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1 Introduction

Over the years, many important lessons we have learned about the nature of quantum gravity
have been catalyzed by the use of information-theoretic concepts in the setting of the Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence [1–3]. Ongoing efforts in this
direction include the study of quantum computational complexity for field theory states,
which is a measure of the number of steps needed to reach the said state starting from a
simple reference state, using a set of “simple” unitary operators (see [4] for a review). For
states in holographic CFTs, this is complemented by various holographic proposals that
aim to compute the complexity of the state in terms of a bulk observable. The earliest
proposals for holographic complexity are the complexity equals volume (CV) [5, 6] and the
complexity equals action (CA) [7, 8] proposals, which were quickly followed by the complexity
equals volume 2.0 (CV2.0) proposal [9]. More recently, it has been observed that there exist

– 1 –



J
H
E
P
0
3
(
2
0
2
4
)
1
7
3

an infinite number of gravitational observables that can all serve as holographic measures
of complexity [10, 11], since they display the telltale features expected of computational
complexity, e.g. a late time linear growth1 as well as the switchback effect in the presence
of shock waves. This broad variety of candidates for holographic complexity is reminiscent
of the broad variety of possible complexity frameworks in quantum systems.

An important ingredient in the study of complexity is the notion of the Lloyd bound [12],
originally proposed as a bound on the maximum rate of computation achievable by a quantum
system. Interpreting complexity growth as computation, it was initially argued that the Lloyd
bound translates to an upper bound on the rate of change of complexity [7]. However, further
studies into the time dependence of holographic complexity found several instances where
the CA proposal violates the Lloyd bound. These include eternal AdS black holes [13, 14],
rotating Bañados-Teitelboim-Zanelli (BTZ) black holes [15], warped AdS3 black holes [16], the
four-dimensional non-commutative N = 4 super Yang-Mills theory [17], as well as several bulk
geometries that appear as solutions to Einstein-Maxwell-dilaton gravity [18–21]. A rigorous
study on a class of spacetimes where the Lloyd bound holds for the CA proposal has been done
in [22]. For the CV proposal, it was argued recently in [23] that by assuming the weak energy
condition (WEC), a version of the Lloyd bound always holds true in asymptotically AdSD

geometries, with spacetime dimensionality D ≥ 4, in minimally coupled Einstein-Maxwell-
scalar theories. It thus seems that CV is more robust in meeting an upper bound on the rate
of complexity growth compared to the CA proposal. In D = 3, to the best of our knowledge, a
violation of the Lloyd bound for the CV proposal has only been found for asymptotically AdS3
geometries with a de Sitter bubble in their interior [24], for multi-boundary AdS3 wormhole
geometries [25], and in the holographic local quench scenario [26, 27]. These examples involve
bulk geometries that are either exotic or they have less symmetry compared to the bulk
duals of generic holographic states. This signifies the importance of further exploring the
CV proposal with reference to meeting or violating the Lloyd bound in less exotic setups,
that can perhaps be arrived at by using simple bottom-up constructions.

In the present work, we study the time dependence of the CV proposal for planar AdS
black holes with an end of the world (ETW) brane embedded in the geometry, with an
emphasis on the late time behaviour of complexity growth and its relation to the Lloyd bound.
The ETW brane cuts off the second asymptotic region of the maximally extended spacetime.
From a top-down perspective, the ETW brane may correspond to branes in string theory, or
a region of large backreaction such that the geometry caps off [28–34]. Such geometries also
arise as the gravitational dual description for pure states in boundary conformal field theories
(BCFT), which are CFTs defined on manifolds with boundaries, with conformally invariant
boundary conditions [35–41]; see also [42–51]. More recently, they have played an important
role in holographic constructions providing a resolution to the black hole information loss
problem via the quantum extremal island prescription [52–75], as well as in attempts to embed
cosmology in a holographic perspective [76–85]. Holographic complexity for asymptotically
AdS spacetimes with an ETW brane has previously been explored in [86–95]. Braneworld
theories have proven to be a useful framework in which to investigate aspects of entanglement

1We are ignoring saturation of complexity due to finite system sizes, which is not captured by the classical
holographic complexity proposals we focus on in the present work.
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and complexity. Well-known examples include studying the role of the graviton mass in
the formation of entanglement islands [57, 96, 97], finding higher curvature corrections to
holographic complexity [90], the formulation of quantum corrected BTZ black holes [98]
and the proposal of quantum corrections to holographic complexity [99, 100]. Moreover,
because of the additional contact terms that arise when including an intrinsic gravity term
on the brane [52, 58, 90], the behaviour of entanglement and complexity becomes sensitive
to the parameters of the brane action.

To be concrete, we focus on the case of an AdS3 black hole i.e., the Bañados-Teitelboim-
Zanelli (BTZ) geometry [101], with an embedded ETW brane that cuts off the second
asymptotic region of the maximally extended spacetime. In the simplest possible scenario,
the ETW brane is endowed with a constant tension, which fixes its location within the bulk
spacetime. As discussed in detail in [102], and summarized in section 2 of the present work,
the brane can have three distinct trajectories in the bulk spacetime, depending upon the brane
tension. For tension less than unity, the brane completely cuts off the second asymptotic
region of the maximally extended planar BTZ geometry — see figure 2(a). This is referred
to as the subcritical case. On the other hand, for tension greater than unity, only part of
the second asymptotic region is cut off by the brane — see figure 2(c). This supercritical
geometry is holographically tantamount to including degrees of freedom from a second copy
of the CFT [103]. The critical case, figure 2(b), which corresponds to the brane tension being
exactly equal to unity, amounts to the brane reaching the boundary of the second asymptotic
region in the infinite past/future. The physical picture of the ETW brane cutting off the
entire second asymptotic region of the extended spacetime geometry is thus unambiguously
met by the subcritical case only, on which we focus our attention in this paper.

Additionally, in the spirit of constructing an effective bottom-up model, we also allow
for the possibility of the ETW brane to carry intrinsic gravitational dynamics. Given that
Einstein gravity is purely topological in two dimensions, the simplest possibility is to consider
Jackiw-Teitelboim (JT) gravity [104, 105] to be localized on the ETW brane that cuts off
the BTZ spacetime. This leads to interesting changes in the properties of the dual CFT
state. For instance, it was found in [102] that the time dependent behaviour of entanglement
entropy for the dual CFT state gets modified in the presence of JT gravity on the brane. In
particular, it was found that only a finite subspace of the bulk parameter space for the brane
location and the suitably defined JT coupling lead to entanglement dynamics compatible
with known bounds on entanglement growth in two-dimensional CFTs [106]. In other words,
constraints on entanglement dynamics for the CFT state translate into constraints on the
effective bulk description, which a priori might appear unconstrained.

Our focus in the present work is on understanding the time dependent behaviour of
holographic complexity for these states via the CV proposal. Once again, as is the case for
entanglement, the presence of JT gravity on the brane affects the behaviour of complexity
as a function of time for the dual CFT state. It turns out that to extract the full time
dependence of holographic complexity, it is best suited to follow a numerical approach.
However, the asymptotically early/late time dynamics of complexity, corresponding to time
scales tbdy → ±∞, can be obtained analytically, as we discuss below. We find that only
a finite subspace of the bulk parameter space for the brane location and the JT coupling
allows for the Lloyd bound on the rate of change of complexity to hold true at all times. For
bulk parameter values outside this restricted subspace, we find that although the rate of
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change of complexity still reaches the value dictated by the Lloyd bound at asymptotically
early/late times, the bound is violated during intermediate stages of time evolution of the
state. More specifically, we find that at asymptotically late times the Lloyd bound value
is reached from above, whereas for asymptotically early times it is approached from below,
thus violating the bound. If one demands the Lloyd bound to be satisfied for the states of
our interest, one gets a reduction in the bulk parameter space of the brane location and
the JT coupling. When combined with constraints from entanglement dynamics obtained
in [102], one ends up getting a significantly reduced parameter space. This highlights how
the holographic duality can constrain the effective bulk description following information
theoretic constraints on the dual CFT state.

This paper is organized as follows. In section 2, we detail the setup of the problem,
describe the BTZ geometry with a subcritical ETW brane, and summarize the CV proposal
and the Lloyd bound on complexity growth. This section also helps set up the notation for
the rest of the paper. Subsequently, in section 3, we perform a detailed analytic investigation
of the asymptotic behaviour of the rate of change of holographic complexity. Our approach
is based on treating the search for the maximal volume surface as finding the trajectory of
a classical particle scattering off an effective potential. The violation of the Lloyd bound
occurs when the energy of the particle is higher than the potential barrier. We derive an
analytic expression for the critical curve within the space of bulk parameters, namely the
brane location and the JT coupling, that separates the Lloyd bound respecting region from
the Lloyd bound violating region. We additionally delve into several illustrative examples,
deriving analytic expressions for the complexity growth rate. Section 4 then provides a
detailed analysis of the full time dependence of holographic complexity extracted using a
numerical approach, confirming the results of section 3. Note that sections 3 and 4 can
be read independently. In section 5, we connect the violation of the Lloyd bound found in
the previous sections for part of the bulk parameter space to the violation of the WEC in
the bulk by studying an alternate description of the system. More specifically, we consider
a wormhole spacetime with two asymptotically AdS3 external regions and with a matter
source. The matter is fine-tuned in such a way that the extremal volume slice is identical to
that of two copies of the original system consisting of the ETW brane carrying intrinsic JT
gravity. Next, in section 6, we summarize known constraints on the JT coupling and the brane
location for the subcritical geometry, which were obtained in [102] using the boundedness
of entanglement velocity. We discuss the possibility of further constraining the parameter
space of the bulk effective description by combining the entanglement velocity constraints
with the constraint from the Lloyd bound, assuming it to hold true at all times. Section 7
concludes the paper with a discussion and an outlook towards various future possibilities.
Appendices A–C contain several technical details utilized in performing the calculations.

2 Basic setup

We begin by reviewing the black hole solution for three-dimensional Einstein gravity with a
negative cosmological constant, given by the Bañados-Teitelboim-Zanelli (BTZ) geometry [101].
The metric for the planar BTZ black hole in Schwarzschild coordinates (t, r, x) is given by

ds2 = −f(r) dt2 + 1
f(r) dr2 + r2

L2 dx2, with f(r) = r2 − r2
0

L2 , (2.1)
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where the coordinates t, x ∈ (−∞,∞) and r ∈ [r0,∞). Here r0 denotes the location of
the horizon, and the constant L is the AdS length scale. The black hole has the Hawking
temperature TH = f ′(r0)/4π = r0/2πL2. The entropy density associated with the horizon
is s = r0/2GN L, and the energy density is ε = r2

0/8πGN L3.
The Schwarzschild coordinates (t, r, x) cover only the region of spacetime outside the

horizon; see figure 1 left panel. In order to also cover the black hole interior, one can
introduce the ingoing Eddington-Finkelstein (EF) coordinates, which cover the shaded region
in the right panel of figure 1. This coordinate system is defined by the radial coordinate
r, which now extends all the way to the singularity, r ∈ (0,∞), while the ingoing EF time
coordinate is defined via

v = t −
∫ ∞

r

dr′

f(r′) ∈ (−∞,∞) , for r > r0 . (2.2)

The metric in the EF coordinates is given by

ds2 = −f(r)dv2 + 2dvdr + r2

L2 dx2 . (2.3)

This metric is smooth across the future horizon, and the geometry extends past the horizon.
We can define an interior Schwarzschild time via

v = t +
∫ r

0

dr′

f(r′) ∈ (−∞,∞) for r < r0 . (2.4)

Additionally, for the numerical approach used in section 4, we will find it useful to work with
a global coordinate system that covers the entire maximally extended spacetime geometry.
Following [76], we first consider a coordinate transformation to Kruskal-like coordinates
(U, V ), given by2

r

r0
= 1 − UV

1 + UV
, t = L2

2r0
log

(
−U

V

)
. (2.5)

In terms of the Kruskal-like coordinates, the metric takes the form

ds2 = − 4L2

(1 + UV )2 dUdV + r2
0

L2

(1 − UV

1 + UV

)2
dx2. (2.6)

The (U, V, x) coordinates run from −∞ to ∞, and cover the entire maximally extended
black hole spacetime. Note that the horizons in these coordinates are at UV = 0, the two
asymptotic boundaries at UV = −1, and the future/past singularities at UV = 1. Next,
to simplify things further, we introduce U = tan α, V = tan β, with the coordinate range
−π/2 ≤ α, β ≤ π/2. Defining τ = α + β, y = β − α, we finally get the metric in the form

ds2 = 1
cos2 y

(
−L2dτ2 + L2dy2 + r2

0
L2 cos2(τ) dx2

)
. (2.7)

Here −π/2 ≤ τ, y ≤ π/2, with the horizons at τ = ±y, the two asymptotic AdS boundaries
at y = ±π/2, and the future/past singularities at τ = ±π/2. Figure 1 depicts the maximally

2This is the coordinate transformation for the right Schwarzschild patch only and needs to be written
separately for the other three patches.

– 5 –



J
H
E
P
0
3
(
2
0
2
4
)
1
7
3

Figure 1. The maximally extended planar BTZ spacetime. On the left panel, in terms of the global
coordinates (τ, y), the horizons are at τ = ±y (dashed blue), and the asymptotic AdS boundaries
at y = ±π/2. The colored region denotes the patch covered by the Schwarzschild coordinates (t, r).
On the right panel, the colored region depicts the portion of the geometry covered by the ingoing
Eddington-Finkelstein coordinates (v, r). The definition of the Schwarzschild time, as outlined in
equation (2.8), requires a specific choice of sign within each coordinate patch: positive sign for patches
I and III, and negative sign for patches II and IV.

extended spacetime in the (τ, y, x) global coordinates. More explicitly, the relation between
the (t, r) and (τ, y) coordinates is

r

r0
= cos τ

cos y
,

t = L2

2r0
log

(
±sin y + sin τ

sin y − sin τ

)
.

(2.8)

The signs are chosen based on which of the four patches in the maximally extended BTZ
spacetime one wants to cover with the Schwarzschild coordinates, see figure 1.

The maximally extended geometry of figure 1 is dual to the thermofield double state,
which is a state obtained by entangling the two copies of the CFT living on the two asymptotic
boundaries [103]. We are, however, interested in states of a single copy of the CFT, whose
dual description includes part of the region beyond the horizon, and would therefore like to
cut off the left asymptotic region of the maximally extended BTZ geometry. In a bottom-up
approach, as mentioned in the introduction section 1, this can be done by introducing a
constant tension ETW brane. In the presence of the brane, the total action also includes
a brane term and is given by3

I = 1
16πGN

[ ∫
bulk

d3x
√
−g

(
R + 2

L2

)
+ 2

∫
∂AdS

d2x
√
−h K

+ 2
∫

brane
d2x

√
−h

(
K − T0

L

)]
.

(2.9)

3The action needs to be supplemented by appropriate counter terms to make it finite on-shell [107].
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Here K is the trace of the extrinsic curvature, and T0 denotes the brane tension. When
extremizing the action to obtain eq. (2.1) as the solution, we impose the usual Dirichlet
boundary conditions on the metric variation at the AdS boundary, i.e., the metric variation
vanishes on the AdS boundary. However, at the location of the brane, rather than imposing
Dirichlet boundary conditions, we impose Neumann boundary conditions, which allows the
brane to localize at a position determined by its tension, via the Israel junction conditions [108]

Kij = T0
L

hij . (2.10)

In other words, the brane is located at a position such that the trace of its extrinsic curvature
is constant.

Depending upon the tension, the brane can have three distinct trajectories, as discussed
in [102]. For 0 ≤ T0 < 1, the ETW brane cuts off the entire left asymptotic region and is
located at a fixed value of the y-coordinate, given by

sin ybrane = −T0 . (2.11)

In Schwarzschild coordinates, this equation takes the form

r2
brane
r2

0
=

1 − T 2
0 tanh2

(
r0tbrane

L2

)
1 − T 2

0
outside the horizon ,

r2
brane
r2

0
=

1 − T 2
0 coth2

(
r0tbrane

L2

)
1 − T 2

0
inside the horizon .

(2.12)

For T0 = 1, the ETW brane emanates out of the past singularity at τ = −π/2 and
reaches the left asymptotic boundary at τ = π/2.4 Finally, when T0 > 1, the ETW brane
emanates from the past singularity at τ = −π/2, and reaches the left asymptotic boundary
in the far future, without cutting off the second asymptotic region entirely. Following the
nomenclature of [102], we label the three possibilities as subcritical (0 ≤ T0 < 1), critical
(T0 = 1) and supercritical (T0 > 1). The three cases are illustrated in figure 2.

It is interesting to note that the cosmological constant on the subcritical, critical, and
supercritical brane is negative, zero, and positive, respectively. Additionally, the induced
metric on the brane for the three cases takes the following form [102]

Subcritical: ds2
ind = −L2dλ2 + r2

0
L2

cos2
(

λ
√

1 − T 2
0

)
1 − T 2

0
dx2, λ ∈

 −π

2
√

1 − T 2
0

,
π

2
√

1 − T 2
0

 ,

(2.13a)

Critical: ds2
ind = −L2dλ2 + r2

0
L2 λ2dx2, λ ∈ [0,∞) , (2.13b)

Supercritical: ds2
ind = −L2dλ2 + r2

0
L2

sinh2
(

λ
√

T 2
0 − 1

)
T 2

0 − 1 dx2, λ ∈ [0,∞) , (2.13c)

where λ denotes the proper time on the brane.
4The trajectory obtained by performing a reflection about the τ = 0 axis, wherein the brane emanates

from the left asymptotic boundary at τ = −π/2 and ends into the future singularity at τ = π/2, is also a
valid solution.
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(a) Subcritical: 0 ≤ T0 < 1. (b) Critical: T0 = 1. (c) Supercritical: T0 > 1.

Figure 2. The subcritical, critical, and supercritical ETW brane trajectories in BTZ spacetime.
Figure adapted from [102].

The induced metric on the subcritical brane is that of a big bang-big crunch cosmology [76].
For the critical and supercritical cases, one gets an expanding spacetime, with a late time
exponentially expanding de Sitter phase for the supercritical case.5

As mentioned earlier, our interest in the present work is in high-energy pure states for a
single copy of a CFT. However, as is evident from figure 2(c), the supercritical case includes
part of the second asymptotic boundary as well and is thus holographically tantamount to
including the degrees of freedom associated with a second copy of the CFT. Because of this,
we will not be considering the supercritical case in our subsequent discussion. Also, the critical
case figure 2(b), though interesting, lacks a moment of time reflection symmetry. It is therefore
difficult to imagine how one can prepare such a state using an Euclidean path integral, even
though the Lorentzian geometry exists. On the other hand, the subcritical geometries of
figure 2(a) can be constructed starting from boundary states with limited entanglement in a
CFT and evolving them in Euclidean time [38, 39], in what is also known as the AdS/BCFT
correspondence [35, 36]. Henceforth, we will work solely with the subcritical case, since it
is only the subcritical geometry that most unambiguously satisfies our requirement for the
bulk to only include part of the second asymptotic region.

2.1 Subcritical ETW brane with JT gravity

Let us now consider the possibility for intrinsic gravitational dynamics to exist on the ETW
brane. Since Einstein gravity in two dimensions is purely topological, the simplest possibility
to consider is the presence of Jackiw-Teitelboim (JT) gravity [104, 105] on the brane. The
action for JT gravity is given by

IJT = 1
16πGbrane

N

∫
d2x

√
−h

[
Φ0Rbrane + φ

(
Rbrane − 2Λbrane

)]
. (2.14)

Here, Gbrane
N is Newton’s gravitational constant on the brane, and Λbrane is the (negative)

cosmological constant on the brane. Rbrane is the Ricci scalar on the brane, and the scalar
φ is the dilaton, with the constant piece Φ0 associated with ground state entropy of an

5The trajectories obtained after a reflection about the τ = 0 axis for the critical and supercritical cases are
also valid solutions, which now represent contracting spacetimes, with λ ∈ (−∞, 0]. The supercritical case
now admits an early time de Sitter phase.
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extremal black hole, if one considers JT gravity to be arising in the near-horizon limit of a
near-extremal black hole [109–112]. Since the term proportional to Φ0 is purely topological,
we will not be considering it in the subsequent discussion.

Note that the dilaton equation of motion fixes the background geometry on the ETW
brane to be AdS2, with Rbrane = 2Λbrane = −2/L2

2, with L2 being the AdS2 length scale.
Interestingly, once the action eq. (2.9) is augmented with the JT action eq. (2.14), the location
of the brane ybrane can be adjusted by tuning either Λbrane or the tension T0. Furthermore,
for the purpose of computing complexity in this model, it is irrelevant which of the two
parameters is used to adjust ybrane, and one can simply set T0 = 0. The brane is still located
at a fixed value of the y-coordinate, now given by

− 1
L2 cos2 ybrane = Λbrane , (2.15)

or in Schwarzschild coordinates

r2
brane
r2

0
= −

1 − (L2Λbrane + 1) tanh2
(

r0tbrane
L2

)
L2Λbrane outside the horizon ,

r2
brane
r2

0
= −

1 − (L2Λbrane + 1) coth2
(

r0tbrane
L2

)
L2Λbrane inside the horizon .

(2.16)

Additionally, the variation of the metric gives an equation for the dilaton,

∇i∇jφ + Λbraneφhij = Gbrane
N

GN
Kij , (2.17)

with the covariant derivative ∇i taken with respect to the induced metric hij on the brane.
As discussed in [102], this admits the solution

φ(τbrane) = φ0 + φ1 sin τbrane, (2.18)

where φ0 = Gbrane
N K/

(
2GN Λbrane

)
and φ1 are constants. In the subsequent discussion, we

will be referring to the dimensionless parameter

α ≡ GN φ1
Gbrane

N L
(2.19)

as the “JT coupling.”

2.2 The CV proposal

As mentioned in the introduction section 1, several proposals holographically capture the key
aspects of complexity for the CFT state, such as a late time linear growth and the switchback
effect [4]. One of the prominent proposals is the complexity equals volume (CV) proposal [6],
which is at the core of our interests in the present paper. The CV proposal states that the
complexity of the CFT state on a given time slice ΣCFT on the boundary is captured by the
volume of the maximal volume codimension-one surface B in the bulk such that ∂B = ΣCFT
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i.e., the bulk surface is anchored on the same boundary time slice on which the CFT state
is defined. The precise definition is given by6

CV = Vol(B)
GN L

. (2.20)

The presence of an ETW brane in the bulk with intrinsic gravitational dynamics brings in a
new element to the CV proposal. As argued in [90] from a doubly-holographic perspective,
the complexity for the CFT state now includes a contact term at the location of the brane,
proportional to the volume of the region of intersection of the bulk extremal surface and
the brane,

CV = Vol(B)
GN L

+ Vol(B ∩ brane)
Gbrane

N Lbrane . (2.21)

Here Lbrane is an appropriate length scale on the brane that renders the contact term
dimensionless. For our setup, with the ETW brane endowed with JT gravity, we follow the
convention of picking the length scale associated with the relevant geometry, and so we pick
the length scale Lbrane to correspond to the AdS2 length scale L2. The effect of keeping an
arbitrary Lbrane on the main results is discussed in footnote 12. The bulk codimension-one
surface B anchored at ΣCFT now maximizes the r.h.s. of eq. (2.21). The presence of the
contact term does not alter the bulk equations of motion, but it does affect the boundary
conditions, and therefore value of the complexity CV itself.

2.3 The Lloyd bound on complexity growth

We now briefly comment upon the Lloyd bound on the rate of change of complexity, which
is the final ingredient that we will need for our study. The Lloyd bound was originally
proposed as a fundamental bound on the maximum possible rate of computation based on
the average energy of the quantum system [12]. It was subsequently generalized to quantum
computational complexity in [8], where it was interpreted as providing a bound on the
maximum possible rate of change of complexity for a quantum system. For holographic
theories with a dual gravitational description provided by an AdS black hole, the energy
of the system could be replaced by the mass M of the black hole, leading to the following
statement for the Lloyd bound on the rate of change of complexity [8],∣∣∣∣dCdt

∣∣∣∣ ≤ γM. (2.22)

Here γ is a numerical factor that depends upon the specifics of the case. The bound above
can be made tighter if the system carries additional conserved charges, such as an electric
charge or angular momentum [23].

Our interest in the present work is in planar AdS3 black hole geometries with ETW branes.
The dual two-dimensional CFT state is also translationally invariant, and thus it makes sense
to recast the bound in eq. (2.22) in terms of complexity per unit length on the boundary

6Note that there is an ambiguity in the choice of the length scale that appears in the denominator of
eq. (2.20) to make CV dimensionless. In most of the literature, it is chosen to be the AdS length scale L, a
choice which we adhere to as well.
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time slice ΣCFT, which we denote by cV . Using the fact that the energy density for the state
is ε = r2

0/8πGN L3 in eq. (2.22), the statement of the Lloyd bound for our setup becomes∣∣∣∣dcV

dt

∣∣∣∣ ≤ r2
0

2GN L3 , (2.23)

where we have chosen γ = 4π. This choice corresponds to the value associated with the
saturation of the Lloyd bound for eternal black holes [7]. For our setup, the rate of complexity
growth also saturates the bound in eq. (2.23) when there is no intrinsic gravitational dynamics
on the brane, as can be seen in figure 5(b). This makes the choice γ = 4π natural.

As mentioned in the Introduction section 1, with intrinsic gravitational dynamics present
on the brane, we observe a violation of the Lloyd bound eq. (2.23) for a certain range of
values for the bulk parameters comprising the brane location ybrane and the JT coupling α.
As discussed in detail in sections 3 and 4, we find that although the asymptotically early/late
time rate of change of complexity does approach the value set by the Lloyd bound, for part of
the bulk parameter space a violation occurs during the intermediate stages of time evolution
of the state. In particular, for positive (negative) values of α violating the bound, the rate of
change of complexity reaches the Lloyd bound value from above (below) at asymptotically
late (early) times, signaling a violation of the Lloyd bound during intermediate stages of time
evolution — see for instance the figures 7 and 8.7 In section 5, we argue that this violation
of the Lloyd bound is tied to the violation of the WEC by the associated bulk parameters.
More precisely, we introduce an equivalent description of our setup with an ETW brane in
terms of a two-sided asymptotically AdS3 geometry, with the brane replaced by a suitably
chosen thin shell of matter, such that the rate of change of complexity is identical for the two
cases. The violation of the WEC in the two-sided setup can then be seen to translate into a
violation of the Lloyd bound for the single-sided setup with a brane. Further, demanding
the WEC be met for the two-sided setup is equivalent to requiring the Lloyd bound to be
met by complexity growth for the single-sided setup with a brane, leading to an effective
reduction in the allowed bulk parameter space (ybrane, α).

3 Asymptotic behaviour of complexity growth

We now proceed to perform a detailed analysis of the asymptotic behaviour of the rate of change
of the volume complexity for our setup, employing some of the techniques laid out in [10, 11].
After introducing some relevant definitions, we discuss the necessary boundary conditions that
need to be imposed for computing extremal surfaces in section 3.1. Subsequently, in section 3.2,
we introduce an effective mechanical picture describing the problem of interest in terms of
a particle scattering off a potential barrier. This helps build an intuitive understanding
of the situation. This is followed by the details of the asymptotic analysis in section 3.3,
where we establish a clear distinction between parts of the bulk parameter space, comprising
the brane location ybrane and the JT coupling α, which respect or violate the Lloyd bound
on complexity growth, eq. (2.23).

7This pattern of violation of the Lloyd bound is similar to other instances observed in [13–16, 19, 20, 24].
It is worth pointing out that aside from [24], all of the aforementioned violations of the Lloyd bound were in
the context of the CA proposal, and not for the CV proposal, which is seemingly more robust in meeting the
bound. See also the discussion in [113], where CV respects the Lloyd bound in a warped AdS3 setup as well,
but with the warping parameter playing a nontrivial role in eq. (2.22).
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Employing the Eddington-Finkelstein coordinates (2.3), and assuming the codimension-
one maximal volume surface is parametrized in terms of a parameter σ, i.e.

xµ
extremal = (v(σ), r(σ), x), (3.1)

the induced metric on the extremal surface is given by

ds2
ind =

(
−f(r)v̇2 + 2v̇ṙ

)
dσ2 + r2

L2 dx2 , (3.2)

where an overhead dot denotes a derivative with respect to the parameter σ.
We study the complexity volume functional of the form (2.21). Specifically for the case

of JT gravity on the brane, the contact term in eq. (2.21) reads

Vol(B ∩ brane)
Gbrane

N Lbrane = ℓ φ(rbrane, vbrane)
Gbrane

N L2
. (3.3)

Here L2 denotes the AdS2 length scale on the brane, and φ is the dilaton solution rewritten
in the (r, v)-coordinates. The volume complexity (2.21) per unit length for the boundary
CFT state is then given by

cV = φ(rbrane, vbrane)
Gbrane

N L2
+ 1

GN L

∫
dσ L , (3.4)

where rbrane and vbrane are the location of the intersection of the maximal volume surface
and the brane, and the “effective Lagrangian” L is given by

L = r

L

√
−f(r)v̇2 + 2v̇ṙ . (3.5)

The functional (3.4) is invariant with respect to the reparametrizations σ → h(σ). This
gauge freedom can be fixed by imposing the condition

L ≡ g , (3.6)

where g is some function of the coordinates (v, r) and velocities (v̇, ṙ).
Notably, the Lagrangian in (3.5) is independent of v, which implies that the corresponding

conjugate momentum

Pv ≡ ∂L
∂v̇

(3.7)

is conserved along the trajectory, i.e., it is σ independent. In terms of Pv, the equations of
motion that follow by extremizing eq. (3.4) can be written as

v̇ =

−Pv ±

√
fr2

L2 + P 2
v

 L2

r2
g

f
, (3.8a)

ṙ2 =
(

fr2

L2 + P 2
v

)
L4

r4 g2 . (3.8b)

Solutions to the above equations correspond to the desired extremal surfaces.
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3.1 Boundary conditions

The equations of motion given in eq. (3.8) are to be supplemented with appropriate boundary
conditions at the locations where the extremal surface intersects the brane as well as the
asymptotic AdS3 boundary. We have two Dirichlet boundary conditions on the asymptotic
AdS3 boundary and mixed (one Dirichlet and one Neumann) boundary conditions on the brane.

Asymptotic boundary conditions in Schwarzschild coordinates. The Dirichlet
boundary conditions on the asymptotic boundary are

r(0) = L

ϵ
= rmax , ϵ → 0 (3.9)

t(0) = v(0) −
∫ r(0)

0

dx

f(x) = tbdy . (3.10)

Here ϵ acts as a regulator for otherwise divergent volumes of surfaces due to the hyperbolic
nature of the asymptotically AdS geometry. We have defined tbdy, which is the boundary time
at which the maximal volume surface anchors at the asymptotic boundary. Importantly, for
each tbdy, the corresponding maximal volume surface will have specific conserved momentum
Pv. In other words, while the conserved momentum is independent of the path parameter σ,
it does depend on the boundary time tbdy at which the surface is anchored.

Brane boundary conditions in global coordinates. To discuss the brane boundary
conditions, it is useful for a moment to go to global coordinates first, and then rewrite them
in Schwarzschild coordinates. Recall that in global coordinates the dynamical variables are
y(σ) and τ(σ), and the effective Lagrangian is

L = r0 cos(τ)
cos2(y)

√
ẏ2 − τ̇2 . (3.11)

The Dirichlet boundary condition on the brane imposes that the extremal surface is anchored
on the brane at the location y = ybrane. The position of the brane ybrane is related to
the tension T0 by

sin2(ybrane) = T 2
0 , (3.12)

or in the presence of JT gravity on the brane, to the brane cosmological constant Λbrane by

cos2(ybrane) = −L2Λbrane . (3.13)

The Neumann boundary condition on the brane is obtained by varying the functional (3.4)
and setting to zero the generalized momentum conjugate to the normal coordinate of the brane.
In global coordinates, the normal coordinate is simply τ , and the boundary condition reads

GN L

Gbrane
N L2

φ′(τ)
∣∣∣∣
brane

+ Pτ

∣∣∣∣
brane

= 0 , (3.14)

where φ′ ≡ dφ
dτ , which we can determine from eq. (2.18), and Pτ ≡ ∂L

∂τ̇ , which we can determine
from eq. (3.11). After putting all these ingredients together, we find that the Neumann
boundary condition in global coordinates is given by

L2α

r0L2
− cos (τbrane)

cos4 (ybrane)
τ̇

g

∣∣∣∣
brane

= 0 , (3.15)

where we have used the definitions of α (2.19) and of g (3.6).
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Brane boundary conditions in Schwarzschild coordinates. The Dirichlet boundary
condition on the brane is determined by the brane profile, given in Schwarzschild coordinates
by eq. (2.12) when there is no intrinsic gravity on the brane and eq. (2.16) for the case
of JT gravity on the brane.

To rewrite the Neumann boundary condition (3.15) in Schwarzschild coordinates, we use
the coordinate transformation given by eq. (2.8), and find that it becomes

L2α rbrane
r2

0L2
cos(ybrane) =

r2
brane

r0 cos (ybrane)

√
r2

0 − r2
brane cos2 (ybrane)

r2
brane − r2

0

ṙ

g

∣∣∣∣
brane

+ rbrane
r0

L2 tan (ybrane)
r2

brane − r2
0

Pv .

(3.16)

3.2 Effective mechanical picture

Our goal is to find the bulk codimension-one surface that maximizes the functional (3.4)
under the specified boundary conditions discussed above. Let us look at this problem in
Eddington-Finkelstein coordinates and with the reparametrization freedom of σ fixed such
that g = r2

L2 . With this parametrization, the profile of the maximal volume surface can be
considered as the trajectory of a classical particle moving under the influence of an effective
potential. This analogy arises from interpreting the projection of the bulk codimension-one
surfaces parametrized by xµ = (v(σ), r(σ), x) to the (v, r) plane as the trajectory followed
by a classical particle on a line. The effective Lagrangian L (3.5) describes the particle’s
dynamics and its motion is governed by the equations of motion (3.8). More specifically,
eq. (3.8b) with the gauge choice g = r2

L2 becomes8

ṙ2 + Ueff(r) = P 2
v . (3.17)

The total energy of the particle is given by P 2
v . It is conserved along the trajectory of

the particle, or, equivalently, along the given extremal surface. The effective potential in
eq. (3.17) is given by

Ueff(r) = −f(r)r2

L2 , (3.18)

and characterizes the “force” experienced by the particle as it moves in the radial direction.
The profile of the potential is depicted in figure 3. There are three possibilities for the
particle trajectory shown by purple, yellow, and green lines in figure 3, which are realized
depending on the value of the energy P 2

v in relation to the maximum value of the potential
at r∞ = r0√

2 , which we denote as

P 2
∞ ≡ Ueff(r∞) = r4

0
4L4 . (3.19)

These possibilities are the following.
8The gauge g = r2

L2 ensures that the ṙ equation contains a constant P 2
v which is then interpreted as the

energy of the non-relativistic particle.
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(a) (b)

Figure 3. (a) Characteristic effective potential (3.18) for the CV proposal with the gauge choice
g = r2/L2. Here r0 is the location of the horizon, and r∞ is the location of the maximum of the
potential. Three possible particle trajectories are shown in purple, orange, and green. The purple
trajectory depicts a particle with energy P 2

v < Ueff(r∞), which scatters at the potential. After
scattering on the potential, the particle reaches the brane at rbrane > r∞, indicated by the purple dot.
The orange trajectory corresponds to a particle with energy P 2

v = Ueff(r∞), which asymptotically
reaches the maximum of the potential at r∞. In this case, the location of the brane is indicated by the
yellow dot and asymptotes to r∞ at late times. Finally, the green trajectory corresponds to a particle
with energy P 2

v > Ueff(r∞), which passes over the potential barrier. The particle moves towards values
of r that are smaller than r∞ until it eventually terminates at the brane, visualized by a green dot.
The extremal surfaces determined by these trajectories are sketched in panel (b).

a) When Pv < P∞, the particle scatters off the potential at a turning point rmin, turns
around, and continues to larger values of r until terminating at the brane at rbrane > r∞.
The turning point rmin of this trajectory is determined by ṙ = 0, so that eq: (3.17) gives

P 2
v = Ueff(rmin). (3.20)

The trajectory corresponding to this scattering case is shown by the purple line in
figure 3(a).

b) When Pv = P∞, the particle moves towards the top of the potential at r∞, where it
eventually terminates. In this case rbrane is asymptotically close to r∞. The trajectory
corresponding to this case is shown by the orange line in figure 3(a).

c) When Pv > P∞, the particle passes over the potential barrier and moves towards
values of r that are smaller than r∞ until it eventually terminates at the brane at
0 < rbrane < r∞. This trajectory is shown by the green line in figure 3(a).

To investigate the rate of complexity growth we evaluate the variation of the complexity
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functional (3.4) with respect to boundary time,9 which gives

dcV

dtbdy
= Pv

GN L
. (3.21)

Eq. (3.21) then implies that to analyze the time dependence of complexity, we need to find
the relation between Pv and tbdy. We can obtain this by recasting eq. (3.8a) in Schwarzschild
coordinates, without fixing a gauge,

ṫ(σ) = − Pv

f(r)
L2

r2 g . (3.22)

Employing the relation (3.8b), one can integrate eq. (3.22) to obtain

tbdy − tbrane = −
∫ rbdy

rbrane
dr

Pv

f(r)
√

f(r)r2

L2 + P 2
v

, (3.23)

where rbrane and tbrane are the coordinates of the intersection of the maximal volume surface
and the brane. Notice that the result above is independent of the particular choice of gauge
g. At late times (tbdy → ∞), the right-hand side of eq. (3.23) diverges, and so the integral
in the right side should diverge too. This occurs when P 2

∞ approaches the maximum of the
effective potential P 2

∞ ≡ Ueff(r∞). Therefore the late time value of Pv is

lim
tbdy→∞

Pv = P∞. (3.24)

The possibilities a)-c) for the particle trajectory depending on the value of the energy
P 2

v , as described above, reflect in the integral (3.23) as different singularity structures of the
integrand. This makes it so each of the cases a), b) and c) requires a different integration
contour and a different asymptotic expansion for late times tbdy. Thus, the different qualitative
options for the effective particle trajectory correspond to different qualitative behaviours
of holographic complexity at tbdy → ∞. As we will see below, the case a) describes the
complexity evolution which satisfies the Lloyd bound, the case b) describes the complexity
evolution in the edge case where the Lloyd bound is satisfied marginally, and the case c)
describes the Lloyd bound violation. Let us now proceed to analyze these options in detail.

3.3 Asymptotic analysis

Our primary objective is to compute the late time expansion of dcV /dtbdy with JT gravity
on the brane with a general coupling α, as well as a cosmological constant Λbrane which plays
the role of nonzero tension when Λbrane < Λbulk. In doing so, we uncover three qualitatively
different behaviours of dcV /dtbdy depending on the parameters of the model. Namely, the
Lloyd bound (2.23) can be satisfied, marginally satisfied, or violated which corresponds to

9That is, we vary eq. (3.4), and find

δcV = 1
GN L

∫
dσ (Eq. of motion) δxµ + 1

GN L
(Pvδvµ + Prδr)

∣∣∣∣bdy

brane
+ 1

Gbrane
N L2

∂µφ δxµ

∣∣∣∣
brane

,

together with the fact that v
∣∣
bdy

= tbdy to find eq. (3.21).
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the cases a), b) and c) in section 3.2 respectively. These turn out to be correlated with the
depth at which the maximal volume surface probes the geometry. Specifically, the Lloyd
bound holds true when the maximal volume surface stays above r∞, while its violation occurs
precisely when the surface delves deeper than r∞. The Lloyd bound is only marginally
satisfied when the maximal volume surface is precisely at r∞.

Before going into the details of how to compute the late time expansion of dcV /dtbdy,
let us explain briefly the effect of modifying Λbrane and α on the behaviour of the brane
and the maximal volume surface. Of particular interest will be the asymptotic value of
the intersection of these two, which will determine if the maximal volume surface probes
deeper than r∞. Therefore, we are interested in the late time limit of rbrane, which we
denote as r∗brane = limtbdy→∞ rbrane.

• When Λbrane < Λbulk = −1/L2 (or equivalently T0 > 0), the brane moves away from
ybrane = 0 to a position determined by eq. (3.13). Consequently, decreasing Λbrane (or
increasing tension) results in an increase in rbrane. In particular, in the absence of JT
gravity (or if α = 0), r∗brane > r∞.

• When α ̸= 0, the angle at which the maximal volume surface intersects the brane changes
as determined by the Neumann boundary condition on the brane (3.15). Consequently,
for tbdy > 0, increasing α decreases rbrane. In particular, for Λbrane = Λbulk and α > 0,
r∗brane < r∞. Note that although a nonzero JT coupling breaks time reversal symmetry
in the model, there is a spurious symmetry (tbdy, α) → (−tbdy,−α), and therefore
limtbdy→−∞ rbrane < r∞ for α < 0.

In the discussion below, we will study the three qualitatively different regimes separately.
Concretely, the steps required to compute the late time expansion of dcV /dtbdy in each
regime are:

S1. Finding the position of the intersection of the maximal volume surface and the brane
i.e. (rbrane, tbrane) as a function of the conserved momentum Pv. This can be done by
combining eqs. (3.8b), (3.16) and (3.26).

S2. Calculating the time difference between the boundary and the brane along the maximal
volume surface (denoted by tbdy − tbrane) in terms in of Pv, using eq. (3.23) in the late
time regime.

S3. Combining the results above to derive an expression for Pv in the late time regime, and
using it to determine dcV /dtbdy via eq. (3.21).

Let us now proceed to systematically address each of these steps, and apply this pro-
cedure to several illustrative examples. For detailed calculations, we refer the reader to
appendices A and B.

S1. Intersection of maximal volume surface and brane: the first step is to find the
location of the intersection of the brane and the extremal surface for CV as a function of
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Pv. First, we use the equation of motion for ṙ (3.8b) and the Neumann boundary conditions
on the brane (3.16) to obtain

P 2
v − Ueff(rbrane) = r2

brane
r2

0 − r2
brane cos2(ybrane)

[
r2

0 − r2
brane

L2r0
α cos2(ybrane) + Pv sin(ybrane)

]2

.

(3.25)
Solving this expression determines the location rbrane as a function of the momentum

Pv, for a given tension/cosmological constant (related to ybrane), and JT coupling α. It
can be rewritten as

(r2
0 − r2

brane)
(

a − b
r2

brane
r2

0
+ c

r4
brane
r4

0

)
= 0 , (3.26)

where
a = P 2

v

cos2(ybrane)
,

b = r4
0

L4 sec2(ybrane) + r0
L

αPv sin(2ybrane) + r2
0

L2 α2 cos4(ybrane) ,

c = r4
0

L4 + r2
0

L2 α2 cos4(ybrane) .

(3.27)

The solutions to the quartic equation within the second parentheses in eq. (3.26) determine
the location of the intersection rbrane.

With the behaviour of rbrane as a function of Pv under control, we can determine the Pv

dependence of tbrane using the brane embedding (2.12) which in terms of ybrane looks like10

r2
brane
r2

0
=

1 − sin2(ybrane) tanh2
(

r0tbrane
L2

)
cos2(ybrane)

outside the horizon

r2
brane
r2

0
=

1 − sin2(ybrane) coth2
(

r0tbrane
L2

)
cos2(ybrane)

inside the horizon .

(3.28)

S2. Time difference between the boundary and the brane: we now need to evaluate
the time difference between the boundary and the brane along the extremal surface computing
the volume complexity, denoted by tbdy − tbrane, using the integral in (3.23). We only need
to evaluate this integral in the late time limit for computing the asymptotic behaviour of
complexity growth. To do this, we expand the momentum around its late time value,11

P 2
v = P 2

∞ ± δP 2 , (3.29)

where P∞ = r2
0

2L2 = r2
∞

L2 , and work perturbatively in δP .
10Note that in the most relevant case, and in particular whenever we are close to the boundary in parameter

space between Lloyd bound violating and respecting regions, determined by eq. (3.31), the intersection of the
extremal surface computing the volume complexity and the brane happens inside the horizon, but we keep
both expressions here for completeness.

11Recall that the momentum Pv is conserved as a function of the path parameter σ along its trajectory. But
different trajectories have different values of Pv which at late times (tbdy → ∞) approaches P∞, as explained
around (3.24).
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In terms of the effective mechanical picture of section 3.2, when the particle has energy
greater than the maximum of the potential, we use the plus sign in eq. (3.29). This positive
sign corresponds to a violation of the Lloyd bound, in the sense that dcV /dtbdy approaches
its asymptotic value from above, and is therefore not bounded by it. Conversely, when the
particle scatters off the potential, we use the negative sign in eq. (3.29), and the Lloyd bound
is satisfied. The integral of interest (3.23) can then be expressed as

I = −
∫ rbdy

rbrane

P∞ dr

L−2(r2 − r2
0)
√

L−4(r2 − r2
∞)2 ± δP 2 + O(δP 2) (3.30)

where we have used P∞ = r2
0

2L2 = r2
∞

L2 in the denominator. The contour of integration depends
on the location of rbrane with respect to r∞, which as we will explain below is intricately
tied to whether the Lloyd bound is violated or respected. The derivation of the late time
behaviour of tbdy − tbrane in different cases can be found in appendix B.2. This results in
an expression for (tbdy − tbrane) as a function of (rbrane, δP ).

S3. Late time expansion of Pv and dcV /dtbdy: in this final step, we utilize the results
obtained thus far to determine Pv. Inverting the result obtained in step two, we can find δP as
a function of (rbrane, tbdy − tbrane). Plugging the asymptotic expansion of rbrane(δP, α, ybrane)
and tbrane(δP, α, ybrane) from step one then gives us the late time expansion for Pv. Finally,
we use the relation (3.21) in order to find the late time rate of growth of volume complexity.

Employing the procedure outlined in S1–S3 above, we now summarize the late time rate
of growth of volume complexity in various regions of the bulk parameter space (ybrane, α). In
each case, we begin with a simple example before working out the more general problem.

Before moving on to the analysis, let us note that whether the Lloyd bound is respected
or violated for a certain choice of the bulk parameters can be easily seen via the Neumann
boundary conditions on the brane (3.16). More specifically, the analogy with the mechanical
picture in section 3.2 directly implies that the Lloyd bound is violated if and only if the
particle has energy higher than the maximum of the potential barrier in figure 3, i.e. P 2

v > P 2
∞.

Conversely, if the Lloyd bound is to be respected, the particle must have lower energy than
P 2
∞ and will therefore reach a minimum rmin > r∞ and bounce off from the potential barrier

to a larger rbrane. The marginal case corresponds to the extremal surface reaching the curve
r = r∞ at late times. For this to be consistent with the Neumann boundary condition,
we need ṙ

∣∣
brane = 0 at late times. Note that Pv = P∞ for r = r∞ which we will use in

eq. (3.16). This gives12

|α| = αc = − sin(ybrane)
cos3(ybrane)

r0
L

= r0
L

√
−(L2Λbrane)−1 − 1

(−L2Λbrane) , (3.31)

which is the boundary in the parameter space between the Lloyd bound respecting and the
Lloyd bound violating region, as we will discuss further below.

12The following is dependent on the choice Lbrane = L2 made in the normalization of the contact term in
eq. (2.21). For other choices, there should be an extra overall factor of Lbrane cos(ybrane)

L
.
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3.3.1 Boundary in the parameter space

We begin with the boundary between the Lloyd bound respecting vs violating regions in
the bulk parameter space of (ybrane, α), which is given by eq. (3.31). In this case, the Lloyd
bound is marginally satisfied.

No JT gravity, no tension. We begin by summarizing the simplest example, an ETW
brane without intrinsic JT gravity or tension. Specifically, this is the α = 0 and ybrane = 0
limit. Following the analysis of appendix B, the late time dependence of the intersection of
the brane and the extremal surface computing the volume complexity is

r2
brane
r2

0
= 1

2 + 2
(
3 − 2

√
2
) 1

2 e−
√

2r0
L2 tbdy . (3.32)

The intersection rbrane asymptotically reaches r∞ = r0/
√

2 from above.
Integrating (3.30) as in appendix B.2 and using the location of intersection (3.32) and

solving for the late time rate of complexity growth then gives

dcV

dtbdy
= r2

0
2GN L3

(
1 − 8

(
3 − 2

√
2
)√2

e−
2
√

2r0
L2 tbdy

)
+ O

(
e−4

√
2 r0

L2 tbdy

)
. (3.33)

It is clear that for the simple example we considered here, the complexity growth reaches its
asymptotic value from below, and therefore the Lloyd bound (2.23) is satisfied. This case
corresponds to exactly half of the double-sided black hole geometry [10] because the ETW
brane simply cuts the wormhole geometry in half at the y = 0 slice.

General case. More generally, the boundary in parameter space between the Lloyd bound
violating and respecting regions is given by eq. (3.31). For this more general case, the position
of the intersection of the brane and the extremal surface is

r2
brane
r2
∞

= 1 +
4
(
3 − 2

√
2
) 1√

2√
1 + sin2(ybrane)

√
D(ybrane) e−

√
2r0

L2 tbdy , (3.34)

where

D(ybrane) =
[sec(ybrane)√

6

(√
4 + 2 cos2(ybrane) + 2 sin(ybrane)

)]2
√

2
. (3.35)

At late times, rbrane approaches r∞ from above. Note that the tensionless limit (ybrane → 0)
with no JT coupling discussed earlier agrees with the analysis above.

Proceeding as the example above we find

dcV

dtbdy
= P∞

GN L
− 4r2

0

L3GN

(
1 + sin2(ybrane)

)2 (3 − 2
√

2
)√2

D (ybrane) e−
2
√

2r0
L2 tbdy . (3.36)

Thus, for the general case too, the Lloyd bound value is reached asymptotically from below,
respecting the bound. Of course, in the tensionless limit (ybrane → 0), the coefficient
D(ybrane) → 1, in agreement with the ybrane = 0, α = 0 case.
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3.3.2 Lloyd bound respecting region

When the magnitude of the JT coupling α is smaller than the critical value (3.31), the volume
complexity satisfies the Lloyd bound (2.23), in the sense that its time derivative is always
bounded by the asymptotic value, which we elucidate now. As before, we first discuss the
simpler case, namely when there is no JT coupling but the tension of the brane is nonzero,
after which we generalize our findings to the case of nonzero JT coupling.

No JT gravity, nonzero tension. For the case with JT coupling α = 0, and nonzero
tension, ybrane ̸= 0, the position of the intersection of the brane and the extremal surface
computing the volume complexity is

r2
brane
r2
∞

= 1
1 + sin(ybrane)

−
8
(
3 − 2

√
2
)√2

L2 sin(ybrane)
B(ybrane) D(ybrane) e−

√
2r0

L2 tbdy , (3.37)

where

B(ybrane) =
(

2 csc(ybrane)
(√

1 + sin(ybrane) − 1
)
− 1

)
×(

3 + 2 sin(ybrane) + 2
√

2 + 2 sin(ybrane)
|1 + 2 sin(ybrane)|

) 1√
2

,

D(ybrane) = exp

√2 coth−1

− csc(ybrane)

√
3 − sin(ybrane)

2

 .

(3.38)

Keeping in mind that −1 < sin(ybrane) < 0, we see that rbrane > r∞, and it reaches its final
value from above. To derive eq. (3.37), we are in the regime e−

√
2r0

L2 tbdy ≪ ybrane.
Integrating eq. (3.30) as in appendix B.2 and using eq. (3.37), we find

dcV

dtbdy
= P∞

GN L
− 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(ybrane) D(ybrane) e−
√

2r0tbdy
L2 . (3.39)

Note that limybrane→0 B(ybrane) ∝ −ybrane, which vanishes in the tensionless limit. In this
case, the subleading corrections of order O

(
exp

(
−2

√
2r0

L2 tbdy
))

in eq. (3.39) become relevant,
which is in agreement with the result with zero tension (3.33).

Near the boundary in parameter space. Next, we consider small deviations from the
boundary into the Lloyd bound respecting region in parameter space. For concreteness, we
focus on the late time expansion tbdy → ∞ with α > 0.13

First, we find the location of the brane for

α = αc − δα , (3.40)

13The present analysis in the late time regime constrains α < αc, where αc is positive, which is why we pick
α > 0 for this analysis. A similar analysis for tbdy → −∞ provides a lower bound α > −αc.
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with a small δα > 0 but at times late enough such that e−
√

2r0
L2 tbdy ≪ δα. The position of the

intersection of the brane and the extremal surface computing the volume complexity is

r2
brane
r2
∞

= 1+ L

r0
cos3(ybrane)

(√
1+sin2(ybrane)−sin(ybrane)

)
δα

+
8
(
3−2

√
2
)√2

L2δα

1+sin2(ybrane)
cos3(ybrane)

B(ybrane, δα)D(ybrane, δα)e−
√

2r0
L2 tbdy ,

(3.41)

where

log B(ybrane, δα) =
√

2 tanh−1
( 1√

2
+ 1√

2
L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
− 2 coth−1

(
1 + L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
, (3.42)

log D(ybrane, δα) =

−
√

2 coth−1

√
2 + cos2(ybrane)

2 sin2(ybrane)
+ L

2r0

cos5(ybrane)
sin2(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα.

This result is consistent with eq. (3.37) in the limit α → 0, which implies ybrane is O(δα).
The intersection of the extremal surface and the brane remains above r∞ and approaches
its asymptotic value from above as a function of time. Notice that the late time value of
rbrane approaches r∞ from above as δα becomes smaller.

Integrating eq. (3.30) and putting the above results together, we find that

dcV

dtbdy
= P∞

GN L
− 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(ybrane, δα) D(ybrane, δα) e−
√

2r0tbdy
L2 . (3.43)

Importantly, close to the boundary in parameter space, when δα → 0, the late time value of
rbrane approaches r∞ and the coefficient in front of the exponential in eq. (3.43) vanishes since
B(ybrane, δα) ∼ δα. When this happens, the subleading corrections would become important,
which is in agreement with the results of the boundary in parameter space in eq. (3.36). This
is consistent with our findings for the simple example of (α = 0, ybrane ̸= 0) discussed above.
There the asymptotic value of rbrane approached r∞ for ybrane → 0 which led to a vanishing
leading exponential correction to δP and to dcV /dtbdy.

3.3.3 Lloyd bound violating region

When the JT coupling is bigger than the critical value (3.31), the volume complexity violates
the Lloyd bound (2.23), and dcV /dtbdy reaches its asymptotic value at late times from
above.14 The simplest example of this class is when there is a nonzero JT coupling and the
brane is positioned at ybrane = 0. This occurs when the cosmological constant Λbrane on the
brane matches the cosmological constant Λbulk of the bulk AdS3.

14For α < −αc, the asymptotically early time (tbdy → −∞) value is reached from below, also in violation of
the Lloyd bound. An identical analysis applies to the α < 0 setting at early times.
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Nonzero JT coupling, equal cosmological constants. We begin with the case Λbrane =
Λbulk, so the location of the brane is set to ybrane = 0. In this limit, for any α ̸= 0, the
intersection of the brane and the extremal surface computing the volume complexity is given by

r2
brane
r2
∞

= 1 − L|α|√
r2

0 + L2α2
+ 4r2

0

L|α|
√

r2
0 + L2α2

(
3 − 2

√
2
)√2

B(α)e−
√

2r0
L2 tbrane , (3.44)

where

B(α) =
(

2β − 2
√

β2 − β − 1
)(3β + 2

√
2
√

β2 − β − 1
1 + β

) 1√
2

(3.45)

with β2 = 1 + r2
0

L2α2 . Contrary to the Lloyd bound respecting cases, the point of intersection
reaches deeper towards the singularity, rbrane < r∞, due to the contact term associated
with JT gravity pulling it inwards.

Putting these expressions together, we find that

dcV

dtbdy
= P∞

GN L
+ 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(α) e−
√

2r0tbdy
L2 . (3.46)

As mentioned, this violates the Lloyd bound (2.23) as the asymptotic value is reached from
above. Notice that for α → 0, the coefficient B(α) ∼ α vanishes as expected because the
asymptotic value of rbrane approaches r∞ for small α. This is in agreement with the results
of the boundary in parameter space in eq. (3.33).

Near the boundary in parameter space. We now generalize our findings and perform
a similar analysis to the one presented in section 3.3.2, using a perturbative expansion for
the JT coupling,

α = αc + δα , (3.47)

to locate the boundary in parameter space where there occurs a violation of the Lloyd bound
via eq. (3.26), assuming a small δα > 0 but at late enough times such that e−

√
2r0

L2 tbdy ≪ δα.
The location of the intersection of the brane and the extremal surface computing the volume
complexity is given by

r2
brane
r2
∞

= 1 − L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα (3.48)

+ 8r0
Lδα

√
1 + sin2(ybrane)
cos3(ybrane)

(
3 − 2

√
2
)√2

B(ybrane, δα)D(ybrane, δα)e−
√

2r0
L2 tbdy ,

– 23 –



J
H
E
P
0
3
(
2
0
2
4
)
1
7
3

where

log B(ybrane, δα) =
√

2 tanh−1
( 1√

2
− 1√

2
L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
− 2 tanh−1

(
1 − L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
, (3.49)

log D(ybrane, δα) =

−
√

2 coth−1

√√√√√2 + cos2(ybrane)
2 sin2(ybrane)

+
L cos5(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
2r0 sin2(ybrane)

δα.

This is consistent with eq. (3.44) for ybrane = 0 and small α ∼ δα. The asymptotic value of
rbrane is smaller than r∞ for nonzero δα and it is reached from above.

Integrating eq. (3.30) and utilizing the above results gives

dcV

dtbdy
= P∞

GN L
+ 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(ybrane, δα) D(ybrane, δα) e−
√

2r0tbdy
L2 , (3.50)

violating the Lloyd bound. As before, note that in the limit δα → 0, the coefficient
B(ybrane, δα) ∼ δα vanishes because the value of rbrane asymptotes to r∞, and the subleading
corrections would become important for the late time dependence of dcV /dtbdy. This is in
agreement with the results of the boundary in parameter space in eq. (3.36).

3.4 Summary of the analytic results

To summarize the analysis of the previous subsections, whether the Lloyd bound is satisfied
or not depends ultimately on whether the Neumann boundary condition (3.16) sets ṙ|brane
to a positive or negative value at very late times. This condition can be translated to a
bound on the magnitude of the JT coupling α in terms of the position of the brane ybrane
(or equivalently, the brane cosmological constant Λbrane), and the size of the black hole in
units of AdS3 length r0/L, see eq. (3.31). The bounds for positive (negative) α are found
from the late time (early time) behaviour of the rate of change of complexity. The features
for α < 0 at tbdy < 0 are symmetric to the ones for α > 0 at tbdy > 0, so for simplicity
we focus on the α > 0 starting from tbdy ≥ 0.

Consider α < αc and the extremal surface anchored at some fixed tbdy at the right
asymptotic boundary at rbdy. As a function of σ, it initially falls to a smaller radius and
crosses the event horizon. Inside the black hole, it reaches a turning point rmin > r∞ and
turns to a larger radius towards the excised left asymptotic boundary. Depending on the
parameters of the model, and the boundary time tbdy, it may or may not leave the left horizon.
In either case, it reaches the ETW brane at rbrane > r∞ as in eq. (3.41), at which point its
trajectory stops. If we now change the anchoring point by increasing tbdy, the turning point
rmin approaches r∞ from above. In these cases, the extremal surface never probes the region of
the black hole closer to the singularity than r∞, and the Lloyd bound is respected at all times.

For α > αc, the extremal surfaces anchored at small fixed tbdy follow qualitatively similar
trajectories to the ones for α < αc. However, for late times (large tbdy), this behaviour
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changes. In particular, there is no turning point rmin and they simply fall from rbdy to
rbrane < r∞, see (3.48). This qualitative change in the trajectory of the extremal surfaces
occurs precisely when the Lloyd bound is violated. Moreover, the trajectory of the maximal
volume slice tends towards the singularity at r = 0 but is stopped at the location of the
brane. This follows from the analogy with the mechanical picture in section 3.2, as shown in
figure 3. In this setting, the maximal volume slices probe the geometry deeper than r∞, a
region that is not accessible in the Lloyd bound respecting cases.

For α = αc, we are at the boundary between the two cases. The features of the extremal
volume surfaces are similar to the α < αc case for early times. The features of the maximal
volume surface at late times is a limit between the two cases described above. For a fixed,
large tbdy the maximal volume surface falls from rbdy to a turning point rmin and barely turns
around before intersecting the brane at rbrane and ending their trajectory there. The location
of rbrane is asymptotically close to its turning point, and both approach r∞ as the boundary
time tbdy goes to infinity. In this case, we find that the order of the correction to the rate of
change of complexity is subleading compared to the cases in each region. Specifically, the
coefficient in the exponential time falloff in eq. (3.36) is twice the coefficient found in the other
cases (3.43) and (3.50). In this sense, the Lloyd bound is marginally satisfied when α = αc.

4 Numerical results for full time dependence of volume complexity

After analytically examining the late time behaviour of complexity growth in the previous
section, we now proceed to numerically compute the full time dependence of the volume
complexity for the planar BTZ geometry with a subcritical ETW brane. Considering first the
simpler case of no intrinsic gravitational dynamics on the brane, we numerically extract the
time dependence of the volume complexity. Subsequently, we endow the brane with JT gravity
and again compute the full time dependence of complexity. When the magnitude of the JT
coupling is larger than αc in eq. (3.31), we observe a violation of the Lloyd bound (2.23),
confirming the findings of section 3.3. The global coordinate system introduced in section 2,
which covers the entire maximally extended planar BTZ geometry, is well suited for the
numerical approach we take in the present section.

4.1 No intrinsic dynamics on the brane

Consider the CFT state defined on a time slice τ = τbdy. To compute the associated
volume complexity, we need to look for bulk codimension-one surfaces anchored at τbdy which
extremize eq. (2.20). We will parametrize this bulk surface by τ = τ(y). We also introduce
the cutoff near AdS boundary yϵ which in global coordinates can be related to the radial
cutoff in Schwarzschild coordinates imposed in (3.9) at rmax = L/ϵ:

yϵ = π

2 − ϵ r0
L

cos τbdy. (4.1)

We gauge fix the extremal surface parameter introduced in section 3 as σ = yϵ − y. From
eq. (2.7), the induced metric on this surface is

ds2
ind = 1

cos2 y

(
L2
[
1 − τ̇(y)2

]
dy2 + r2

0
L2 cos2 τ(y) dx2

)
, (4.2)
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where an overhead dot denotes a derivative with respect to y. Thus, the volume of the surface is

Vol = ℓr0

∫ yϵ

ybrane
dy

cos τ(y)
cos2 y

√
1 − τ̇(y)2 . (4.3)

Here ℓ denotes the length of the interval on the boundary along the x direction, which factors
out due to translation invariance. The location of the brane is given by ybrane and yϵ will
regulate the otherwise divergent volume.

The dependence on the Schwarzschild time tbdy can be reintroduced by using the relation
with τbdy on the boundary,

tbdy = L2

2r0
log

(
1 + sin τbdy
1 − sin τbdy

)
. (4.4)

The cutoff yϵ can then be expressed as

yϵ = π

2 − ϵ r0
L

sech
(

r0tbdy
L2

)
. (4.5)

Now, for τ(y) to be an extremal surface, the variation of the volume (4.3) should vanish
under small variations of the surface. Replacing τ(y) → τ(y) + δτ(y) in eq. (4.3) gives

δVol = ℓr0

∫ yϵ

ybrane
dy

[
d
dy

(
cos τ(y)
cos2 y

τ̇(y)√
1 − τ̇(y)2

)
− sin τ(y)

cos2 y

√
1 − τ̇(y)2

]
δτ(y)

− ℓr0
cos τ(y)
cos2 y

τ̇(y)√
1 − τ̇(y)2 δτ(y)

∣∣∣∣yϵ

ybrane

.

(4.6)

The second line above denotes the two boundary terms that are generated in computing
the variation δVol. For the surface to be extremal, we must have the variation δVol = 0.
This is achieved by setting the integrand in the first line of eq. (4.6) to vanish, which can
equivalently be expressed as

τ̈(y) =
(
1 − τ̇(y)2

)
[tan τ(y) − 2 tan y τ̇(y)] , (4.7)

along with a Dirichlet boundary condition at the AdS boundary, as well as a Neumann
boundary condition at the location where the surface intersects the ETW brane. These
are given by

τ(yϵ) = τbdy , τ̇(y)|ybrane = 0 , (4.8)

respectively. The Dirichlet boundary condition at the AdS boundary ensures that the extremal
surface is anchored on the boundary at τbdy, while the Neumann boundary condition at the
location of the brane implies that the extremal surface and the brane intersect at a right
angle. Eq. (4.7) determines the trajectory of the extremal surface in the bulk. Though a full
analytic solution seems difficult to achieve, the equations of motion can be solved numerically
in a straightforward manner. See figure 4 for trajectories of the extremal surfaces as they
appear in the bulk, corresponding to different values of the brane location. As it turns out,
the smaller the region of spacetime beyond the horizon cut off by the brane, or equivalently
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(a) ybrane = 0 (b) ybrane = −π
4 (c) ybrane = −1.5

Figure 4. Plots representing the maximal volume surfaces for different values of the brane location.
We have suppressed the transverse direction, which respects translation invariance. The larger the
brane tension (i.e., more negative ybrane), the smaller the region spanned by the extremal surfaces on
the brane.

the larger the brane tension, the smaller the region spanned by the extremal surfaces on the
brane. Furthermore, the intersection of the maximal volume surface and the brane occurs at
a larger distance from the singularity for larger tension, in agreement with eq. (3.37).

We can also compute the volumes of the extremal surfaces anchored at different instants of
time on the boundary, eq. (4.3), by first numerically determining the trajectory of the surface
using eq. (4.7), with the boundary conditions (4.8), and then evaluating the volume (4.3). This
can, in turn, be used to extract the time dependent behaviour of volume complexity (2.20),
which is plotted in figure 5(a) as a function of the boundary time.15 Also, in figure 5(b),
we plot the rate of change of the volume complexity with respect to the boundary time
for different choices of the brane location. As is evident from the plots, the magnitude of
dcV /dtbdy asymptotes to the same value for both early and late times (tbdy → ±∞), which
is independent of the brane’s location. This asymptotic value corresponds to the Lloyd
bound on complexity growth (2.23). Furthermore, the magnitude of dcV /dtbdy reaches its
asymptotic values from below. Thus, we see that in the absence of any intrinsic dynamics on
the brane, the Lloyd bound is always respected by the volume complexity, as expected from
the analysis of section 3.3.2. In the tensionless case, this result agrees with the asymptotic
analysis performed in appendix A, see eq. (A.15).

15To obtain an ϵ-independent result, we first define a “renormalized” volume, which is obtained by subtracting
off the volume contribution of an extremal surface in the global AdS3 geometry,

Volrenorm. = Vol − VolAdS3 ,

where VolAdS3 is given by

VolAdS3 = ℓL
(1

ϵ
− 1
)

.

With this prescription, the renormalized volume complexity, also known as the complexity of formation, per
unit length is then simply given by Volrenorm./GN L ℓ.
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-3 -2 -1 1 2 3
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-0.25
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(b)

Figure 5. The plots above depict the (renormalized) volume complexity and its rate of change
for the translationally invariant boundary CFT state as a function of the boundary time. The red,
green, and blue curves correspond to the brane locations ybrane = 0,−π

8 ,−π
4 respectively. In (b), the

asymptotically early/late time value of dc
V

/dtbdy corresponds to the Lloyd bound. We have chosen
to work with L = r0 = GN = 1.

4.2 JT gravity on the brane

Let us now explore in detail the consequences of including intrinsic gravitational dynamics
localized on the brane, in particular, the Jackiw-Teitelboim (JT) model of two-dimensional
gravity, introduced in section 2.1. As discussed in section 2.2, the presence of intrinsic
dynamics on the brane modifies the volume complexity proposal with an additional contact
term at the location of the brane (2.21). We write the contact term in eq. (2.21) in the form

Vol(B ∩ brane)
Gbrane

N Lbrane = ℓ φ(τbrane)
Gbrane

N L2
, (4.9)

where φ(τbrane) is given in (2.18). If τ = τ(y) is the surface that extremizes eq. (2.21), then
the (renormalized) volume complexity per unit length for the CFT state on the boundary
is now given by

cV = φ(τbrane)
Gbrane

N L2
+ r0

GN L

∫ yϵ

ybrane
dy

cos τ(y)
cos2 y

√
1 − τ̇(y)2 − 1

GN

(1
ϵ
− 1

)
. (4.10)

The extremal slice τ(y) still satisfies eq. (4.7), with the Dirichlet boundary condition τ(yϵ) =
τbdy at the AdS boundary. However, the Neumann boundary condition at the intersection
of the extremal slice with the brane now becomes

φ′(τbrane)
Gbrane

N L2
+ r0

GN L

cos τbrane
cos2 ybrane

τ̇(ybrane)√
1 − τ̇(ybrane)2 = 0 , (4.11)

where the prime denotes a derivative with respect to τ . Putting in the dilaton profile (2.18),
this leads to the boundary condition

τ̇(ybrane) = − αL2 cos2 ybrane√
α2L4 cos4 ybrane + r2

0L2
2

, (4.12)
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(a) α = 0 (b) α = 1 (c) α = 5 (d) α = 10

Figure 6. Plots representing the maximal volume slices for different values of the JT coupling α, with
the brane located at ybrane = 0. The plots for the corresponding negative values of α can be obtained
by reflecting the ones above about the τ = 0 horizontal axis. We have set L = L2 = r0 = GN = 1.
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-0.6
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0.49

0.5

0.51

Figure 7. Rate of change of volume complexity (per unit boundary interval length) as a function of
the boundary time for different values of the JT coupling α, with ybrane = 0. From top to bottom, we
have α = 1, 0.5, 0.1, 0 (i.e. no JT, shown in red),−0.5,−1 respectively. The inset shows the zoomed-in
asymptotic behaviour for α = 0.1, indicating that it too approaches the Lloyd bound from above,
similar to the cases α = 0.5 and 1. For negative α, the Lloyd bound is violated in the past. We have
chosen L = L2 = r0 = GN = 1.

where the JT coupling α is defined in eq. (2.19). The presence of JT gravity thus leads to a
nontrivial change in the boundary condition that the extremal surface is required to meet,
apart from shifting the value of the complexity itself via the contact term contribution.

We can now numerically explore the effects of the presence of JT gravity on the trajectories
of the extremal surfaces as well as for the rate of change of the volume complexity itself.
For instance, for the brane located at ybrane = 0, figure 6 shows the plots of the extremal
surfaces for different values of the JT coupling α. The behaviour of the extremal surface
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trajectories is markedly different from the scenario with no JT gravity on the brane, see
figure 4. In particular, for α > 0 the intersection between the maximal volume surface and
the brane goes closer to the future singularity for late time surfaces, and farther from the
past singularity for early time surfaces, as was explained in section 3.3. Figure 7 depicts the
behaviour of the rate of change of volume complexity per unit interval length as a function
of the boundary time for different choices of α, with the brane located at ybrane = 0. Note
that for the illustrative choice of the bulk parameters we make, L = L2 = r0 = GN = 1,
the Lloyd bound (2.23) demands that |dcV /dtbdy| ≤ 0.5. The bound is not respected by
the growth of complexity for any nonzero choice of the JT coupling α, as expected from
the analysis in section 3.3.3, see eq. (3.46).

Interestingly, unlike the case for ybrane = 0, for −π/2 < ybrane < 0, a finite range of values
for the JT coupling α exists which leads to a rate of change of complexity in agreement with
the Lloyd bound. For instance, figure 8 depicts the rate of change of complexity as a function
of boundary time when ybrane = −π/4. We numerically observe that the Lloyd bound is now
respected for |α| ≲ 2. For α ≳ 2 the Lloyd bound is violated in the future, and for α ≲ −2 it
is violated in the past. This behaviour can further be checked numerically for other values
of the bulk parameters (ybrane, α) as well. Thus, depending upon the location of the brane
in the bulk spacetime, one gets a finite range of values for the JT coupling α which leads
to complexity growth in agreement with the Lloyd bound. This agrees with the findings of
section 3.3, and provides a numerical confirmation for the analytic results obtained in the
previous section, in particular the bound given by eq. (3.31),

|α| ≤ r0
L

| tan ybrane|
cos2 ybrane

, (4.13)

which defines the region of the parameter space (ybrane, α) that respects the Lloyd bound.
Another aspect of the analytic understanding gained in the previous section that can

also be observed via numerically studying the full time dependence of the volume complexity
pertains to the effective mechanical picture presented in section 3.2. We found that depending
upon the energy of the particle compared to the height of the potential barrier, see figure 3,
the Lloyd bound was either satisfied, marginally satisfied, or violated. For these three cases,
respectively, the particle either scattered off from the barrier, could marginally reach the top
of the barrier, or could go past the barrier towards the singularity at r = 0 until it terminates
on the brane. The same behaviour can be observed in terms of the actual trajectories of
the extremal volume surfaces computed numerically, as depicted in figure 9. For illustrative
purpose we choose the brane location to be ybrane = −π/4, with L = L2/

√
2 = r0 = GN = 1.

For this choice of parameters and following eq. (4.13), the Lloyd bound is met when |α| ≤ 2.
In figure 9, we observe that if we extend the extremal volume surfaces past the ETW brane,
they make it to the left asymptotic boundary when the Lloyd bound is respected, 0 < α < 2.
When the Lloyd bound is marginally satisfied, α = 2, the latest extremal surface barely
makes it to the left asymptotic boundary, whilst for the Lloyd bound violating regime α > 2,
the late time surfaces start falling into the singularity without being able to reach the left
asymptotic boundary. This behaviour of the extremal surfaces either falling into or escaping
the singularity is in exact analogy with the particle in the effective mechanical picture being
able to go beyond the potential barrier to reach r = 0 or being scattered off.
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Figure 8. The left panel shows the rate of change of volume complexity as a function of the boundary
time for different values of the JT coupling α, with ybrane = −π/4. From top to bottom, we have
α = 4, 3, 2, 1, 0 (i.e. no JT, shown in red),−1,−2,−3,−4 respectively. In the right panel, from top
to bottom, we have α = 2.02, 2.01, 2, 1.99, 1.98 respectively. Clearly, for |α| ≳ 2, the Lloyd bound
gets violated. This is in agreement with the analytic results presented in section 3. We have chosen
L = L2/

√
2 = r0 = GN = 1.

(a) α = 0 (b) α = 1 (c) α = 2 (d) α = 5

Figure 9. Extension of the extremal volume surfaces beyond the ETW brane. In the plots above, we
have chosen ybrane = −π/4, and the parameters L = L2/

√
2 = r0 = GN = 1. For 0 ≤ α < 2, which

belongs to the Lloyd bound respecting region of the bulk parameter space for the above parameter
choices, the extremal surfaces reach the left asymptotic boundary when extended past the brane. At
exactly α = 2, which belongs to the boundary between the Lloyd bound respecting and violating
regions, the latest extremal surface barely makes it to the left boundary. For α > 2, belonging to the
Lloyd bound violating region, several extremal surfaces cannot make it to the left boundary and start
falling into the singularity. The plots for α < 0 can be obtained by reflecting the above about the
τ = 0 line.
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5 Wormhole perspective on the Lloyd bound and bulk energy conditions

In the previous sections, we have mapped out the respective regions in the space of parameters
(α, ybrane) which either obey or violate the Lloyd bound on complexity growth. However, so
far we have not provided any physical argument for why the Lloyd bound gets violated in
the first place. The goal of this section is to discuss the physical underpinnings of the Lloyd
bound violation from the point of view of bulk gravitational dynamics.

5.1 The wormhole perspective

Our approach here is motivated by results from the work of Engelhardt and Folkestad [23].
They argue that the Lloyd bound for holographic volume complexity is related to the weak
curvature condition (WCC) for a certain class of asymptotically AdS spacetimes:16

ξµξν
(

Rµν − 1
2gµνR − d(d − 1)

2L2 gµν

)
≥ 0 , ∀ timelike ξµ . (5.1)

In Einstein gravity, the WCC becomes the weak energy condition (WEC). The BTZ
spacetime with an ETW brane, which we have been studying so far, is quite different from
the class of spacetimes for which the rigorous results of [23] apply. However, as we argue
below, one can replace the original BTZ black hole with an ETW brane for a spacetime
that is closer to the regime of applicability of the Engelhardt-Folkestad statements, while
displaying the same behaviour for volume complexity as our original model.

To apply the arguments of [23], we require all the boundaries of the spacetime to be
asymptotically AdS. We can achieve this by doubling the original planar BTZ + ETW
brane geometry. The construction of the new effective spacetime is shown in figure 10. To
emulate the presence of the brane in the two-sided geometry, we replace the brane with a
thin shell of matter, which moves along some profile inside the event horizon when viewed
from either boundary. The two halves of the geometry are glued along the worldvolume
of the shell using the Israel junction conditions. Thus, the new spacetime can be thought
of as a long asymptotically AdS wormhole, supported by a shell of matter with a given
energy-momentum tensor. From the gravitational point of view, the profile of the shell
determines the energy-momentum of the shell.

From the point of view of the volume complexity functional, the presence of the shell
modifies the volume complexity of the two-sided BTZ geometry. In particular, we can fine-
tune the profile of the shell in such a way that the resulting contribution to the complexity
functional matches twice the contact term contribution from JT gravity present on the ETW
brane in the single-sided setup, determined by the dilaton contribution to the volume (3.3) in
the original geometry. In that case, the volume of the extremal surface B′ = B′

L ∪ B′
R is the

same by construction as twice that for B plus two times the contact term evaluated at B∩brane
at any asymptotic time. In what follows, we will refer to the newly constructed two-sided
model as the wormhole picture, and to the original ETW brane model as the brane picture.

16In particular, for the Einstein-Maxwell-scalar theory with spherical symmetry, as well as for any general
gravitational theory with matter that has compact support with spherical or planar symmetry in spacetime
dimensions d + 1 ≥ 4, ref. [23] rigorously proves that the WCC is sufficient for the Lloyd bound to hold in
asymptotically AdSd+1 spacetimes.
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(a) (b)

Figure 10. Two systems with the same volume complexity. (a) Two identical and disjoint copies
of a BTZ black hole in the presence of ETW branes (thick black line) with an intrinsic JT gravity
theory, each with an identical maximal volume slice B. (b) A long wormhole formed by gluing two
BTZ geometries along the worldvolume of a shell of matter (blue). The maximal volume slice is
B′ = B′

L ∪ B′
R. The shell profile shown in (b) is fine-tuned to ensure that the volume of B′

L (or B′
R)

corresponds to the volume of B plus the contact term evaluated at the intersection of B and the brane
in (a).

We express the shell profile by17

yshell = y0 + y1(τ) (5.2)

where y0 is the location of the original ETW brane, determined by Λbrane. The volume of
any candidate extremal surface parametrized by (τ(σ), y(σ), x) in the wormhole picture is
given by the functional (4.3), which in a general parametrization is

Vol = ℓr0

∫
dσ

cos τ

cos2 y

√
ẏ2 − τ̇2 , (5.3)

where an overhead dot denotes a derivative with respect to the parameter σ.
Because of the Z2 symmetry in the setup, we can simply evaluate the volume of one of

the components of B′, say B′
R, and multiply the final result by two. From this point of view,

the extremal surface B′
R is that of half of the long wormhole geometry, with one boundary

along the shell of matter and the other being the right asymptotic AdS3 boundary. The
on-shell variation of the volume functional (5.3) for B′

R gives

δVolon−shell =
∫ ∂AdS3

shell
dσ(Pτ δτ + Pyδy). (5.4)

This variation should be set to zero for extremality of B′
R, which imposes boundary conditions

at the asymptotic boundary and the shell worldvolume. The boundary conditions at the
asymptotic AdS3 boundary are the same Dirichlet boundary conditions as in eq. (4.4) and

17Note that the two sides of the wormhole are covered by their own sets of global (τ, y) coordinates. The
τ -coordinate is glued in such a way that equal−τ slices are continuous across the gluing surface.
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eq. (4.5),

τbdy = arcsin
(

tanh
(

r0tbdy
L2

))
,

ybdy = yϵ = π

2 − ϵ r0
L

sech
(

r0tbdy
L2

)
.

(5.5)

With the shell profile (5.2), the Dirichlet boundary condition along the worldvolume of
the shell is

δy − y′1(τ)δτ

∣∣∣∣
shell

= 0. (5.6)

Next, we substitute the Dirichlet boundary condition from eq. (5.6) into eq. (5.4), and demand
the total variation to vanish for extremal surfaces. This results in the following Neumann
boundary condition along the shell

Pτ δτ + Pyδy

∣∣∣∣
shell

= (Pτ + Pyy′1(τ))δτ

∣∣∣∣
shell

= 0. (5.7)

The canonical momenta can be found using the explicit Lagrangian (4.3),

Pτ = ℓr0
cos τ

cos2 y

−τ̇√
ẏ2 − τ̇2 , (5.8)

Py = ℓr0
cos τ

cos2 y

ẏ√
ẏ2 − τ̇2 . (5.9)

Using the above expressions, the Neumann boundary condition (5.7) simplifies to

τ̇

∣∣∣∣
shell

= y′1ẏ

∣∣∣∣
shell

, (5.10)

which simply states that the extremal surface B′
R intersects the worldvolume of the shell

at a right angle.
We want to fine-tune the shell profile y1(τ) so that the change in the volume of the

extremal surface B′
R compared to B reproduces the τ -dependent part of the contact term in

the complexity associated to the surface B in the brane picture. To this end, we compute the
volume contribution (4.3) to complexity from the portion of the extremal surface between the
shell and y0, and match this to the τ -dependent part of the contact term in eq. (4.10). Using
the dilaton profile (2.18), we can express the relevant contribution to the contact term as

ℓr0ε sin τbrane , (5.11)

where ε ≡ L2

r0L2
α. We want to equate this contribution to the difference in the volumes of the

extremal surface B′
R and B. Though we expect the procedure outlined above for computing

the shell profile to work in general, finding the exact form of the function y1(τ) analytically is
in practice quite involved, and we therefore resort to a perturbative approach in the following.
We will assume that y′1(τ) ≪ 1 in the region probed by the extremal surfaces, which, as we
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Figure 11. Comparing the rate of change of complexity associated with the extremal surfaces B′
R

and B when α ≪ 1 at very late times between the brane perspective (blue circles) and the wormhole
perspective (red stars). For illustrative purposes we have chosen α = 0.01, ybrane = 0 here, with
L = L2 = r0 = GN = 1. Clearly, the wormhole description captures the rate of change of complexity
quite well, including the Lloyd bound violating behaviour.

will see soon, is true for a small JT coupling α. From eq. (5.10), this assumption implies that
τ is approximately constant between y0 and yshell, so that the difference in volumes is

∆Vol = ℓr0

∫ y0

yshell
dỹ

cos τ

cos2 ỹ

√
1 − τ ′(ỹ)2

≈ ℓr0 cos τbrane(tan y0 − tan yshell) .

(5.12)

Equating this difference in volume between B′
R and B with the τ -dependent part of the

contact term (5.11) gives

yshell = arctan(tan y0 − ε tan τbrane). (5.13)

For |ε| tan τbrane ≪ 1, we can approximate the shell profile as18

yshell ≈ y0 − ε cos2 y0 tan τbrane, (5.14)

where we recall that ε ≡ L2

r0L2
α.

Taking the derivative of eq. (5.13) leads to

y′1(τ) = −ε sec2 τ

1 + (ε tan τ − tan y0)2 . (5.15)

Notice that y′1(τ) ≪ 1 implies that ε and thus the JT coupling α is small.
18On the other hand, for |ε| tan τbrane ≫ 1, the shell profile becomes

yshell ≈ −π

2 +
(

π

2 tan y0 − 1
)τbrane − π

2
ε

.

However, the maximal volume surfaces B′
R will not be sensitive to this region of the shell profile.
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Following the method in section 4, we can use the boundary conditions (5.10) and (5.13)
to solve for the trajectory of B′

R numerically. The volume of B′
R can then be evaluated via (5.3),

and its time dependence read off from the location at which B′
R reaches the asymptotic

boundary via (5.5). The comparison between the rate of change of complexity in the wormhole
picture and the brane picture is displayed in figure 11. We notice there is perfect agreement
between the two approaches, which confirms that the wormhole picture is an alternative
description of the original system, as far as computing holographic complexity is concerned.

5.2 Weak energy condition in the wormhole picture

Having established the equivalence of the wormhole and the brane pictures for the CV
computation, we now proceed to study the WCC (5.1) in the wormhole picture in connection
with the violation of the Lloyd bound. The expression in parenthesis in eq. (5.1) is the
Einstein tensor, so in Einstein gravity WCC becomes the WEC:

Tµνξµξν ≥ 0 , ξ2 = ξµξνgµν < 0 , (5.16)

where ξµ is an arbitrary timelike vector. In [23], the WEC is stated to be a sufficient condition
for meeting the Lloyd bound in Einstein gravity

WEC ⇒ Lloyd bound . (5.17)

In contrast to the brane picture, the wormhole picture introduced in the previous
subsection is asymptotically AdS3, and one can apply the findings of [23].19 We start by
arguing that a nonzero JT coupling in the brane picture always leads to a violation of the
WEC in the wormhole picture, see eq. (5.29). Given that the violations of the Lloyd bound
we observe occur at nonzero JT coupling, our results are therefore compatible with (5.17).
However, in the above sections 3.3 and 4, and in particular eq. (3.31), we have shown that
a non-zero JT coupling does not always imply a violation of the Lloyd bound, provided
that the brane cosmological constant is small enough to support it. This suggests that we
can explore a weaker energy condition than WEC which nonetheless is sufficient to ensure
that the Lloyd bound is satisfied.

To proceed in detail, let us assume that the worldvolume of the shell is embedded into the
wormhole spacetime by wµ = (τ(η), y(η), x). For definiteness, we focus on the right half of the
wormhole, so that y0 < 0. The functions τ(η) and y(η) should follow the profile of eq. (5.13):

τ(η) = η , y(η) = arctan (tan y0 − ε tan η) . (5.18)

The coordinates on the shell worldvolume are za = (η, x). The normal vector to the shell
worldvolume nµ, pointing outwards, has the form

nµ = − cos y

L
√

τ̇2 − ẏ2 (ẏ, τ̇ , 0) , (5.19)

19Strictly speaking, the results of [23] apply to spacetime dimension d + 1 ≥ 4, which does not include our
case of d = 2. Nonetheless, we can ask whether there is a relation between the WEC and the Lloyd bound
in d + 1 = 3.
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where the dot denotes the derivative with respect to η. The matter stress tensor is related to
the extrinsic curvature of the matter shell via the Israel junction conditions [108]:

Tµν = 1
8πG3

∫
dz2(∆Kµν − ∆Khµν)δ(xµ − wµ(za)) , (5.20)

where the transverse projector hµν and the extrinsic curvature are defined in a standard way:

hµν = gµν − nµnν , Kµν = ∇µnν (5.21)

The stress tensor Tµν is nontrivial only on the worldvolume of the shell, the rest of the bulk
spacetime is a solution of the vacuum Einstein equations. Furthermore, eq. (5.20) explicitly
shows that the stress tensor associated with the shell is tangential to the worldvolume of
the shell, i.e., Tµνnν = 0. Therefore, in our wormhole spacetime the WEC condition (5.16)
in the bulk is equivalent to the WEC on the shell worldvolume:

Tabξ
aξb ≥ 0 , (5.22)

where Tab ≡ ∂wµ

∂za
∂wν

∂zb Tµν(wµ) is the pullback of the stress-energy tensor Tµν on the shell
worldvolume, and ξa is any timelike vector on the shell worldvolume. Therefore, from this
point onwards, we will focus on studying the condition (5.22).

To compute Tab, we perform the pullback of the bulk Israel junction condition (5.20)
to the worldvolume of the shell. We get

Tab = 1
8πG3

(∆Kab − ∆Khab) , (5.23)

where the induced metric on the worldvolume of the shell hab is given by

ds2
ind = habdzadzb = 1

cos2 y(η)

(
(ẏ(η)2 − τ̇(η)2)L2dη2 + r2

0
L2 cos2 τ(η)dx2

)
, (5.24)

and ∆Kab = KL
ab − KR

ab is the difference of the extrinsic curvatures on the two sides of the
shell worldvolume, considering the direction of the normal vector on the shell to be outwards
from the bulk, see figure 10(b). Using the Z2-symmetry of the setup, this quantity can
be expressed as ∆Kab = 2Kab where Kab = KL

ab = −KR
ab. The perturbative evaluation of

the extrinsic curvature Kab gives

Kab = −sin y0
L

hab + ε
cos(y0) tan(τbrane)

L

(
cos2(y0)hab −

r2
0

L2 δx
aδx

b

)
+ O(ε2) . (5.25)

Taking the trace of this quantity gives

K = − 2
L

sin y0 + ε
cos3 y0

L
tan τbrane

(
1 − tan2 (τbrane)

)
+ O(ε2) . (5.26)

The detailed derivation of the expressions for Kab and K is given in appendix C.
Now, we can compute the matter stress tensor in eq. (5.23) using eq. (5.24), eq. (5.25)

and eq. (5.26) as well as the Z2-symmetry. This yields

Tab = 1
4πG3

(Kab − Khab) ,

= sin y0
4πLG3

hab + ε tan(τbrane) cos y0
4πLG3

(
cos2 y0 tan2 (τbrane) hab −

r2
0

L2 δx
aδx

b

)
+ O(ε2) .

(5.27)
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We are interested in evaluating:

ξaξbTab , where ξ2 = ξaξbhab < 0 . (5.28)

Using eq. (5.27), we get

Tabξ
aξb = sin y0

4πLG3
ξ2+ ε tan(τbrane) cos y0

4πLG3

(
cos2 y0 tan2 (τbrane) ξ2 − r2

0(ξx)2

L2

)
+O(ε2) . (5.29)

Consider a vector ξa which is arbitrarily close to a null vector, meaning that ξ2 can be
arbitrarily close to zero (or at least

∣∣(ξa)2∣∣ ≲ O(ϵ2)) while (ξx)2 > 0 and finite. For vectors
in this limit, we find

lim
ξ2→0

Tabξ
aξb = −εr2

0 tan(τbrane) cos(y0)
4πL3G3

(ξx)2 + O(ε2) . (5.30)

This quantity is negative for positive τbrane, and we have therefore found a timelike vector
for which Tabξ

aξb < 0, and therefore Tµνξµξν < 0 for the timelike bulk vector ξµ = ξa ∂wµ

∂za .
Thus, it is evident that the WEC does not hold in the wormhole picture for any nonzero ε,
which once again is related to the JT coupling in the brane picture ε = L2

r0L2
α. This means

that in the wormhole picture, the contrapositive of the implication (5.17) holds, allowing
for violation of the Lloyd bound.

The results of previous sections show that indeed a Lloyd bound violation occurs. However,
as shown in section 3, when the brane is located at some ybrane < 0, there is a window of
allowed values for the JT coupling, eq. (3.31), such that the rate of complexity growth does
not violate the Lloyd bound. We therefore propose a weaker positive energy condition (PEC)
which we will argue to be sufficient to meet the Lloyd bound. Specifically, we require that

Tµνζµζµ ≥ 0 , (5.31)

where ζµ are timelike vectors normal to the maximal volume surface B′

ζ2 ≡ gµνζµζν < 0 , γµνζν = 0 , (5.32)

with γµν = gµν − ζµζν

ζ2 the projector to the maximal volume surface. The PEC requires that
the energy density for coordinate systems defined by foliations of (part of) the geometry by the
maximal volume slices is non-negative everywhere. In the wormhole picture, this translates
to Tabζ

aζb ≥ 0 for the vector ζa(z), which is normal to the extremal volume slice, anchored
on the shell worldvolume at any point z. In particular, this implies ζx = 0. Therefore in the
wormhole picture, evaluating the PEC at the location of the shell using eq. (5.27), we find

Tabζ
aζb = ζ2

4πLG3

(
sin(y0) + ε tan3(τbrane) cos3(y0)

)
+ O(ε2) . (5.33)

The magnitude of the second term becomes larger as |τbrane| increases. Moreover, for
small ε, the largest value of |τbrane| corresponds to rbane = r∞ = r0/

√
2. From eq. (2.8), this

implies that cos(τbrane) ≥ cos(y0)/
√

2 and | tan(τbrane)| ≤
√

2 sec2(y0) − 1. We therefore find

Tabζ
aζb ≤ ζ2

4πLG3

(
sin(y0) + |ε|(1 + sin2(y0))3/2

)
+ O(ε2) . (5.34)
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Hence, the PEC is violated when

|ε| >
− sin(y0)

(1 + sin2(y0))3/2 . (5.35)

In terms of the JT coupling α, the PEC requires

|α| ≤ r0
L

− tan(y0)
(1 + sin2(y0))3/2 . (5.36)

This condition is stronger than the Lloyd bound constraint (3.31) with ybrane = y0, giving
support to our claim that a refined version of (5.17) would be

WEC ⇒ PEC ⇒ Lloyd bound . (5.37)

For small |y0| ∼ |ε|, the Lloyd bound constraint (3.31) and the PEC constraint (5.36)
match up to O

(
ε3). On the other hand, recall that the equivalence between the brane and

wormhole pictures only holds for small |α|, as we have shown in section 5.1. Therefore, when
|y0| is not small, both bounds are trivially satisfied in the regime where both pictures are
equivalent. With these points in mind, we can conclude that the PEC provides a much tighter
bound than the WEC on whether the Lloyd bound will be satisfied.

6 Comparison with bounds from entanglement growth

Despite there currently being no proof that the Lloyd bound holds for complexity = volume,
it remains a conjecture that seems to hold in many physical models. Progress towards
validating this conjecture has been made, such as in [23], which established a connection
between the Lloyd bound and the WEC within a specific class of holographic models. In
the same spirit, we show that the Lloyd bound is violated when a weaker energy condition,
the PEC, is not met in an equivalent formulation of our model in terms of a long wormhole
with a shell of matter, see section 5.

So far, the violation of the Lloyd bound for volume complexity has only been found in
bottom-up models which are not guaranteed to have a UV-complete microscopic description.
It has been shown that bottom-up models may show pathologies, which, in the spirit of
effective field theory, should be carved out of the parameter space of the effective model using
constraints on physical quantities associated with the boundary CFT, see [102, 114–116].
This translates to bounds on the allowed bulk parameters.

The focus of the present work has been on the analysis of the growth of complexity in the
boundary CFT with a particular emphasis on when the Lloyd bound is satisfied. We can turn
this around and use the Lloyd bound to propose constraints on the parameter space of our
model, keeping in mind that the Lloyd bound so far remains a conjecture. The constraints
we propose are similar in spirit to the ones in [102, 114–116], but with the caveat that they
rely on a conjectured bound rather than a theorem.

Of particular relevance to our work are the results of [102]. The authors considered a
setup identical to the one presented here — an ETW brane embedded in the BTZ geometry,
cutting off the second asymptotic region, with JT gravity localized on the brane. The
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information-theoretic quantity they considered is the entanglement velocity vE , which is a
measure of the rate of growth of entanglement in a translationally-invariant CFT state with
a uniform energy density. It is defined via

vE ≡ ∂tS(A)
seqVol(∂A) , (6.1)

where A denotes a spatial subregion of the CFT, whose entanglement with the rest of the
system is given by the entanglement entropy S(A). In addition, ∂A denotes the boundary
of A, and seq denotes the thermal entropy density for the CFT if it were in a thermal state
with the same energy density as the pure state of interest. For two-dimensional CFTs, it
was pointed out in [106] that vE satisfies the instantaneous bound

|vE(t)| ≤ 1 , (6.2)

a result that follows by carefully examining the monotonicity of relative entropy between
the pure and thermal states of the CFT. By explicitly computing the entanglement en-
tropy holographically using the Ryu-Takayanagi prescription [117, 118], and demanding the
constraint (6.2) to be met, the authors of [102] were able to compute bounds on the JT
coupling α, which we summarize below.

For an arbitrary value of the JT coupling α, even though the entanglement may grow
smoothly as a function of time, it can still violate the bound in eq. (6.2). As discussed
in [102], ruling this possibility out leads to the constraint

|α| ≤ 1
1 + sin ybrane

, (6.3)

where ybrane ∈ (−π/2, 0] denotes the location of the brane. Clearly, this bound on α is
strongest when ybrane = 0, implying |α| ≤ 1, and becomes progressively weaker as y → −π/2.
It was consequently addressed as the weak bound in [102].

A stronger bound on α was also obtained in [102] by disallowing discontinuous jumps in
entanglement entropy as a function of time. It was observed that for certain values of the
JT coupling α, one would obtain multiple bulk surfaces extremizing the area functional as
required by the Ryu-Takayanagi prescription for computing the holographic entanglement
entropy, which on the one hand anchor at a particular instant of time on the boundary, while
the other end either anchors on the ETW brane within τbrane ∈ [−π/2, π/2] i.e. the usual
extremal surface, or it anchors on the brane extended into the previous/next universe (or
coordinate patch) i.e. τbrane ∈ [−3π/2,−π/2] or τbrane ∈ [π/2, 3π/2]. In other words, the
additional extremal surfaces pass through the past/future singularity.20 Surprisingly enough,
when such surfaces are present, they have the minimum area and thus are the candidate
surfaces for computing the entanglement entropy. The entanglement entropy as a function of
time then shows a discontinuous jump, or phase transition, between the phases where it is
given by the usual extremal surface and the phase where it is given by the special surfaces

20Such surfaces would be automatically disallowed in a higher dimensional setup. However, in AdS3, where
there are no genuine curvature singularities, there is no a priori reason not to consider them.
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Figure 12. Combining various information-theoretic bounds to restrict the bulk parameter space for
r0/L = 1. The region bounded by the green curve respects the Lloyd bound, by the orange curve
respects the weak entanglement bound, and by the blue curve respects the strong entanglement bound.
Between the Lloyd bound and the weak bound from entanglement, the former is more constraining for
ybrane ∈ [−1.083, 0] (intersection of the green and orange curves not visible within the plotted range
above). On the other hand, between the Lloyd bound and the strong bound from entanglement, the
former is more restrictive only for ybrane ∈ [−0.488, 0]. The overall reduction in bulk parameter space
is greater when the Lloyd bound is combined with the strong bound from entanglement — a pattern
which is true for larger black holes r0/L > 1 as well, see figure 13.

ending in the previous/next universe. Since these discontinuous jumps in entanglement
entropy are unphysical, by disallowing such behaviour one ends up with the constraint

|α| ≤ 1
1 − sin ybrane

. (6.4)

This bound on α becomes progressively stronger as ybrane → −π/2, since it implies |α| ≤ 1
when ybrane = 0 while |α| ≤ 1/2 when ybrane = −π/2. Consequently, it was addressed as
the strong bound in [102].

We can now combine the above constraints on α with the constraint we have computed
in the present work by demanding that the boundary state respect the Lloyd bound, i.e.

|α| ≤ r0
L

| tan ybrane|
cos2 ybrane

. (6.5)

This is schematically represented in figure 12 for r0/L = 1. In particular, the region bounded
by the green curve corresponds to the bulk parameter space (ybrane, α) such that the Lloyd
bound (6.5) is met. On the other hand, the region bounded by the orange/blue curve denotes
the bulk parameter space that respects the weak/strong bound from entanglement velocity,
eqs. (6.3) and (6.4), respectively. Now, to restrict the bulk parameter space, one should
combine the Lloyd bound constraint with either the weak bound or the strong bound from
entanglement, depending upon whether one only wants to exclude the violation of eq. (6.2)
or discontinuous jumps in entanglement entropy as well. Since the weak bound is less
restrictive than the strong bound, the combination of the Lloyd bound and the weak bound
provides weaker constraints on the parameters than the combination of the strong bound
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Figure 13. Combining various information-theoretic bounds to restrict the bulk parameter space for
r0/L = 5. The pink region in (a) depicts the allowed bulk parameter space obtained by combining the
Lloyd bound (green region) with the weak bound from entanglement (orange region), whilst the pink
region in (b) depicts the allowed parameter space when the Lloyd bound is combined with the strong
bound from entanglement (blue region).

from entanglement and the Lloyd bound constraint. Further, the range of values for ybrane
for which the strong bound from entanglement is more constraining than the Lloyd bound is
also larger than the range of values for ybrane for which the weak bound from entanglement
is more constraining than the Lloyd bound. In particular, while the strong bound from
entanglement is more restrictive than the Lloyd bound for ybrane ∈ (−π/2,−0.488], the weak
bound is more restrictive than the Lloyd bound only for ybrane ∈ (−π/2,−1.083].

The situation for larger black holes is shown in figure 13 for r0/L = 5. We can see
that increasing the size of the black hole r0/L increases the importance of the entanglement
bounds relative to the Lloyd bound when constraining the parameter space of the theory,
i.e., the ranges of ybrane for which the entanglement bounds are stronger than the Lloyd
bound increases. Furthermore, the values of ybrane, at which the two entanglement bounds
become stronger than the Lloyd bound constraint, become closer. However, the strong bound
from entanglement continues to be the more restrictive of the two when combined with the
Lloyd bound constraint as expected.

7 Discussion and outlook

In this paper, we have studied the time evolution of holographic complexity using the CV
proposal for translationally invariant states of two-dimensional CFTs dual to the planar BTZ
geometry with an ETW brane which is endowed with intrinsic gravitational dynamics, namely
JT gravity. Let us highlight the key findings and conclusions of our analysis.

Analytic results for the asymptotic rate of complexity growth. We have performed
a detailed analytic study of the late time behaviour of the rate of change of volume complexity.
We have obtained asymptotic expressions for this rate in three distinct regions within the
bulk parameter space, comprising the brane location and the JT coupling (ybrane, α), where
the Lloyd bound is either satisfied, marginally satisfied or violated. In particular, we have
derived the critical curve in the space of bulk parameters which corresponds to the Lloyd
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bound being marginally satisfied, and separates the Lloyd bound respecting and violating
regions, see eq. (3.31). With reference to the effective mechanical picture introduced in
section 3.2, we have observed that the violation of the Lloyd bound is associated with the
particle carrying energy greater than the height of the potential barrier, see figure 3, and
going towards the singularity at r = 0 before terminating on the brane. The Lloyd bound is
satisfied when the particle scatters on the potential barrier before terminating on the brane.
We have performed our calculations specifically for the planar BTZ geometry; however, we
expect that the late time behaviour of the rate of complexity growth should be similar for
higher-dimensional black holes with ETW branes that carry intrinsic Dvali-Gabadadze-Porrati
(DGP) gravity [119], or similar models, as long as the Neumann boundary condition on the
brane has a form that is qualitatively similar to eq. (3.15).

Numerical study of the rate of complexity growth. Using a numerical approach, we
have elucidated the behaviour of volume complexity and its rate of change for our setup as
a function of boundary time. Restricted to asymptotically early/late times, the numerical
results are in agreement with the analytic observation that only part of the bulk parameter
space respects the Lloyd bound on complexity growth at all times. In particular, for bulk
parameters that violate the Lloyd bound, with α > 0 the bound is reached from above at
asymptotically late times, whilst for α < 0 it is reached from below at asymptotically early
times — see figures 7 and 8. In line with the effective mechanical picture, numerical results
show that the violation of the Lloyd bound occurs when the extension of the extremal volume
surfaces beyond the ETW brane starts falling into the singularity instead of being able to
reach the left asymptotic boundary, as depicted in figure 9.

Connection between the Lloyd bound and bulk energy conditions. In line with
arguments of [23], we have explored the connection between the violation of the Lloyd
bound with the violation of the weak energy condition in the bulk. We accomplished this by
constructing a long wormhole geometry supported by a thin shell of matter hidden behind the
horizons in such a way that the time dependent volume complexity matches with twice that
of the original ETW brane setup, see figure 10. This connects the WEC-based perspective
of [23] beyond purely asymptotically AdS spacetimes to include spacetimes with other types
of boundaries, such as ETW branes. We have established that this long wormhole geometry
violates the WEC for any choice of bulk parameters which also leads to a violation of the
Lloyd bound. By examining the timelike directions that violate WEC when the Lloyd bound
is satisfied, we have identified a weaker yet sufficient condition for the Lloyd bound to be
respected — the positive energy condition (PEC). Specifically, it is sufficient for the energy
Tµνζµζν to be non-negative in the directions ζµ, which are normal to the extremal volume
surfaces. The directions ζµ provide a time direction to the bulk manifold in a coordinate
system which consists of a foliation by maximal volume surfaces, and the PEC then tells us
that the energy density in these coordinates should be positive. The violation of PEC thus
works as a refined necessary condition for the violation of the Lloyd bound, compared to the
violation of WEC. The question of whether violation of the PEC is sufficient to guarantee there
will be a violation of the Lloyd bound remains an open question. It might also be interesting
to verify this observation in higher dimensional versions, or other extensions of our model.
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Combining Lloyd bound constraint with entanglement growth. We have illustrated
the possibility of combining the Lloyd bound constraint with the entanglement bounds
obtained in [102] to further constrain the bulk parameter space. We observe that the weak
entanglement bound, which arises from bounding the rate of entanglement growth in terms
of the entanglement velocity vE ≤ 1, does constrain the bulk parameter space further when
combined with the Lloyd bound, but not as much as the strong entanglement bound does,
which is obtained by disallowing discontinuous jumps in entanglement growth. This illustrates
the general idea that bounds on the rate of growth of information-theoretic measures for the
boundary CFT state can lead to a significant reduction in the allowed bulk parameter space
of couplings. An important research topic in quantum gravity is distinguishing low-energy
effective field theories based on whether they admit a consistent UV completion or not.
This goes by the name of the swampland program [120], wherein effective theories with
no consistent UV completion belong to the swampland, whilst the ones that admit a UV
completion into string theory belong to the landscape. Attempting to constrain low-energy
effective bulk descriptions using information theoretic measures can broadly be thought of
as providing another diagnostic for the swampland program, wherein models that otherwise
seem innocuous but conflict with the said information theoretic measures should be thought
of as belonging to the swampland [102, 114, 115, 121].

Let us now point out some interesting future directions. Among the most straightforward
generalizations of our work are: first, to consider the possibility of more general dilaton
gravity models to be localized on the ETW brane [122], and see how the associated couplings
get constrained by demanding the Lloyd bound being met; second, to extend the analysis of
the Lloyd bound for the complexity equals anything family of observables proposed in [10, 11],
and third, to consider higher dimensional generalizations of the setting we have considered
here, where the simplest intrinsic braneworld theory would be DGP gravity [119]. There have
been recent developments on constraints for braneworld models [114, 115], which would be
interesting to compare and contrast with the higher dimensional version of our setup.

An interesting observation we have made is the connection between the violation of the
Lloyd bound and the falling of the corresponding extremal surfaces into the future singularity
of the black hole when extended beyond the ETW brane, see figure 9. Note that in the
black hole spacetime without the ETW brane, i.e. the eternal BTZ black hole geometry,
no mechanism would make the extremal volume surfaces curve towards and fall into the
singularity, and so the Lloyd bound is always respected. The presence of the brane, or
equivalently the shell in the long wormhole picture, adds matter that deforms the extremal
surfaces through the corresponding boundary/gluing conditions. An interesting question to
ask here is the microscopic interpretation of this behaviour. In terms of quantum circuits, one
of the key assumptions justifying the Lloyd bound is the orthogonalizing property of the set
of gates that are used to define complexity [123], and when the gates are not orthogonalizing,
one in general does not expect the Lloyd bound to hold [124]. Having tunable matter in
the bulk that can realize both Lloyd bound respecting and violating regimes would naively
correspond to the presence of some high-energy excitation or source in the dual boundary
state. Changing the parameters of this excitation, such as energy, would then allow the
CFT to go from the Lloyd bound respecting to the violating regime. This can allow one to
probe the orthogonalizing property of the given set of gates when acting on the holographic
boundary state. Understanding the mechanism of this could potentially work as a pathway

– 44 –



J
H
E
P
0
3
(
2
0
2
4
)
1
7
3

to establish a more precise connection between the orthogonalizing properties of quantum
gates in a CFT, the Lloyd bound, and probing the singularity with extremal surfaces in
the bulk description. Regardless of whether the orthogonalizing property of the gates holds
or not, there is a possibility that a more fundamental bound on computational speed, and
hence complexity growth, can be obtained by taking into account additional information
theoretic measures and not just the energy scale [124]. It would then be interesting to
see how such a universal complexity bound would manifest itself in the dual holographic
description and what constraints the additional quantum information criteria would impose
on the bulk gravity theory.

Another set of interesting questions arises from using the long wormhole construction
discussed in section 5 to relate the Lloyd bound to the WEC in the bulk. The long wormhole
and the ETW brane geometries have matching volume complexity and rate of growth thereof
(up to a factor of 2). The Lloyd bound violating regime in the brane picture thus matches
the regime in the long wormhole picture where the WEC is violated. We expect that further
investigation with a similar approach can be used to generalize the proof of the holographic
Lloyd bound theorem of [23] to Einstein gravity in 3D. It would also be interesting to
understand better how the bulk energy conditions work in the presence of branes with DGP
couplings in higher dimensional setups, in which the results of [23] are more relevant. It
is also worth noting that the long wormhole geometry we have discussed is similar to the
geometry of black hole microstates discussed in [125, 126]. It would be interesting to further
explore and build upon this connection.
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A Tensionless ETW brane without intrinsic gravity

In this appendix, we perform the asymptotic analysis for the simplest case of an ETW brane
without intrinsic JT gravity nor tension (T0 = 0). We proceed analogously to the analysis
of [10]. The goal is to evaluate the leading contributions to the integral (3.23) in the late
time limit. This is done by realizing that at late times the turning point rmin approaches a
local maximum of the effective potential r∞, defined in figure 3. The corresponding maximal
value of the potential is given by

Ueff(r∞) = P 2
∞ = r4

0
4L4 , (A.1)

where
P∞ ≡ lim

t→∞
Pv. (A.2)

We will integrate the leading contribution to the integral (3.23) in the late time limit by
expanding around the asymptotic values of Pv and Ueff(r). To this end, we use eq. (A.1) and

Ueff(r) = P 2
v + 1

2U
′′(rmin)(r − rmin)2 + O

(
(r − rmin)3

)
, (A.3)

P 2
v = −f(rmin)r2

min
L2 (A.4)

= P 2
∞ − 2r2

0
L4 (rmin − r∞)2 + O

(
(r − rmin)3

)
. (A.5)

In this simple case, it turns out that it is useful to consider the integral (3.23) between the
asymptotic boundary and the turning point instead

tbdy − tmin = −
∫ rbdy

rmin
dr

Pv

f(r)
√

f(r)r2

L2 + P 2
v

. (A.6)

Let us introduce the expansion parameter

δr ≡ rmin − r∞ . (A.7)

With this parameter at hand, we find

tbdy − tmin = −
∫ rbdy

rmin
dr

P∞

f(r)
√

f(r)r2

L2 + P 2
∞

+ O
(

δr2

r2
0

)

= r2
0L2

2

∫ rbdy

rmin
dr

1
r2 − r2

0

1
r2 − r2

0
2

+ O
(

δr2

r2
0

)
.

(A.8)

The above integral should be evaluated separately in the interior region r < r0 and the
exterior region r > r0. The integrand diverges at r = r0, so we introduce a regulator ϵ for
the two contributions to the integral. Explicitly,

tbdy − tmin
L2 =

(tbdy − t|r0+ϵ) − (tmin − t|r0−ϵ)
L2 −

(
t

∣∣∣∣
r0+ϵ

− t

∣∣∣∣
r0−ϵ

)
, (A.9)
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tbdy − tmin
L2 = 1

r0
lim

ε→0+

(
Ψin

∣∣∣r0−ε

rmin
+ Ψout

∣∣∣rbdy

r0+ε

)
−
(

t

∣∣∣∣
r0+ϵ

− t

∣∣∣∣
r0−ϵ

)
+ O

(
δr2

r2
0

)
, (A.10)

where
Ψin =

√
2 coth−1

(√
2r

r0

)
− tanh−1

(
r

r0

)
,

Ψout =
√

2 coth−1
(√

2r

r0

)
− coth−1

(
r

r0

)
.

(A.11)

Taking the ϵ → 0 limit, the time differences at r0 ± ϵ vanishes,21 and the contributions
from the regulators exactly cancel each other. The boundary contribution also vanishes,
so we are left with

tbdy − tmin
L2 = 1√

2r0
log

(√
2r0
δr

)
− 1

r0
coth−1

(√
2
)

+ O
(

δr2

r2
0

)
. (A.12)

Inverting the relation above in terms of the expansion parameter given in eq. (A.7), we find
the location of the turning point approaches r∞ to leading order as an exponential decay

rmin − r∞ =
√

2r0 e
−

√
2r0

L2

(
tbdy−tmin+ L2

r0
coth−1(√2)

)
+ O

(
e−2

√
2 r0

L2 (tbdy−tmin)
)

, (A.13)

and the late time limit of Pv can be determined from the late time expansion of P 2
v = Ueff(rmin)

in eq. (A.3) which leads to,

Pv = r2
0

2L2 − 4 r2
0

L2 e−2
√

2 coth−1(√2) e−2
√

2 r0
L2 (tbdy−tmin) + O

(
e−4

√
2 r0

L2 (tbdy−tmin)
)

. (A.14)

When α = ybrane = 0, the Neumann boundary condition at the brane (3.16) implies that
ṙ|brane = 0 which means that the turning point is at tmin = tbrane. Together with eq. (2.8)
which gives tbrane = 0, we can conclude that tmin = tbrane = 0 in the simple case consid-
ered here.

Finally, from eq. (3.21) the late time growth of complexity is

dcV

dtbdy
= r2

0
2GN L3

(
1 − 8

(
3 − 2

√
2
)√2

e−
2
√

2r0
L2 tbdy

)
+ O

(
e−4

√
2 r0

L2 tbdy

)
. (A.15)

It is clear that for the simple example we considered here, the complexity growth reaches
its asymptotic value from below, and therefore the Lloyd bound is satisfied. This case
corresponds to exactly half of the double-sided black hole [10] because the ETW brane simply
cuts the wormhole geometry in half at the y = 0 slice.

B Asymptotic analysis of the rate of complexity growth

In this appendix, we provide details on the computation of the late time value of the growth rate
of volume complexity in our setup for several illustrative examples as outlined in section 3.3.

21This can be shown by approximating the trajectory v(r) via a Taylor expansion up to second order across
the horizon, using the velocities (3.8) to obtain dv

dr
and differentiating the resulting expression with respect

to r.
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B.1 Examples

B.1.1 Boundary in parameter space

We begin with the boundary in parameter space which is given by eq. (3.31). In this case,
the Lloyd bound is marginally satisfied, in the sense that dcV /dtbdy reaches its asymptotic
value from below exponentially twice as fast as in the other cases as we will see below. We
start by exploring the simple example after which we generalize our findings.

No JT gravity, no tension. To illustrate the approach to the asymptotic analysis, we first
consider the simplest case, an ETW brane without intrinsic JT gravity nor tension. Specifically,
this is the α = 0 and ybrane = 0 limit. Let us now consider this limit following the three-step
procedure outlined in section 3.3. In this case, the quadratic equation (3.26) reduces to

P 2
v − r4

0
L4

r2
brane
r2

0
+ r4

0
L4

r4
brane
r4

0
= 0 . (B.1)

One finds

r2
brane
r∞2

= 1 + L2

r2
∞

δP + O
(
δP 2

)
. (B.2)

To determine the value of tbrane at late times, we need to use the brane embedding (2.12)
which in terms of ybrane looks like22

r2
brane
r2

0
=

1 − sin2(ybrane) coth2
(

r0tbrane
L2

)
cos2(ybrane)

, (B.3)

as well as the location of the intersection of the brane and the maximal volume surface
given (3.32). Solving these two equations asymptotically gives

coth2
(

r0tbrane
L2

)
= 2 − cos2(ybrane)

2 sin2(ybrane)
+ O (δP ) , (B.4)

which gives tbrane = 0 for ymin → 0.
The next step is to evaluate the time difference tbdy − tbrane in the late time regime. In

this case, the contour integral (3.30) is a simple integral from rbrane to rbdy, where rbrane is
asymptotically close to r∞. The details of the integration are in appendix B.2. The integral
is evaluated in eq. (B.56), and gives

tbdy − tbrane
L2 =

log
( 2r2

0
L2δP

)
√

2r0
− arcoth(

√
2)

r0
. (B.5)

Inverting this equation and relating δP to Pv we find the late time behaviour of Pv as

Pv = r2
0

2L2 − 4 r2
0

L2 e−2
√

2 coth−1(√2) e−2
√

2 r0
L2 tbdy + O

(
e−4

√
2 r0

L2 tbdy

)
. (B.6)

22We restore the ybrane dependence in the following and take the ybrane → 0 limit later to find tbrane. We
could have simply used the fact that the brane is located at tbrane = 0 for ybrane = 0 in the first place, but we
keep ybrane ̸= 0 here to illustrate how to derive tbrane more generally in the other cases.
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The time dependence of complexity is then given by

dcV

dtbdy
= r2

0
2GN L3

(
1 − 8

(
3 − 2

√
2
)√2

e−
2
√

2r0
L2 tbdy

)
+ O

(
e−4

√
2 r0

L2 tbdy

)
. (B.7)

It is clear that for the simple example we considered here, the complexity growth reaches
its asymptotic value from below, and therefore the Lloyd bound is satisfied. This case
corresponds to exactly half of the double-sided black hole [10] because the ETW brane simply
cuts the wormhole geometry in half at the y = 0 slice.

General case. More generally, the boundary in parameter space between the Lloyd bound
violating and Lloyd bound respecting regions is given by eq. (3.31). This time, we solve
the condition (3.26) in the late time limit by substituting P 2

v = P 2
∞ − δP 2 and perform

an expansion in small δP ,

r2
0

L2

(
r2

0 − 2r2
brane

2L

)2

−
(

1 + 2r2
brane
r2

0
sin2(ybrane)

)
δP 2 = 0 . (B.8)

The solution is

r2
brane
r∞2

= 1 + L2

r2
∞

√
1 + sin2(ybrane)δP + O

(
δP 2

)
. (B.9)

The late time value is larger than r∞ and is reached from above linearly in δP . Note that
the tensionless limit (ybrane → 0) agrees with the analysis above, the case without JT gravity
and tension. The value of tbrane is given by

coth2
(

r0tbrane
L2

)
= 2 + cos2(ybrane)

2 sin2(ybrane)
+ O (δP ) . (B.10)

The contour integral to evaluate the time difference tbdy − tbrane is still a direct line
between rbrane and rbdy, and is given by eq. (B.56) which we copy here for convenience

tbdy − tbrane
L2 = − 1

r0
coth−1

(√
2
)
−

log
(

rbrane−r∞√
2r0

)
√

2r0
. (B.11)

Inverting this equation to find δP and plugging in the asymptotic behaviour of tbrane and
rbrane leads to

dcV

dtbdy
= P∞

GN L
− 4r2

0

L3GN

(
1 + sin2 ybrane

)2 (3 − 2
√

2
)√2

D (ybrane) e−
2
√

2r0
L2 tbdy , (B.12)

where

D (ybrane) =
(sec(ybrane)√

6

(√
4 + 2 cos2(ybrane) + 2 sin(ybrane)

))2
√

2
. (B.13)

Of course, in the tensionless limit (ybrane → 0), the coefficient D(ybrane) → 1 in agreement
with the (α = 0, ybrane = 0) case above.
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B.1.2 Lloyd bound respecting region

When the magnitude of the JT gravity coupling α is smaller than the critical value given
by eq. (3.31), the volume complexity satisfies the Lloyd bound, in the sense that its time
derivative reaches its asymptotic value from below. As before, we first explore a simple
example, namely when there is no JT gravity coupling but the tension on the brane is nonzero,
after which we generalize our findings.

No JT gravity, nonzero tension In the case with no JT gravity coupling, α = 0, and
nonzero tension, ybrane ̸= 0, the quadratic equation in (3.26) is

P 2
v − r4

0
L4

r2
brane
r2

0
+ r4

0
L4

r4
brane
r4

0
cos2(ybrane) = 0 . (B.14)

To solve it in the late time limit, we substitute P 2
v = P 2

∞ − δP 2 and solve it perturbatively
in δP . The relevant solution is23

r2
brane
r2
∞

= 1
1 + sin(ybrane)

− 2L4δP 2

r4
0 sin(ybrane)

+ O
(
δP 4

)
. (B.15)

Keeping in mind that 0 > sin(ybrane) > −1, we see that rbrane > r∞, and it reaches its final
value from above. Note that the late time limit does not commute with the tensionless limit.
Moreover, the deviation of rbrane from its final value is quadratic in δP , instead of linear.

The time of intersection tbrane is given by24 combining eqs. (3.28) and (B.15), leading to

coth2
(

r0tbrane
L2

)
= 1

2 csc2(ybrane) (3 − sin(ybrane)) + O (δP ) . (B.16)

The evaluation of eq. (3.30) as in section B.2 and combining it with eqs. (B.15) and (B.16)
then gives

dcV

dtbdy
= P∞

GN L
− 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(ybrane)D(ybrane)e−
√

2r0tbdy
L2 , (B.17)

where

B(ybrane) =
(

2 csc(ybrane)
(√

1 + sin(ybrane) − 1
)
− 1

)
×(

3 + 2 sin(ybrane) + 2
√

2 + 2 sin(ybrane)
|1 + 2 sin(ybrane)|

) 1√
2

, (B.18)

D(ybrane) = e

√
2 coth−1

(
− csc(ybrane)

√
3−sin(ybrane)

2

)
.

23In terms of tension, this solution reads

r2
brane
r2
∞

= 1
1 − T0

+ 2L4δP 2

r4
0T0

+ O
(
δP 4) .

24We implicitly assume that the intersection of brane with the maximal volume surface is inside the horizon.
However, this intersection may lie outside the horizon. In this case, one should use

r2
brane
r2

0
= −

1 − sin2(ybrane) tanh2 ( r0tbrane
L2

)
cos2(ybrane) .

The results below should be modified accordingly.
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Note that limybrane→0 B(ybrane) ∝ −ybrane which vanishes in the tensionless limit. In this
case, the subleading corrections of order O

(
exp

(
−2

√
2r0

L2 tbdy
))

in (B.17) become relevant,
which is in agreement with the exponential behaviour found in the previous subsection.

Near the boundary in parameter space Next, we consider small deviations from the
boundary into the Lloyd bound respecting region in parameter space. For concreteness we
focus on the α > 0 when tbdy → ∞, but similar results follow by instead using α < 0 and
tbdy → −∞. First, we find the location of the brane with

α = − sin(ybrane)
cos3(ybrane)

r0
L

− δα , (B.19)

and δα > 0 small. Since we are in the Lloyd bound respecting region in parameter space, we
substitute P 2

v = P 2
∞ − δP 2 into eq. (3.26) and solve perturbatively in δP and δα. However,

the δα → 0 limit does not commute with the late time limit, δP → 0.
Solving eq. (3.26) perturbatively in δα and δP , while taking δα/δP → 0 gives

r2
brane
r2
∞

= 1 − L

r0
cos3(ybrane) sin(ybrane)δα

+ 2L2

r2
0

√
1 + sin2(ybrane)δP + O

(
δP 2, δαδP, δα2

)
.

(B.20)

The intersection of the brane and the maximal volume surface is bigger than r∞ and
approaches its asymptotic value from above. This result agrees with eq. (B.9) for the
boundary in parameter space. Notice that since δα ≪ δP , the location of the brane is
asymptotically close to r∞ resulting in the contour integral determining tbdy − tbrane to be
similar to the boundary case of section B.1.1, and the corresponding results will agree with
that case in the δα → 0 limit.

For late enough times, when δP ≪ δα, the situation is more similar to the “no JT
gravity but finite tension” case discussed above. Solving eq. (3.26) perturbatively in δP

and δα, while taking δP/δα → 0 gives

r2
brane
r2
∞

= 1 + L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

+ 2L3

r3
0δα

√
1 + sin2(ybrane)
cos3(ybrane)

δP 2 + O
(
δP 4, δαδP 2, δα2

)
,

(B.21)

which is consistent with eq. (B.15) in the limit α → 0, which implies ybrane is O(δα). The
intersection of the maximal volume surface and the brane remains above r∞ and approaches
its asymptotic value from above as a function of time, that is, with decreasing δP . Notice
that the asymptotic value of rbrane approaches r∞ from above as δα becomes smaller. As
we will see shortly when we cross to the Lloyd bound violating region, the maximal volume
surface starts probing regions behind r∞.
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The time of intersection, tbrane, is given by

coth2
(

r0tbrane
L2

)
= 2 + cos2(ybrane)

2 sin2(ybrane)

+ L

2r0

cos5(ybrane)
sin2(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα + O (δP ) ,

(B.22)

which can be used in the equation above to find the asymptotic behaviour of δP .
The integration of (3.30) leads to

dcV

dtbdy
= P∞

GN L
− 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(ybrane, δα)D(ybrane, δα)e−
√

2r0tbdy
L2 , (B.23)

where

log B(ybrane, δα) =
√

2 tanh−1
( 1√

2
+ 1√

2
L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
− 2 coth−1

(
1 + L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
, (B.24)

log D(ybrane, δα) =

−
√

2 coth−1

√√√√√2 + cos2(ybrane)
2 sin2(ybrane)

+ L

2r0

cos5(ybrane)
(√

1 + sin2(ybrane) − sin(ybrane)
)

δα

sin2(ybrane)
.

Importantly, close to the boundary in parameter space, when δα → 0 and rbrane ap-
proaches r∞, the coefficient in front of the exponential in eq. (B.23) vanishes because
B(ybrane, δα) ∼ δα. When this happens, the subleading corrections would become important
as was the case in section B.1.1. This is consistent with our findings for the simple example
of (α = 0, ybrane ̸= 0) discussed above. There the asymptotic value of rbrane approached r∞
for ybrane → 0 which led to a vanishing leading exponential correction to δP and dcV /dt.

B.1.3 Lloyd bound violating region

When the magnitude of the JT gravity coupling is bigger than the critical value given
in eq. (3.31), the volume complexity violates the Lloyd bound and dcV /dtbdy reaches its
asymptotic value from above. The simplest example of this class is when there is a nonzero JT
gravity coupling, and the cosmological constant of the brane matches the bulk cosmological
constant so that the brane is positioned at ybrane = 0.

Nonzero JT gravity coupling, equal cosmological constants. We begin with the
case Λbrane = Λbulk, so the location of the brane is set to ybrane = 0. For concreteness, we
focus on the positive α case in the late time limit, but a similar analysis holds for negative
α at early times (tbdy → −∞). In this limit, the equation determining the intersection of
the maximal volume surface with the brane (3.26) is

P 2
v − r4

0 + L2r2
0α2

L4
r2

brane
r2

0
+ r4

0 + L2r2
0α2

L4
r4

brane
r4

0
= 0 . (B.25)
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We solve it in the late time limit once again, now with P 2
v = P 2

∞ + δP 2. We find

r2
brane
r2
∞

= 1 − L|α|√
r2

0 + L2α2
+ L3δP 2

r2
0|α|

√
r0 + L2α2 + O

(
δP 4

)
. (B.26)

This time the point of intersection reaches deeper towards the singularity rbrane < r∞
due to the contact term associated with the JT gravity action term pulling it inwards. The
late time value is reached from above, and the deviation is quadratic in δP .

The time of intersection tbrane is

coth2
(

r0tbrane
L2

)
= csc2(ybrane)+ 1

2 cot2(ybrane)

1− L|α|√
r2

0 +L2α2

+O (δP ) , (B.27)

which goes to zero in the ybrane → 0 limit.
Putting all these expressions together, we find

dcV

dtbdy
= P∞

GN L
+ 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(α)e−
√

2r0tbdy
L2 , (B.28)

where

B(α) =
(

2β − 2
√

β2 − β − 1
)(3β + 2

√
2
√

β2 − β − 1
1 + β

) 1√
2

(B.29)

with β2 = 1 + r2
0

L2α2 . Notice that for α → 0, the coefficient B(α) ∼ α vanishes as expected
because the asymptotic value of rbrane approaches r∞ for small α.

Near the boundary in parameter space As explained in the main text, one can
generalize the results in a similar manner to section B.1.2 using a perturbative expansion
for the parameter

α = − sin(ybrane)
cos3(ybrane)

r0
L

+ δα , (B.30)

to locate the boundary in parameter space where there occurs a Lloyd bound violation via
eq. (3.26) with δα > 0 small. Similar to section B.1.2, the δα → 0 limit does not commute
with the late time limit (δP → 0). In this case, the difference signals the onset of the
violation of the Lloyd bound.

Concretely, δα ≪ δP corresponds to times that are not late enough for the Lloyd bound
to be violated. In this case, substituting P 2

v = P 2
∞− δP 2 and solving eq. (3.26) perturbatively

in δα and δP , while taking δα/δP → 0 gives

r2
brane
r2
∞

= 1 + L

r0
cos3(ybrane) sin(ybrane)δα + 2L2

r2
0

√
1 + sin2(ybrane)δP + O

(
δP 2, δα δP, δα2

)
.

(B.31)
Note that because δP ≫ δα, the intersection of the brane and the maximal volume surface
is still bigger than r∞ even though δα > 0 and ybrane ≤ 0. This is related to the fact that
it is not late enough for the Lloyd bound to be violated despite being in the Lloyd bound
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violating region of parameter space. The location agrees with the results for the boundary
in parameter space (B.9) for δα → 0.

For late enough times, δP ≪ δα, the Lloyd bound is indeed violated. Substituting
P 2

v = P 2
∞ + δP 2 into eq. (3.26) and solving perturbatively in δP and δα, while taking

δP/δα → 0 gives

r2
brane
r2
∞

= 1 − L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

+ 2L3

r3
0δα

√
1 + sin2(ybrane)
cos3(ybrane)

δP 2 + O
(
δP 4, δαδP 2, δα2

)
.

(B.32)

which is consistent with eq. (B.26) for ybrane = 0 and small α = δα. The asymptotic value of
rbrane is smaller than r∞ for nonzero δα and it is reached from above as δP goes to zero.

The time of intersection tbrane is given by

coth2
(

r0tbrane
L2

)
= 2 + cos2(ybrane)

2 sin2(ybrane)

+ L

2r0

cos5(ybrane)
sin2(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα + O (δP ) .

(B.33)

Integrating (3.30) and collecting all these results gives

dcV

dtbdy
= P∞

GN L
+ 4r2

0
GN L3

(
3 − 2

√
2
)√2

B(ybrane, δα)D(ybrane, δα)e−
√

2r0tbdy
L2 , (B.34)

where

log B(ybrane, δα) =
√

2 tanh−1
( 1√

2
− 1√

2
L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
− 2 tanh−1

(
1 − L

r0
cos3(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα

)
, (B.35)

log D(ybrane, δα) =

−
√

2 coth−1

√
2 + cos2(ybrane)

2 sin2(ybrane)
+ L

2r0

cos5(ybrane)
sin2(ybrane)

(√
1 + sin2(ybrane) − sin(ybrane)

)
δα.

Note that in the limit δα → 0, the coefficient B(ybrane, δα) ∼ δα vanishes, and the subleading
corrections similar to the ones of section B.1.1 become important for the late time dependence
of dcV /dt.

B.2 Late time expansion of tbrane − tbdy

To compute the late time expansion of tbrane − tbdy, we need to evaluate eq. (3.30), which
we copy here

I = −
∫

P∞ dr

L−2(r2 − r2
0)
√

L−4(r2 − r2
∞)2 ± δP 2 + O(δP 2) (B.36)
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for different contours of integration which will depend on which region of parameter space
we are in.

While the exact evaluation of the integral involves the elliptic integral of the third
kind, for our purposes, we focus on obtaining an approximate expression suitable for the
late time regime. To achieve this, we divide the range of the integral into different regions
based on the values of r

r = r∞ + δr, P 2
v = P 2

∞ ± δP 2 . (B.37)

We expand around r = r∞ and introduce the locations (r∞±∆r) and (r∞±∆r′) to label the
intermediate regions in [rbrane, rbdy] where we evaluate the integral. We take the following
order of limits: ∆r′/L ≪ δP ≪ ∆r/L ≪ r0/L.

We study each of the signs in eq. (B.37), corresponding to violation or agreement with
the Lloyd bound, separately below, as well as the boundary between the two regions, in
which the Lloyd bound is saturated.

B.2.1 Scattering off the potential implies satisfying the Lloyd bound

In this case, we take the negative sign in eq. (B.37) so that the particle scatters off the
potential Ueff(r). One can split the integrals in eq. (B.36) in such a way that the relevant
contributions are:

• δP ≪ δr/L: this corresponds to the range r ∈ [(r∞ + ∆r), rbrane] ∪ [(r∞ + ∆r), rbdy].
The contribution to the integral, denoted as I1, is approximately given by

I1 ≈ −
∫

P∞L4(
r2 − r2

0
)
|r2 − r2

∞|
dr + O

(
L2δP 2

∆r2

)

= −
L4P∞

(
r∞ tanh−1

(
min

(
r
r0

, r0
r

))
− r0 coth−1

(
r

r∞

))
r0r∞

(
r2
∞ − r2

0
) + O

(
L2δP 2

∆r2

)
.

(B.38)

• δP ∼ δr: this corresponds to r ∈ [r∞ + ∆r′, r∞ + ∆r]. +The contribution to the
integral, denoted as I2, is approximately given by

I2 ≈ −
∫

L4P∞(
r2
∞ − r2

0
)√

−δP 2L4 + 4δr2r2
∞

dδr + O
(∆r

L

)

= − L4P∞
2r∞

(
r2
∞ − r2

0
) coth−1

(
2r∞ δr√

−δP 2L4 + 4δr2r2
∞

)
+ O

(∆r

L

) (B.39)

The relevant case needed for the calculations in this work is for rbrane at a finite distance
from r∞, then

tbdy − tbrane = I1

∣∣∣∣rbrane

r∞+∆r
+ 2 I2

∣∣∣∣∆r

rmin−r∞

+ I1

∣∣∣∣rbdy

r∞+∆r
. (B.40)

The explicit evaluation leads to

tbdy − tbrane
L2 = −A(rbrane) −

√
2 log

(
L2δP
2r2

0

)
r0

, (B.41)

– 55 –



J
H
E
P
0
3
(
2
0
2
4
)
1
7
3

Figure 14. Integration contour for eq. (B.40), spanning from rbrane to ∞. The figure highlights
the positions of significant features within the contour. The two branch points of the integrand are
marked by red crosses, situated at r∞ ± L2

2r∞
δP . The red dot represents the pole of the integrand

located at r0. The turning point rmin coincides with one of the branch points. Deep in this region of
parameter space, rbrane − r∞ ≫ O (δP ).

where

A(rbrane) =
− tanh−1

(
rbrane

r0

)
+
√

2 coth−1
(√

2rbrane
r0

)
+ 2 coth−1

(√
2
)

r0
, (B.42)

and we used that rmin − r∞ = L2δP√
2r0

.
Notice that the final expression is again independent of the exact gluing location r ± ∆r.

The respective late time growth of Pv is then given by

Pv = P∞ − 4r2
0L−2e−

√
2r0(A(rbrane)+L−2(tbdy−tbrane)) . (B.43)

We can rewrite this result as

Pv = P∞ − 4r2
0L−2B(rbrane)e−

√
2r0L−2(tbdy−tbrane) (B.44)

with

B(rbrane) =

(
3 − 2

√
2
)√2 (

1 − r0
rbrane

)− 1√
2
(

r0+rbrane
rbrane

) 1√
2
(
2rbrane −

√
2r0
)

√
2r0 + 2rbrane

. (B.45)

B.2.2 No scattering off the potential implies violation of the Lloyd bound

Now, we consider the positive sign case in eq. (B.37). In this case, the particle has effective
energy high enough to fall past rmin towards rbrane without scattering off the potential. We
decompose the integral (B.36) into the following regions:

• δP ≪ δr/L: this corresponds to the range r ∈ [rbrane, (r∞ − ∆r)] ∪ [(r∞ + ∆r), rbdy].
The contribution to the integral, denoted as I1, is approximately given by

I1 ≈ −
∫

P∞L4(
r2 − r2

0
)
|r2 − r2

∞|
dr + O

(
L2δP 2

∆r2

)

= −sign (r − r∞)
L4P∞

(
r∞ tanh−1

(
min

(
r
r0

, r0
r

))
− r0 tanh−1

(
min

(
r

r∞
, r∞

r

)))
r0r∞

(
r2
∞ − r2

0
)

+ O
(

L2δP 2

∆r2

)
.

(B.46)
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Figure 15. Integration contour for eq. (B.49), spanning from rbrane to ∞. The figure highlights
the positions of significant features within the contour. The two branch points of the integrand are
marked by red crosses, situated at r∞ ± i L2

2r∞
δP . The red dot represents the pole of the integrand

located at r0. Deep in this region of parameter space, r∞ − rbrane ≫ O (δP ).

• δP ∼ δr/L: this corresponds to r ∈ [(r∞ − ∆r), (r∞ − ∆r′)]∪[(r∞ + ∆r′), (r∞ + ∆r)].
The contribution to the integral, denoted as I2, is approximately given by

I2 ≈ −
∫

L4P∞(
r2
∞ − r2

0
)√

δP 2L4 + 4δr2r2
∞

dδr + O
(∆r

L

)

= − L4P∞
2r∞

(
r2
∞ − r2

0
) tanh−1

(
2r∞ δr√

δP 2L4 + 4δr2r2
∞

)
+ O

(∆r

L

) (B.47)

• δP ≫ δr/L: this corresponds to r ∈ [(r∞ − ∆r′), (r∞ + ∆r′)]. The contribution to the
integral, denoted as I3, is approximately given by

I3 ≈ −
∫

L2P∞
(r2

∞ − r2
0)δP

dδr + O
(

∆r′2

L2

)
,

= − L2P∞δr

δP (r2
∞ − r2

0) + O
(

∆r′2

L2

)
.

(B.48)

However, this contribution is subleading compared to the others and thus will not be
necessary for our analysis.

By combining these different contributions, we find

tbdy − tbrane = I1

∣∣∣∣r∞−µ∆r

rbrane

+ I2

∣∣∣∣∆r

−∆r
+ I1

∣∣∣∣rbdy

r∞+µ∆r
. (B.49)

This results in

tbdy − tbrane
L2 = −A(rbrane) −

√
2

r0
log

(
L2δP

4r2
0

)
, (B.50)

where the function A(rbrane) is defined as

A(rbrane) = 1
2r0

(
4coth−1

(√
2
)
−2tanh−1

(
rbrane

r0

)
+2

√
2tanh−1

(
rbrane

r∞

))
. (B.51)

As before, the final expression is independent of the exact gluing location r ± ∆r.
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Figure 16. Integration contour for eq. (B.56), spanning from rbrane to ∞. The figure highlights the
positions of significant features within the contour. The two branch points of the integrand are marked
by red crosses, situated at r∞ ± L2

2r∞
δP . The red dot represents the pole of the integrand located at

r0. The turning point rmin coincides with one of the branch points, specifically r∞ + L2

2r∞
δP . At the

boundary of the parameter space, rbrane is close to rmin, and the two coincide when ybrane = 0.

Finally, by inverting eq. (B.49) for Pv, we obtain the late time behaviour of the canonical
momentum in the case of the Lloyd bound violation, given by

Pv = P∞ + 42r2
0L−2e−

√
2r0(A(rbrane)+L−2(tbdy−tbrane)). (B.52)

This expression can also be written as

Pv = P∞ + 42r2
0L−2B(rbrane)e−

√
2r0L−2(tbdy−tbrane) , (B.53)

where the function B(rbrane) is defined as

B(rbrane) =

(
3 − 2

√
2
)√2 (

1 − rbrane
r0

)− 1√
2
(

r0+rbrane
r0

) 1√
2
(
r0 −

√
2rbrane

)
r0 +

√
2rbrane

. (B.54)

B.2.3 Critical case: saturating the Lloyd bound

Finally, we turn our attention to the limiting case in phase space where the Lloyd bound can
be violated or satisfied. We proceed in a similar manner to the above cases by assuming that
the particle does scatter off the effective potential, but with the crucial difference that the
turning point rmin is now very close to the edge of the integration region determined by rbrane.
That means that we should take the negative sign case in eq. (B.37). The decomposition of
the integral is then similar to eq. (B.40) but with the first term absent. We write

tbdy − tbrane = I2

∣∣∣∣∆r

rbrane−r∞

+ I1

∣∣∣∣rbdy

r∞+µ∆r
. (B.55)

We find that

tbdy − tbrane
L2 = −A −

log
(

rbrane−r∞√
2r0

)
√

2r0
, (B.56)

where
A = 1

r0
coth−1

(√
2
)

. (B.57)

Notice that the final expression is independent of the exact gluing location r ± ∆r.
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We can use that rbrane − r∞ = L2
√

1+sin2 ybraneδP√
2r0

which follows from eq. (3.34). The
asymptotic expansion of eq. (B.37) can be then expressed as

Pv = P∞ − 4r2
0

L2 (1 + sin2 ybrane
)e−2

√
2r0(A+L−2(tbdy−tbrane)) . (B.58)

Importantly, the exponential correction to volume growth contains a power 2
√

2r0.

C Extrinsic curvature of the shell worldvolume in the wormhole picture

This appendix is devoted to the derivation of the equation (5.25) of the extrinsic curvature of
the worldvolume of the shell given by the profile (5.2). For concreteness, we focus on the
right part of the long wormhole geometry of section 5, but a similar calculation follows for
the left side. The worldvolume of the shell is embedded into the right half of the wormhole
spacetime by wµ = (τ(η), y(η), x). We can describe a basis of tangential vectors to the
worldvolume surface of the shell as

eµ
1 = ∂ηwµ = (τ̇(η), ẏ(η), 0) , eµ

2 = (0, 0, 1) , (C.1)

where the dot denotes the derivative with respect to η. Then, any normal vector nµ with
respect to the shell must satisfy nµeµ

a = 0 (a = 1, 2), which can be found as

nµ = − cos y

L
√

τ̇2 − ẏ2 (ẏ, τ̇ , 0) . (C.2)

We are choosing the orientation of nµ such that it is pointing outwards. Here the normalization
is chosen as gµνnµnν = 1 with the metric in (2.7). This allows us to evaluate the extrinsic
curvature:

Kab = 1
2nµ∂µhab = − cos y

2L
√

τ̇2 − ẏ2 (ẏ∂τ + τ̇ ∂y)hab , (C.3)

where hab is given by

ds2
ind = habdzadzb = 1

cos2 y

(
(ẏ2 − τ̇2)L2dη2 + r2

0
L2 cos2 τdx2

)
, (C.4)

and za = (η, x) are coordinates for the shell worldvolume whose indices are denoted by
Latin letters.

Explicitly, we have:

Kηη = Lτ̇
tan y

cos y

√
τ̇2 − ẏ2 , (C.5)

Kxx = −r2
0 cos τ (τ̇ cos τ tan y − ẏ sin τ)

L3 cos y
√

τ̇2 − ẏ2 , (C.6)

K ≡ habKab = −2τ̇ sin y − ẏ tan τ cos y

L
√

τ̇2 − ẏ2 . (C.7)

So far, there have been no approximations, however, we are interested in the profile given
eq. (5.14):

τ(η) = η , y(η) = y0 − ε cos2 y0 tan η . (C.8)
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In that case

hab dzadzb =
(
sec2 y0 − 2ϵ tan (τbrane) tan y0

)(
−L2dη2 + r2

0
L2 cos2 (τbrane) dx2

)
+ O(ε2) .

(C.9)
Now we can write the extrinsic curvature to order O(ϵ) in perturbation theory:

Kab =−siny0
L

hab−ε

(
r2

0 cosy0 sin3 (τbrane)
L3 cos(τbrane)

δx
aδx

b +Lcosy0 tan(τbrane)δη
aδη

b

)
+O(ε2) , (C.10)

=−siny0
L

hab−ε
cosy0 tan(τbrane)

L

(
r2

0
L2 δx

aδx
b −cos2 y0hab

)
+O(ε2) , (C.11)

K =− 2
L

siny0−ε
cos3 y0

L
tan(τbrane)

(
tan2 (τbrane)−1

)
+O(ε2) . (C.12)
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