pure NLO ones. This is due to the fact that the NLO corrections

usually have sign opposite to the common LO terms, giving rise to cancellations in their

sum that amplify the relative differences.

5.3 Cross section and angular coefficients

Finally, we present the results of the differential cross section dσ/dY and of few angular

coefficients Cm/Cn.

In figure 6 we plot the differential cross section dσ/dY = C0(Y ) by comparing again

the exact kt calculation with the small-cone approximations in the KT and FIP algorithms.

It is evident that the wrong choice of the algorithm yields a large error, especially

at lower values of Y , while the sole SCA with the proper algorithm introduces an error

of 4–8%.

The shape of the C0 curves, which are not monothonically decreasing in Y as one could

naively expect, is due to an additional cut in rapidity |yi| > ymin = 3 that we have imposed

just for computational convenience, as will be shortly explained. Due to this cut, the

minimum value of Y that we allow is Ymin = 2ymin = 6 and in this limit the cross-section

vanishes. It then quickly rises for Y > 6 before eventually decreasing at larger Y & 7.
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Figure 5. Comparison of the exact ν-integrand for kt algorithm (points) with the SCA in the same

algorithm (solid blue) and in the FIP algorithm (dashed red). On the left: n = 0; on the right:

n = 1. The upper plots display absolute values in arbitrary units, and below them we show the

ratios w.r.t. exact integrand. The parameters are R = 0.5, E1 = E2 = 35GeV, y1 = 3.6, y2 = 2.8.

exact

kt HscaL

FIP HscaL

0.00

0.02

0.04

0.06

0.08

0.10

C0

6.5 7.0 7.5 8.0 8.5 9.0 9.5
0.9

1.0

1.1

1.2

1.3

Y

SC
A
�e

xa
ct

Figure 6. Comparison of the exact differential cross section dσ/dY (n = 0) for kt algorithm (solid

blue) with the SCA in the same algorithm (dash-dotted blue) and in the FIP algorithm (dashed

red). Top: absolute values in linear scale; bottom: ratios of the SCAs w.r.t. the exact one. Here

R = 0.5, E1 = E2 = 35GeV.
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Figure 7. Comparison of some ratios Cm/Cn determined with the exact jet vertices in the kt

algorithm (solid blue) with those obtained in the SCA with the same algorithm (dotted blue) and

with the FIP algorithm (dashed red). Here R = 0.5, E1 = E2 = 35 GeV.

The reason for imposing the |yi| > ymin cut is due to the fact that monochromatic (fixed

E) impact factors oscillate at large ν, causing the ν integration in eq. (2.20) to be slowly

convergent. Actually, the convergence is provided by the GGF, whose modulus decreases

at large ν, the decrease being faster at larger values of Y . On the other hand, at low values

of Y , and in particular with very asymmetric rapidity configurations (
∣

∣|y1|− |y2|
∣

∣ ≫ 1), the

numeric ν-integration has to be pushed to large ν-values, thus demanding a large compu-

tational effort. Since this problem is absent for realistic phenomenological studies (where

the impact factors are integrated in the E variable and decrease themselves with ν), and

because the goal of this analysis is just to compare the main features of the different algo-

rithms, we solve the convergence issue by imposing the mentioned cut in rapidity |yi| > 3.

From the plots of figures 5, 6 one can infer that the main effect of the SCA is mostly

an overall normalization change, and that this is also true even for the wrong choice of

algorithm (kt versus FIP), though with a larger factor. If this were the case, by computing

ratios of observables such effects should cancel out and reproduce more faithfully the exact

quantities. This is partially true, as can be seen in figure 7, where we plot some ratios of

angular coefficients Cm(Y )/Cn(Y ) = 〈cos(m∆φJ)〉/〈cos(n∆φJ)〉 which are usually adopted

in order to measure the azimuthal decorrelation of the MN jets.

It is nevertheless evident that the cancellation of the systematic effects is more effective

if the SCA is made with the proper algorithm, leading to a discrepancy of about 2% or

less for all the ratios considered. A different choice of algorithm yields definitely larger

discrepancies, and therefore should be avoided.
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6 Conclusions

In this paper we have reconsidered the high-energy factorization formula for Mueller-

Navelet jet production, and we have computed the NLO jet vertices in the small-cone

approximation for two different jet algorithms: the kt algorithm and the cone algorithm.

The small-cone approximation amounts to evaluate the generic jet vertex Ψ at small

jet radius R → 0 according to the expansion Ψ = A log(R) + B + O
(

R2
)

, where the

coefficient A is universal, depending only on the infra-red properties of QCD, while the

constant term B depends on the jet algorithm. It should be noted that the neglected term

in the expansion is quadratic in R, and that the linear term is missing. It turns out that

the small-cone approximation is quite accurate for realistic values of R . 0.5 and, because

of its analytic and computational simplicity, it has been and will be used with benefit.

The calculation of the Mellin-Fourier components of the jet vertices (cf. section 2.2)

was originally performed [6] by adopting an algorithm which is equivalent to Furman’s

one [9], but which is not used anymore in modern phenomenological studies, being infra-

red unsafe. In order to use such vertices for the analysis of data from high-energy colliders,

we have computed them in the two most popular algorithms: the kt and the cone ones.

The ensuing analytical expressions have been taken out in section 4, and the differences

among the three algorithms have been highlighted.

The quantitative difference between the small-cone approximations in the kt algorithm

and in Furman’s one have been estimated in section 5, by plotting several quantities of inter-

est: the jet vertices, the integrand of the high-energy factorization formula, the differential

cross section w.r.t. the rapidity distance Y ≡ |y1 − y2| of the two MN jets, and some an-

gular coefficients indicating the azimuthal decorrelations of the jets themselves. Also the

corresponding quantities with the exact jet vertices in the kt algorithm have been plotted.

It turns out that the difference between the kt and Furman’s algorithms is sizeable,

of the order of 20% at the level of cross section, and about 5% for the ratios Cm/C0 =

〈cos(m∆φJ)〉 and Cm/Cn, the angular coefficients of azimuthal decorrelation.

On the other hand, the discrepancies between the exact results and the small-cone ap-

proximated ones are much smaller, of the order of 5% at the level of cross section, and less

than 2% for the angular ratios. We therefore conclude that the small-cone expansion, com-

puted with the proper jet algorithm, provides a good approximation to the Mueller-Navelet

jet vertices; it can then be used as a very convenient tool to perform phenomenological

studies, in that it requires much less computational resources than the exact computation.

This aspect could be essential when analysing observables obtained by integrating

the jet energies in a non-factorized domain, e.g., by requiring E1 + E2 > 2Ecut. Such

condition is often used in dijet analysis since, at fixed NLO, it yields more stable results

than the condition Ei > Emin, while retaining the 1 ↔ 2 symmetry. On the other hand,

a non-factorizable domain of integration in energy prevents the use of eq. (2.22) with

independently integrated impact factors Ψ; a numerical integration in energy (and possibly

in rapidity) of the integrand (2.20) is thus necessary, and the small-cone approximation

represents a valuable tool to reduce the computational effort of such calculation.
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A Expressions of splitting and special functions

The splitting functions found in the jet vertices are defined in the usual way:

Pqq(z) = CF

(

1 + z2

1− z

)

+

= CF

[

1 + z2

(1− z)+
+

3

2
δ(1− z)

]

(A.1a)

Pgq(z) = CF
1 + (1− z)2

z
(A.1b)

Pqg(z) = TR

[

z2 + (1− z)2
]

(A.1c)

Pgg(z) = 2CA

[

1

(1− z)+
+

1

z
− 2 + z(1− z)

]

+

(

11

6
CA − nf

3

)

δ(1− z) . (A.1d)

The functions Ij are expressed in terms of hypergeometric functions and read [6]

I2(n, γ, ζ) =
ζ2

ζ̄2

[

ζ

(

2F1(1, 1 + γ − n
2 , 2 + γ − n

2 , ζ)
n
2 − γ − 1

− 2F1(1, 1 + γ + n
2 , 2 + γ + n

2 , ζ)
n
2 + γ + 1

)

+ ζ−2γ

(

2F1(1,−γ − n
2 , 1− γ − n

2 , ζ)
n
2 + γ

− 2F1(1,−γ + n
2 , 1− γ + n

2 , ζ)
n
2 − γ

)

+
(

1 + ζ−2γ
)

(

χ(0)
nν − 2 log ζ̄

)

+ 2 log ζ

]

(A.2a)

I1,3(n, γ, ζ) =
ζ̄

2ζ
I2(n, γ, ζ)±

ζ

ζ̄

[

log ζ +
1− ζ−2γ

2

(

χ(0)
nν − 2 log ζ̄

)

]

(A.2b)

and we recall the definition γ ≡ iν − 1/2. χ
(0)
nν is defined in eq. (2.14).
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