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1 Introduction and summary

Effective field theories (EFTs) are useful to describe low energy physics within our experimental
reach, before the new, more fundamental high energy theory can be probed. Unlike a UV-
complete theory, an EFT containing several fields typically needs to be parameterized by a
large number of Wilson coefficients, if a sufficiently high accuracy is desired. The utility of
an EFT often hinges on the precise determination of the many Wilson coefficients, which can
present a significant challenge for the experimental search for new physics. Recently, it has been
increasingly appreciated that the general parameter space of the Wilson coefficients is mostly
inconsistent with the fundamental principles of S-matrix theory such as causality/analyticity
and unitarity, except for a small subspace carved out by so-called positivity bounds (see,
e.g., [1–29] and [30] for a review).

Lately, there has been a growing focus on extracting the optimal s2 order multi-field
positivity bounds (s being the usual Mandelstam invariant) and applying them to the Standard
Model Effective Field Theory (SMEFT) [13, 14, 31–52]. As an application of the principles
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of EFT to the Standard Model (SM) field content, the SMEFT is considered to be the most
phenomenologically relevant EFT in the absence of a discovery of new particles at the LHC
and has become increasingly popular in both the theoretical and experimental communities.
It indeed contains many degrees of freedom, i.e., independent Wilson coefficients [53, 54],
especially from canonical dimension-8 and onwards. Certain dimension-8 operators or squares
of dimension-6 operators contribute to s2 terms in 2 → 2 scattering amplitudes, which can
be directly constrained by the leading order multi-field positivity bounds. These bounds
significantly reduce the vast parameter space, mitigating the experimental challenge of
constraining dimension-8 coefficients.

For example, in vector boson scattering (VBS), even the non-optimal, elastic positivity
bounds can restrict the physical Wilson coefficient space to be about 2% of the space
furnished by the dimension-8 operators that parameterize anomalous Quartic Gauge Couplings
(aQGCs) [31, 32] (see also [55]). That is, only within this small physical subspace can the
SMEFT be UV completed according to the fundamental principles of quantum field theory.
Expanding the inclusion of SMEFT operators will result in a more restricted positivity region
in percentage terms. The squares of the dimension-6 coefficients can be dropped in the
positivity bounds because they contribute schematically as (dim-8) − (dim-6)2 > 0, such
that neglecting them leads to more conservative, nevertheless valid bounds [31]. On the
phenomenological side, it is justified to forgo the dimension-6 operators because they are
likely to be relatively better constrained by other means.

Generalized elastic positivity bounds, obtained by considering arbitrary superpositions
of scattering states [31, 32], can further restrict the Wilson coefficient space. For example,
for the 10D dimension-8 aGQC subspace involving transverse vector bosons, they reduce the
viable parameter space down to about 0.7% of the total space [35]. However, the generalized
elastic positivity approach still does not give rise to the strongest s2-order bounds. The
optimal bounds can be obtained by viewing the s2 amplitude coefficients as forming a convex
cone [13, 15, 35, 45]. Interestingly, the extremal rays of the s2 positivity cone correspond to
irreducible representations of the symmetries of the low energy EFT, which are projected
down from the UV. Thus, the positivity bounds are intertwined with the inverse problem of
reverse-engineering the UV theory in the event that non-zero Wilson coefficients are observed.
This viewpoint also allows us to easily find the optimal positivity bounds when the low
energy degrees of freedom are endowed with sufficiently many symmetries. If there are
fewer symmetries, the s2 positivity cone can be obtained numerically via a semi-definite
programming method [14].

The previous s2 positivity cone approach gives us projective bounds, where the coefficients
are allowed to extend to infinity by their very nature of being a convex cone. In this paper,
we will show that the s2 positivity cone can be capped from above. This is largely made
possible by the addition of two new ingredients that we will apply on top of the previous
positivity bounds in the SMEFT.

First, notice that the aforementioned positivity cone approach only uses the positivity
part of the unitarity conditions on the UV partial wave, aijkl

ℓ ; that is, it only uses the
fact that Imaijkl

ℓ is a positive semi-definite matrix, viewing ij and kl as two indices of the
matrix, because it can be written as Imaijkl

ℓ = ∑′
X aij→X

ℓ

(
akl→X

ℓ

)∗
, where i, j, k, l labels
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external particles and X labels possible intermediate states. This positivity property can
be conveniently implemented fully in a semi-definite program [14]. In this paper, we will
additionally make use of the non-positivity parts of UV partial wave unitarity1 such as
the upper bounds

Imaiiii
ℓ ≤ 2 and Imaijij

ℓ ≤ 1
2

in the elastic case, or the more non-trivial conditions such as

−1 ≤ Imaiijj
ℓ ≤ 1 and

∣∣Imaijkl
ℓ

∣∣ ≤ Imaijij
ℓ + Imaklkl

ℓ

2 , ∀ i, j, k, l,

for inelastic channels. We refer the eager reader to section 2.2 and appendix A for all of
the unitarity conditions we will make use of and how to derive them. The non-positivity
part of partial wave unitarity has been used in the primal S-matrix numerical bootstrap (see,
e.g., [56–60] and [61] for a review), which constrains the S-matrix directly without using
the dispersion relations. However, use of the non-positivity part is less convenient with the
dispersion relation approach. We shall further develop the method of implementing partial
wave unitarity away from positivity at the level of the dispersion relations, initiated by [10, 25].
More precisely, our approach involves discretizing the dispersive integrals over the potential
UV states and their corresponding UV spectral densities. To reduce the numerical complexity,
we will restrict ourselves to linear unitarity conditions like the ones shown above. These linear
conditions are in principle weaker than the full unitarity, but they are able to capture the
most salient features of the Imaijkl

ℓ space allowed by the full unitarity. We therefore expect
that our results are a good approximation to those allowed by the full unitarity.

Second, the fixed t dispersion relations are only manifestly two-channel crossing symmetric.
It has been realized that imposing the remaining crossing symmetries on the two-channel
dispersion relations results in an infinite set of null constraints, which can be used to obtain
two-sided bounds on the Wilson coefficients [9, 10]. For example, for the case of a single scalar
that is weakly coupled below the EFT cutoff, all of the dimensionless Wilson coefficients have
been constrained by the fully crossing-symmetric positivity bounds to be parametrically O(1)
(up to factors of 4π). This suggests that dimensional analysis is not merely a natural guess, but
is actually mandated by the fundamental principles of the UV S-matrix and cannot be violated
by some intricate design of the UV model. These null constraints are the other essential
ingredient to obtain the upper bounds on the s2 coefficients from the dispersion relations.

For technical simplicity, in this paper we will restrict ourselves to capping the SMEFT
Higgs cone of the s2 coefficients, utilizing these new ingredients. Also, we are assuming that
the theory is weakly coupled all the way to the EFT cutoff such that we can use the tree
level approximation below the cutoff, with the EFT loop contributions suppressed by extra
factors of the weak couplings. The central result can be schematically summarized as follows:
the previous s2 Higgs positivity cone can extend to infinity away from its vertex (left plot of
figure 1); now, with the new two-sided bounds, we can constrain the parameters to be within
a finite distance from the vertex for a given EFT cutoff, Λ (right plot of figure 1).

1The name “positivity bounds” originates from the fact that the positivity part of unitarity implies positivity
of certain combinations of the amplitude coefficients. In this paper, we have gone beyond that in using the
non-positivity parts of unitarity, but we still call them positivity bounds for lack of a better name.
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Figure 1. Cartoon view of positivity cone (left) vs capped positivity cone (right). Previous positivity
bounds (left) form a convex cone, unbounded away from the vertex, only utilizing the positivity part of
the UV unitarity. In this paper, we cap the positivity cone from above (right), using the non-positivity
part of the UV unitarity conditions.

We shall first set up the general formalism to bound the s2 coefficients of a multi-scalar
field theory. The partial wave expansion of a scalar theory can be performed with Legendre
polynomials, while that of a general field theory with spin needs Wigner d-matrices, which
is technically more involved but does not seem to pose any essential obstacle in applying
our general method and is left for future work. We will illustrate how to use the method to
bound the single scalar theory (see [62] for an application of the upper bound in cosmology)
and the theory with two scalars, before applying the method to the Higgs case.

Numerically, we obtain the two-sided bounds by discretizing the dispersive integrals of
the sum rules and the null constraints and truncating the UV partial wave expansion at finite
angular momentum. This allows us to reduce the procedure to a linear programming (LP)
problem with a large number of decision variables, which nevertheless can be solved relatively
easily, thanks to the efficiency of modern LP algorithms. For instance, this can be achieved
using the built-in command LinearProgramming in mathematica. The numerical efficiency
is especially remarkable in the context of a single scalar case. However, in the Higgs case,
it does require more computational time due to the increased degrees of freedom, notably
the proliferation of decision variables and null constraints. To reduce the running times, we
find that we can combine a few sets of spectral densities to significantly reduce the number
of decision variables. We plot both 1D (figure 5) and 2D (figure 6) bounds for the three
Wilson coefficients for the SMEFT Higgs, from which we can see that the new allowed region
only occupies a small portion of the Higgs positivity cone.

We may compare the bounds from the capped Higgs positivity cone to the widely used
perturbative unitarity bounds. The upper positivity bounds are similar to perturbative
unitarity bounds in the sense that they both make use of the unitarity conditions. However,
the fundamental difference between the two kinds of bounds are that, while perturbative
unitarity bounds rely on the unitarity bounds within the EFT/below the cutoff, the upper
positivity bounds originate from the unitarity conditions of the UV theory. We will see that
the upper positivity bounds are often stronger than perturbative unitarity bounds, even when
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√

s is chosen to be close to the EFT cutoff. We also compare the positivity bounds with
the experimental constraints on the SMEFT Higgs coefficients, obtained from measurements
of Vector Boson Scattering (VBS) at the LHC. We find that the upper positivity bounds are
stronger than the experimental limits when the EFT cutoff is greater than ∼ 2TeV.

A caveat about our tree level results is that the sizes of loop contributions are in general
dependent on the specific UV theory, a systematic discussion of which is beyond the scope of
this work. Since we have not systematically included the loop effects, without any further
treatment of the dispersion relations, our results can in general be subject to O(1) corrections.
Nevertheless, our treatment is a good approximation for a UV theory whose dispersion
integral is UV-dominated, i.e., in cases where the dispersive integral is dominated by the part
above the EFT cutoff. Also, we stress that our results are clearly different and complementary
to the traditional perturbative unitarity bounds. The unitarity bounds are derived from
the breakdown of unitarity within the low-energy EFT, while our bounds are obtained
by imposing the unitarity conditions for the unknown UV theory and matching the EFT
coefficients to the UV theory via the dispersion relations. The essence of our bounds is the
convergence of the dispersive integral at high energies, obtained solely from unitarity and
causality of the UV theory. Indeed, the perturbative unitarity bounds, as commonly used in
the literature, also assume perturbativity below the cutoff, and are subject to similar loop
corrections but are generally neglected. It is in this sense that we compare our positivity
bounds with the perturbative unitarity bounds, and we see that the positivity bounds are
generally stronger than the perturbative unitarity bounds.

The remainder of the paper is organized as follows. Section 2 introduces and derives the
positivity bounds for general multi-field theories, deriving the general null constraints and
enumerating the relevant unitarity conditions on the UV partial wave amplitudes beyond
positivity. Using examples of the single-scalar and bi-scalar theories, we then establish the LP
methodology to obtain new, closed constraints on the coefficients of the associated scattering
amplitudes. Section 3 applies the methodology to the effective theory for Higgs scattering
amplitudes, leading to the upper bounds on the dimension-8 SMEFT coefficients that “cap”
the s2 positivity cone. Section 4 compares our theoretical bounds with existing experimental
bounds from VBS measurements at the LHC as well as partial wave unitarity constraints of
the low energy EFT. Appendix A first presents a pedagogical review of the full partial wave
unitarity conditions, and then derives a constraining set of linear unitarity conditions that
we use in this paper. In appendix B, we analytically derive an example upper bound, which
helps showcase the inner mechanism of obtaining the upper positivity bounds. Appendix C
derives the symmetries of the Higgs amplitudes and connect the amplitude coefficients with
the Wilson coefficients. Appendix D presents the details about how to reduce the decision
variables in the Higgs case. In appendix E, we provide more details about how to implement
the LP numerically and report on a convergence study of our computational method.

2 Upper bounds in multi-field theories

Recently, positivity bounds have established that, at leading order, certain dimension-8
coefficients of the SMEFT should live in a positivity cone [13, 14]. The vertex of the cone
corresponds to all of the coefficients being null, and the cone can extend infinitely away from
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the vertex, admitting arbitrarily large values of the Wilson coefficients. We shall show in
this paper that the positivity cone is actually capped from above, as one would expect on
general grounds. In the example of SMEFT Higgs operators that we will explicitly work out,
the coefficients are confined to a finite, convex region. In this section, we develop a general
formalism to obtain upper bounds on the Wilson coefficients in a multi-field theory. We
will only consider scattering amplitudes involving scalar fields, which simplifies the partial
wave expansion. For fields with spin, the Wigner small-d matrices should be used instead
of Legendre polynomials.

We will first present the dispersion relations and introduce the two main ingredients for
obtaining the upper positivity bounds. The first are so-called null constraints, a series of
integral equations that constrain the partial wave amplitudes, which we will shortly review
based on the formulation of [22]. The second are the UV unitarity bounds away from positivity.
The positivity part of the UV unitarity condition gives rise to the aforementioned positivity
cone, while the non-positivity part enables us to fully close the allowed region, i.e cap the
cone. In section 2.3, we formulate the problem of obtaining the positivity bounds (both lower
and upper) as a linear program treating the partial wave amplitudes as decision variables. As
two illustrating examples, in section 2.4 and 2.5, we apply this method to obtain two-sided
bounds for the single scalar theory and the bi-scalar theory.

2.1 Null constraints from crossing symmetry

The null constraints arise when imposing full crossing symmetry [9, 10] on scattering ampli-
tudes. As we will see, if we start with dispersion relations with only two channels i.e. the
sum rules are only su crossing symmetric, then the extra st crossing symmetry needs to
be imposed to achieve full crossing symmetry. These null constraints turn out to be very
potent in restricting the space of Wilson coefficients, which parallels the situation in the
conformal bootstrap where full crossing symmetry is fundamental to its recent success [63].
Indeed, without the null constraints, naive use of the partial wave unitarity bounds in the
sum rules would not constrain the coefficients from above.

We shall first derive the sum rules from the dispersion relations. Let us consider
the amplitude, Aijkl(s, t), for a 2-to-2 scattering process ij → kl in D = 4 dimensions,
where i, j, k, l = 1, 2, . . . , N label different low energy states in an effective theory. For
simplicity, we will focus on the massless scalar case with Mandelstam variables satisfying
s + t + u = 0. We work in a self-conjugate basis for the scattering states to simplify the
crossing relations, which are given by Aijkl(s, t) = Aikjl(t, s) and Aijkl(s, t) = Ailkj(u, t)
for st and su crossing respectively.2 By the (complex) analyticity properties of Aijkl(s, t)
in the UV theory, we can use Cauchy’s integral formula along with the Froissart-Martin
bound [64, 65] to relate it to a dispersive integral of its absorptive part, defined by its
discontinuity across the real s-axis: AbsA(s, t) = 1

2i limϵ→0+ [A(s + iϵ, t)− A(s − iϵ, t)]. In
a time reversal invariant theory, which we focus on in this paper, the absorptive part is
simply the imaginary part: AbsAijkl(s, t) = ImAijkl(s, t). Additionally making use of su

2One can straightforwardly switch to a non-self-conjugate basis by additionally conjugating the crossed
states. In the massless limit, crossing symmetry relations are still trivial for fields with spin, and one can
simplify the computations by restricting to independent helicity amplitudes.
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symmetry to infer the discontinuity along the negative s-axis in terms of the crossed amplitude,
Aijkl(s + iϵ, t) = Ailkj(−s − iϵ − t, t), one can express Aijkl as [4, 22]:

Aijkl(s, t) = λijkl

−s
+ λijkl

−t
+ λijkl

−u
+ a

(0)
ijkl(t) + a

(1)
ijkl(t)s

+
∫ ∞

Λ2

dµ

π(µ + t
2)2

[
(s + t

2)2

µ − s
ImAijkl(µ, t) +

(u + t
2)2

µ − u
ImAilkj(µ, t)

]
, (2.1)

where λijkl are the residues of the poles that are required to be identical by crossing symmetry,
and a

(0)
ijkl and a

(1)
ijkl are arbitrary functions of t that will be fixed later thanks to st crossing

symmetry. Λ is the scale associated with the appearance of the lowest modes in the UV
theory. It is assumed to be much larger than s and t and can be identified with the cutoff
of the EFT. The integration starts from Λ2 because we have assumed that below Λ2 the
theory is perturbative and the tree level amplitude provides a good approximation. For
loop amplitudes, a similar dispersive integral from Λ2 to infinity can also be obtained by
subtracting the low energy part of the dispersive integral [45, 50, 66] or equivalently using
the arc variables [8], the details of which are deferred for future work.

Eq. (2.1) is a twice-subtracted dispersion relation for Aijkl(s, t) at fixed t, with the
arbitrary subtraction point conveniently chosen to at −t/2. Subtracting twice is sufficient
to render the terms in the dispersion relations finite, owing to the Froissart-Martin bound.
Further subtracting the poles of the amplitude Aijkl(s, t), and defining v ≡ s + t

2 = −u − t
2

for simplicity yields a dispersion relation for the pole-subtracted amplitude

Bijkl(s, t) ≡ Aijkl(s, t)− λijkl

−s
− λijkl

−t
− λijkl

−u
(2.2)

= ã
(0)
ijkl(t) + a

(1)
ijkl(t)v + v2

π

∫ ∞

Λ2

dµ

(µ + t
2)2

[
ImAijkl(µ, t)

µ − v + t
2

+ ImAilkj(µ, t)
µ + v − t

2

]
,

where we have also introduced ã
(0)
ijkl(t) = a

(0)
ijkl(t) + a

(1)
ijkl(t) t

2 . Since we will be interested in
studying the low energy limit of the amplitude modelled by an EFT, we expand Bijkl on
the left hand side in terms of small s and t,

Bijkl(s, t) =
∑
n≥0

c0,n
ijklt

n +
∑
n≥0

c1,n
ijklvtn +

∑
m≥2

∑
n≥0

cm,n
ijkl v

mtn . (2.3)

While c0,n
ijkl and c1,n

ijkl correspond to the expansion coefficients of the soon-to-be determined
ã

(0)
ijkl(t) and a

(1)
ijkl(t), matching the expansions on both sides of eq. (2.2) for m ≥ 2 leads to

a set of sum rules for the Wilson coefficients

cm,n
ijkl =

〈[
ρijkl

ℓ (µ) + (−1)mρilkj
ℓ (µ)

] n∑
p=0

Lp
ℓHn−p

m+1
µm+n+1

〉
, m ≥ 2. (2.4)

Here we have used the partial wave expansion for the absorptive part of the amplitude
at energy scale √

µ,

ImAijkl(µ, t) = 16π
∞∑

ℓ=0
(2ℓ + 1)Pℓ

(
1 + 2t

µ

)
ρijkl

ℓ (µ) , (2.5)
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with Pℓ being the Legendre polynomial and the “spectral density”3 defined as

ρijkl
ℓ (µ) ≡ Im aijkl

ℓ (µ) , (2.6)

and we have introduced shorthand notations〈
. . .

〉
≡
∑

ℓ

16(2ℓ + 1)
∫ ∞

Λ2
dµ
(

. . .
)
, (2.7)

Ln
ℓ ≡ Γ(ℓ + n + 1)

n!Γ(ℓ − n + 1)Γ(n + 1) , Hq
m+1 ≡ Γ(m + q + 1)

(−2)qΓ(q + 1)Γ(m + 1) . (2.8)

The sum rules will be the central objects we will use to extract the bounds on the Wilson
coefficients.

Due to the crossing symmetry of the amplitude, the cm,n
ijkl must satisfy certain relations

among themselves, called null constraints [9, 10, 22]. Since the dispersion relation (2.2)/sum
rules (2.4), and thus cm≥2,n

ijkl themselves are already su symmetric, we only need to impose st

crossing symmetry on the amplitude Bijkl(s, t) = Bikjl(t, s) to achieve full crossing symmetry.
This leads to a series of identities relating coefficients cm,n

ijkl with a common m + n:

np,q
ijkl =

p+q∑
a=p

Γ(a + 1)ca,p+q−a
ijkl

2a−pΓ(p + 1)Γ(a − p + 1) −
p+q∑
b=q

Γ(b + 1)cb,p+q−b
ikjl

2b−qΓ(q + 1)Γ(b − q + 1) = 0 . (2.9)

For a fixed order p + q = f , there are f + 1 identities (given by choosing p = 0, 1, . . . , f),
in which c0,p+q

ijkl , c1,p+q−1
ijkl , c0,p+q

ikjl and c1,p+q−1
ikjl are not useful to us since they do not have a

dispersive integral representation like eq. (2.4). We therefore eliminate them by first using
four of the identities to solve for them as linear sums of cm≥2,n

ijkl and then plugging the solution
into the f − 3 remaining identities. One additional set of relations between c1,n

ijkl can be
obtained by applying su crossing symmetry on the amplitude, Bijkl(s, t) = Bilkj(u, t). The
fact that s ↔ u corresponds to v → −v implies:

c1,n
ijkl + c1,n

ilkj

∣∣∣∣
c1,n→cm≥2,n′

= 0 , (2.10)

in which we again substitute c1,n with cm≥2,n′ using the solution we just obtained. We are
then left with f − 2 null constraints, which involve only cm,n

ijkl , cm,n
ikjl and cm,n

ilkj with m ≥ 2 and
m + n = f . The rest of the cm≥2,n

ijkl terms in the expansion of eq. (2.4) are su invariant by
construction, leaving eqs. (2.9) and (2.10) as the full set of null constraints implied by crossing
symmetry. For example, the first set of nontrivial null constraints starts at m + n = f = 4.
(see [22] for the higher order results), and they are

c2,2
ijkl − c2,2

ikjl +
3c3,1

ijkl

2 −
3c3,1

ikjl

2 +
3c4,0

ijkl

2 −
3c4,0

ikjl

2 = 0 ,

−c2,2
ikjl − c2,2

iklj +
3c3,1

ijkl

4 −
c3,1

ikjl

2 −
c3,1

iklj

2 +
3c3,1

ilkj

4 + c4,0
ijkl +

c4,0
ikjl

2 +
c4,0

iklj

2 + c4,0
ilkj = 0 ,

(2.11)

3It is not necessarily positive definite for non-elastic scatterings; see eq. (2.26).
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obtained from n2,2
ijkl and eq. (2.10) with n = 3. One possible way forward is to simply slice

out the cm,n
ijkl coefficient space with the above null constraints, assuming one can extract

positivity bounds for sufficiently many cm,n
ijkl coefficients directly from the sum rules (2.4),

via the mathematical moment approach [7, 8, 11], for example. These cm,n
ijkl null constraints

simply mean that the independent cm,n
ijkl coefficients live in a linear subspace of the full cm,n

ijkl

space. However, a more efficient use of the null constraints is, as we shall see shortly, to
turn them into a set of identities for the UV partial wave amplitudes, which makes the
name of null constraints more justified. Then, we will find that these reformulated null
constraints can be used to facilitate the extraction of positivity bounds for the coefficients,
very efficiently for the first few orders.

Concretely, substituting the sum rules (2.4) into the null constraints (2.9)–(2.10), we
get a set of constraints on ρijkl

ℓ that take the following general form:

∑
ℓ

16(2ℓ + 1)
∫ ∞

Λ2

dµ

µr+4

[
Cr,ir(ℓ)ρ

ijkl
ℓ (µ) + Dr,ir(ℓ)ρ

ijlk
ℓ (µ) + Er,ir(ℓ)ρ

ikjl
ℓ (µ) (2.12)

+ Fr,ir(ℓ)ρ
iklj
ℓ (µ) + Gr,ir(ℓ)ρ

iljk
ℓ (µ) + Hr,ir(ℓ)ρ

ilkj
ℓ (µ)

]
= 0 ,

where r ≡ f − 3 = 1, 2, . . . is the order of null constraints, which corresponds to p + q − 3 in
eq. (2.9) or n − 2 in eq. (2.10). At the r-th order, there are r + 1 independent constraints for
generic i, j, k, l, labelled by ir = 1, . . . , r+1. Cr,ir(ℓ), Dr,ir(ℓ), . . . , Hr,ir(ℓ) are polynomials in ℓ

of degree ≤ 2r+2. For the lowest order constraints given as an example in Eq (2.11), we have:

C1,1(ℓ) =
ℓ4

4 + ℓ3

2 − ℓ2

4 − ℓ

2 , C1,2(ℓ) = 2,

D1,1(ℓ) = 0, D1,2(ℓ) = −ℓ4

4 − ℓ3

2 + 9ℓ2

4 + 5ℓ

2 − 2,

E1,1(ℓ) = −C1,1(ℓ), E1,2(ℓ) = −ℓ4

4 − ℓ3

2 + 5ℓ2

4 + 3ℓ

2 ,

F1,1(ℓ) = 0, F1,2(ℓ) = E1,2(ℓ),

G1,1(ℓ) = −ℓ4

4 − ℓ3

2 + 13ℓ2

4 + 7ℓ

2 − 6, G1,2(ℓ) = D1,2(ℓ),

H1,1(ℓ) = −G1,1(ℓ), H1,2(ℓ) = 2 .

(2.13)

For a specific choice of i, j, k, l, permuting j, k, l can lead to extra constraints. On the other
hand, additional degeneracies may exist, which reduces the number of independent ones. For
example, if we choose i, j, k, l to be 1, 2, 3, 4, in addition to the null constraint obtained by
setting i = 1, j = 2, k = 3, l = 4 in eq. (2.12) in a form of∑∫

· · ·
[
Cρ1234

ℓ + Dρ1243
ℓ + Eρ1324

ℓ + Fρ1342
ℓ + Gρ1423

ℓ + Hρ1432
ℓ

]
= 0 ,

we can also set j, k, l to be other combinations of 2, 3, 4 to obtain more null constraints
relating ρ1234

ℓ , ρ1324
ℓ , . . ., such as∑∫
· · ·
[
Cρ1324

ℓ + Dρ1342
ℓ + Eρ1234

ℓ + Fρ1243
ℓ + Gρ1432

ℓ + Hρ1423
ℓ

]
= 0 ,
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among several others. When deriving the null constraints for bi-scalar and four scalars, we
need to exhaust all the permutations in eq. (2.9)–(2.10) to get the full set of null constraints.

We stress that the ρijkl
ℓ (µ)’s are unknown in general, since they can only be determined

in terms of the scattering amplitudes of the UV theory — note that in the dispersive integrals
µ goes from Λ2 to infinity. Nevertheless, we have shown here that they respect a series of
null constraints that we will use later to bound the coefficients of the low energy EFT. These
null constraints imply that the contributions from higher spin-ℓ components of ρijkl

ℓ (µ) are
generally highly suppressed, which makes them very efficient at closing in the parameter space
of the EFT coefficients. For the particular case of the s2 coefficients, as we will see, they allow
us to impose upper bounds on the Wilson coefficients from the sum rules, in conjunction
with the upper bounds of the partial wave amplitudes from the unitarity in the UV.

Apart from these null constraints, crossing symmetry also implies symmetries among
the spectral densities ρijkl

ℓ when swapping their initial or final indices. To see this, note
that the tu crossing symmetry Aijkl(µ, t) = Ajikl(µ, u) = Aijlk(µ, u) implies that aijkl

ℓ (µ) =
(−1)ℓajikl

ℓ (µ) = (−1)ℓaijlk
ℓ (µ). This is due to the property of the Legendre polynomials

Pℓ(−z) = (−1)ℓPℓ(z), which leads to

Ajikl(µ, u) = 16π
∞∑

ℓ=0
(2ℓ + 1)Pℓ

(
1 + 2u

µ

)
ajikl

ℓ (µ) (2.14)

= 16π
∞∑

ℓ=0
(2ℓ + 1)(−1)ℓPℓ

(
1 + 2t

µ

)
ajikl

ℓ (µ) , (2.15)

Aijkl(µ, t) = 16π
∞∑

ℓ=0
(2ℓ + 1)Pℓ

(
1 + 2t

µ

)
aijkl

ℓ (µ) , (2.16)

and the corresponding relations

ρijkl
ℓ = (−1)ℓρjikl

ℓ = (−1)ℓρijlk
ℓ . (2.17)

In the following examples involving a single scalar, two scalars and the Higgs multiplet,
we will use the identities implicitly to eliminate a number of variables. For example, they
imply that ρ1111

ℓ = ρ1122
ℓ = 0 for odd ℓ.

2.2 Unitarity conditions from the UV

In order to obtain positivity bounds, we also need some inequality conditions on the spectral
densities ρijkl

ℓ (µ) = Imaijkl
ℓ (µ) from partial wave unitarity of the UV theory. These conditions

lie at the heart of the positivity bounds, which in essence are just the projected-down version
of these UV conditions on the IR theory by analyticity. Previous positivity bounds on the
SMEFT only utilized the positivity part of these conditions, and now we shall also make
use of the non-positivity parts. We will not use the full nonlinear unitarity, but restrict
ourselves to the linear conditions, which are easily implemented in the linear programs and
are sufficiently strong to close the Higgs positivity cone. In this subsection, we will briefly
illustrate how to obtain a couple of these conditions, before listing all of the results we will
use in the linear programs, deferring the details of the full derivations to appendix A.
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Recall that, for the generic process ij → kl, partial wave unitarity can be written as
(see appendix A)

Imaijkl
ℓ =

∑
mn

ηmnaijmn
ℓ

(
aklmn

ℓ

)∗
+

∑
X ̸=mn

aij→X
ℓ

(
akl→X

ℓ

)∗
, (2.18)

where aij→X
ℓ is the partial wave amplitude for the state ij into some intermediate state X

and the phase space factor ηmn = 1/2 if m = n and ηmn = 1 if m ̸= n. The positivity part of
the unitarity conditions refers to the fact that eq. (2.18) implies that Imaijkl

ℓ is a positive
semi-definite matrix, viewing ij and kl as the two indices of the matrix. This allows one
to obtain a set of positivity bounds via semi-definite programming [14, 22]. The bounds
extracted by this semi-definite programming method are optimal insofar as they only include
the positivity part of partial wave unitarity. These “true” positivity bounds carve out a
convex cone in the coefficient space, starting from its vertex and extending away to infinity.
Thus, the “true” positivity bounds can be regarded as providing the “lower bounds” for the
s2 coefficients. In this paper, we will go beyond that by using the non-positivity parts of
partial wave unitarity, which allow us to find upper bounds for all of the examples considered
in this paper, capping all of the s2 coefficients from above.

Using simple inequality relaxation and eq. (2.17), we can derive from eq. (2.18) the
following two-sided constraints for the imaginary parts of the partial waves (see appendix A):

0 ≤ Imaiiii
ℓ ≤ 2, 0 ≤ Imaijij

ℓ ≤ 1
2 , i ̸= j. (2.19)

For example, to derive the first inequality above, we can consider the process ii → ii. For
this process, the terms on the right hand side of (2.18) are all positive, so picking out only
X = ii for the intermediate states gives

Imaiiii
ℓ ≥ 1

2 |a
iiii
ℓ |2 = 1

2
(
Imaiiii

ℓ

)2
+ 1

2
(
Reaiiii

ℓ

)2
⇒ 0 ≤ Imaiiii

ℓ ≤ 2. (2.20)

Similarly, as shown in appendix A, we can also derive two-sided conditions for the inelastic
partial waves Imaiijj

ℓ and Imaijkl
ℓ (i ̸= j ̸= k ̸= l): −1 ≤ Imaiijj

ℓ ≤ 1, − 1
4 ≤ Imaijkl

ℓ ≤ 1
4 . We

see that, in contrast to those of Imaiiii
ℓ and Imaijij

ℓ , they are not positive semi-definite.
We can actually get stronger conditions on these two coefficients. To see this, let us

denote X ij,kl as the set of all intermediate states that contribute to the scattering process
ij → X → kl, and we must have X ij,kl ⊆ X ij,ij ∩ X kl,kl. This leads to

∣∣∣Imaijkl
ℓ

∣∣∣2 =

∣∣∣∣∣∣
∑

X∈X ij,kl

aij→X
ℓ

(
akl→X

ℓ

)∗∣∣∣∣∣∣
2

≤
∑

X∈X ij,kl

∣∣∣aij→X
ℓ

∣∣∣2 ∑
X∈X ij,kl

∣∣∣akl→X
ℓ

∣∣∣2 ≤
∑

X∈X ij,ij

∣∣∣aij→X
ℓ

∣∣∣2 ∑
X∈Xkl,kl

∣∣∣akl→X
ℓ

∣∣∣2

= Imaijij
ℓ Imaklkl

ℓ ≤
(
Imaijij

ℓ + Imaklkl
ℓ

2

)2

, (2.21)

where the first inequality arises from the Cauchy-Schwarz inequality and the second is due to
the fact that the sets X ij,ij and X kl,kl are both larger than their intersection, X ij,kl. Taking
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the square root of the above inequality and recognizing that Imaijij
ℓ ≥ 0, we obtain

∣∣Imaijkl
ℓ

∣∣ ≤ Imaijij
ℓ + Imaklkl

ℓ

2 , ∀ i, j, k, l (2.22)

This condition turns out to be pivotal to cap the Higgs positivity cone. Again using the Cauchy-
Schwarz inequality plus some re-arrangements of the partial wave unitarity conditions, as
shown in appendix A, we can also derive

∣∣Imaijkl
ℓ

∣∣ ≤ 1
2 −

Imaijij
ℓ + Imaklkl

ℓ

2 ,
∣∣Imaiijj

ℓ

∣∣ ≤ 2− Imaiiii
ℓ + Imajjjj

ℓ

2 , (2.23)∣∣(Imaiijj
ℓ + Imakkll

ℓ )± (Imaiikk
ℓ + Imajjll

ℓ )
∣∣ ≤ 2 , (2.24)

where i ̸= j ̸= k ̸= l. The first two conditions can be combined with inequality (2.22) to become

∣∣Imaiijj
ℓ

∣∣ ≤ 1−
∣∣∣∣1− Imaiiii

ℓ + Imajjjj
ℓ

2

∣∣∣∣, ∣∣Imaijkl
ℓ

∣∣ ≤ 1
4 −

∣∣∣∣14 −
Imaijij

ℓ + Imaklkl
ℓ

2

∣∣∣∣. (2.25)

In summary, we will use the following linear unitarity conditions in the linear programs
to constrain the s2 coefficients in the multi-field theory, written in terms of the spectral
densities ρijkl

ℓ = Imaijkl
ℓ ,

0 ≤ ρiiii
ℓ ≤ 2,

∣∣ρiijj
ℓ

∣∣ ≤ 1−
∣∣∣∣1− ρiiii

ℓ + ρjjjj
ℓ

2

∣∣∣∣,
0 ≤ ρijij

ℓ ≤ 1
2 ,

∣∣ρijkl
ℓ

∣∣ ≤ 1
4 −

∣∣∣∣14 −
ρijij

ℓ + ρklkl
ℓ

2

∣∣∣∣, (i ̸= j ̸= k ̸= l) (2.26)∣∣(ρiijj
ℓ + ρkkll

ℓ )± (ρiikk
ℓ + ρjjll

ℓ )
∣∣ ≤ 2.

2.3 Constraining Wilson coefficients

We will now combine the previous ingredients to constrain the Wilson coefficients in a multi-
field EFT. For phenomenologists, the s2 coefficients in the tree-level scattering amplitudes,
c2,0

ijkl = d2Aijkl(s, t)/(2ds2), are of greatest interest, as they correspond to a linear combination
of dimension-8 Wilson coefficients (and quadratic terms of dimension-6 coefficients). These
are the leading coefficients in the EFT expansion of the amplitudes for which positivity
bounds can be obtained. Although we will focus on bounding only the c2,0

ijkl coefficients in
this paper, we stress that the sum rules along with the null constraints and the UV unitarity
conditions we have obtained can be used to constrain all of the Wilson coefficients. The
positivity part of partial wave unitarity can be fully implemented to constrain the c2,0

ijkl

coefficients via either the convex cone [13] or the semi-definite program approach [14]. In this
subsection we will formulate the problem of finding the upper bounds of the c2,0

ijkl coefficients
as a LP in a generic form.

Essentially, our strategy is to numerically find the upper bounds via the sum rules by
brute force. This is made possible thanks to the unitarity conditions and the null constraints.
To this end, we first change the integration variable from µ to z = Λ2/µ, and discretize
the z variable as n/N with n = 1, 2, . . . , N [27], approximating

∫ 1
0 dz with ∑N

n=1
1
N . We

can also impose a cutoff ℓM on the sum over the UV spin ℓ, since the null constraints
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require the higher spin spectral densities ρijkl
ℓ to be highly suppressed (see appendix B).

Numerically, we can indeed confirm that the results converge with ℓM (see appendix E).
Thus, the c2,0

ijkl sum rules become

c2,0
ijkl =

∑
ℓ

(2ℓ + 1)
∫ ∞

Λ2

dµ

µ3 16(ρ
ijkl
ℓ (µ) + ρilkj

ℓ (µ)) (2.27)

⇒ c2,0
ijkl ≈

1
Λ4

ℓM∑
ℓ=0

(2ℓ + 1)
N∑

n=1

1
N

n

N
16
(
ρijkl

ℓ,n + ρilkj
ℓ,n

)
, (2.28)

and the null constraints are similarly discretized.4 Thus, c2,0
ijkl becomes a linear combination

of many unknown variables ρijkl
ℓ,n ≡ ρijkl

ℓ (Λ2N/n), subject to a set of linear inequality and
equality constraints. Maximizing ∑ijkl αijklc2,0

ijkl over all possible variables ρijkl
ℓ,n is a well

defined LP problem, where αijkl are constants specifying which direction to optimize in
the parameter space furnished by all c2,0

ijkl.5 More explicitly, the programming task can be
summarised as follows:

Decision variables
ρijkl

ℓ,n , ℓ = 0, . . . , ℓM , n = 1, 2, . . . , N, (∀ i, j, k, l) (2.29)

Maximize∑
ijkl

αijklc2,0
ijkl, where c2,0

ijkl =
1
Λ4

ℓM∑
ℓ=0

(2ℓ + 1)
N∑

n=1

1
N

n

N
16
(
ρijkl

ℓ,n + ρilkj
ℓ,n

)
, (2.30)

Subject to

0 ≤ ρiiii
ℓ,n ≤ 2,

∣∣ρiijj
ℓ,n

∣∣ ≤ 1−
∣∣∣∣1− ρiiii

ℓ,n +ρjjjj
ℓ,n

2

∣∣∣∣
0 ≤ ρijij

ℓ,n ≤ 1
2 ,
∣∣ρijkl

ℓ,n

∣∣ ≤ 1
4 −

∣∣∣∣14 −
ρijij

ℓ,n
+ρklkl

ℓ,n

2

∣∣∣∣∣∣(ρiijj
ℓ,n + ρkkll

ℓ,n )± (ρiikk
ℓ,n + ρjjll

ℓ,n )
∣∣ ≤ 2


(i ̸= j ̸= k ̸= l);

ρijkl
ℓ,n = (−1)ℓρjikl

ℓ,n = (−1)ℓρijlk
ℓ,n , (∀ i, j, k, l);

ℓM∑
ℓ=0

(2ℓ + 1)
N∑

n=1

1
N

(
n

N

)r+2
[
Cr,ir(ℓ)ρ

ijkl
ℓ,n + Dr,ir(ℓ)ρ

ijlk
ℓ,n + Er,ir(ℓ)ρ

ikjl
ℓ,n

+ Fr,ir(ℓ)ρ
iklj
ℓ,n + Gr,ir(ℓ)ρ

iljk
ℓ,n + Hr,ir(ℓ)ρ

ilkj
ℓ,n

]
= 0 , (2.31)

Sometimes, the numerical results will converge faster if we also include a much larger partial
wave, which will be labelled as ℓ∞. In the next subsections, we will work through two example
theories of a single scalar or a pair of scalars, illustrating how we perform the LP in detail.

4In the following, we will simply use “=”, instead of “≈”, also for the discretized expressions.
5For example, if we want to find the upper bound on an individual coefficient c2,0

i0j0k0l0
for given i0, j0, k0, l0,

we can set αijkl = δi
i0 δj

j0
δk

k0 δl
l0 in the optimization objective

∑
ijkl

αijklc2,0
ijkl; the lower bound on c2,0

i0j0k0l0
,

on the other hand, can be obtained by setting αijkl = −δi
i0 δj

j0
δk

k0 δl
l0 . Similarly, we can also look to find the

bounds on combinations of the coefficients such as the upper bound on c2,0
i0j0k0l0

+ βc2,0
i1j1k1l1

, with β being
constant, by choosing αijkl = δi

i0 δj
j0

δk
k0 δl

l0 + βδi
i1 δj

j1
δk

k1 δl
l1 .
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The constraints listed in (2.31) are generic ones. For a specific model, the symmetries
of the theory can give rise to additional constraints, such as extra relations among the
amplitude coefficients, that can also be implemented in the LP. They can act similarly to
the null constraints in constraining the parameter space, reducing the number of decision
variables by relating different ρijkl

ℓ,n .
We would like to emphasise here that positivity bounds are a unique, UV probe of the

allowed space of IR Wilson coefficients. For a Lagrangian of dimension-8 operators of the form

Ldim−8 =
∑

I

C
(8)
I O(8)

I =
∑

I

C̄
(8)
I

Λ4
EFT

O(8)
I , (2.32)

the s2 amplitude coefficients, i.e., our objective functions c2,0
ijkl, are simple combinations of

C
(8)
I ’s. C

(8)
I therefore acquires a bound of the form C

(8)
I ≤ a/Λ4 via eq. (2.30), where a is a

dimensionless number, and the dimensionless coefficient C̄
(8)
I is bounded by C

(8)
I ≤ a(ΛEFT/Λ)4.

If we identify the cutoff scale of EFT ΛEFT with our lower limit of integration Λ in the dispersion
relation, which is always true if we assume perturbativity of the UV theory below ΛEFT (see
eq. (2.1) and the discussion below it), then our result directly bounds the dimensionless C̄

(8)
I

through C̄
(8)
I ≤ a with no dependence on ΛEFT or any scale. This is in contrast to other

bounds that might be obtained from experiments or partial wave unitarity in the low energy
EFT which clearly suffer from a degeneracy due to the lack of knowledge on both C̄

(8)
I and

ΛEFT . The former sets limits on the combination C̄
(8)
I /Λ4

EFT ∼ c2,0
ijkl, while the latter constrains

C̄
(8)
I s2/Λ4

EFT ∼ s2c2,0
ijkl, meaning that certain theoretical assumptions are always required to

make statements about the couplings or mass scale of the associated UV theory. Being able
to bound C̄

(8)
I directly is therefore highly complementary to the information obtained from

the other bounds, as we discuss in section 4 for the case of Higgs operators in the SMEFT.
Before proceeding to some simple examples, we would like to comment on the robustness

of our approximation to ignoring loop contributions in the low energy part of the dispersive
integral (eq. (2.1)). As we will see shortly, a typical two-sided positivity bound under this
approximation is

0 ≤ C̄

(4π)2 ≤ O(1) , (2.33)

where C̄ is a dimensionless Wilson coefficient. After including the one-loop contribution
of the EFT operators, it becomes

0 ≤ C̄

(4π)2 − k
C̄2

(4π)4 ≤ O(1) , (2.34)

where the second term is from the dispersive integral from the threshold to Λ, and k is
a factor depending on the specific UV theory that shapes the dispersive relation. For a
UV-dominated dispersive relation, k is usually much less than unity [67]. Taking k = 0.1
and the upper limit to be 1, then eq. (2.34) yields

0 ≤ C̄

(4π)2 ≤ 1.13 , (2.35)
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which gives a small correction to the tree-level approximation. For a UV theory whose
dispersive integral is IR-dominated, the loop contribution could be sizable, a systematic
treatment of which is left for future work.

2.4 Example: single scalar

We start with the simplest case where the low energy theory includes a single massless,
real scalar. As is well known, the associated EFT has a single independent operator at
dimension-8, whose Wilson coefficient maps to c2,0 at tree-level:

L(8) = g2
2 (∂µϕ∂µϕ)2 ⇒ c2,0 = 2g2. (2.36)

It reduces the generic scattering situation to i = j = k = l and we therefore omit those
indices. Also, as a result of eq. (2.17), the spectral density ρℓ,n vanishes for odd ℓ. Since
the c2,0 coefficient is a positive sum of spectral densities which are themselves positive
for the single scalar case, the lower bound is trivially zero and corresponds to the “first”
positivity bound: c2,0 ≥ 0.

To get an upper bound on c2,0, we exploit the LP proposed in the last subsection,
which in this case reads

Decision variables
ρℓ,n

Maximize

c2,0 = 1
Λ4

∑
ℓ=0,2,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32ρℓ,n , (2.37)

Subject to
0 ≤ ρℓ,n ≤ 2 , (2.38)∑
ℓ=0,2,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

(
n

N

)r+2
C1111

r,ir
(ℓ)ρℓ,n = 0 , (2.39)

where C1111
r,ir

represents certain linear combinations of the corresponding C(ℓ), D(ℓ), . . . , H(ℓ)
in eq. (2.12) when i = j = k = l, which are polynomials in ℓ of degree ≤ 2r + 2. In this case,
we observe there to be ⌊(r − 1)/3⌋+ 1 null constraints at the r-th order, where ⌊x⌋ denotes
the floor integer function. Explicitly, at the first three orders, for example, we have

C1111
1,1 = ℓ4 + 2ℓ3 − 7ℓ2 − 8ℓ , (2.40)

C1111
2,1 = ℓ6 + 3ℓ5 − 37

2 ℓ4 − 42ℓ3 + 107
2 ℓ2 + 75ℓ , (2.41)

C1111
3,1 = ℓ8 + 4ℓ7 − 38ℓ6 − 128ℓ5 + 457ℓ4 + 1132ℓ3 − 1860ℓ2 − 2448ℓ . (2.42)

To evaluate this LP problem, we set a cutoff ℓM = 100 for the sum over the partial
waves. However, we also generally include a very large partial wave term, ℓ∞, to improve the
numerical convergence; here we have chosen ℓ∞ = 10000. The optimisation has O(ℓM /2)×N

decision variables ρℓ,n (recall that in this case ρℓ=odd,n = 0), each subject to a unitarity bound

– 15 –



J
H
E
P
0
3
(
2
0
2
4
)
1
8
0
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Number of null constraints

0 2 4 6 8 10
Order of null constraints (r)

1.50

1.52

1.54

1.56

1.58

1.60

c2,0

(4π)2
[Λ−4]

N = 3200, `M = 30

Figure 2. Upper bound on the amplitude coefficient for the single real scalar theory, c2,0, in units of
(4π)2 and Λ−4 resulting from our optimisation procedure as a function of the order of null constraints
applied. The upper x-axis labels count the number of independent null constraints appearing up to
each order.

and additionally constrained by the set of null constraints up to a given order, r. The result
is shown in figure 2, which plots the upper bound on c2,0 in units of (4π)2 and Λ−4 as a
function of the order of null constraints applied. N = 3200 points are used for the discretized
integral, which is observed to yield a solid convergence as N increases (See appendix E). We
can see that the result converges quickly upon applying higher and higher orders of null
constraints, and conclude that the s2 coefficient c2,0 is bounded both from above and below:

0 ≤ c2,0

(4π)2 ≤ 1.506
Λ4 . (2.43)

Note that the units of (4π)2 are consistent with naive dimensional analysis [68]. The upper
bound on c2,0 has been previously obtained semi-analytically using only the first null constraint
in ref. [10].6 We see that including the higher order null constraints leads to a 5% improvement.
We have also attempted to extend the method of [10] to include higher order null constraints,
but it becomes computationally costly and numerically unstable very quickly. However, for
the low orders, the two methods do agree with each other.

2.5 Example: bi-scalar theory

For a theory containing two scalar fields, ϕ1,2, we take i, j, k, l to be permutations of 1 and 2.
For simplicity, we focus on the case when i, j, k, l includes two 1’s and two 2’s, i.e., we bound
the coefficients c2,0

1212 and c2,0
1122 = c2,0

1221.7 The bounds on c2,0
1111 and c2,0

2222 are exactly the same
6Note that our c2,0 is twice the g2 coefficient defined in ref. [10].
7These coefficients correspond to the subset of bi-scalar amplitudes allowed when imposing a Z2 symmetry on

each scalar field ϕi ↔ −ϕi. For the bounds on c2,0
1112, c2,0

1121,. . . , the derivation is similar to our example for c2,0
1122.
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as the previous single scalar example since the objective function, (linear) unitarity conditions
and null constraints that make up each “iiii” system are independent and decoupled from all
others. For the null constraints, we set {i, j, k, l} = {1, 1, 2, 2}, {1, 2, 1, 2}, {1, 2, 2, 1} at each
order, r, of eq. (2.31) to find the independent constraints for the LP, which results in (r + 1)
null constraints at the r-th order. The null constraints can be classified into two groups,
those that only involve ρ1111

ℓ,n or ρ2222
ℓ,n , and those that only involve ρ1122

ℓ,n and ρ1212
ℓ,n (recall that

ρ1221
ℓ,n = (−1)ℓρ1212

ℓ,n ). They are connected by the inequality
∣∣ρ1122

ℓ,n

∣∣ ≤ 1−
∣∣1− (ρ1111

ℓ,n +ρ2222
ℓ,n )/2

∣∣.
Now the LP problem can be expressed as

Decision variables
ρ1111

ℓ,n , ρ2222
ℓ,n , ρ1122

ℓ,n , ρ1212
ℓ,n , (2.44)

Maximize/Minimize

c2,0
1212 = 1

Λ4
∑

ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32ρ1212

ℓ,n , (2.45)

c2,0
1122 = c2,0

1221 = 1
Λ4

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
16
(
ρ1122

ℓ,n + (−1)ℓρ1212
ℓ,n

)
, (2.46)

Subject to

0 ≤ ρ1111
ℓ,n ≤ 2, 0 ≤ ρ2222

ℓ,n ≤ 2 ,∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1
1
N

(
n
N

)r+2
C1111

r,ir
(ℓ)ρ1111

ℓ,n = 0 ,

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1
1
N ( n

N )r+2C1111
r,ir

(ℓ)ρ2222
ℓ,n = 0 ,

(2.47)

∣∣ρ1122
ℓ,n

∣∣ ≤ 1−
∣∣∣∣1− ρ1111

ℓ,n + ρ2222
ℓ,n

2

∣∣∣∣ , (2.48)
0 ≤ ρ1212

ℓ,n ≤ 1
2 ,∑

ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1
1
N

(
n
N

)r+2
[
C1122

r,ir
(ℓ)ρ1122

ℓ,n + C1212
r,ir

(ℓ)ρ1212
ℓ,n

]
= 0 ,

(2.49)

where for the null constraints in the last line, C1122
r,ir

and C1212
r,ir

, just like C1111
r,ir

, are polynomials
in ℓ of order ≤ 2r + 2. For example, the first order of them (r = 1, ir = 1, 2) are explicitly
given by

C1122
1,1 = −ℓ4 − 2ℓ3 + ℓ , (2.50)

C1212
1,1 =

(5
2ℓ4 + 5ℓ3 − 35

2 ℓ2 − 20ℓ + 28
)
+ (−1)ℓ

(
− ℓ4 − 2ℓ3 + 14ℓ2 + 15ℓ − 28

)
, (2.51)

C1122
1,2 = −ℓ4 − 2ℓ3 − ℓ2 , (2.52)

C1212
1,2 =

(
3ℓ4 + 6ℓ3 − 21ℓ2 − 24ℓ + 32

)
+ (−1)ℓ

(
− ℓ4 − 2ℓ3 + 15ℓ2 + 16ℓ − 32

)
. (2.53)

It is worth noting that the upper bound on |ρ1122
ℓ,n |, which is acquired by first constraining

ρ1111
ℓ,n and ρ2222

ℓ,n , and then using the inequality on |ρ1122
ℓ,n | (i.e., eq. (2.47)–(2.48)), is necessary

to produce a convergent upper bound for c2,0
1212 and c2,0

1122 via eq. (2.45)–(2.46). The constraints
in eq. (2.49) alone are not sufficient, as explained in appendix B.
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The formalism above can be further simplified as follows, in a way that will be crucial in
reducing the number of variables in the case of SMEFT Higgs operators addressed in the
next section. In this case it amounts to simply defining R1111

ℓ,n ≡ (ρ1111
ℓ,n + ρ2222

ℓ,n )/2, which
satisfies exactly the same bounds and null constraints as ρ1111

ℓ,n , leading to one fewer set of
variables along with a reduction of constraints in the LP problem:

Decision variables
R1111

ℓ,n , ρ1122
ℓ,n , ρ1212

ℓ,n , (2.54)
Maximize/Minimize

c2,0
1212 = 1

Λ4
∑

ℓ=0,1,2,...,lM ;l∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32ρ1212

ℓ,n , (2.55)

c2,0
1122 = c2,0

1221 = 1
Λ4

∑
ℓ=0,1,2,...,lM ;l∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
16
(
ρ1122

ℓ,n + (−1)lρ1212
ℓ,n

)
, (2.56)

Subject to
0 ≤ R1111

ℓ,n ≤ 2 ,∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1
1
N ( n

N )r+2C1111
r,ir

(ℓ)R1111
ℓ,n = 0 ,

(2.57)

∣∣ρ1122
ℓ,n

∣∣ ≤ 1−
∣∣1− R1111

ℓ,n

∣∣ , (2.58)
0 ≤ ρ1212

ℓ,n ≤ 1
2 ,∑

ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1
1
N ( n

N )r+2
[
C1122

r,ir
(ℓ)ρ1122

ℓ,n + C1212
r,ir

(ℓ)ρ1212
ℓ,n

]
.

(2.59)

The problem has roughly four times as many variables as in the single scalar field case. Each
variable is bounded by unitarity and there are a set of O(ℓM × N) additional inequalities
from eq. (2.58), relating the two field scattering amplitudes to the single field ones. The set
of null constraints corresponds to the union of single and two-field constraints, of which we
observe there are ⌊(r − 1)/3⌋ + r + 2 at the r-th order.

To accomplish this LP computation economically, we choose N = 10 and 20, with ℓM = 30,
ℓ∞ = 100. Although these are not as large as for the single scalar case, we have carefully
checked the convergence of the optimization (see appendix E). The greatest inaccuracy arises
from the coarser discretization parameter, N , which makes the resulting bound slightly
(∼ 5%) looser than its true value (approximated by the N = 100 case). The results of the
optimisation are shown in figure 3. In this case, we go to the 11th order where there are 103
null constraints applied, and the result gradually levels off. We conclude that the bounds are

0 ≤ c2,0
1212

(4π)2 ≤ 0.691
Λ4 , (2.60)

−0.246
Λ4 ≤ c2,0

1122
(4π)2 = c2,0

1221
(4π)2 ≤ 0.563

Λ4 . (2.61)

We also determine the 2-D allowed region in the space of c2,0
1122 and c2,0

1212, by maximizing many
linear combinations in the form of αc2,0

1122 + βc2,0
1212. The result is shown in figure 4, where

successively darker shaded regions indicate the use of increasing orders of null constraints,
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Number of null constraints

1 3 5 7 9 11
Order of null constraints (r)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

c2,0
ijkl

(4π)2
[Λ−4]

c2,0
1122

3 7 12 19 27 36 47 59 72 87 103

Number of null constraints

1 3 5 7 9 11
Order of null constraints (r)

0.0

0.2

0.4

0.6

0.8
c2,0

1212
`M = 30

N = 10

N = 20

Figure 3. Upper/lower bounds on the amplitude coefficients for the bi-scalar theory, c2,0
1212 and c2,0

1122,
in units of (4π)2 and Λ−4 resulting from our optimisation procedure as a function of the order of
null constraints applied. The upper axis label indicates the number of independent null constraints
appearing up to each order.

−0.5 0.0 0.5 1.0

c2,0
1122

(4π)2
[Λ−4]

0.0

0.5

1.0

c2,0
1212

(4π)2
[Λ−4]

Bi-scalar theory

Positivity cone

1D bounds (11th order)

1st order null constraints

4th order null constraints

11th order null constraints

Figure 4. Allowed parameter space for the amplitude coefficients for the bi-scalar theory, c2,0
1212

and c2,0
1122, in units of (4π)2 and Λ−4 resulting from our optimisation procedure. Bounds obtained

by employing null constraints at the 1st, 4th and 11th order are shown in successive darker purple
shaded regions. For comparison, the grey shaded region shows the allowed half-space projected down
from the positivity cone of the bi-scalar theory. The dotted lines delimit the region enclosed by the
corresponding one dimensional bounds obtained with 11th order null constraints shown in figure 3.
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where we have fixed N = 20 and ℓM = 30. The allowed region converges as we increase the
null constraint order, and we do not expect significant improvements beyond the 11th order.
The new allowed region can be compared to the half-space that is allowed by traditional
“lower” positivity bounds obtained from the positivity cone method [14], shaded in grey. The
dashed lines also show the square region delimited by the 1D bounds in eqs. (2.60) and (2.61).
We see that the 2D regions coincide along the line c2,0

1212 = 0, where the traditional positivity
bounds apply. The points where each coefficient is maximised also coincides with the 1D
bounds that we obtained above, as expected. Overall, the true bounds in the 2D plane rule
out a significant, additional portion of the parameter space with respect to the independent
1D case. Since they make use of the most information available, these are the strongest
bounds on the bi-scalar EFT Wilson coefficients that have been found to date.

3 Upper bounds on Higgs scattering coefficients

Having established the formalism and gone through the warm-up examples, we now proceed to
study the more realistic case of two Higgs boson scattering in the SMEFT. In this section, we
identify relevant features of the theory and use them to develop the optimization procedure
to bound the Wilson coefficients.

3.1 Effective operators for Higgs scattering

The Higgs field transforms as a complex doublet under the weak SU(2) gauge symmetry.
To make contact with the real scalar scatterings that we have previously analysed, we
parametrize the Higgs doublet with four real components

H = 1√
2

ϕ1 + iϕ2

ϕ3 + iϕ4

 . (3.1)

We consider the set of 2-to-2 scatterings ϕiϕj → ϕkϕl, where i, j, k, l runs from 1 to 4, and
will compute the s2 coefficients c2,0

ijkl defined in the last section from the effective Lagrangian.
SU(2) gauge invariance prevents the construction of an operator made out of three Higgs
fields and derivatives, so there are no higher-derivative, three-point Higgs interactions in
the massless limit that could contribute quadratically to the s2 growth. This means that
the only contributions to c2,0

ijkl come from single insertions of four-derivative dimension-8
operators [69–72]

O(1)
H4 =

(
DµH†DνH

) (
DνH†DµH

)
, (3.2)

O(2)
H4 =

(
DµH†DνH

) (
DµH†DνH

)
, (3.3)

O(3)
H4 =

(
DµH†DµH

) (
DνH†DνH

)
. (3.4)

For convenience, we relabel the four real scalars in the Higgs doublet as

H = 1√
2

H1
1 + iH1

2

H2
1 + iH2

2

 , (3.5)
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and consider the contribution of the dimension-8 operators in eqs. (3.2)–(3.4), to the four-Higgs
scattering amplitude, M. The s2 coefficient of this amplitude can then be easily extracted:

a2,0 abcd
IJKL ≡ 1

2
d2

ds2M
(
Ha

I Hb
J → Hc

KHd
L

)
= 1

4δIJδKL [δabδcd (C1 + C2 + 2C3) + δadδbc (C1 − C2)]

+ 1
4δIKδJL [δacδbd (2C1 + 2C2) + (δadδbc + δabδcd) (C2 − C1)]

+ 1
4δILδJK [δadδbc (C1 + C2 + 2C3) + δabδcd (C1 − C2)] , (3.6)

where C1, C2 and C3 are the Wilson coefficients for the operators O(1)
H4 , O(2)

H4 and O(3)
H4 ,

respectively, a, b, c, d = 1, 2 are the weak SU(2) indices and I, J, K, L = 1, 2 are the indices
for the real and imaginary parts of a particular doublet component. We may convert the
result in eq. (3.6) into the (ϕ1, ϕ2, ϕ3, ϕ4) basis and obtain the corresponding coefficient, i.e.,
the s2 coefficient of the subtracted full amplitude of ϕiϕj → ϕkϕl (eq. (2.2)–(2.3)),

c2,0
ijkl =

1
2
d2

ds2 Bijkl(s, 0) = 1
2
d2

ds2M (ϕiϕj → ϕkϕl) = a2,0 abcd
IJKL, (3.7)

where i = I + 2(a− 1), j = J + 2(b− 1), k = K + 2(c− 1), l = L+ 2(d− 1) are the indices of
the four real scalars in eq. (3.1). This defines the linear map between the Wilson coefficients
CI and the amplitude coefficients c2,0

ijkl:

c2,0
1111 = C1 + C2 + C3, c2,0

1122 = 1
2 (C1 + C3) ,

c2,0
1212 = C2, c2,0

1133 = 1
4 (C1 + C2 + 2C3) ,

c2,0
1313 = 1

2 (C1 + C2) , c2,0
1234 = 1

4(C2 − C1). (3.8)

In appendix C, we show how Lorentz symmetries, the Higgs internal symmetries and crossing
symmetries can be used to either relate the rest of the c2,0

ijkl coefficients to the above six
c2,0 ones or set some of them to zero, which is consistent with and more instructive than
simply listing all the c2,0

ijkl through eq. (3.6)–(3.7). These six c2,0 coefficients are of course not
independent, as they can be expressed with just three Wilson coefficients, Ci.

The LP allows us to compute bounds for arbitrary linear combinations of c2,0
ijkl. However,

obtaining accurate numerical bounds can be relatively costly, so we will only explicitly present
1D and 2D bounds of the three CI ’s below.

3.2 Bounding the EFT coefficients of Higgs scattering

The one-sided positivity bounds for this sector of operators were been calculated in refs. [31, 34]
using the scattering of electroweak states and read:

C2 ≥ 0, C1 + C2 ≥ 0, C1 + C2 + C3 ≥ 0. (3.9)

A subsequent analysis of the positivity cone in this sector was found to yield the same
information [13], with the facets of the cone defined by the above inequalities. As such, these
turn out to be the optimal lower bounds that one can obtain from Higgs scattering.
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In section 2, we have set up a linear program method to obtain the two-sided positivity
bounds on the Wilson coefficients from the sum rules along with the null constraints and the
unitarity conditions in a general multi-field EFT. In section 3.1, we have extracted the model-
specific ingredients needed to perform the linear program for the SMEFT Higgs scatterings.
We are now ready to apply our linear program to obtain bounds for the Higgs operators.

Instead of constraining the expansion coefficients of the amplitude such as c2,0
1234, we

want to directly bound the three dimension-8 Wilson coefficients C1, C2, C3 in eq. (3.2)–(3.4),
using as much information as possible. The relations between the c2,0

ijkl and C1, C2, C3 given
in eq. (3.8) and appendix C can be reformulated as follows

C1 =−c2,0
1212+2c2,0

1313, C2 = c2,0
1212, C3 = c2,0

1111−2c2,0
1313 , (3.10)

c2,0
1122 =

c2,0
1111
2 − c2,0

1212
2 , c2,0

1133 = c2,0
1144 =

c2,0
1111
2 − c2,0

1313
2 ,

c2,0
1414 = c2,0

1313, c2,0
1234 =

c2,0
1212
2 − c2,0

1313
2 , c2,0

1234+c2,0
1243 =0 , (3.11)

c2,0
1324 =0, c2,0

ijkl = c2,0
ijkl

∣∣∣
1↔3, 2↔4

, c2,0
ijkl = c2,0

ijkl

∣∣∣
1↔2, 3↔4

,

where the last two equations denote that c2,0
ijkl is symmetric under the simultaneous interchange

of 1 ↔ 3 and 2 ↔ 4, and the simultaneous interchange of 1 ↔ 2 and 3 ↔ 4. After expanding
c2,0

ijkl into sums of ρijkl
ℓ,n according to eq. (2.4), the expressions for CI in eq. (3.10), or linear

combinations of them, are regarded as the objective functions to optimize, and the remaining
relations in eq. (3.11) become additional constraints in the LP problem.

Compared to the bi-scalar case, in addition to the null constraints on ρ1111
ℓ,n , ρ1212

ℓ,n ,. . . , we
now also include those containing 4 different scalar fields, i.e., the null constraints on ρ1234

ℓ,n ,
ρ1324

ℓ,n , ρ1423
ℓ,n ,. . . , by the standard procedure of first choosing i, j, k, l to be permutations of

1, 2, 3, 4 in eq. (2.12) and then finding the linearly independent ones. Similar to the bi-scalar
case, the first group of constraints on ρiiii

ℓ,n are connected to the constraints on ρiijj
ℓ,n and ρijij

ℓ,n

by the inequality
∣∣ρiijj

ℓ

∣∣ ≤ 1 −
∣∣1 − (ρiiii

ℓ + ρjjjj
ℓ )/2

∣∣. In turn, these are connected to the
constraints for ρijkl

ℓ,n by the inequality
∣∣ρijkl

ℓ

∣∣ ≤ 1/4−
∣∣1/4− (ρijij

ℓ + ρklkl
ℓ )/2

∣∣ (cf. eq. (2.26)).
Note that every link in this chain is indispensable for producing convergent and finite upper
bounds of the objective functions, for the reason explained in appendix B. The chain of
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unitarity conditions and null constraints are explicitly given by:


0≤ρiiii

ℓ,n≤2,∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N

(
n
N

)r+2
C1111

r,ir
(ℓ)ρiiii

ℓ,n=0,
i∈{1,2,3,4} (3.12)

∣∣ρiijj
ℓ

∣∣≤1−
∣∣∣∣1−ρiiii

ℓ +ρjjjj
ℓ

2

∣∣∣∣, i,j∈{1,2,3,4} (3.13)
0≤ρijij

ℓ,n ≤ 1
2 ,∣∣(ρiijj

ℓ,n +ρkkll
ℓ,n )±(ρiikk

ℓ,n +ρjjll
ℓ,n )

∣∣≤2,∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N

(
n
N

)r+2
[
C1122

r,ir
(ℓ)ρiijj

ℓ,n +C1212
r,ir

(ℓ)ρijij
ℓ,n

]
=0,

i,j,k,l∈{1,2,3,4} (3.14)

∣∣ρ1jkl
ℓ

∣∣≤ 1
4−
∣∣∣∣14−ρ1jij

ℓ +ρklkl
ℓ

2

∣∣∣∣, j,k,l∈{2,3,4} (3.15){ ∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N

(
n
N

)r+2
[
C1234

r,ir
(ℓ)ρ1234

ℓ,n +C1324
r,ir

(ℓ)ρ1342
ℓ,n +C1423

r,ir
(ℓ)ρ1432

ℓ,n

]
=0. (3.16)

In the null constraints for 4 different fields (eq. (3.15), we have set the first index of ρijkl
ℓ,n to

be i = 1, since those are the only relevant variables that are related to our objective functions
through eq. (3.10) and eq. (3.11). In the first two groups of null constraints, on the other hand,
we need to include i ̸= 1 since they are related to ρ1jkl

ℓ,n through eq. (3.15). C1111
r,ir

(ℓ), C1122
r,ir

(ℓ)
and C1212

r,ir
(ℓ) are the same as those appeared in section 2.4 and 2.5. Similarly, C1234

r,ir
(ℓ),

C1324
r,ir

(ℓ), C1423
r,ir

(ℓ) are ℓ polynomials of degree less than or equal to 2r + 2, r = 1, 2, . . . being
the order of null constraints. In the case of 4 fields, the label for independent ones at each
order is ir = 1, 2, . . . , 2r + 2. For example, for r = 1, ir = 1, we have

C1234
1,1 = −C1324

1,1 = −ℓ4 − 2ℓ3 + ℓ2 + 2ℓ , (3.17)

C1423
1,1 =

(
1 + (−1)ℓ)(ℓ4 + 2ℓ3 − 13ℓ2 − 14ℓ + 24

)
, (3.18)

where the (−1)ℓ originates from using the general symmetry of ρijkl
ℓ,n = (−1)ℓρijlk

ℓ,n (eq. (2.17))
to combine related coefficients.

We can further simplify the LP problem in an analogous way to what was done in
section 2.5, reducing the number of variables and constraints by using new variables Rijkl

ℓ,n as
certain linear combinations of ρijkl

ℓ,n . We show this process in appendix D. This is very useful
practically because, despite the efficiency of the modern linear program solvers, it becomes
time and resource consuming to extract these bounds as the number of fields increases in
the model. It is also worth noting that this change of variables we propose is completely
general and does not rely on any symmetry of the scalar fields, such as the symmetry of
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Higgs. Now, the LP problem can be reformulated as

Variables
R1111

ℓ,n , R11ii
ℓ,n , R1i1i

ℓ,n , ρ1jkl
ℓ,n , i, j, k, l ∈ {2, 3, 4} (3.19)

Maximize∑
I

αICI , where (3.20)

C1 = 1
Λ4

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32(−R1212

ℓ,n + 2R1313
ℓ,n ) , (3.21)

C2 = 1
Λ4

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32R1212

ℓ,n , (3.22)

C3 = 1
Λ4

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32(R1111

ℓ,n − 2R1313
ℓ,n ) , (3.23)

and αI specify directions to optimze in (C1, C2, C3) space ,

Subject to
Unitarity conditions and null constraints in eq. (D.5)–(D.9) ,

Additional constraints in eq. (3.11) .

For example, to find the two-sided bounds on C1, we choose αI = (1, 0, 0) and αI =
(−1, 0, 0) respectively. In general, the αI vector specifies which direction to optimize in the
LP, and running αI over different directions, we can plot the positivity bounds in 2D or 3D.

Figure 5 shows the individual results for the upper and lower bounds on C1−3. The pairs
of lines correspond to using N = 10 and 20, with fixed ℓM = 30, ℓ∞ = 100. Rather coarse
discretization values for the µ integral were used in order to have a reasonable computing time,
and in appendix E we discuss some convergence checks that were performed. The inaccuracy
due to the discretisation results in looser bounds than the continuum limit N → ∞, so the
bounds we derive can be interpreted as conservative.

−0.130
Λ4 ≤ C1

(4π)2 ≤ 0.774
Λ4 , (3.24)

0 ≤ C2
(4π)2 ≤ 0.638

Λ4 , (3.25)

−0.508
Λ4 ≤ C3

(4π)2 ≤ 0.408
Λ4 . (3.26)

In figure 6, we show the 2D projections of the positivity bounds onto the planes spanned
by two of C1, C2 and C3. Each 2D plot is obtained by an angular optimization along 50
different directions. That is, one chooses 50 different combinations of Ci and Cj , each of
which picks out one direction, and for each combination or direction, one optimizes to get a
upper bound. The numerical parameters chosen are N = 20, ℓM = 30 and ℓ∞ = 100. For the
lower bounds, although we have not used the full positivity of the UV unitarity conditions,
they are identical to those obtained via the convex cone approach, which does use the full UV
positivity [13]. However, now, using the non-positivity part of the UV unitarity conditions
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Figure 5. Upper/lower bounds on the dimension-8 Higgs scattering Wilson coefficients, C̄1, C̄2 and
C̄3, in units of (4π)2 resulting from our optimisation procedure as a function of the order of null
constraints applied. The dimensionless coefficients are defined as C̄I = CIΛ4. The upper axis label
indicates the total number of independent null constraints imposed at each order.

along with the null constraints, we have also derived the upper bounds for all of the Wilson
coefficients Ci for Higgs scattering, capping the Higgs positivity cone.

4 Comparison with experimental bounds and perturbative unitarity

Having successfully bounded the space of dimension-8 operators for Higgs scattering from
first principles, we would like to compare the allowed space with the existing and future
experimental limits on the operators in question. We will also compare the bounds arising
from partial wave unitarity in the low energy EFT. To help us with the discussion, we will
work in terms of the dimensionless Wilson coefficients, C̄I since the bounds from experiment
and partial wave unitarity depend on the cutoff ΛEFT. From here on, we identify ΛEFT and
Λ, as per the discussion at the end of section 2.3.

The Higgs scattering operators that we are interested in are subject to experimental
constraints from LHC data, specifically from measurements of vector boson scattering (VBS).
In this process a pair of weak bosons (W , Z or photon) are emitted, one from each initial state
quark, and undergo a hard, 2 → 2 scattering that results in a distinctive signature of two weak
bosons accompanied by two forward jets. This process is seen as a key probe of the gauge
structure of the Standard Model that can test the unitarising properties of the Higgs boson
exchange in weak boson scattering. It was measured for the first time in 2017 by the ATLAS
and CMS collaborations [73, 74], in the same-sign WW channel and many other channels have
since been observed and used to set bounds on anomalous quartic gauge couplings (aQGC).
This process served as one of the primary motivations to experimentally probe dimension-8
operators in the SMEFT [75, 76]. This is because there are only a few operators at dimension-6
that can generate aQGC and they all lead to correlated effects in anomalous triple gauge
couplings, electroweak precision observables or Higgs coupling modifications. Dimension-8 op-
erators, on the other hand, can generate independent aQGCs. Therefore, although dimension-6
operators can impact VBS (See [77, 78] for recent studies), it is expected that these operators
will be better constrained elsewhere, hence opening up the opportunity to use this process as a
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Figure 6. Allowed region in the two dimensional subspaces of C1, C2 and C3, when applying 1st, 2nd

and 3rd order null constraints (purple shaded) compared to the allowed regions by the positivity bounds
on elastic scattering [13] (grey shaded). The dimensionless coefficients are defined as C̄I = CIΛ4.

probe of dimension-8 coefficients. The only exception to this argument applies to neutral triple
gauge couplings, which are absent in both the SM and the SMEFT at dimension-6, hence
also constitute a well motivated scenario in which to study dimension-8 operators [79–91].

In the unitary gauge, the three operators for which we obtain theoretical bounds specifi-
cally lead to four-derivative Higgs boson self-interactions, two-derivative interactions between
pairs of Higgs and vector bosons, and a modification of the SM quartic gauge interactions.
Although they do not explicitly contain extra derivatives, it is the latter that lead to unitarity-
violating behaviour in 4-point, longitudinally polarised vector boson amplitudes, by spoiling
the cancellations enforced by the SM gauge symmetries [92–94]. One can also understand
this energy growth more intuitively by considering, e.g., the Feynman gauge, where the
Goldstone modes are kept explicit. There, our operators also induce four-derivative contact
interactions between the Goldstone boson components of the Higgs field. By the Goldstone
boson equivalence theorem [95], these can be identified with the longitudinal polarisations
of the massive vector bosons of the SM. The strong energy growth with respect to the
SM induced in fully longitudinal 2 → 2 scattering amplitudes between W and Z bosons
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Coefficient
(Λ = 1TeV)

Observed
Bound [97]

HL-LHC projection [98]

w/o unitarity w unitarity

C̄1 [−3.4, 3.4]∗ [−2.3, 2.4] [−4.8, 5.2]

C̄2 [−2.7, 2.7] [−1.8, 2.0] [−2.6, 3.3]

C̄3 [−3.4, 3.4] [−2.4, 2.4] [−5.8, 6.1]

Table 1. Summary of current and projected experimental bounds on four-Higgs dimension-8 operator
coefficients. Current experimental limits are taken from ref. [97] and future projections from a
phenomenological analysis of ref. [98]. The bounds on C̄1 denoted with an ‘∗’ are not reported by the
CMS analysis. Based on the results of ref. [98], we assume they are identical to those of C̄3.

can be probed by measuring the high invariant mass region of the vector boson pair in
VBS. This growth is the very same feature that we use to impose theoretical bounds on
the coefficients, so it is interesting to compare the bounds that we have obtained with the
current experimental sensitivity.

The LHC experiments use a basis of dimension-8 operators [69, 96] that predates even
the determination of a complete non-redundant dimension-6 SMEFT basis. Our operators
of interest, O(1)

H4 , O(2)
H4 and O(3)

H4 are identified with the operators OS,2, OS,0 and OS,1 of
that basis, respectively. The LHC experiments have delivered a significant number of VBS
analyses, deriving constraints on the coefficients of these operators.8 Among these, the most
stringent bounds on the four-Higgs operators are reported by the CMS experiment, in a
search for anomalous VBS production in semi-leptonic WW , WZ and ZZ final states [97]
that we summarise in table 1, for Λ = 1TeV.

The original set of dimension-8 operators was proposed only identified OS,0 and OS,1,
with OS,2 only being added in follow up works some years later [96]. To our knowledge,
the experimental collaborations have so far continued to only report results for OS,0 and
OS,1. A recent phenomenological study [98] undertook a validation exercise reproducing
the limits obtained by the CMS analysis, where a similar sensitivity to OS,1 was found for
OS,2. We therefore assume that the experimental bound on OS,1 applies equally to OS,2
for our purposes, denoting the assumed bound by ‘∗’. The current experimental sensitivity
lies around 2-4 TeV−4 for the absolute value of the coefficients, and is dominated by the
WV channel, with one leptonically decaying W boson and a hadronically decaying W or Z

boson. The limits are symmetric around zero, which indicates that they are dominated by
the quadratic, O(Λ−8) contribution of the coefficients to the VBS cross-section.

One of the challenges faced by the experimental collaborations when interpreting VBS
data in terms of aQGC is that of unitarity violation. On one hand, sensitivity to aQGC is
optimized by probing the high invariant-mass tails of VBS, which is already a rare process.
On the other hand, the massive (E4) energy growth of the underlying weak boson scattering
amplitudes will eventually violate unitarity at some scale. Partial wave unitarity bounds on

8An up-to-date summary of these results can be found at https://twiki.cern.ch/twiki/bin/view/CMSPublic
/PhysicsResultsSMPaTGC.
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the dimension-8 aQGC Wilson coefficients were computed in ref. [70], based on an analysis
of 2 → 2 Higgs and vector boson scattering amplitudes of various total charge and helicity.
The bounds on our four-Higgs operators arise from the eigenvalues of the J = 0 scattering
matrices, and are summarised by

∣∣C̄1 + 3C̄2 + C̄3
∣∣ < 96π

Λ4

s2 ,

∣∣3C̄1 + C̄2 + C̄3
∣∣ < 96π

Λ4

s2 ,

∣∣5C̄1 + 3C̄2 + 7C̄3
∣∣ < 96π

Λ4

s2 .

(4.1)

These imply that, for bounds of around 3 TeV−4 given in table 1, unitarity is violated at a
scale of 1.9-2.4 TeV. In VBS, the diboson invariant mass, mV V can be used as a proxy for the
centre of mass energy,

√
s, of the 2 → 2 sub-amplitude, and used to apply unitarity violation

constraints on this process. Given that the analyses measure the mV V distribution out to
around 2.5 TeV, the current sensitivity lies in a region that risks violating unitarity. Several
procedures for mitigating this fact have been studied over the years, ranging from ad-hoc
damping factors, physically motivated unitarization methods to simply forbidding the signal
amplitudes from violating unitarity. None of these methods that modify the signal amplitudes
are truly consistent with the model-independent SMEFT approach and the bounds reported
in table 1 are obtained without any unitarization method.

Another option is to consider limiting the energy reach of the data to a region where
unitarity is not violated. Ref. [98] also studied the impact of unitarity bounds on the
experimental constraints from VBS by computing them as a function of an upper cut on
mV V . Limiting the scattering energy simultaneously weakens the experimental and unitarity
constraints on a given coefficients. New limits are then derived at the point where the
experimentally derived bound with the upper cut on mV V is stronger than the unitarity
bound obtained from identifying

√
s = mV V in eq. (4.1). If there is no such point, then

no limit can be derived. These bounds are summarised in the second and third columns of
table 1 and correspond to High-Luminosity LHC (HL-LHC) projected sensitivities. These
show that unitarity considerations lead to order one effects on the experimental sensitivity
on the Wilson coefficients.

We now turn to a comparison of our positivity bounds summarised in eqs. (3.24)–(3.26)
with the experimental sensitivity from current and projected VBS measurements as well as
those arising from perturbative unitarity in eq. (4.1). Our LP procedure produces bounds
on individual coefficients, allowing the remaining coefficients to freely vary within their
allowed range. The bounds are therefore the maximally conservative ones obtained from
considering four-Higgs scattering amplitudes in the dimension-8 SMEFT. In contrast, the
experimental constraints are obtained by setting all other coefficients to zero. Allowing
all coefficients to vary would significantly reduce the sensitivity, and it may even be that
a closed bound is not possible in this case. Furthermore, as discussed in section 2.3, the
experimental analyses bound the dimensionful combination, C̄I/Λ4, such that the bound
on the value of C̄I varies depending on the assumed value of the EFT cutoff, Λ. This is
reflected in figure 7, which plots the experimental bounds as a function of Λ, as well as the
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Figure 7. Upper and lower positivity bounds on the Higgs scattering Wilson coefficients obtained in
this work (purple shaded) compared to the current [97] (grey shaded) and projected [98] (grey dashed)
LHC exclusion limits from VBS measurements as a function of the EFT cutoff, Λ.

Λ-independent bounds obtained from our numerical analysis. The solid grey line represents
the current experimental limits that were obtained without mitigating possible unitarity
violation in the signal modelling, while the dot-dashed grey lines show the projected HL-LHC
bounds from ref. [98] obtained with the unitarity mitigation prescription described above.
The fact that the HL-LHC projections are weaker than the current bounds underlines the
significant effect that unitarity violation has on the prospects of probing these dimension-8
operators through VBS at the LHC.

One can see how the two-sided positivity bounds provide complementary information
to the experimental limits. For instance, the lower bounds on C̄2 from the positivity cone
immediately rules out half of the available parameter space. The new bounds obtained from
our analysis cut out a further, significant portion of the parameter space and become stronger
than the experimental limits for Λ between 1.5 and 2.5 TeV, depending on the operator and
the sign of its coefficient. Given that the experimental sensitivity — despite having assumed
all other coefficients to be zero — implies unitarity violation around the same scale, our
bounds appear highly competitive and even dominant over the experimental sensitivity. For
example, if evidence for the presence of one of these operators were observed during the
LHC lifetime, it would either imply an upper bound on the scale of new physics of order
1.5-2.5 TeV or a violation of unitarity, causality and/or locality in the UV. These processes
are also therefore an interesting testbed for testing whether these fundamental principle
hold true in physics beyond the SM.

In order to fairly compare our positivity bounds with those from perturbative unitarity,
we infer ‘profiled’ unitarity bounds on each coefficient, in analogy with the fact that our
bounds on a given coefficient allow the values of the others to float. Extremizing the value of
each coefficient separately within the volume defined by eq. (4.1) yields:

∣∣C̄1
∣∣, ∣∣C̄3

∣∣ < 0.6× 96π
Λ4

s2 ,
∣∣C̄2

∣∣ < 0.5× 96π
Λ4

s2 , (4.2)

which we compare with our positivity bounds in figure 8. The values of the Wilson coefficients
are plotted in units of (4π)2 and the unitarity bounds are shown as a function of

√
s/Λ,
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Figure 8. Upper and lower positivity bounds on the Higgs scattering Wilson coefficients obtained in
this work (purple shaded) compared to the (tradiational) perturbative unitarity bounds obtained in
the EFT (grey shaded) as a function of the ratio of centre of mass energy of the 2 → 2 scattering,√

s relative to the EFT cutoff, Λ. The current LHC bounds do not impose unitarity on the EFT
amplitudes while the projections take into account the unitarity bounds, providing the maximal limits
that can be obtained while remaining consistent with perturbative unitarity.

where
√

s denotes the scale up to which one is willing to trust the EFT approximation
for the tree-level scattering amplitudes that go into deriving them. The most aggressive
unitarity bounds are then obtained by taking

√
s = Λ. From the conservative perspective

of remaining agnostic about the possible values of the Wilson coefficients, our positivity
bounds are stronger than the aggressive perturbative unitarity bounds by up to an order of
magnitude. This is not to say that positivity is always more constraining than perturbative
unitarity. Indeed, in certain directions of the parameter space, perturbative unitarity can
yield a more powerful constraint. For example, by setting up our LP to maximise the specific
linear combinations constrained in eq. (4.1), we obtain the following positivity bounds, using
the 6th order null constraints and fixing N = 20 and ℓM = 30:

0 < C̄1 + 3C̄2 + C̄3 < (4π)2 × 2.42,

−(4π)2 × 0.18 < 3C̄1 + C̄2 + C̄3 < (4π)2 × 2.66,

−(4π)2 × 1.07 < 5C̄1 + 3C̄2 + 7C̄3 < (4π)2 × 5.89.

(4.3)

Comparing the numbers to the most optimistic unitarity bound of 96π = 1.91× (4π)2, we
see that for these particular directions, our upper bound from positivity is slightly weaker for
the first two and about a factor of 3 weaker for the third. However, the lower bounds are
considerably stronger. The first direction is bounded to be positive by the Higgs positivity
cone, since it is a positive linear combination of C̄2 and C̄1 + C̄2 + C̄3, both of which are
positive (See eq. (3.9)). The others are not bounded by the positivity cone and hence can
only be constrained by our two-sided approach.

Overall, it is clear that our positivity bounds provide highly complementary information
on the viable space for dimension-8 operators that mediate Higgs scattering amplitudes
to experimental and unitarity-based probes. Since they have a completely independent
origin, they can be used as part of a data interpretation, i.e., by including them as part
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of the statistical prior to obtain tighter bounds on the Wilson coefficient space, adding
only the relatively weak assumptions of unitarity, causailty and locality in the UV. Since
the constraints can be stronger than perturbative unitarity, they may help experimental
collaborations to avoid the recurrent issues of unitarity violation in the EFT interpretations
of VBS measurements.
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A Partial wave unitarity

Partial wave unitarity comes from the fact that in a scattering angular momentum is conserved,
so the S-matrix can be block-diagonalized into different angular momenta: SℓS

†
ℓ = Iℓ. In this

appendix, we first review an explicit derivation of the full partial wave unitarity conditions
starting from the full scattering amplitudes, based largely on ref. [99]. Then, we derive
a set of linear, two-sided unitarity conditions from full partial wave unitarity that can be
easily implemented in our linear programming to constrain the Wilson coefficients using
the dispersion relations.

A.1 Review

We work in 4 dimensions and evaluate amplitudes in the center of mass frame. The amplitude
for a scalar 2 → 2 scattering process, ij → kl, can be decomposed into partial waves,

Aijkl(θ) ≡ ⟨i|T |f⟩ = 16π
∞∑

ℓ=0
aijkl

ℓ (2ℓ + 1)Pℓ(cos θ) , (A.1)

where i and f denote the two particle states ij and kl, respectively, both of which consist
of a pair of states in a back-to-back momentum configuration. θ is the polar angle between
the î and f̂ directions and we use the standard convention for Legendre polynomials where
Pℓ(1) = 1. From the unitarity of the S-matrix, we have

⟨i|T |f⟩ − ⟨f |T |i⟩∗ = i
∑

x

⟨i|T |x⟩ ⟨f |T |x⟩∗ (2π)4δ4(px − pi) , (A.2)

where the x summation includes both the sum over all possible intermediate states and the
integration over their phase space. If the theory is time-reversal (CP) invariant, Aklij = Aijkl,
then the l.h.s. of eq. (A.2) becomes

l.h.s. = 2i ImAijkl = 32i π
∞∑

ℓ=0
Imaijkl

ℓ (2ℓ + 1)Pℓ(cos θ) . (A.3)
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For every phase space configuration of an intermediate state, x, there exists a set of configu-
rations that are related to it by an overall spatial rotation, R(Ωn), which can be characterised
by its action on î, rotating it to a new direction, n̂. Denoting {X} as the set of intermediate
states that are not related by an overall rotation, each state x can be specified by {X,Ωn}.
Now the r.h.s. of eq. (A.2) can be written as

r.h.s. = i
∑
X

∫
dΩn ⟨i|T |X,Ωn⟩ ⟨f |T |X,Ωn⟩∗ (2π)4δ4(pX − pi), (A.4)

where the integration over the solid angle of n̂ has been factored out of the overall phase
space integral. We can then expand each intermediate amplitude into partial waves

⟨i|T |X,Ωn⟩ = 16π
∞∑

ℓ=0
aij→X

ℓ (2ℓ + 1)Pℓ(cos θin) , (A.5)

where cos θin = î · n̂, and do the same for ⟨f |T |X,Ωn⟩. Using geometric relations and the
addition formula for Legendre polynomials

cos θfn = cos θ cos θin + sin θ sin θin cosϕfn, (A.6)

Pℓ(cos θfn) = Pℓ(cos θ)Pℓ(cos θin) + 2
ℓ∑

m=1

(l − m)!
(l + m)!P

m
ℓ (cos θ)P m

ℓ (cos θin) cos(mϕfn), (A.7)

and evaluating the Ωn integral in eq. (A.4), we get

r.h.s. = i(16π)2(4π)
∞∑

ℓ=0

∑
X

aij→X
ℓ

(
akl→X

ℓ

)∗
(2ℓ + 1)Pℓ(cos θ)(2π)4δ4(pX − pi) . (A.8)

Comparing eq. (A.3) and eq. (A.8), we obtain the partial wave unitarity condition

Imaijkl
ℓ = 32π2∑

X

aij→X
ℓ

(
akl→X

ℓ

)∗
(2π)4δ4(pX − pi) . (A.9)

For the special case of X = {mn}, i.e., when the intermediate state is also a two scalar
field state, ∑X reduces to a phase space integral over the magnitude of the momentum

32π2 ηmn

∫ p2
fdpf

(2π)6
1

(2Epf
)2 aijmn

ℓ

(
aklmn

ℓ

)∗
(2π)4δ(2Epf

− Ei) (A.10)

= ηmn aijmn
ℓ

(
aklmn

ℓ

)∗
, (massless limit) (A.11)

where ηmn is a prefactor that accounts for identical final-state particles: ηmn = 1 for m ̸= n

and ηmn = 1/2 for m = n. (For massive particles, we can again get eq. (A.10) if the partial
wave expansion is defined with an extra kinematic factor.) For the rest of the positive
weighted sum in eq. (A.9), we can define the normalized aij,kl→X

ℓ to have unit weight for our
purposes. We can now write the unitarity condition in a more compact form

Imaijkl
ℓ =

∑
mn

ηmnaijmn
ℓ

(
aklmn

ℓ

)∗
+

∑
X ̸=mn

aij→X
ℓ

(
akl→X

ℓ

)∗
. (A.12)

In the text, sometimes we omit the prefactor ηmn and refer to this condition simply as
Imaijkl

ℓ = ∑′
X aij→X

ℓ

(
akl→X

ℓ

)∗
.
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A.2 Linear unitarity conditions

From partial wave unitarity (A.12), we can derive some linear unitarity conditions on the
imaginary part of partial wave amplitude Imaijkl

ℓ , which can be easily fed into the linear
programs to constrain the EFT coefficients. While the linear conditions presented below
are already very constraining, it is likely that we have not exhausted all possible linear
unitarity conditions.

• Individual partial amplitudes. First, we derive simple two-sided constraints on
individual Imaijkl, making use of the positive nature of the sum on the right hand side
of (A.12) for elastic scatterings.

For the process of ii → ii, picking out only X = ii for the intermediate states gives

Imaiiii
ℓ ≥ 1

2 |a
iiii
ℓ |2 = 1

2
(
Imaiiii

ℓ

)2
+ 1

2
(
Reaiiii

ℓ

)2

⇒ 0 ≤ Imaiiii
ℓ ≤ 2, (A.13)

picking out X = ii, jj gives

Imaiiii
ℓ ≥ |aiiii

ℓ |2

2 + |aiijj
ℓ |2

2 =
(
Imaiiii

ℓ

)2
2 +

(
Reaiiii

ℓ

)2
2 +

(
Imaiijj

ℓ

)2
2 +

(
Reaiijj

ℓ

)2
2 ,

⇒ − 1 ≤ Imaiijj
ℓ ≤ 1 , (A.14)

For the process of ij → ij, picking out X = ij, ji leads to

Imaijij
ℓ ≥ |aijij

ℓ |2 + |aijji
ℓ |2 =

(
Imaijij

ℓ

)2 + (Reaijij
ℓ

)2 + (Imaijji
ℓ

)2 + (Reaijji
ℓ

)2 ≥ 2
(
Imaijij

ℓ

)2
⇒ 0 ≤ Imaijij

ℓ ≤ 1
2 , (A.15)

where we have used the fact that aijji
ℓ = (−1)ℓ aijij

ℓ . Picking out multiple distinct intermediate
states X = ij, ji, kl, lk (kl, lk ̸= ij) gives

Imaijij
ℓ ≥

∣∣aijij
ℓ

∣∣2 + ∣∣aijji
ℓ

∣∣2 + ∣∣aijkl
ℓ

∣∣2 + ∣∣aijlk
ℓ

∣∣2 = 2
∣∣aijij

ℓ

∣∣2 + 2
∣∣aijkl

ℓ

∣∣2
≥ 2

(
Imaijij

ℓ

)2 + 2
(
Imaijkl

ℓ

)2 ⇒ − 1
4 ≤ Imaijkl

ℓ ≤ 1
4 , (A.16)

where we have again used aijkl
ℓ = (−1)ℓ aijlk

ℓ . In the numerical LP, we will use conditions (A.13)
and (A.15), but will not use conditions (A.14) and (A.16), as we can obtain stronger conditions
than (A.14) and (A.16), as shown below.

• Mixing different partial amplitudes. Given the above simple bounds, now we show
that some of them can be further enhanced with a more careful treatment of unitaritiy
conditions (A.12).

First, note that a simple re-arrangement of eq. (A.12) for iiii gives
(
2− Imaiiii

ℓ

)
= 1

2
(
2− Imaiiii

ℓ

)2
+ 1

2
(
Reaiiii

ℓ

)2
+
∑

X ̸=ii

′∣∣aii→X
ℓ

∣∣2 . (A.17)
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On the other hand, eq. (A.12) for iijj can be explicitly written as

Imaiijj
ℓ = 1

2aiiii
ℓ

(
ajjii

ℓ

)∗ + 1
2aiijj

ℓ

(
ajjjj

ℓ

)∗ + ∑
X ̸=ii,jj

′ aii→X
ℓ

(
ajj→X

ℓ

)∗ (A.18)

= 1
2Imaiijj

ℓ

(
Imaiiii

ℓ + Imajjjj
ℓ

)
+ 1

2
(
Reaiiii

ℓ Reajjii
ℓ +Reaiijj

ℓ Reajjjj
ℓ

)
+

∑
X ̸=ii,jj

′
(
Im aii→X

ℓ Im ajj→X
ℓ +Re aii→X

ℓ Re ajj→X
ℓ

)
, (A.19)

where we have used the time-reversal invariance aiijj
ℓ = ajjii

ℓ for the first term on the second
line, and the imaginary terms on the right hand side of eq. (A.18) must cancel because Imaiijj

ℓ

is real. A simple rearrangement of eq. (A.19) then gives

−Imaiijj
ℓ = −1

2Imaiijj
ℓ

((
2− Imaiiii

ℓ

)
+
(
2− Imajjjj

ℓ

))
+ 1

2
(
Reaiiii

ℓ Reajjii
ℓ +Reaiijj

ℓ Reajjjj
ℓ

)
+

∑
X ̸=ii,jj

′
(
Im aii→X

ℓ Im ajj→X
ℓ +Re aii→X

ℓ Re ajj→X
ℓ

)
. (A.20)

Notice that conditions (A.19) and (A.20) are structurely very similar if we swap Imaiiii
ℓ ↔

(2− Imaiiii
ℓ ). This allows us to obtain an inequality using a technique similar to that leads

to eq. (2.21) and the Cauchy-Schwarz inequality. More explicitly,

∣∣Imaiijj
ℓ

∣∣2 ≤
(
(2− Imaiiii

ℓ )2

2 + (Imaiijj
ℓ )2

2 + (Reaiiii
ℓ )2

2 + (Reaiijj
ℓ )2

2 +
∑

X ̸=ii,jj

′ ∣∣aii→X
ℓ

∣∣2)

×
(
(Imajjii

ℓ )2

2 + (2− Imajjjj
ℓ )2

2 + (Reajjii
ℓ )2

2 + (Reajjjj
ℓ )2

2 +
∑

X ̸=ii,jj

′ ∣∣ajj→X
ℓ

∣∣2)

=
(
2− Imaiiii

ℓ

)(
2− Imajjjj

ℓ

)
≤
(
2− Imaiiii

ℓ + Imajjjj
ℓ

2

)2
, (A.21)

where in the last line we have used eq. (A.17). Taking the square root, we get a linear inequality
∣∣Imaiijj

ℓ

∣∣ ≤ 2− Imaiiii
ℓ + Imajjjj

ℓ

2 . (A.22)

For unitarity conditions with aijij
ℓ and ai ̸=j ̸=k ̸=l

ℓ , we can analogously obtain

∣∣Imaijkl
ℓ

∣∣ ≤ 1
2 −

Imaijij
ℓ + Imaklkl

ℓ

2 . (A.23)

Recall that, in the main text, we have established a similar set of inequalities (2.22) for
Imaiijj

ℓ and Imaijkl
ℓ :

∣∣Imaiijj
ℓ

∣∣ ≤ Imaiiii
ℓ + Imajjjj

ℓ

2 ,
∣∣Imaijkl

ℓ

∣∣ ≤ Imaijij
ℓ + Imaklkl

ℓ

2 . (A.24)

Combining eqs. (A.22)–(A.24), we conclude
∣∣Imaiijj

ℓ

∣∣ ≤ 1−
∣∣∣∣1− Imaiiii

ℓ + Imajjjj
ℓ

2

∣∣∣∣ , (A.25)

∣∣Imaijkl
ℓ

∣∣ ≤ 1
4 −

∣∣∣∣14 −
Imaijij

ℓ + Imaklkl
ℓ

2

∣∣∣∣, (A.26)

which are stronger than eqs. (A.14) and (A.16).
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• Special inequalities with four fields. For the case of 4 fields,9 we can derive some
extra linear constraints. To highlight the variables whose constraints we are after, let us denote
Ima1122

ℓ , Ima1133
ℓ , Ima2244

ℓ and Ima3344
ℓ as A, B, C and D respectively. After some simple

re-arrangements, the unitarity condition (eq. (A.12)) for the case of ijkl = 1111, 4444, 1144
can be written as, respectively,(

1− Ima1111
ℓ

)2 + (Ima1144
ℓ

)2 = 1−A2 − B2 − 2S1111 , (A.27)(
1− Ima4444

ℓ

)2 + (Ima1144
ℓ

)2 = 1− C2 −D2 − 2S4444 , (A.28)
Ima1144

ℓ

(
(1− Ima1111

ℓ ) + (1− Ima4444
ℓ )

)
= AC + BD + 2S1144 , (A.29)

where we have introduced the shorthand

Siijj =
∑
X

′ Re aii→X
ℓ Re ajj→X

ℓ +
∑

X ̸=11,22,33,44

′ Im aii→X
ℓ Im ajj→X

ℓ . (A.30)

Combining the three equations as (A.27)+(A.28)−2(A.29) and using the fact that S1144 ≥
−
√
S1111S4444, we can obtain

2− (A+ C)2 − (B +D)2

=
(
1− Ima1111

ℓ − Ima1144
ℓ

)2 + (1− Ima4444
ℓ − Ima1144

ℓ

)2 + 2
(
S1111 + S4444 + 2S1144)

≥ 2
(√

S1111 −
√
S4444)2 ≥ 0 , (A.31)

Similarly, combining the three equations as (A.27)+(A.28)+2(A.29) and using the fact that
S1144 ≤

√
S1111S4444, we have

(A− C)2 + (B −D)2 ≤ 2 , (A.32)

In the numerical LP, we will use the linear conditions that can be inferred from condi-
tions (A.31) and (A.32) respectively:

|Ima1122
ℓ + Ima1133

ℓ + Ima2244
ℓ + Ima3344

ℓ | ≤ 2 , (A.33)
|Ima1122

ℓ − Ima1133
ℓ − Ima2244

ℓ + Ima3344
ℓ | ≤ 2 . (A.34)

The above two conditions are the strongest in the 2D subspace furnished by (A+ D) and
(B + C) from the unitarity conditions in the form of (A.27) to (A.29). Obviously, for general
i ̸= j ̸= k ̸= l, the same result can be formulated as∣∣(Imaiijj

ℓ + Imakkll
ℓ )± (Imaiikk

ℓ + Imajjll
ℓ )

∣∣ ≤ 2 . (A.35)

B Existence of upper bounds: simple analytical example

In this appendix, we shall use a simple example to illustrate why the LP problem (2.29)–
(2.31) leads to upper bounds on the amplitude coefficients. We will not attempt to use
all available null constraints and unitarity conditions, but utilize just a few conditions to
establish the existence of an upper bound, the upshot being that we can show this analytically.
Furthermore, in the numerical LP, we have to truncate the partial waves at a finite order ℓM ,

9For the case with more than 4 fields, we can pick up any 4 of them, the same derivation also applies.
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while in the analytical example below, we can sum over all partial waves, and find that the
result does not diverge as ℓ goes to infinity. This, together with our numerical convergence
study in appendix E justifies the finite ℓ truncation in our numerical results.

We shall take the c2,0
1212 coefficient as an example, analytically bounding it from the above.

The sum rule for this coefficient is given by

c2,0
1212 = 1

Λ4 32
∑
ℓ≥0

(2ℓ + 1)
∫ 1

0
dz z ρ1212

ℓ (z) , (B.1)

where we have changed the integration variable from µ to z = Λ2/µ in eq. (2.28). Likewise,
the first order null constraint for ρ1111

ℓ can be written as

∑
ℓ≥0

(2ℓ + 1)
∫ 1

0
dz z3(ℓ4 + 2ℓ3 − 7ℓ2 − 8ℓ)ρ1111

ℓ (z) = 0 . (B.2)

By ρijkl
ℓ = (−1)ℓρjikl

ℓ , we can infer that ρ1111
ℓ=odd = 0. Moving the negative ℓ = 2 term to the

right hand side (0 ≤ ρ1111
ℓ ≤ 2) and using the unitarity condition of ρ1111

2 ≤ 2, we get

∑
ℓ≥4

(2ℓ + 1)
∫ 1

0
dz z3(ℓ4 + 2ℓ3 − 7ℓ2 − 8ℓ)ρ1111

ℓ (z) =
∫ 1

0
dz z360ρ1111

2 (z) ≤ 30 . (B.3)

That is, an infinite positive sum converges to a finite number, which implies that
∫ 1

0 dz z3ρ1111
ℓ

must be sufficiently small at large ℓ, sometimes known as low spin dominance. We stress that
this is a result of null constraints. Since ρ1111

ℓ and ρ2222
ℓ satisfy exactly the same constraints,

we can replace ρ1111
ℓ with (ρ1111

ℓ + ρ2222
ℓ )/2 in the inequality above, and further use it to

constrain a similar positive sum on ρ1122
ℓ through |ρ1122

ℓ | ≤ (ρ1111
ℓ + ρ2222

ℓ )/2,

∑
ℓ≥4

(2ℓ + 1)
∫ 1

0
dz z3(ℓ4 + 2ℓ3 + ℓ2)

∣∣∣ρ1122
ℓ (z)

∣∣∣ (B.4)

≤ 5
3
∑
ℓ≥4

(2ℓ + 1)
∫ 1

0
dz z3(ℓ4 + 2ℓ3 − 7ℓ2 − 8ℓ)

∣∣∣ρ1122
ℓ (z)

∣∣∣ (B.5)

≤ 5
3
∑
ℓ≥4

(2ℓ + 1)
∫ 1

0
dz z3(ℓ4 + 2ℓ3 − 7ℓ2 − 8ℓ) ρ1111

ℓ (z) + ρ2222
ℓ (z)

2 ≤ 5
3 × 30 = 50 . (B.6)

The sum (B.4) appears in one of the first order null constraints for ρ1122
ℓ and ρ1212

ℓ∑
ℓ≥0

(2ℓ + 1)
∫ 1

0
dz z3

[
− (ℓ4 + 2ℓ3 + ℓ2)ρ1122

ℓ (z) + Q(ℓ) ρ1212
ℓ (z)

]
= 0 , (B.7)

where Q(ℓ) = (3ℓ4 + 6ℓ3 − 21ℓ2 − 24ℓ + 32) + (−1)ℓ(−ℓ4 − 2ℓ2 + 15ℓ2 + 16ℓ − 32). We can
then constrain the sum of ρ1212

ℓ∑
ℓ≥0

(2ℓ + 1)
∫ 1

0
dz z3Q(ℓ) ρ1212

ℓ (z) =
∑
ℓ≥0

(2ℓ + 1)
∫ 1

0
dz z3(ℓ4 + 2ℓ3 + ℓ2)ρ1122

ℓ (z) (B.8)

≤
∫ 1

0
dz z3180ρ1122

2 (z) + 50 ≤ 95 . (B.9)

where in the first inequality we have used eq. (B.6) and ρ1122
1 = ρ1122

3 = 0, and in the second
inequality |ρ1122

2 | ≤ 1 are used.
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Now, we are ready to constrain c2,0
1212 (eq. (B.1)) by subtracting eq. (B.9) multiplied

by an arbitrary constant k.

c2,0
1212 ≤ 1

Λ4

[∑
ℓ≥0

(2ℓ + 1)
∫ 1

0
dz z

(
32− kz2Q(ℓ)

)
ρ1212

ℓ (z) + 95k

]
(B.10)

≤ 1
Λ4

[ ∫ 1

0
dz z

(
32ρ1212

0 + 96ρ1212
1

)
+
∑
ℓ≥2

(2ℓ + 1)
∫ 1

0
dz z

(
32− 3

2kz2ℓ4
)

ρ1212
ℓ + 95k

]

≤ 1
Λ4

[
32 +

∑
ℓ≥2

(2ℓ + 1)
∫ Min(1,

√
64
3k

1
ℓ2 )

0
dz z

(
32− 3

2kz2ℓ4
)(1

2

)
+ 95k

]
, (B.11)

where in the second line we have used Q(0) = Q(1) = 0 and Q(ℓ) ≥ 3
2ℓ4 for ≥ 2, and in

the third line we have used ρ1212
ℓ ≤ 1

2 , and also changed the upper limit of the integral to
drop the negative contribution. Since k is arbitrary, we can choose k = 0.419 to minimize
the result, which concludes an upper bound of

c2,0
1212

(4π)2 ≤ 0.89
Λ4 . (B.12)

This is actually very close to the numerical upper bound of 0.77 obtained by performing
linear programs with all first order null constraints and more unitarity conditions.

As emphasized in the main text, this example also highlights the necessity of the unitarity
condition |ρ1122

ℓ | ≤ (ρ1111
ℓ +ρ2222

ℓ )/2 for establishing the upper bound (see eq. (B.6)). Without
it, we would not be able to bound ρ1122

ℓ neither from above nor from below, due to the
fact that the sign of ρ1122

ℓ is undetermined. We can also analytically find the upper bound
for any other c2,0

ijkl analogously, which again crucially relies on the unitarity relation of
|ρijkl

ℓ | ≤ (ρijij
ℓ + ρklkl

ℓ )/2.

C Symmetries of Higgs amplitudes

It is instructive to see how the symmetries of the Higgs amplitudes reduce the number of
independent s2 coefficients c2,0

ijkl. To this end, first, note that the ϕiϕj → ϕkϕl amplitude is in-
variant under SU(2)L×U(1)Y . Considering all possible time-reversal (CP) and gauge invariant
operators with an arbitrary derivative structure, the following amplitudes must vanish

Aiiij = Aiiji = Aijii = Ajiii = Aiijk = Aijki = Aijik = Ajkii = 0 (i ̸= j and j ̸= k) . (C.1)

The only non-vanishing amplitudes are those involving four identical states, two pairs of
identical states, or four different states. The only other general relations among these non-
vanishing amplitudes that can be obtained from the operator structure are for the scattering
of all identical particles, ϕiϕi → ϕiϕi, where the internal symmetry alone dictates that

A1111 = A2222 = A3333 = A4444 . (C.2)

On the other hand, time-reversal symmetry implies

Aijkl = Aklij , (C.3)
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for the non-vanishing amplitudes. For scalar scattering amplitudes, we also have a symmetry
when simultaneously exchanging the initial state particles and the two final state particles,
(which corresponds to a rotation by π in the scattering plane or parity conservation), i.e.,

Aijkl = Ajilk , (C.4)

which can also be inferred from eq. (2.17). We also observe that under either of the interchanges
ϕ1 ↔ ϕ2 or ϕ3 ↔ ϕ4, the interactions involving all four fields flip sign, while the remaining
terms are unchanged. This implies that the operators are symmetric under the simultaneous
exchange ϕ1 ↔ ϕ2 and ϕ3 ↔ ϕ4. We also observe a symmetry under simultaneous ϕ1 ↔ ϕ3
and ϕ2 ↔ ϕ4 interchange (which in turn implies a simultaneous ϕ1 ↔ ϕ4 and ϕ2 ↔ ϕ3
symmetry). This further reduces the number of independent amplitudes with two pairs of
identical particles and halves the number of amplitudes with all different particles.

A1122 = A3344, A1133 = A2244 = A1144 = A2233,

A1212 = A3434, A1313 = A2424 = A1414 = A2323,

A1221 = A3443, A1331 = A2442 = A1441 = A2332,

(C.5)

A1234 = −A1243, A1324 = −A1423, A1342 = −A1432. (C.6)

Considering all of the above symmetries, we arrive at the following set of 10 independent
amplitudes for a generic 2 → 2 scattering of Higgs doublet components,

• 1 of {i, i, i, i} type: A1111

• 2× 3 of {i, i, j, j} type: A11jj , A1j1j , A1jj1 (j ̸= 1)

• 4!/(2× 2× 2) = 3 of {1, 2, 3, 4} type: A1234, A1324, A1432.

Full crossing symmetry implies that the c2,0
ijkl coefficients fully characterise the coefficients of

Aijkl amplitudes at the quadratic order in (s, t). It also requires them to be su-symmetric
(j ↔ l), leading to further relations, c2,0

11jj = c2,0
1jj1, c2,0

1234 = c2,0
1432, which together with eq. (C.6)

implies c2,0
1324 = 0. Finally, we are left with 1+4+1 = 6 independent c2,0

ijkl for Higgs scattering:
c1111, c1122, c1212, c1133, c1313 and c1234. Matching the amplitudes to the three dimension-8
coefficients C1, C2 and C3, we find the 6 non-vanishing coefficients given in eq. (3.8).

D Reducing decision variables for the Higgs case

In section 3.2, when performing LP for Higgs operators, we define the following new variables

R1111
ℓ,n ≡

ρ1111
ℓ,n + ρ2222

ℓ,n + ρ3333
ℓ,n + ρ4444

ℓ,n

4 ,

R1122
ℓ,n ≡

ρ1122
ℓ,n + ρ3344

ℓ,n

2 , R1212
ℓ,n ≡

ρ1212
ℓ,n + ρ3434

ℓ,n

2 ,

R1133
ℓ,n ≡

ρ1133
ℓ,n + ρ2244

ℓ,n

2 , R1313
ℓ,n ≡

ρ1313
ℓ,n + ρ2424

ℓ,n

2 ,

R1144
ℓ,n ≡

ρ1144
ℓ,n + ρ2233

ℓ,n

2 , R1414
ℓ,n ≡

ρ1414
ℓ,n + ρ2323

ℓ,n

2 .

(D.1)
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It is easy to see that R1111
ℓ,n and ρiiii

ℓ,n satisfy the same upper/lower bounds and null constraints,
as do R11jj

ℓ,n , R1j1j
ℓ,n and ρiijj

ℓ,n , ρijij
ℓ,n , due to the fact that their formalism is independent of the

explicit choice of i and j. The unitarity inequalities that relate different ρijkl
ℓ,n in eq. (3.13)–

(3.15), now become

∣∣R11jj
ℓ,n

∣∣ ≤ 1−
∣∣1− R1111

ℓ,n

∣∣, (D.2)∣∣R11jj
ℓ ± R11kk

ℓ

∣∣ ≤ 1, (D.3)∣∣ρ1jkl
ℓ,n

∣∣ ≤ 1
4 −

∣∣∣∣14 − R1j1j
ℓ,n

∣∣∣∣, (D.4)

where the last inequality relies on the symmetry of ρijij
ℓ,n = ρjiji

ℓ,n which is implied by eq. (2.17).
With this, the LP constraints in terms of the new variables R and ρ1jkl

ℓ,n |j ̸=k ̸=l ̸=1 read


0≤R1111

ℓ,n ≤ 2 ,∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N ( n

N )r+2C1111
r,ir

(ℓ)R1111
ℓ,n =0 ,

(D.5)

∣∣R1122
ℓ,n

∣∣≤ 1−
∣∣1−R1111

ℓ,n

∣∣,∣∣R1133
ℓ,n

∣∣≤ 1−
∣∣1−R1111

ℓ,n

∣∣, (D.6)∣∣R1144
ℓ,n

∣∣≤ 1−
∣∣1−R1111

ℓ,n

∣∣,

0≤R1212
ℓ,n ≤ 1

2 , 0≤R1313
ℓ,n ≤ 1

2 , 0≤R1414
ℓ,n ≤ 1

2 ,∣∣R1122
ℓ,n ±R1133

ℓ,n

∣∣≤ 1,
∣∣R1122

ℓ,n ±R1133
ℓ,n

∣∣≤ 1,
∣∣R1122

ℓ,n ±R1133
ℓ,n

∣∣≤ 1 ,∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N ( n

N )r+2
[
C1122

r,ir
(ℓ)R1122

ℓ,n +C1212
r,ir

(ℓ)R1212
ℓ,n

]
=0 ,

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N ( n

N )r+2
[
C1122

r,ir
(ℓ)R1133

ℓ,n +C1212
r,ir

(ℓ)R1313
ℓ,n

]
=0 ,

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N ( n

N )r+2
[
C1122

r,ir
(ℓ)R1144

ℓ,n +C1212
r,ir

(ℓ)R1414
ℓ,n

]
=0 ,

(D.7)

∣∣ρ1234
ℓ,n

∣∣≤ 1
4−

∣∣1
4−R1212

ℓ,n

∣∣,∣∣ρ1324
ℓ,n

∣∣≤ 1
4−

∣∣1
4−R1313

ℓ,n

∣∣, (D.8)∣∣ρ1423
ℓ,n

∣∣≤ 1
4−

∣∣1
4−R1414

ℓ,n

∣∣,{ ∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ+1)
N∑

n=1
1
N ( n

N )r+2
[
C1234

r,ir
(ℓ)ρ1234

ℓ,n +C1324
r,ir

(ℓ)ρ1342
ℓ,n +C1423

r,ir
(ℓ)ρ1432

ℓ,n

]
=0 . (D.9)

This reduces the number of variables from 14 × ℓ × N to 8 × ℓ × N , and there are now
⌊(r − 1)/3⌋ + 5r + 6 null constraints at the rth order, which is 3(r + 1) fewer than the
previous LP formulation.

We note that, to get the sum rules c2,0
ijkl in terms of R and ρijkl

ℓ,n |i ̸=j ̸=k ̸=l, we simply
change ρ to R on the right hand sides of the corresponding sum rules, thanks to the
symmetries of c2,0

ijkl. For example, since c2,0
1111 = c2,0

2222 = c2,0
3333 = c2,0

4444, we can express c2,0
1111 as
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Figure 9. Convergence of the upper/lower bounds with respect to N and ℓM . Null constraints are
used up to 3rd-order. The lines in the upper and lower half plane are the values of the upper and
lower bounds, respectively, except for c1111, c1212 and C2 where only the upper bounds are presented
since their lower bounds are exactly zero.

(c2,0
1111 + c2,0

2222 + c2,0
3333 + c2,0

4444)/4, so we can write the c2,0
1111 sum rule as follows

c2,0
1111 = 1

Λ4

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
32R1111

ℓ,n . (D.10)

Similarly, since c2,0
1122 = c2,0

3344, c2,0
1122 = (c2,0

1122 + c2,0
3344)/2, we can rewrite the c2,0

1122 sum rule as

c2,0
1122 = 1

Λ4

∑
ℓ=0,...,ℓM ;ℓ∞

(2ℓ + 1)
N∑

n=1

1
N

n

N
16(R1122

ℓ,n + (−1)ℓR1212
ℓ,n ) . (D.11)

In this way, we can reformulate all c2,0
ijkl in eq. (3.10), (3.11) in terms of the corresponding R

variables, and therefore reformulate the target functions C1, C2, C3. Now the LP problem
becomes well-defined with fewer variables R1111

ℓ,n , R11ii
ℓ,n , R1i1i

ℓ,n , ρ1jkl
ℓ,n , as shown in section 3.2.

E Numerical implementation and convergence

• Some numerical treatments. When performing the LP numerically, we rotate and
rescale the decision variables to speed up the runs. For example, consider the unitarity

– 40 –



J
H
E
P
0
3
(
2
0
2
4
)
1
8
0

condition
∣∣ρ1234

ℓ,n

∣∣ ≤ 1
4 −

∣∣1
4 − R1212

ℓ,n

∣∣, which actually defines a square geometrically. So if
we can redefine

Rℓ,n =
R1212

ℓ,n + ρ1234
ℓ,n

2 , Sℓ,n =
R1212

ℓ,n − ρ1234
ℓ,n

2 , (E.1)

this condition takes the much simpler form

0 ≤ Rℓ,n ≤ 1
4 , 0 ≤ Sℓ,n ≤ 1

4 . (E.2)

After discretization, a null constraint schematically takes the form of∑
ℓ,n(n/N)rQ(ℓ)ρijkl

ℓ,n = 0, where r ≥ 3 is an integer and Q(ℓ) is some polynomial in
ℓ. When summing to a large ℓ and n, we see that the coefficients in the sum differ significantly
in values, which slows down the numerical evaluation. To mitigate this problem, we can
absorb certain powers of ℓ and n into the spectral densities ρijkl

ℓ,n → ℓαnβρijkl
ℓ,n , α, β being

integers. We have observed that this enhances the speed of the LP by several times.

• Checking convergence. Figure 9 shows how the upper/lower positivity bounds change
with respect to N and ℓM , using up to 3rd-order null constraints. We see that despite the
ideal case being N, ℓM → ∞, our choice of finite N and ℓM is a very good approximation.
The difference caused by finite ℓM is found to be negligible, and further increasing N will
improve the bounds by a few percent, which however becomes time-consuming. For Ci, the
cases of N > 20 are found to be too time-consuming, so we use extrapolation to get the
bounds for larger N ’s (shown as dashed lines in figure 9). Specifically, we assume that the
deviation from the true value goes like δ ∝ 1/N , which is true for c1111, c1212 and c1122 and
is consistent with the fact that the objective function is a discretized integration in the form
of eq. (2.30). This convergence study justifies our discretization scheme used in section 2.3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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