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1 Introduction

The superconformal index counts local BPS operators in a superconformal field theory
(SCFT) [1, 2]. As the index is a robust observable protected from any continuous deformations,
it has been utilized to investigate non-perturbative phenomena, including dualities and
symmetry enhancements, across various dimensions. In the case where the theory admits a
weakly-coupled limit, the index can be computed from the partition function at the limit
in radial quantization using supersymmetric localization techniques. There exist, however,
numerous strongly-coupled isolated theories, such as the 5d rank-1 SCFT derived from
M-theory compactified on a local P2 embedded in a Calabi-Yau (CY) threefold, that lack such
weak coupling limits. For these theories, which we refer to as non-Lagrangian theories, the
usual localization technique cannot be applied. In particular, at present there is no known
way to compute superconformal indices for these non-Lagrangian theories in five dimensions.1

Non-Lagrangian theories have other BPS observables, for example, the partition function
on S1 times Ω-deformed R4 [5, 6], which can be computed on the Coulomb branch through
expansions in terms of Coulomb branch moduli parameters. However, we cannot use these
observables or the techniques used for them to calculate the superconformal index because the
index requires integration over the Coulomb branch parameters. Also, while non-Lagrangian
theories can be obtained by renormalization group (RG) flows from SCFTs that UV complete
certain 5d gauge theories via large mass deformations, we cannot employ such RG flows
to compute the IR index since large mass deformations are not feasible in the context of
the superconformal index. The reason for this is that background mass terms for flavor
symmetries break the supercharges used in defining the superconformal index.

1In lower dimensions, various techniques have been developed to compute superconformal indices for
non-Lagrangian theories. For instance, in the context of 4d theories, some notable examples can be found
in [3, 4].
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In this work, we present two approaches for evaluating the superconformal index of 5d
non-Lagrangian theories. The first approach involves analyzing the RG flows originating from
specific gauge theories on the Higgs branch and examining the corresponding limits of their
superconformal indices. In contrast to mass deformations, Higgs branch RG flows can be
implemented at the level of superconformal index. At the end of Higgs branch RG flow from
a UV theory, the index of the IR SCFT can be extracted from the residue of the UV index at
a pole in the flavor fugacity associated to the Higgs branch deformation [7].

Our first strategy to compute the superconformal index of a non-Lagrangian SCFT
TIR is to use the Higgs branch RG flows as follows. First, we will identify a gauge theory
for a UV SCFT TUV that can flow to TIR via a Higgs branch RG flow, through a careful
analysis of Type IIB (p, q) 5-brane webs for the non-Lagrangian theory. Next, we will
compute the superconformal index of TUV using localization, and extract the residue at a
specific pole in the index of TUV , which realizes the RG flow. Using this method, we will
compute the superconformal indices of all rank-1 non-Lagrangian SCFTs, such as the local
P2 theory, often referred to as the E0 theory, and the local P2 + 1Adj theory [8] which
we denote as the Ê1 theory.

The second approach is to use the idea of “freezing” an O7−-plane and eight D7-branes
(O7− + 8D7’s) to an O7+-plane in Type IIB 5-brane configurations, which was recently
investigated in [9]. This idea can be implemented in the context of partition functions
by carefully adjusting mass parameters or chemical potentials for the global symmetries
associated with the D7-branes. This method offers a complementary method for computing
the partition functions for the theories realized by brane configurations with an O7+-plane.
We extend this technique to calculate the superconformal indices of non-Lagrangian theories,
including the Ê1 theory.

Our results will be verified by comparing the indices obtained from two separate techniques
or distinct UV theories that yield equivalent non-Lagrangian SCFTs in the Higgs branch
limits, and demonstrating that they agree. Additionally, we will use our findings to identify
the correct flavor symmetries and their global forms at the UV fixed points.

2 5-brane webs for non-Lagrangian theories

To begin, we consider 5-brane webs for 5d SCFTs on the Coulomb branch and explore
how Higgsing transitions can lead to non-Lagrangian theories. At rank-1, which means
one-dimensional Coulomb branch, there are two non-Lagrangian SCFTs whose 5-brane webs
are depicted in figure 1. We first discuss the E0 theory, which is the most basic rank-1
theory without flavor symmetry, corresponding to M-theory compactified on a local CY 3-fold
containing a P2 surface, as depicted in figure 1(a). This theory is related to the SCFT that UV
completes an SU(2) gauge theory at the discrete theta θ = π, through an RG-flow triggered
by a mass deformation associated with its U(1) symmetry. This deformation corresponds to
the blow-down transition from a del Pezzo surface dP1 to P2 in geometry [10, 11].

We now illustrate how Higgs branch RG-flows from two distinct gauge theories lead
to either the E0 theory or two copies of it, which will later be utilized to calculate the
superconformal index of the E0 theory. Firstly, we can consider a Higgs branch limit of
the SU(3)κ gauge theory at a Chern-Simons (CS) level κ = 3. This theory has a U(1)
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O7+
<latexit sha1_base64="l3TUbclTxkZMxqPhbuYQ+dB3Vdo="></latexit>

(a) E0 (local P2)
<latexit sha1_base64="lgBwld65i77BUz0XlB6rBrGw7W8="></latexit>

(b) bE1 (local P2 + 1Adj)

Figure 1. Rank-1 non-Lagrangian SCFTs. An empty dot denotes the position of an O7+ plane and
the dotted line denotes its monodromy cut.

−→

Figure 2. Higgs branch transition from the SU(3)3 gauge theory (LEFT) to the E0 theory (RIGHT)
by attaching two parallel NS5-branes to a single 7-brane denoted by a solid dot.

Figure 3. Higgs branch transition from the SU(3)6 gauge theory (LEFT) to a pair of the E0 theory
(RIGHT) that are separated along the 7-branes.

symmetry that is enhanced to an SU(2) symmetry at the UV fixed point. By giving a
vacuum expectation value (VEV) to a component of the moment map operator for the
SU(2) flavor symmetry, we can Higgs this theory to the E0 theory. In the brane web, this
Higgsing process can be achieved by anchoring two parallel NS5-branes on a single external
7-brane, as depicted in figure 2. By moving the external 7-brane downward and performing
a Hanany-Witten transition [12], we can observe that the resulting brane web is identical
to the brane web for the E0 theory.

The second UV theory that we will use for the index computation of E0 is the SU(3)6
gauge theory. The 5-brane web for this theory is illustrated on the left side of figure 3.
This theory also has a U(1) symmetry which is enhanced to an SU(2) flavor symmetry at
the CFT fixed point. Again, we can Higgs this theory by giving a VEV to the moment
map operator for the SU(2) symmetry. In the IR limit, one obtains two copies of the E0
theory which are decoupled from each other. This Higgs branch RG flow in the brane web
is demonstrated in figure 3.

We now discuss the other rank-1 non-Lagrangian SCFT, Ê1 theory or the local P2 +1Adj
theory, which is derived from the 5d N = 2 SU(2) gauge theory with θ = π by integrating out
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O7+ O7+

−→

Figure 4. Transition from the SU(3) 1
2

+ 1Sym to the Ê1 theory.

an instantonic hypermultiplet [8] (see appendix A for the precise relation). The corresponding
5-brane web [13] is given in figure 1(b).

A UV theory that has a Higgs branch limit to the Ê1 theory is the SCFT UV completion
of the SU(3) 1

2
gauge theory with a symmetric hypermultiplet. The 5-brane web for this

theory and its Higgsing process to the brane web for the Ê1 theory are depicted in figure 4.
As illustrated here, turning on a VEV for the moment map operator of the SU(2) flavor
symmetry and taking the low energy limit lead to the diagram on the right-hand side which
is equivalent to the brane web for the Ê1 theory through a Hanany-Witten transition [13].

In the following analysis, we will compute the superconformal indices for the E0 theory
and the Ê1 theory using these UV gauge theories and examining their Higgs branch limits.

3 Superconformal index and Higgsing

The 5d superconformal index is the Witten index of a 5d SCFT quantized on S4. It is
defined as [2, 14]

I = Tr(−1)F x2(jr+R)y2jl
∏

i µFi
i , (3.1)

where x, y are fugacities2 for the subgroup SO(5) × SU(2)R of the superconformal group
whose Cartan generators are jr, jl, and R. Fi denotes the flavor charge and µi is its fugacity.

The superconformal indices for 5d gauge theories with classical gauge groups can be
computed by employing supersymmetric localization developed in [14]. This method, however,
requires knowledge of the complete expression for the instanton partition function at every
instanton order, which is essential for integrating over the gauge holonomies. This can be
achieved through an ADHM construction for the instanton moduli space or by solving the
blowup equations, as discussed in [5, 6, 15, 16]. Unfortunately, this localization approach is
not applicable to calculating superconformal indices for non-Lagrangian theories. The primary
reason for this is that the existing partition functions are expanded in terms of Coulomb
branch parameters, which eventually need to be integrated to yield the superconformal index.
Consequently, at present, there is no known method to calculate the superconformal index
for any non-Lagrangian SCFT.

Now, we introduce a simple method for calculating the superconformal index for non-
Lagrangian SCFTs using the Higgs branch limits of certain UV gauge theories which we
discussed in the previous section. Specifically, we can take advantage of the fact that the
instanton partition functions for the UV gauge theories we are studying can be explicitly

2In terms of the Ω-deformation parameters, x = e−ϵ+ , y = e−ϵ− .
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computed using either the ADHM construction or the blowup approach. This allows us to
compute their superconformal indices using localization. We then take the Higgs branch limit
to the non-Lagrangian theory, which can be realized at the index level by taking the residue
of the UV index at a specific pole, say ξ = 1, associated to the moment map operator with a
non-zero VEV as discussed in [7].3 This procedure yields the superconformal index for the
IR theory at the end of the RG flow, which can be written schematically as

I[TIR] = (Iextra)−1 × Resξ=1 I[TUV] . (3.2)

Here, Iextra represents the contribution from the Goldstone modes of the broken flavor
symmetry by the VEV, which is given by

Iextra = PE
[

x2

(1 − xy)(1 − x/y)

]
. (3.3)

As these Goldstone modes appear whenever a Higgsing is performed, throughout the paper,
we have multiplied the inverse of Iextra to subtract zero mode contributions under the
Higgsing procedure.

As our first example, let us compute the superconformal index of the E0 theory. To this
end, we first calculate the index for the UV SCFT which leads to the SU(3)3 gauge theory at
low energy. Based on the localization argument, we can express the superconformal index for
the SU(3)3 gauge theory as an integral expression over the gauge holonomies αi as

I[SU(3)3] = 1
3!

∮ 2∏
i=1

dαi

2π
Ipert(αi; x, y) · Iinst(αi, q; x, y) ,

Ipert =
∏
e∈∆

(
2 sin e(α)

2

)2
· PE

 −x(y + 1/y)
(1 − xy)(1 − x/y)

∑
e∈∆

eie(α)

 ,

Iinst = Zinst(αi, q; x, y) · Zinst(−αi, q−1; x, y) , (3.4)

where PE[f ] stands for the plethystic exponential of a single letter index f , ∆ denotes
the roots of the gauge group, and the contour encloses the unit circles |eiαi | = 1. Ipert is
the perturbative contribution and the two Zinst factors in Iinst are the instanton partition
functions capturing BPS spectrum of the SU(3)3 theory on Ω-deformed S1 × R4 expanded
by the instanton number fugacity q and q−1, respectively, which can be calculated using the
standard ADHM construction for SU(3) instantons.

3The moment map operator which acquires a non-zero VEV for the Higgs branch limit is a bosonic BPS
operator and it thus provides a pole in the superconformal index. This pole represents a flat bosonic direction
in the moduli space associated to the moment map operator. The Higgs branch limit corresponds to moving
far away along this bosonic direction. Taking the residue of the index amounts to extracting the index of the
operators which are independent of the moment map operator given a large VEV, and thus it yields the index
of the low energy CFT at the end of the RG flow.
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By collecting all the ingredients, we find the superconformal index for the 5d SCFT
UV completion of the SU(3)3 theory as

I[SU(3)3] = 1 + χ3(q1/2)x2 + χ2(y)
[
1 + χ3(q1/2)

]
x3

+
[
χ3(y)

(
1 + χ3(q1/2)) + 1 + χ5(q1/2)

]
x4

+
[
χ2(y)

(
1 + 2χ3(q1/2) + χ5(q1/2)

)
+ χ4(y)

(
1 + χ3(q1/2)

)]
x5 + O(x6) , (3.5)

where χr(a) stands for the r-dimensional representation of the SU(2) symmetry, e.g., χ2(a)=
a +a−1. The term at x2-order corresponds to the contribution from the moment map
operators, which in turn reflects the enhancement of the flavor algebra to su(2) at the
CFT fixed point [17, 18]. Also, we note that the index is expressed in the odd-dimensional
characters for the flavor algebra. This is because the instanton partition function is expanded
by q and thus the index includes only terms with integral power of q. This implies that the
flavor symmetry group is, in fact, SU(2)/Z2 = SO(3) rather than SU(2) [19, 20].

The IR index for the E0 theory can be obtained by tracing the Higgs branch limit of
the index of the SU(3)3 gauge theory. The RG flow can be generated by giving a VEV to
the moment map operator for the SU(2) flavor symmetry. This moment map operator is
captured by the term χ3(q1/2) at x2 order in the above index. Therefore, to take the Higgs
branch limit, we evaluate the residue of the UV index at qx2 = 1. By doing so, we obtain
the superconformal index for the E0 theory,

I[E0] = (Iextra)−1 × Resqx2=1 I[SU(3)3]
= 1 + χ2(y)x3 +

[
1 + χ3(y)

]
x4 +

[
χ2(y) + χ4(y)

]
x5

+
[
− 1 + χ3(y) + χ5(y)

]
x6 +

[
χ4(y) + χ6(y)

]
x7

+
[
1 + χ3(y) + 2χ5(y) + χ7(y)

]
x8 + O(x9) , (3.6)

where Iextra is the same Goldstone mode given in (3.3). Note that there is no term at
x2-order, which suggests that the IR theory lacks any conserved current. This result is indeed
consistent with the absence of flavor symmetry in the E0 theory.

The same result can be obtained by Higgsing from another UV theory, namely, the
SU(3)6 gauge theory. The superconformal index of the UV SCFT leading to the SU(3)6
gauge theory under a mass deformation can also be expressed as the same form in (3.4), but
the instanton contributions are different. In this case, the instanton moduli space has no
known ADHM construction,4 but we can instead compute the instanton partition function
using the blowup equations as presented in [13]. We compute the index of the 5d SCFT
UV completion of the SU(3)6 gauge theory as

I[SU(3)6] = 1 + χ3(q)x2 + χ2(y)
(
1 + χ3(q)

)
x3

+
[
1 + χ2(y)χ2(q) + χ3(y)(1 + χ3(q)) + χ5(q)

]
x4

+
[
χ2(y)(1 + 2χ3(q) + χ5(q)) + χ2(q)(1 + χ3(y))

]
x5

+ χ4(y)
(
1 + χ3(q)

)
x5+O(x6) . (3.7)

4For the SU(3) gauge theories with Chern-Simons level κ > 3, the U(k) holonomy integral in the usual
ADHM quantum mechanics of k instantons exhibits higher order poles at asymptotic infinity. This indicates that
the usual ADHM construction cannot provide consistent UV completions for the instantons in these theories.
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The result shows that the flavor symmetry of the SU(3)6 gauge theory at the CFT fixed
point is SU(2).

By evaluating the residue of this index at q2x2 = 1, one can compute the superconformal
index of the IR theory, which consists of two decoupled E0 theories, as we previously illustrated
in figure 3 using 5-brane webs. Thus, we arrive at the following relation:

(I[E0])2 = (Iextra)−1 × Resq2x2=1 I[SU(3)6] . (3.8)

We verified that this relation agrees well with the index of the E0 theory given in (3.6) up
to the x9-order, which provides a strong evidence for our result.

Next, we shall compute the superconformal index of the Ê1 theory using the Higgsing
procedure described in figure 4. To begin, we first compute the index of the SU(3) 1

2
+ 1Sym

theory at the UV fixed point. The superconformal index of this UV theory can be written as

I
[
SU(3) 1

2
+ 1Sym

]
= 1

3!

∮ 2∏
i=1

dαi

2π
Ipert · Iinst , (3.9)

Ipert =
∏
e∈∆

(
2 sin e(α)

2

)2
· PE

[ −x(y + 1/y)
(1 − xy)(1 − x/y)

∑
e∈∆

eie(α)

+ x

(1 − xy)(1 − x/y)
∑

w∈Sym
(eiw(α)+iµ + e−iw(α)−iµ)

]
,

Iinst = Zinst(αi, µ, q; x, y) · Zinst(−αi,−µ, q−1; x, y) ,

where µ denotes the chemical potential for the U(1) flavor symmetry of the symmetric
hypermultiplet. Here, the instanton partition function can be calculated using the ADHM
construction for SU(3) instantons coupled to additional matter in the form of a symmetric
hypermultiplet, which we summarize in appendix B. By evaluating the integral, we find

I
[
SU(3) 1

2
+ 1Sym

]
= 1 +

[
χ3(a) + χ3(b)

]
x2 (3.10)

+
[
χ2(y)(1 + χ3(a) + χ3(b)) + χ4(a)χ3(b)

]
x3

+
[
χ3(y)(1 + χ3(a) + χ3(b)) + χ2(y)χ4(a)χ3(b)

]
x4

+
[
2χ5(a) + χ5(b) + χ3(a)χ3(b) + 3

]
x4 + O(x5),

where a ≡ qeiµ/2 and b ≡ √
qe−5iµ/4. This result enables us to identify the precise global

flavor symmetry group of the UV CFT as SU(2)a × SO(3)b, which also confirms the so(4)
flavor algebra in this theory predicted in [21].

We now take the Higgs branch limit by giving a VEV to the moment map operator
for the SO(3)b flavor symmetry. To achieve this at the level of the index, we compute the
residue of the UV index at the pole b2x2 = 1. The result then leads to the superconformal
index for the Ê1 theory as follows:

I[Ê1]=1+χ̂3 x2+
[
χ2(y)(1+χ̂3)+χ̂4

]
x3+O(x4), (3.11)

where χ̂r ≡χr(a) with a being the fugacity for the flavor symmetry. The coefficient χ̂3 =
a2+1+a−2 at x2-order captures the contribution of the conserved current multiplet. From
this, we can conclude that the naive U(1)a flavor symmetry group is enhanced to SU(2)a

at the CFT fixed point.
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We can try to test (3.11) by comparing the result against a different construction of
the 5d SCFT. One such realization is through the dimensional reduction of the 6d A2 (2, 0)
theory with an outer automorphism twist [8]. While we cannot compute the index using
this realization, we can understand some general features of its BPS spectrum. In particular,
we can argue that the basic BPS multiplets in this theory should be the SU(2) conserved
current multiplets and a Higgs branch operator in the 4 of the SU(2) flavor symmetry and
whose ground state is in the 4 of SU(2)R. This indeed matches what we observe in (3.11).
See appendix A for a more detailed analysis.

We have computed the above index for Ê1 up to x3-order using the instanton partition
function of the UV SU(3) 1

2
+ 1Sym theory up to 3-instantons. However, to precisely

determine higher order terms of the x-expansion, we need higher instanton results, which our
computational resources unfortunately cannot currently accommodate. In what follows, as
an alternative approach, we will introduce another technique to compute the superconformal
index of specific theories engineered by brane webs with an O7+-plane. By employing this
method, we will improve the order of the index computation for the Ê1 theory.

4 The freezing branes and Ê1 theory

For theories involving an O7+-plane in their brane configuration, such as SU(N) theory with
symmetric matter or SO(N) theory, an alternative yet novel approach for computing physical
observables was proposed in [9]. This method suggests that the O7+-plane contribution can
be retrieved from “freezing” an O7−-plane and eight D7-branes. It is a particular tuning
of the hypermultiplet masses with some special values such that most of the contributions
from the eight fundamental hypermultiplets (D7-branes) cancel each other and what remains,
combined with the contribution of an O7−-plane, yields the contribution of an O7+-plane. For
instance, the SU(N)+1Sym theory can be effectively treated as the SU(N)+1AS+8F theory
by such freezing procedure. This was explicitly checked at the level of the Seiberg-Witten
curves [9] and can be extended to the instanton partition functions [22]. It should be noted
that not all physical observables associated with an O7+-plane can be obtained from freezing
O7− + 8D7s. Only for some observables like the prepotential or index function, it would
provides an effective way of computing them. See [22] for more details on its limitation.

It is also worth noting that the freezing is applicable to non-Lagrangian theories. An
illustrative example discussed in [9] is the Ê1 theory, which can be seen as a local P2+1AS+8F
theory with appropriately adjusted mass parameters. Since the antisymmetric hypermultiplet
decouples here, the Ê1 theory can be effectively obtained by freezing the Sp(1) + 7F theory.

We accordingly implement this freezing to compute the index for the Ê1 theory. Recall
that the superconformal index of the UV SCFT of Sp(1) + 7F is given by a gauge holonomy
integral expression as [14, 23],

I[Sp(1) + 7F] = 1
2!

∮
dα

2π
Ipert · Iinst ,

Ipert =
(

2 sin α

2

)2
· PE

[ −x(y + 1/y)
(1 − xy)(1 − x/y)

∑
e∈∆

eie(α)

+ x

(1 − xy)(1 − x/y)

7∑
l=1

∑
w∈F

(
eiw(α)+iµl + e−iw(α)−iµl

)]
,

Iinst = Zinst(α, µl, q; x, y) · Zinst(−α,−µl, q−1, x, y) , (4.1)
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where µl are the chemical potentials for fundamental hypers, and Zinst is the instanton
partition function which can be computed using the ADHM construction [14, 23]. We have
carried out the explicit integration and computed this index up to x10-order. The detailed
result can be found in appendix C.

Next, we proceed with the freezing procedure acting on this index, which eventually
gives rise to the index of the Ê1 theory. To accomplish this, we adjust the flavor fugacities,
following the process discussed in [9, 22],5 as

eiµ∗
1,2 7→ ax±1/2 , eiµ∗

3,4 7→ ay±1/2 ,

eiµ∗
5,6 7→ −ax±1/2 , eiµ∗

7,8 7→ −a±1y1/2 ,
(4.2)

where a is the fugacity for the flavor symmetry of the Ê1 theory. We then obtain with this
tuning the superconformal index of the Ê1 theory,

I[Sp(1) + 7F]
µl→µ∗

l7→ PE
[ −x(a2 + a−2)

(1 − xy)(1 − x/y)

]
· I[Ê1] ,

I[Ê1] = 1 + χ̂3x2 +
[
χ2(y)(1 + χ̂3) + χ̂4

]
x3

+
[
χ3(y)(1 + χ̂3) + χ2(y)

(
χ̂2 + χ̂4

)
+ χ̂5 + 2

]
x4

+
[
χ4(y)(1 + χ̂3) + χ3(y)(χ̂2 + χ̂4) + χ2(y)(2 + 2χ̂3 + χ̂5)

+ χ̂2 + χ̂4 + χ̂6
]
x5 + O(x6) . (4.3)

This perfectly agrees with the result in (3.11) and further improves it up to x5-order.

5 Summary

We have introduced novel method to compute the superconformal indices of 5d non-Lagrangian
SCFTs. Our methods involve using Higgs branch RG flows from a UV Lagrangian theory or
employing a freezing procedure on orientifold 7-brane in brane constructions. By applying
these techniques, we are able to calculate the superconformal indices for rank-1 non-Lagrangian
SCFTs, namely the E0 theory and the Ê1 theory, given in (3.6) and (4.3), respectively.
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for example, one of eight flavor fugacities (including instanton mass) needs to be tuned with its inverse a−1,
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A Comparison of the Ê1 index with a 6d realization

We can try to test our result for the index of the Ê1 theory by comparing against expectations
from other constructions. One such construction, is the realization of the Ê1 theory from
the twisted compactification of the A2 6d (2, 0) theory on a circle. Indeed, this was how
the Ê1 theory was originally found in [8].

To illustrate how the Ê1 theory arises in such a construction, it is convenient to start first
with a simpler example of the reduction of the A1 6d (2, 0) theory on a circle. In this case,
we expect to get, at low-energies, the 5d maximally supersymmetric SU(2) gauge theory with
discrete theta angle θ = 0 [24–26] (we shall henceforth use the shorthand notation SU(2)θ for
the SU(2) gauge theory with theta angle θ). We can think of this theory also as a minimally
supersymmetric 5d SU(2) gauge theory with an adjoint hypermultiplet. In this viewpoint,
we have an SU(2) flavor symmetry, rotating the hyper, which is the commutant of the SU(2)
R-symmetry of 5d minimal SUSY in the USp(4) R-symmetry of 5d maximal SUSY. When
performing the circle reduction, we have the freedom of incorporating holonomies in flavor
symmetries on the circle. Of particular interest is the holonomy inside this SU(2) subgroup
of the USp(4) R-symmetry group, which is viewed as a flavor symmetry in minimal SUSY.
This will lead to a 5d theory with minimal SUSY.

When the holonomy is small, it simply leads to the adjoint hyper acquiring a mass.
This leads to the 5d version of the N = 2∗ theory, which in the deep IR reduce to a pure
minimally supersymmetric 5d SU(2)0 gauge theory. Of course, this holds when the holonomy
is small, but what happens when the holonomy becomes large? To better understand this,
it is convenient to take a closer look at the BPS operators in the theory. Our starting
point is the 6d A1 (2, 0) theory. The main BPS multiplet in this theory is the D1[0, 0, 0](0,2)

4 ,
where we use the notation of [27], which is the (2, 0) energy-momentum tensor multiplet.
Its ground state is a scalar in the 14 of USp(4). We would be interested in what happens
to this state when we dimensionally reduce. For this, it is convenient to first decompose
USp(4) → SU(2)R × SU(2)F , with SU(2)R the R-symmetry of the minimally supersymmetric
case. Under this decomposition we have that: 14USp(4) → 1+2SU(2)R

2SU(2)F
+3SU(2)R

3SU(2)F
.

Here we shall only consider the last term, which corresponds to the shortest BPS multiplet
we get in 5d from this 6d multiplet.6 This operator is simply the conserved current multiplet
of the 5d SU(2)F symmetry.

When we reduce on a circle, we get the 5d operator, as well as all its Kaluza-Klein
excitations. An interesting aspect in 5d gauge theories resulting from the compactification of
6d SCFTs is that they generally retain some knowledge on the KK tower through instanton
particles, see for instance [24, 25, 28]. As such we would want to keep track on the entire KK
tower. For this purpose, we introduce two fugacities, f and q, with the first one associated
with the holonomy for SU(2)F and the second to the radius of the circle. Note then, that

6This follows from the shortening conditions, where acting on the ground state with the supercharge
annihilates the state where the Dynkin indices of the USp(4) representations of the supercharge and the
ground state are summed [27]. In other words, trying to raise the weight of the USp(4) representation of
the ground state by acting with the supercharge annihilates the state. If we now look at the highest weight
representation under SU(2)R in the decomposition, then it will obey a similar shortening condition as trying
to raise its SU(2)R state is tantamount to raising its USp(4) highest weight.
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the first keep track of the mass to the adjoint hyper, while the second keeps track of the
mass of the KK modes. In the 5d gauge theory, these are associated with background central
charges to the SU(2)F symmetry and the U(1) instanton symmetry of the gauge theory,
respectively, justifying their designation as fugacities. All in all, we can write the charges
of the expected states in 5d as:(

1+f + 1
f

) ∞∑
n=−∞

qn→
(

1+f + 1
f

)(
1+q+ 1

q
+q2+ 1

q2 +· · ·
)

(A.1)

Note that all these states carry the charges of conserved currents in 5d. Next consider the
case where we reduce on a circle of finite radius but without a holonomy. In that case,
all states charged under q acquire a mass, and the currents associated with them are no
longer conserved. We then end up with the SU(2)F conserved current of the 5d maximally
supersymmetric gauge theory.

If we next introduce a small holonomy, then we break SU(2)F to U(1), and correspondingly
the currents charged under f will no longer be conserved. This describes the regime where
we get in 5d the minimally supersymmetric SU(2)0 gauge theory. However, if we continue
to increase the holonomy, we will eventually reach a state where mf = mq and the states
with charges f

q become massless. At this point we expect to get a new 5d theory due to the
presence of additional massless degrees of freedom. Said new theory should have an SU(2)
global symmetry, due to the extra currents, be minimally supersymmetric and support a
mass deformation leading to the 5d gauge theory. Indeed there is a theory that ticks all
these boxes: the E1 SCFT. Therefore, it is natural to expect that at this regime of the
compactification data we get the E1 5d SCFT.

What happens if we increase mf further? The E1 SCFT is known to support only a single
mass deformation sending it to the 5d SU(2)0 gauge theory for both positive and negative
mass. As such we should again get the gauge theory, at least as long as mf does not increase
too much. The expected picture of the resulting low-energy theory in these cases is shown in
figure 5. We could continue exploring other possible phase transition though that would not
be of interest to us here. We also note that there could be in principle phase transitions due
to massless matter coming from longer multiplets, though again we shall not pursue this here.

Now we are going to turn to the case of actual interest to us, the circle reduction of the
A2 (2, 0) theory. This theory is known to have a Z2 discrete symmetry associated with the
outer automorphism of A2, and we shall be mainly interested in the case where the reduction
is done with a twist in said symmetry. In this case we get, at low-energies, the 5d maximally
supersymmetric SU(2)π gauge theory [26]. This is again if we compactify without an SU(2)F

holonomy, so maximal SUSY is preserved. Next we would be interested in the result when we
also include this holonomy. Again when the holonomy is small, it will simply imply a mass
term for the adjoint hyper and we expect to get the 5d minimally supersymmetric SU(2)π

gauge theory. We would want to know what happens when the holonomy becomes large.
To understand this, we again turn to look at the BPS multiplets in the 6d SCFT.

Now we have two of them. One is still the energy-momentum tensor multiplet, in the
D1[0, 0, 0](0,2)

4 of the (2, 0) superconformal group, while the other is in the D1[0, 0, 0](0,3)
6 .7

7For a generic (2, 0) theory of type G, there would be rank(G) such operators in the D1[0, 0, 0](0,di)
2di

, for di

the dimensions of the invariant polynomials of G.
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Figure 5. A schematic summery of the expected low-energy theory for the compactification of the 6d
(2, 0) A1 theory. The vertical axis stands for the inverse of the compactification radius, which sets the
scale for the KK masses. The horizontal axis stands for the mass deformation associated with the
holonomy in the USp(4) R-symmetry. We use N = 2 SU(2)θ for the maximally 5d supersymmetric
SU(2) gauge theory with the listed θ angle, and SU(2)θ for the minimally supersymmetric one. Here,
we do not explore the full parameter space, rather contenting ourselves with some region around the
maximal SUSY case. Domains lying outside of said region, where the behavior remains unexplored,
are symbolized with a “?”.

We shall refer to them as V2 and V3, respectively. Their ground state are again scalars,
with the V2 one being in the 14 of USp(4) as before, while the V3 one being in the 30 of
USp(4). When decomposed into the SU(2)R × SU(2)F subgroup, we have that: 30USp(4) →
1+2SU(2)R

2SU(2)F
+3SU(2)R

3SU(2)F
+4SU(2)R

4SU(2)F
, where again we would only be interested

in the last state, which carries the highest weight under SU(2)R.
When reduced, V2 would give us the same states as before, including the KK tower, so

we turn now to V3. One interesting property of this multiplet is that it is odd under the
Z2 symmetry we twist by. As such it essentially obeys anti-periodic boundary conditions
on the circle, and its KK masses are fractional compared with those of the periodic fields.
If we write in terms of fugacities we have:(

1+f + 1
f

) ∞∑
n=−∞

qn→
(

1+f + 1
f

)(
1+q+ 1

q
+q2+ 1

q2 +· · ·
)

(
f

1
2 + 1

f
1
2

+f
3
2 + 1

f
3
2

) ∞∑
n=−∞

qn+ 1
2 (A.2)

→
(

f
1
2 + 1

f
1
2

+f
3
2 + 1

f
3
2

)(
q

1
2 + 1

q
1
2

+q
3
2 + 1

q
3
2

+· · ·
)

,

where the first term are the states due to V2, while the second are from V3. In the latter,
we have the charges in the 4 of SU(2)F which multiplies the KK tower, which now carries
fractional powers in q due to the twist. We also note that the first term has 5d superconformal
charges of a conserved current, while the other has those of a Higgs branch operator whose
lowest component is a scalar in the 4 of SU(2)R.

Next we inquire what happens as we increase the value of the holonomy. As before, we
expect to get the 5d SU(2)π gauge theory as long as the holonomy isn’t big enough that
additional states in the KK tower become massless. This occurs first when 3mf = mq, in

which case the states with the charges q
1
2

f
3
2

becomes massless. We note, though, that no
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Figure 6. A schematic summery of the expected low-energy theory for the compactification of the 6d
(2, 0) A2 theory with a twist in its outer automorphism symmetry. Here we use the same notations as
in figure 5.

additional state in the conserved current multiplet becomes massless. As such, the global
symmetry should remain U(1). We again expect that in this regime we get a new minimal
SUSY theory with a U(1) global symmetry and that possess a mass deformation leading to the
5d gauge theory. Like in the previous case, such a theory indeed exists, which is the so-called
the Ẽ1 SCFT. This theory appears as the UV completion of the 5d SU(2)π gauge theory.

What happens if we continue to increase the holonomy? As in the previous case, we
now trigger the same mass deformation but in the opposite direction. However, unlike the
previous case, the low-energy theory one gets for the Ẽ1 SCFT depends on the sign of the
mass deformation, with one sign giving the 5d gauge theory while the other giving the E0
SCFT. Since we got to this theory from the gauge theory side, the other direction must
lead to the E0 theory. Therefore, we conclude that once the holonomy increases we should
get the E0 SCFT at low-energies.

What happens if we continue to increase the holonomy? The next point where we get
massless matter is when mf = mq. However, now the massless matter we get are the q

f
ones

from the current multiplet, but also q
1
2

f
1
2

and q
3
2

f
3
2

from V3. As we now have extra conserved
currents, we should get an SU(2) global symmetry, and so expect to get a new 5d theory
with SU(2) global symmetry and a deformation leading to the E0 5d SCFT. This is the
Ê1 5d SCFT. We also notice that we get additional massless states from V3. These should
provide a Higgs branch operator in the 4 of the SU(2), and whose ground state is a scalar in
the 4 of SU(2)R. Such a state should contribute to the index as χ4(c)x3. This is precisely
what we observe in (3.11), with this state and the SU(2) conserved currents being the first
low-lying states we observe. The fact that we can identify the origin of these operators, using
a different realization of the Ê1 theory, is an indication in favor of the correctness of (3.11).

To complete the discussion, we can again ask what happens if we further increase the
holonomy? Again, this will trigger the mass deformation of the Ê1 SCFT. Like in the E1 case,
this mass deformation is in an SU(2) global symmetry and so the Weyl group of SU(2) relates
the positive and negative mass deformations. As such increasing the holonomy should again
yield the E0 SCFT as the low-energy theory. Figure 6 provides a summary of the different
theories we get in this case. We can in principle consider increasing the mass deformation
further, though we shall not pursue this here.
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B Partition functions of SU(3)1
2

+ 1Sym

We summarize the detailed computations for the partition functions of SU(3) 1
2

+1Sym theory.
We first compute the instanton partition function on Ω-deformed S1 × C2 using the ADHM
construction for the instanton moduli space which generalizes the discussions in [5, 6, 23].
The instanton partition function is expressed as a series Zinst =

∑
k qkZk expanded by the

instanton number fugacity q, and Zk is the k-instanton partition function. In the case of
SU(N)κ gauge theories, Zk takes a contour integral expression as

Zk = 1
k!

∮ [ k∏
I=1

duI

2πi

]
e−κ

∑k

I=1 uI Zvec
∏
R

ZR , (B.1)

where κ is the Chern-Simons level, Zvec and ZR are the contributions from the vector multiplet
and the hypermultiplets in representation R, respectively. Zvec is given by

Zvec =

∏
I,J 2 sinh

(
u−

IJ +2ϵ+
2

)
·
∏

I ̸=J 2 sinh
(

u−
IJ
2

)
∏

I,J 2 sinh
(

u−
IJ +ϵ1,2

2

)
·
∏

I,j 2 sinh
(
±(uI−aj)+ϵ+

2

) , (B.2)

and the contribution from a symmetric hypermultiplet is given by

ZSym=

∏
I,j2 sinh

(
uI+aj+m1

2

)∏
I≤J2 sinh

(
±(u+

IJ +m1)−ϵ−
2

)
∏

I<J2 sinh
(

±(u+
IJ +m1)−ϵ+

2

) . (B.3)

Here, u±
IJ = uI ± uJ , ϵ1,2 are Ω-deformation parameters with ϵ± = ϵ1±ϵ2

2 , aj are SU(N)
gauge holonomies satisfying

∑N
j=1 aj = 0, and m1 is the mass parameter of the symmetric

hyper. The contour integral in (B.1) is evaluated through the Jeffrey-Kirwan (JK) residue
prescription [23].

However, the integral in (B.1) for SU(3) 1
2
+1Sym exhibits poles at the infinity uI = ±∞

with degree higher than 1. Treating these higher degree poles poses a subtle issue, and
currently, we lack a suitable method to handle such poles in contour integrals. To avoid this
subtlety, we introduce an additional antisymmetric hypermultiplet (AS) and first compute
the instanton partition function of the SU(3)0 + 1Sym + 1AS theory. The contour integral
receives an additional contribution from the antisymmetric hyper with mass m2 as

ZAS=

∏
I,j 2 sinh

(
uI+aj+m2

2

)∏
I<J2 sinh

(
±(u+

IJ +m2)−ϵ−
2

)
∏

I≤J 2 sinh
(

±(u+
IJ +m2)−ϵ+

2

) . (B.4)

This theory with 1AS is a 5d KK theory and the theory SU(3) 1
2

+ 1Sym which we are
interested in can be obtained by integrating out the antisymmetric matter.

One can evaluate the contour integral of the SU(3)0 + 1Sym + 1AS theory using the
JK-residue prescription, and we checked that the resulting instanton partition function
becomes a solution to the blowup equation introduced in [13] up to 3-instanton order. To
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compute the instanton partition function of the SU(3) 1
2

+ 1Sym theory, we take the limit
m2 → ∞. Then we find

lim
m2→∞

Zinst[SU(3)0 + 1Sym + 1AS] (B.5)

→ PE
[

−x2e−5iµ/2

(1 − xy)(1 − x/y)

]
· Zinst

[
SU(3) 1

2
+ 1Sym

]
and

Zinst[SU(3) 1
2

+ 1Sym] = PE[
∞∑

k=1
qkZk] , (B.6)

with the first few Zk being

Z1 =
(
e−5iµ/2+χA2

3 e3iµ/2)x2+
[
χ2(y)

(
e−5iµ/2−χA2

3 e−iµ/2+χA2
3 e3iµ/2)+eiµ/2−χA2

3 e5iµ/2
]
x3

+
[
χ3(y)

(
e−5iµ/2−χA2

3 e−iµ/2+χA2
3 e3iµ/2)+χ2(y)

(
(χA2

8 +2)eiµ/2−χA2
3 e5iµ/2+χA2

3 e−3iµ/2)
−
(
χA2

6 +3χA2
3
)
e−iµ/2

]
x4+

[
χ4(y)

(
e−5iµ/2−χA2

3 e−iµ/2+χA2
3 e3iµ/2)

+χ3(y)
(
(χA2

8 +2)eiµ/2−χA2
3 e5iµ/2+χA2

3 e−3iµ/2)−χ2(y)
(
(χA2

15 +2χA2
6 +4χA2

3 )e−iµ/2+χA2
6 e3iµ/2)

+
(
χA2

10 +3χA2
8 +1

)
eiµ/2+

(
χA2

15 +2χA2
3

)
e−3iµ/2

]
x5+O(x6) ,

Z2 = eiµx2+
(
χ2(y)eiµ+e−2iµ+e4iµ

)
x3+

[
χ3(y)eiµ+

(
χ2(y)

(
e4iµ+e−2iµ−χA2

3 e2iµ
)
+eiµ−χA2

3 e−iµ
)]

x4

+
[
χ4(y)eiµ+χ3(y)

(
e4iµ+e−2iµ−χA2

3 e2iµ
)
+χ2(y)

(
(χA2

8 +3)eiµ+χA2
3 e3iµ−χA2

3 e−iµ
)

−
(
χA2

6 +3χA2
3

)
e2iµ

]
x5+O(x6) ,

Z3 = e3iµ/2x3+χ2(y)e3iµ/2x4+
[
χ3(y)e3iµ/2−

(
χA2

3 e−iµ/2+e3iµ/2)]x5+O(x6) , (B.7)

where x = e−ϵ+ , y = e−ϵ− , µ = im1, and χA2
R is the character of representation R in

su(3) gauge algebra.
Next, we compute the superconformal index using the expression in (3.9). However, our

current computational resources impose limitations on our ability to compute the instanton
partition function only up to 3-instantons. This result may not be sufficient for us to
obtain the superconformal index beyond the third order in x-expansion. To improve our
computational capacity, we first identify the flavor symmetry of the SCFT, which turns
out to be SU(2)a × SO(3)b, using the result up to x2-order. Then we exploit the fact that
the index must form representations of the flavor symmetry. This approach enables us to
compute the higher-order terms up to x6-order as follows:

I[SU(3) 1
2

+ 1Sym] = 1 + (χ3(a) + χ3(b))x2 (B.8)

+ (1 + χ3(a) + χ3(b))(χ2(y)x3 + χ3(y)x4 + χ4(y)x5 + χ5(y)x6)
+ χ4(a)χ3(b)(x3 + χ2(y)x4 + χ3(y)x5 + χ4(y)x6)
+ (2χ5(a) + χ5(b) + χ3(a)χ3(b) + 3)x4 + 3χ2(y)x5

+ χ2(y)[2χ5(a) + χ5(b) + (2χ3(a) + 1)χ3(b) + 3χ3(a)]x5
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+ [(χ6(a) + 2χ4(a) + χ2(a))χ3(b) + χ4(a)χ5(b) − χ2(a)]x5

+ χ3(y)[3χ5(a) + 2χ5(b) + (χ3(a) + 1)(3χ3(b) + 4) + 2]x6

+ χ2(y)[(2χ6(a) + 5χ4(a) + 3χ2(a))χ3(b) − χ2(a)]x6

+ [χ2(y)χ4(a)(2χ5(b) + 1) + (2χ5(a) + χ3(a) + 5)χ3(b)]x6

+ [(χ7(a) + 2χ3(a))(χ5(b) + 3) + χ7(b) + 2χ5(a)]x6 + O(x7).

Obviously, the higher instanton contributions to this result involves some guess work relying
on representations of the SU(2)a × SO(3)b flavor symmetry. Nevertheless, we will confirm
this result by Higgsing to the index of the Ê1 theory, and comparing it with another result
obtained by a freezing procedure, which we will carry out below.

We compute the superconformal index of the Ê1 theory by taking Higgs branch limit
corresponding to extracting residue at the pole bx2 =1 of the above index. The result is

I[Ê1] =
Resbx2=1 I[SU(3) 1

2
+ 1Sym]

Iextra · I ′
extra

, (B.9)

where

I ′
extra =PE

[
x(a3+a+a−1+a−3)

(1−xy)(1−x/y)

]
(B.10)

corresponds to contributions from free hypermultiplets that decouple from the CFT.

C Ê1 index from freezing

We now discuss the freezing procedure to calculate the superconformal index of the Ê1
theory from the index of the Sp(1) + 7F theory. The superconformal index of Sp(1) + 7F
was previously computed in [14, 23]. We further improve those results and compute higher
order terms as follows:

I[Sp(1)+7F] = (C.1)

1+χE8
248x2+(χE8

248+1)(χ2(y)x3+χ3(y)x4+χ4(y)x5+· · ·+χ9(y)x10)+(χE8
27000+1)x4

+χ2(y)(χE8
30380+χE8

27000+χE8
248+1)x5+(χ3(y)(χE8

30380+2χE8
27000+χE8

3875+2χE8
248+2)

+χE8
1763125+χE8

30380+2χ248)x6+(χ4(y)(2χE8
30380+2χE8

27000+χE8
3875+4χE8

248+2)
+χ2(y)(χE8

4096000+χE8
1763125+χE8

30380+2χE8
27000+χE8

3875+4χ248+2))x7+(χ5(y)(2χE8
30380

+3χE8
27000+2χE8

3875+5χE8
248+4)+χ3(y)(2χE8

4096000+2χE8
1763125+χE8

779247+3χE8
30380+3χE8

27000))x8

+(χ3(y)(χE8
3875+8χE8

248+3)+χE8
79143000+χE8

4096000+χE8
2450240+χE8

30380+3χE8
27000+χE8

3875+2χE8
248

+3)x8+(χ6(y)(3χE8
30380+3χE8

27000+2χE8
3875+7χE8

248+4)+χ4(y)(3χE8
4096000+χE8

2450240

+3χE8
1763125+2χE8

779247+5χE8
30380))x9+(χ4(y)(7χE8

27000+3χE8
3875+11χE8

248+7)
+χ2(y)(χE8

281545875+χE8
79143000+3χE8

4096000+χE8
2450240+2χE8

1763125))x9+χ2(y)(2χE8
779247

+χE8
147250+5χE8

30380+6χE8
27000+2χE8

3875+8χE8
248+4)x9+χ7(y)(3χE8

30380+4χE8
27000+3χE8

3875)x10

+(χ7(y)(8χE8
248+6)+χ5(y)(5χE8

4096000+χE8
2450240+4χE8

1763125+4χE8
779247+χE8

147250+9χE8
30380

+10χE8
27000+4χE8

3875))x10+(χ5(y)(18χE8
248+8)+χ3(y)(2χE8

281545875+χE8
203205000+2χE8

79143000

+χE8
70680000+6χE8

4096000+3χE8
2450240))x10+(χ3(y)(4χE8

1763125+4χE8
779247+2χE8

147250+11χE8
30380

+15χE8
27000+7χE8

3875+15χE8
248+10)+χE8

2642777280+9χE8
248+2)x10+(χE8

344452500+χE8
281545875

+3χE8
4096000+4χE8

1763125+3χE8
779247+χE8

147250+6χE8
30380+4χE8

27000+2χE8
2875)x10+O(x11) ,
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where χE8
r = χE8

r (eiµ1 , · · · , eiµ8) are the characters of representation r of the E8 flavor
symmetry at the CFT fixed point, as predicted in [29], and eiµ8 ≡ q−2 is the instanton
number fugacity. To arrive at this result, we used the instanton partition function Zinst up to
5-instantons. With this, we can determine the index only up to x7-order. To compute the
terms beyond x7-order, even though it requires higher instanton contributions, we use the
fact that the terms in the index must form E8 representations. This allows us to uniquely
fix all higher-order terms up to x10-order.

We will now proceed with the freezing procedure, which effectively converts the brane
configuration with an O7−-plane with 8 D7-branes for the Sp(1) + 7F theory into that with
an O7+-plane and eventually leads to the brane web for Ê1 as investigated in [9, 22]. In the
context of the index, this corresponds to the specialization of E8 fugacities in the index of
Sp(1) + 7F, as given by (4.2). Consequently, we can compute the index for the Ê1 theory
from that for the Sp(1) + 7F by applying the specialization of E8 fugacities. The index of
Sp(1) + 7F up to x10-order in (C.1) enables us to calculate the superconformal index of the
Ê1 theory up to x5-order which is summarized in (3.11). To obtain the result beyond this
order, we need higher instanton computations at k > 5 of the Sp(1) + 7F theory, which
unfortunately are not currently available.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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