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1 Introduction

The holographic duality [1, 2] remains one of the most promising approaches to Quantum
Gravity. Particular interest is attracted by Higher-Spin (HS) Gravity [3–5] as the AdS dual
candidate [6–9] of the simplest CFT — O(N) vector model [10, 11]. Lagrangian formulation of
Vasiliev’s HS Gravity is not available so far. However, the classification of interaction vertices
between symmetric HS fields in arbitrary dimensions has been an impressive collective effort.
See [12–68] for some key references.

The holographic dictionary relates interaction vertices in AdS space-time to the conformal
correlators on the boundary. Massless HS fields in AdS correspond to conserved currents on
the boundary. The classification of the correlators of the (conserved) currents of arbitrary
spin has been an independent parallel program. See [69–102] for some key references.

Generally, in conformal field theory, two and three-point correlation functions are fixed
by conformal symmetry leaving no functional freedom. While the two-point function is
fixed up to a normalization constant for any spin conformal operator (or traceless current of
any rank) the three-point function depends on several constants for each triplet of currents.
It is natural to expect that the number of independent structures here should match the
number of independent vertices of cubic interaction in the bulk AdS gravity, via AdS/CFT
dictionary. Moreover, the cubic vertices in AdS are uniquely determined from the flat space
cubic vertices, by adding curvature corrections fixed by the requirement of AdS covariance [32–
34, 45, 46, 52, 56, 59]. Hence, there should be a one-to-one correspondence between cubic
vertices in d + 1-dimensional Minkowski space and conformal corellators in d dimensions. At
least, the number of structures on both sides should match. This one-to-one correspondence
between three-point correlators of conserved currents of arbitrary spin in d > 3 dimensions
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and cubic vertices of massless symmetric fields in d + 1 dimensional Minkowski space [25, 38]
was conjectured and elaborated upon in [89] (see also [90, 94]).

Four-dimensional bulk spacetime corresponding to three-dimensional CFT has some
peculiarities (see, e.g., [57, 88, 99]), while similar correspondence has been established in
d = 2 (with three-dimensional bulk) not only at cubic order but also for arbitrary higher-order
interactions [103] with the help of the full classification of cubic [104, 105] and higher-
order [106] independent vertices involving massless bosonic HS fields.

The holographic reconstruction of HS Gravity has also progressed in the last decades:
see [107–119] for some key references.

In this work, we revisit the construction and investigation of two and three-point
correlation functions for HS conformal currents in arbitrary dimensions via Osborn-Petkou
general formulation [77]. In appendix A we briefly review this formulation adopted for
higher spin case. But here we would like to note that the main advantage of formulation
developed in [77] is the reduction of the problem to construction instead of correlation
function depending on three space-time points to the tensor depending on three sets of
symmetrized indices but depending only on one variable which is roughly the difference of
two coordinates inverted around the third point. In this way, we have a much simpler object
for investigation depending on one variable polynomially with certain symmetry properties
and satisfying conservation conditions.

In this work, we present a general Ansatz for the local object that defines the correlation
functions1 of arbitrary-spin currents. This Ansatz is a sum of the most general tensorial
polynomials in one space-time variable and Kronecker symbols. Then we apply the symmetry
conditions described in [77] (see also appendix A) for general three-point correlation function
with different spins s1, s2, s3. The ansatz we use here has a symmetry when exchanging
the different currents of the same spin, differing from the more general ansatz of [89]. It
is, however, general enough for the conserved currents, as the correlators of the latter are
(anti)symmetric under the exchange of the currents of same spin, which is true also for
the bulk vertices [38]. Natural triangle inequalities stem from the locality of our Ansatz.
The solution of the latter is not simple, as expected (the approach of [77] is known to lead
to complications). However, we present the general solution in section 3, reproducing all
low spin examples presented in [77]. The number of correlators of non-conserved currents
(long representations) we count coincides with the results of [89] for non-coincident spins.
However, the counting of correlators, (anti)symmetric under the exchange of the coincident
spin currents, is new, as spelled out in detail in section 3. The extrapolation of the general
case would give a different number, counting all correlators, not only symmetric ones. Our
new counting of “symmetric correlators”, in particular, is relevant for coincident currents.

Then in the next section (section 4) we derive conservation conditions for our general
ansatz. This allows investigation by computer calculation of the rank of an equivalent linear
system of equations for getting independent parameters of the ansatz. One obtains general
restriction on the number of independent parameters of the three-point function. Our results
align with those of [89] (establishing one-to-one correspondence with the Minkowski vertices of

1We work with symmetric currents in arbitrary dimensions and do not consider lower-dimensional aspects
like Schouten identities (relevant in d ≤ 3) and parity-odd correlators (relevant in d ≤ 4).
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massless fields [25, 38]): The number of independent parameters of the parity-even three-point
function of three conserved currents depends only on the minimal spin of the involved currents
and is equal to: min(s1, s2, s3) + 1.

We further formulate the conservation condition in the form of a differential equation on
the generating function of the correlators instead of a recursion relation for coefficients of
the ansatz. We leave the full solution of these relations to future work.

Some technical details and derivations are delegated to appendices.

2 General setup and two-point function

We present very shortly the key points of our technical setup and construction of the two-
point function as a preliminary exercise before our main task: the three-point function. As
customary when dealing with HS fields, we introduce auxiliary vector variables aµ, bµ, . . .

to handle an arbitrary number of symmetrized indices. As usual, we utilize instead of
symmetric tensors such as h

(s)
µ1µ2...µs(x) the homogeneous polynomials in a vector aµ of degree

s at the base point x:

h(s)(x; a) = h(s)
µ1µ2...µs

(x)aµ1aµ2 . . . aµs . (2.1)

Then the symmetrized gradient, divergence, and trace operations are given as2

Grad : h(s)(x; a)⇒ (Grad h)(s+1)(x; a) = (a∇)h(s)(x; a) , (2.2)

Div : h(s)(x; a)⇒ (Div h)(s−1)(x; a) = 1
s
(∇∂a)h(s)(x; a) , (2.3)

Tr : h(s)(x; a)⇒ (Tr h)(s−2)(x; a) = 1
s(s− 1)□ah(s)(x; a) . (2.4)

Moreover we introduce the notation ∗a, ∗b, . . . for a full contraction of s symmetric indices:

∗(s)
a = 1

(s!)2

s∏
i=1

←−
∂ µi

a

−→
∂ a

µi
. (2.5)

These operators, together with their duals3 will be the building blocks of the correlation
functions of higher spin currents. As it was mentioned before, we use the formulation of [77]

2To distinguish easily between “a” and “x” spaces we introduce the notation ∇µ for space-time deriva-
tives ∂

∂xµ .
3It is easy to see that the operators (a∂b), a2, b2 are dual (or adjoint) to (b∂a),□a,□b with respect to the

“star” product of tensors with two sets of symmetrized indices (2.5)

1
n

(a∂b)f (m−1,n)(a, b) ∗a,b g(m,n−1)(a, b) = f (m−1,n)(a, b) ∗a,b
1
m

(b∂a)g(m,n−1)(a, b),

a2f (m−2,n)(a, b) ∗a,b g(m,n)(a, b) = f (m−2,n)(a, b) ∗a,b
1

m(m − 1)□ag(m,n)(a, b).

In the same fashion gradients and divergences are dual with respect to the full scalar product in the space
(x, a, b), where we allow for integration by parts:

(a∇)f (m−1,n)(x; a, b) ∗a,b g(m,n)(x; a, b) = −f (m−1,n)(x; a, b) ∗a,b
1
m

(∇∂a)g(m,n)(x; a, b).

Analogous equations can be formulated for the operators b2 or b∇.
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reviewed in appendix A. Here we just extend this formulation of the two-point correlation
function for the case of general spin-s conformal conserved (traceless-transverse) currents.

First of all, we construct the traceless projector for rank s symmetric tensors:

T
(s)
traceless(a) = E

(s)(a, b) ∗(s)
b T (s)(b) (2.6)

Starting from the ansatz

E(s)(a, b) =
s/2∑
p=0

λp(ab)s−2p(a2b2)p, λ0 = 1 (2.7)

and solving the tracelessness condition

□aE(s)(a, b) = □bE(s)(a, b) = 0 (2.8)

we arrive at a set of coefficients {λp}s/2
p=0 which are the object of the recursion equation:

λp = −(s− 2p + 2)(s− 2p + 1)
4p(d/2 + s− p− 1) λp−1 (2.9)

with solution corresponding to the initial condition from (2.7):

λp = (−1)p[s]2p

22pp![d/2 + s− 2]p
(2.10)

Here we use notations [a]n for falling factorials (Phochhammer symbols):

[a]n = a!
(a− n)! =

Γ(a + 1)
Γ(a− n + 1) (2.11)

Then it is easy to construct spin s representation for inversion matrix given by:

I(a, b;x) = (ab)− 2(ax̂)(bx̂), x̂µ = xµ√
x2

(2.12)

To do that we just take the traceless part of the s-th power of the inversion matrix:

I(s)(a, b;x) =
(
I(a, c;x)

)s ∗sc E(s)(c, b) = E(s)(a, c) ∗sc (I(c, b;x))s (2.13)
□a,bI(s)(a, b;x) = 0 (2.14)

The result is easy to handle

I(s)(a, b;x) =
s/2∑
p=0

λp
(
I(a, b;x)

)s−2p(a2b2)p , λ0 = 1 . (2.15)

Then we search for two point function of conformal conserved currents with spin s:

J (s)(a;x) = J (s)
µ1µ2...µs

(x)aµ1aµ2 . . . aµs (2.16)

(∇∂a)J (s)(a;x) = 0 (2.17)

□aJ (s)(a;x) = 0 (2.18)
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The natural proposal is

〈
J (s)(a;x1)J (s)(b;x2)

〉
= CJ

(x2
12)∆(s)

I(s)(a, b;x12) (2.19)

This expression is traceless by construction due to (2.14). The scaling number ∆(s) we can
obtain from conservation condition (2.17) applied to (2.19):

0 = (∇1∂a)
I(s)(a, b;x12)
(x2

12)∆(s)

=
2(∆(s) − s− d + 2)

(x2
12)∆(s)+1

s/2−1∑
k=0

λk(s− 2k)
(
I(a, b;x12)

)s−2k−1(bx̂12)(a2b2)k (2.20)

So we see that we should choose for the conformal dimension of spin s field standard value:

∆(s) = s + d− 2 (2.21)

Equivalently we can say that the conservation of the two-point function (2.19) comes from
the following relation: [

(∇x∂a)− 2(x̂∂a)√
x2

]
I(s)(a, b;x) (2.22)

The interesting point here is that if we start with expression (2.19), where we take the correct
conformal dimension (2.21) but in expression (2.15) undefined general set of coefficients λk

then after implementation of conservation condition we arrive to the same recursion (2.15) for
set λk which we obtained before from the tracelessness condition (2.9) or equivalently (2.14).

For the odd spin case, the generalization is straightforward: we should just replace s/2
in summation limit by integer part [s/2], which means that the highest trace, in this case,
produces a vector instead of a scalar.

3 Three-point function: the structure of the ansatz

For the construction of the three-point function we should investigate structure, symmetry,
and conservation condition for object tj1j2i3(X), which lives in three different representations
of different spins but depends locally from one point in space-time (see [77] or appendix A for
details). New important restrictions on the correlators enter the game for conserved currents:
the corresponding conservation conditions should be implemented independently, restricting
the correlators further. These we consider in the next section.

First note that restricting our structure to the

ti1i2i3(X) = ti1i2i3(X̂), (3.1)

where

X̂µ = Xµ√
X2

, X12µ = −X21µ = x13µ

x 2
13
− x23µ

x 2
23

, (3.2)

is unit vector, we have q = 0 in (A.6) and (A.8)–(A.10). Taking into account that the
nonsingular, tensorial part of the two-point function is given by the inversion matrix which is
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a function of the same unit vector (A.11), we see from (A.5), (A.6) that the scaling behavior
of conformal correlators depends on dimensions of fields only.

Now we formulate a general three-point function for the case of the correlation functions
of three different higher-spin traceless currents. Rewriting the (A.5) for different spins
s1, s2, s3, we get:

⟨J (s1)(a;x1)J (s2)(b;x2)J (s3)(c;x3)⟩ =

= I
(s1)(a, a′;x13)I(s2)(b, b′;x23) ∗(s1)

a′ ∗(s2)
b′ t(s3)(a′, b′; c; X̂12)

x
∆(s1)+∆(s2)−∆(s3)
12 x

∆(s2)+∆(s3)−∆(s1)
23 x

∆(s1)+∆(s3)−∆(s2)
31

(3.3)

where for t(s3)(a, b; c; X̂12) we should propose a general ansatz. For that we note that this
object is traceless in all three sets of symmetrized indices, therefore we can define it as a
“kernel” object t̃(s3)(a, b; c; X̂) enveloped by three traceless projectors

t(s3)(ã, b̃; c̃; X̂) = E(s1)(ã, a) ∗a E(s2)(b̃, b) ∗b t̃(s3)(a, b; c; X̂) ∗c E(s3)(c, c̃) (3.4)

Then for t̃(s3)(a, b; c; X̂) we propose the following ansatz:

t̃(s3)(a, b; c; X̂) = Is3(c, c′; X̂) ∗c′ H̃(a, b, c′; X̂) (3.5)

where

H̃(a, b, c; X̂) =
∑

ℓ1,ℓ2,ℓ3∈A
C̃ℓ1ℓ2ℓ3(X̂a)ℓ1(X̂b)ℓ2(X̂c)ℓ3(ab)α(bc)β(ca)γ (3.6)

To define scope of indices A we note that natural restriction:

α + γ + ℓ1 = s1

α + β + ℓ2 = s2

γ + β + ℓ3 = s3 (3.7)

completely fix α, β, γ for any choice of ℓ1, ℓ2, ℓ3:

2α = s1 + s2 − s3 + ℓ3 − ℓ1 − ℓ2 (3.8)
2β = s2 + s3 − s1 + ℓ1 − ℓ2 − ℓ3 (3.9)
2γ = s1 + s3 − s2 + ℓ2 − ℓ1 − ℓ3 (3.10)
2(α + β + γ) =

∑
si −

∑
ℓi (3.11)

So introducing:

ni = si − ℓi, i = 1, 2, 3, (3.12)

we have:

2α = n1 + n2 − n3 (3.13)
2β = n2 + n3 − n1 (3.14)
2γ = n1 + n3 − n2 (3.15)
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and therefore from positiveness of α, β, γ we have triangle inequalities:

ni + nj ≥ nk, i ̸= j ̸= k. (3.16)

These inequalities completely fix the scope of ℓi and define the number of nonzero independent
parameters in our ansatz (3.6). For general conformal dimensions of our currents, these are
the only restrictions on the number of structures. The short representations, corresponding
to (partially-)conserved currents, will be discussed later.

We analyzed the inequalities given above for arbitrary triplets of spins and were able to
guess the analytical expressions for the number of terms in the ansatz. Interestingly, this
number is not a smooth function of spins, which manifests itself by gaps when some spins
coincide and different dependence of even and odd spins. We will use the step function
in the following:

η(s) = 1− (−1)s

2 (3.17)

Then the solution for numbers of allowed monomials in the case when all spins are the
same s1 = s2 = s3 = s is

Nsss = 1
24(s + 2− η(s))(s + 3)(s + 4 + η(s)) (3.18)

Then we turn to the case when two out of three spins are equal. There is a special point in
this case: s1 = s2 = s, s3 = 2s. The number of structures in this case is:

Nss2s = 1
6(s + 1)(s + 2)(s + 3) (3.19)

There are two cases beyond this point:

• s3 > s = s1 = s2

N s3>s
sss3 = 1

6(s + 1)(s + 2)(s + 3)− 1
24p(p + 2)(p + 4)− 1

8(p + 2)η(p) (3.20)

where p = 2s− s3, and

• s1 < s = s2 = s3

N s1<s
s1ss = 1

8[(s1 + 2)2 − η(s1)](2s− s1 + 2) (3.21)

Then the next observation from computer calculation is for the case s1 + s2 = s3:

N s1+s2=s3
s1s2s3 = 1

2(s1 + 1)(s1 + 2)
(

s2 −
1
3(s1 − 3)

)
(3.22)

And finally the last observation is about numbers of monomials for the case with just general
ordering s1 < s2 < s3:

N s1<s2<s3
s1s2s3 = N s1+s2=s3

s1s2s3 − 1
24P (P + 2)(2P + 5)− 1

8η(P ) (3.23)

P = s1 + s2 − s3
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λi

λj

2sk

2sk

Figure 1. Area of λi + λj ≤ 2sk.

So we see that (3.18)–(3.23) completely cover all scope of indices A and we have analytic
formula for number of all monomials in our ansatz with indices satisfying triangle inequalities.
The last question remains, what happens when in our different spin case the greatest one
stops to satisfy triangle inequality s3 > s1 + s2? The answer is that number of monomials in
this case stabilized with latest one satisfying triangle inequality N s1+s2<s3

s1s2s3 = N s1+s2=s3
s1s2s3 .

Finalizing this consideration we present some geometric arguments for cubic behaviour
and discontinuities in points with coincident spins. Let us rewrite our inequality (3.16) in
the form of equations introducing three new nonnegative variables λi

ni + nj = nk + λk, i ̸= j ̸= k (3.24)

then summing any pair of these equations we come to the important relation:

λi + λj = 2nk, i ̸= j ̸= k (3.25)
ni ∈ [0, 1, . . . si] (3.26)

So replacing r.h.s. with maximal value we see that the scope of allowed indices is integer
numbers with the following restrictions:

• From (3.25) we see that allowed λi are all even or odd, so we have separate even or odd
lattice.

• these even or odd pairs restricted by positiveness and inequality

λi + λj ≤ 2sk i ̸= j ̸= k. (3.27)

The allowed points occupy all integer vertexes of the lattice triangle in figure 1. So
the number of these points should be proportional to the area of this triangle. To get the
general picture of the numbers of allowed monomials in our ansatz, we should expand our
discrete triangle in the third direction in the form of a triangle prism with a hight in the third
direction. Then the full solution will be intersection of three different prisms constructed
on planes (λ1, λ2), (λ2, λ3) and (λ3, λ1) with corresponding legs 2s3, 2s1, 2s2 of right triangle

– 8 –
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Figure 2. Intersection of Prisms in the case s1 ≤ s2 ≤ s3.

 Figure 3. Intersection in the case s1 = s2 ≤ s3 and s1 ≤ s2 = s3.

 
Figure 4. Intersection of Prisms in the case s1 = s2 = s3.

bases (See figure 2). This picture explains everything about the non-smooth behavior of our
formulas above because of an irregular intersection of these prisms for different spins s1, s2, s3.

Then we can understand that in coincident cases the geometrical figures we get as a result
of intersections of our prisms are more symmetric. We illustrate this for the cases s1 = s2 ≤ s3
and s1 ≤ s2 = s3 (see figure 3) and the most symmetric case s1 = s2 = s3 (figure 4).

So we see that something like “phase transitions” happen in our formulas. On the other
hand, this geometrical three-dimensional picture with previous consideration of figure 1 leads
to the understanding that the full number of monomials allowed by triangle inequalities is
proportional to the volume of our intersection and therefore should be a cubic function of spins.

We also note that the number of correlators for three different spins, given by equa-
tion (3.23), coincides with the counting of [89]. However, in the coincident spin cases, we
have a different number of correlators. The reason is that our ansatz is (anti)symmetric
when exchanging any two coincident spins. Therefore, we count only the correlators with

– 9 –
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(anti)symmetric Chan-Paton factors for currents with coinciding (odd) even spin. For the case,
when the currents of coincident spin have also coincident conformal weight, the correlator is
indeed (anti)symmetric, therefore our ansatz covers all possible correlators. In particular, for
all correlators with only conserved currents, our ansatz is a good starting point to impose
the conservation conditions. This same observation can be made at the level of vertices in
the bulk dual: cubic vertices of massless fields are (anti)symmetric under the exchange of
fields with coinciding spins. The number of conformal correlators for unconstrained currents
of spins s1, s2, s3 we computed here is the number of symmetric traceless SO(d) tensors in
the product of three symmetric traceless SO(d) tensors of ranks s1, s2, s3, as known from [98].
For coincident spins, however, one would need to compute the symmetric product of the
corresponding tensor representations.

In the end, we note that all the examples considered in [77] can be exactly produced
from our general formulas (3.4)–(3.6) with corresponding choice of the value of spins and
solution of the triangle inequality. For illustration, we discuss the important case of coinciding
spins in appendix B.

4 Three-point function: conservation condition

Now we turn to the investigation of the conservation condition for higher spin three point
function. To formulate it for higher spin case we first introduce short notation for combinations
of dimensions:

∆12 = ∆(s1) +∆(s2) −∆(s3) (4.1)
∆23 = ∆(s2) +∆(s3) −∆(s1) (4.2)
∆31 = ∆(s3) +∆(s1) −∆(s2) (4.3)
∆(si) = d + si − 2, i = 1, 2, 3 (4.4)

The latter expressions are the dimensions of conserved currents. Then redirecting readers for
details of derivation to the last part of appendix A, we can write conservation condition

(∇x1∂a)⟨J (s1)(a;x1)J (s2)(b;x2)J (s3)(c;x3)⟩ = 0 (4.5)

in the form:

(∇X∂a)t(s3)(a, b; c;X) = ∆12
(X∂a)

X2 t(s3)(a, b; c;X) (4.6)

The last one is the equation for structural tensor object t(s3)(a, b; c;X) which is completely
equivalent to the conservation condition for the three-point function. Then, separating the
traceless projector from the “kernel” part of (3.4) (see also appendix A for details) and
introducing the k-th trace of our ansatz:

□k
a t̃(s)(a, b, c; X̂) =

∑
ℓ1∈[2k,...s1];ℓ2,ℓ3∈[0,...s2,s3]

{ℓi}∈A

T
(k)
ℓ1,ℓ2,ℓ3

[
ℓ1 − 2k, ℓ2, ℓ3

α;β, γ

]
(4.7)
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where we shortened the formulas using the notation:[
ℓ1, ℓ2, ℓ3
α;β, γ

]
= (X̂a)ℓ1(X̂b)ℓ2(X̂c)ℓ3(ab)αIβ(b, c; X̂)Iγ(c, a; X̂) (4.8)

and T
(k)
ℓ1,ℓ2,ℓ3

is k-th trace map of C̃ℓ1ℓ2ℓ3 from (3.6). In this way using important formula (A.30)
and expression (4.7) after long manipulations we write conservation condition (4.6) in terms
of equations on T

(k)
ℓ1,ℓ2,ℓ3

:

(ℓ1 − 2k)(s3 − s2)T (k)
ℓ1,ℓ2,ℓ3

+ (α + 1)(2ℓ3 − 2k − d− 2s2 + 2)T (k)
ℓ1−1,ℓ2−1,ℓ3

+ (γ + 1)(2ℓ2 − 2k − d− 2s3 + 2)T (k)
ℓ1−1,ℓ2,ℓ3−1

+ (α + 1)(ℓ3 + 1)T (k)
ℓ1−1,ℓ2,ℓ3+1 + (γ + 1)(ℓ2 + 1)T (k)

ℓ1−1,ℓ2+1,ℓ3

+ 1
d + 2s1 − 2k − 4

[
2(ℓ2 − ℓ3)T (k+1)

ℓ1,ℓ2,ℓ3
+ 2(β + 1)

(
T

(k+1)
ℓ1+1,ℓ2,ℓ3−1 + T

(k+1)
ℓ1+1,ℓ2−1,ℓ3

)
− (ℓ2 + 1)T (k+1)

ℓ1+1,ℓ2+1,ℓ3
− (ℓ3 + 1)T (k+1)

ℓ1+1,ℓ2,ℓ3+1

]
= 0 (4.9)

where the traces themselves satisfy the following recursion relation:

T
(k+1)
ℓ1,ℓ2,ℓ3

= (ℓ1 − 2k)(ℓ1 − 2k − 1)T (k)
ℓ1,ℓ2,ℓ3

+ 2(α + 1)(γ + 1)T (k)
ℓ1−2,ℓ2,ℓ3

+ 2(α + 1)(ℓ1 − 2k − 1)T (k)
ℓ1−1,ℓ2−1,ℓ3

− 2(γ + 1)(ℓ1 − 2k − 1)T (k)
ℓ1−1,ℓ2,ℓ3−1 (4.10)

That is not the whole story. The bad news here is that the equation (4.9) should be
supplemented by a conservation condition for the second current in the correlation function
when the latter is also conserved. This can be done in (4.6) by replacements of s1 ↔ s2 and
x1 ↔ x2 and aµ ↔ bµ, or directly in (4.9), (4.10) replacing s1 ↔ s2, ℓ1 ↔ ℓ2.

The good news here is that we do not need to solve all recursion equations (4.9) for all
T

(k)
ℓ1,ℓ2,ℓ3

(k = 0, 1 . . . [s1/2]). In fact, we need to solve only the first conservation condition
for k = 0, all others will be satisfied automatically because they are higher (k-th) traces
of the first one with k = 0.

Using the helpful ansatz-normalization:

T
(0)
ℓ1,ℓ2,ℓ3

= (−1)ℓ3

α!β!γ!Cℓ1,ℓ2,ℓ3 (4.11)

T
(1)
ℓ1,ℓ2,ℓ3

= (−1)ℓ3

α!β!γ!
[
ℓ1(ℓ1 − 1)Cℓ1,ℓ2,ℓ3 + 2βCℓ1−2,ℓ2,ℓ3

+2(ℓ1 − 1)Cℓ1−1,ℓ2−1,ℓ3 + 2(ℓ1 − 1)Cℓ1−1,ℓ2,ℓ3−1
]
= (−1)ℓ3

α!β!γ! Tℓ1,ℓ2,ℓ3 (4.12)

we obtain effective conservation condition:

ℓ1(s3 − s2)Cℓ1,ℓ2,ℓ3

+ (2ℓ3 − d− 2s2 + 2)Cℓ1−1,ℓ2−1,ℓ3 − (2ℓ2 − d− 2s3 + 2)Cℓ1−1,ℓ2,ℓ3−1

+ (ℓ2 + 1)Cℓ1−1,ℓ2+1,ℓ3 − (ℓ3 + 1)Cℓ1−1,ℓ2,ℓ3+1

+ 1
d + 2s1 − 4

[
2(ℓ2 − ℓ3)Tℓ1,ℓ2,ℓ3 + 2(β + 1)

(
Tℓ1+1,ℓ2,ℓ3−1 + Tℓ1+1,ℓ2−1,ℓ3

)
− (ℓ2 + 1)Tℓ1+1,ℓ2+1,ℓ3 − (ℓ3 + 1)Tℓ1+1,ℓ2,ℓ3+1] = 0 (4.13)
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which we should amend with the same type of equation but now for s2, if the second current
is also conserved:

ℓ2(s3 − s1)Cℓ1,ℓ2,ℓ3

+ (2ℓ3 − d− 2s1 + 2)Cℓ1−1,ℓ2−1,ℓ3 − (2ℓ1 − d− 2s3 + 2)Cℓ1,ℓ2−1,ℓ3−1

+ (ℓ1 + 1)Cℓ1+1,ℓ2−1,ℓ3 − (ℓ3 + 1)Cℓ1,ℓ2−1,ℓ3+1

+ 1
d + 2s2 − 4

[
2(ℓ1 − ℓ3)T̄ℓ1,ℓ2,ℓ3 + 2(γ + 1)

(
T̄ℓ1,ℓ2+1,ℓ3−1 + T̄ℓ1−1,ℓ2+1,ℓ3

)
− (ℓ1 + 1)T̄ℓ1+1,ℓ2+1,ℓ3 − (ℓ3 + 1)T̄ℓ1,ℓ2+1,ℓ3+1

]
= 0 (4.14)

where Tℓ1,ℓ2,ℓ3 , T̄ℓ1,ℓ2,ℓ3 are corresponding trace maps:

Tℓ1,ℓ2,ℓ3 =
[
ℓ1(ℓ1 − 1)Cℓ1,ℓ2,ℓ3 + 2βCℓ1−2,ℓ2,ℓ3

+ 2(ℓ1 − 1)Cℓ1−1,ℓ2−1,ℓ3 + 2(ℓ1 − 1)Cℓ1−1,ℓ2,ℓ3−1
]

(4.15)

T̄ℓ1,ℓ2,ℓ3 =
[
ℓ2(ℓ2 − 1)Cℓ1,ℓ2,ℓ3 + 2γCℓ1,ℓ2−2,ℓ3

+ 2(ℓ2 − 1)Cℓ1−1,ℓ2−1,ℓ3 + 2(ℓ2 − 1)Cℓ1,ℓ2−1,ℓ3−1
]

(4.16)

We do not yet have a full solution for this system of equations. But we analyzed these
equations using a computer program and investigated the rank of this linear system for
different triplets of spins using our ansatz (3.4)–(3.6) and normalization (4.11), (4.12). This
system of linear equations for Cℓ1,ℓ2,ℓ3 has a number of independent parameters satisfying
triangle inequalities described in the previous section. Then computing the rank of the
corresponding system for multiple cases we obtain a universal answer: the rank of the
system (4.13), (4.14) depends only on the minimal spin:

• The number of independent parameters of the three-point function (or linearly indepen-
dent correlators) of conserved currents with spins s1, s2, s3 is equal to

Ns1,s2,s3 = min{s1, s2, s3}+ 1 .

We refer to appendix B for some details on the special case of coincident spins.

5 Conservation condition as a differential equation

In this section, we first construct differential equations for the correlators of conserved currents
in the case of coincident spins and then generalize them to the cases with different spins.
First, we transform our recursion equation (B.20) to a differential equation multiplying it by
the following powers of formal variables xℓ1−1yℓ2zℓ3 and summing on all possible values of ℓi

D(∂x, ∂y, ∂z;C(x, y, z)) =
∑
{ℓi}

Dℓ1ℓ2ℓ3xℓ1−1yℓ2zℓ3 = 0 (5.1)

in other words we should obtain differential equation for the functions

C(x, y, z) =
∑
{ℓi}

Cℓ1ℓ2ℓ3xℓ1yℓ2zℓ3 (5.2)
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and
T (x, y, z) =

∑
{ℓi}

Tℓ1ℓ2ℓ3xℓ1−2yℓ2zℓ3 (5.3)

In all these equations {ℓi} means value of indeces ℓi, i = 1, 2, 3 satisfying the triangle inequality

s + ℓi ≥ ℓj + ℓk, i ̸= j ̸= k (5.4)

Comparing (5.3) with (B.21)we obtain:

T (x, y, z) = [∂2
x + (x + 2y + 2z)∂x − y∂y − z∂z + s + 2]C(x, y, z) (5.5)

Then we can obtain differential equation version of our conservation equation (B.20):

D(∂x, ∂y, ∂z;C(x, y, z))

=
[
(∆s + s)(z − y) + 1

2(s + 1− 4yz + x∂x − y∂y − z∂z)(∂y − ∂z)
]

C(x, y, z)

+ 1
d + 2s− 4

[(
2x + y + z + 1

2[∂y + ∂z]
)
(y∂y − z∂z)

+ (s− x∂x)
(

y − z − 1
2[∂y − ∂z]

)]
T (x, y, z) = 0 (5.6)

We see that our differential operator is antisymmetric in z and y although the functions
C(x, y, z) and T (x.y.z) are symmetric. A generalization to different spins is straightforward:
instead of (5.6) we have an equation obtained with the same scheme from the recursion
equation (4.13):

D(s1,s2,s3)(∂;C(x,y,z))=
[
(s3−s2)∂x+(∆s3+s3)z−(∆s2+s2)y

]
C(x,y,z)

+ 1
2(s2+s3−s1+1−4yz+x∂x−y∂y−z∂z)(∂y−∂z)C(x,y,z)

+ 1
d+2s1−4

[(
2x+y+z+ 1

2 [∂y+∂z]
)
(y∂y−z∂z)

+(s1−x∂x)
(

y−z− 1
2 [∂y−∂z]

)
+ 1

2(s3−s2)[y+z+∂y+∂z]
]
T (x,y,z)= 0

(5.7)

where T (x, y, z) in this case is

T (x, y, z) = [∂2
x + (x + 2y + 2z)∂x − y∂y − z∂z + s2 + s3 − s1 + 2]C(x, y, z) (5.8)

The equation (5.7) should be supplemented by a conservation condition for the second current,
when the latter is conserved. This can be obtained from (5.7) and (5.8) by replacements
s1 ↔ s2 and x↔ y. The solution to these general equations for the correlators of conserved
currents will be addressed in an upcoming work.

6 Conclusions

We have established a general ansatz for the tensorial structure of the conformal three-point
function for general spins and general dimensions. This allows us to calculate the exact
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numbers of conformal structures corresponding to all cases of AdS dual bulk interaction
vertices. We present explicit formulas for three-point functions of conformal correlators of
three non-conserved currents, corresponding to massive fields in the bulk. The number of
structures for non-conserved currents is equivalent to the number of vertices with massive
fields in the bulk, counting the number of contractions of three symmetric fields of ranks
s1, s2, s3 with each other and derivatives acting on them, with a condition that the traces
and divergences are excluded, and the derivatives do not contract between themselves (this
latter condition, stemming from field-redefinition freedom, limits the possible Lorentz scalars
to a finite number: see, e.g., [25, 48, 105]). For coincident spins, our counting for correlators,
symmetric under the exchange of the coinciding spin currents, (3.18)–(3.22) are new to our
best knowledge. For all different spins, there cannot be symmetry under exchange of currents,
thus our counting (3.23) coincides with that of [89].

The special cases of (partially) conserved currents, corresponding to the short repre-
sentations or (partially-)massless fields in the bulk, will be studied elsewhere: the extra
constraints on the correlators stemming from the conservation of the currents imply non-
trivial differential equations, for which the general solutions will be treated in future work.
However, we worked out and further studied the structure of the constraints in the case
of the conserved currents, both as differential equations and as recursion relations on the
coefficients of the ansatz. The latter form allowed us to tackle a large number of cases
numerically. Our results confirm the expectation from earlier works [89, 90, 92, 94] about
the number of structures in the correlators of conserved currents, which, in turn, coincides
with the number of massless vertices in the bulk [25, 38].

The conservation condition comes with technical subtleties as the operator of the di-
vergence imposing the conservation of the currents in the ansatz does not commute with
the traceless projector. Our careful treatment takes into account the trace terms in the
projector properly.

We hope to solve analytically the conservation conditions to fully classify the correlators
of (partially-)conserved currents and make a match with the AdS vertices involving (partially-
)massless fields [53]. The case of all massive fields is fully covered by our ansatz in one-to-one
correspondence with the vertices in the bulk [25, 48], assuming symmetry under exchange
of the currents/fields of coincident spins.

The correlation functions of three conserved currents were derived earlier using different
approaches in [92, 94]. In even dimensions, they were described by the correlators in free the-
ories of so-called singletons — conformal fields describing the short conformal representations
described by the (self-dual) multi-forms, corresponding to rectangular Young diagrams of the
half-maximal height of the massless little group in even dimensions (see, e.g., [120]). In four
dimensions, these are the spin-s massless fields, which are representations of the conformal
algebra SO(4, 2) despite the lack of conformal symmetry in their standard off-shell descriptions
(see, e.g., [121, 122]).4 The situation is different in the odd dimensions [94], where the single-
tons are missing or, presumably, correspond to some generalized free field theories lacking
locality: free field equations containing square root of d’Alambertian operator (see, e.g., [124]).

4Explicit descriptions of the singleton theories in terms of covariant Lagrangians are so far only well-studied
for the spin-one case (see [123] for a review).
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The formulation [77] and our generalization for higher spins are also suitable for the
investigation of the singular part of the correlation function to get a route to the trace
anomaly structure in the higher-spin case. We leave this to future investigations.
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A Short review of Osborn-Petkou formulation and adaptation to higher
spin case

In this appendix, we present a short review of useful formulas and constructions proposed
in article [77] (see also [78, 79]).

Conformal transformations. The conformal transformations (combination of translation,
rotation, scale transformation, and special conformal boosts) are diffeomorphisms preserving
metric up to a local scale factor:

xµ → x′
µ(x), gµνdx′µdx′ν → Ω(x)−2gµνdxµdxν (A.1)

Combining this transformation with local dilatation we arrive at local rotations:

R α
µ (x) = Ω(x)

∂x′
µ

∂xα
, R α

µ (x)R ν
α (x) = δν

µ . (A.2)

Adding inversion to this picture:

x′
µ = xµ

x2 , Ω(x) = x2, Rµν(x) = Iµν(x) = δµν − 2xµxν

x2 (A.3)

we see that the rotation operator, in this case, is the Inversion matrix Iµν . A combination of
inversion, rotation, and translation can describe any conformal transformation.

We will show below how the conformal symmetry fixes the form of the two and three-point
correlation functions for arbitrary quasi-primary fields Oi(x), where i is an index counting
corresponding representation of the rotation group O(d) (see [77] for details). The symmetric
representation of the conformal group is defined by two quantum numbers: the spin and
the conformal dimension. The two-point function of two operators is fixed by conformal
symmetry up to an overall constant:

< Oi(x1)Ōj(x2) >= CO
(x2

12)η
Di

j(I(x12)), x12µ = x1µ − x2µ (A.4)

Here Ōj(x) is conjugate representation for Oi(x) with the same conformal dimension. Another
important object here is D(I(x12)) which is corresponding representation for the inversion
matrix Iµν(x) = δµν − 2xµxν/x2.
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Three point function. Since conformal transformations transform any three points into
any others, the three-point function is also essentially defined in general dimension d. Our
discussion for arbitrary representations for the fields O1,O2,O3 with dimensions η1, η2, η3
is based on the following formula from [77]

⟨Oi1
1 (x1)Oi2

2 (x2)Oi3
3 (x3)⟩ =

1
(x 2

12)δ12 (x 2
23)δ23 (x 2

31)δ31

×D i1
1 j1(I(x13))D i2

2 j2(I(x23)) tj1j2i3(X12) , (A.5)

where ti1i2i3(X) is a tensor living in three different spin representations in general case. This
object transforms in a proper way with respect to local rotation and dilatations.

D i1
1 j1(R)D i2

2 j2(R)D i3
3 j3(R) tj1j2j3(X) = ti1i2i3(RX) for all R ∈ O(d) ,

ti1i2i3(λX) = λqti1i2i3(X) (A.6)

and

X12µ = −X21µ = x13µ

x 2
13
− x23µ

x 2
23

, X 2
12 = x 2

12
x 2

13x 2
23

(A.7)

The scaling dimensions of the fields should satisfy the following expressions

δ12 = 1
2(η1 + η2 − η3 + q) , (A.8)

δ23 = 1
2(η2 + η3 − η1 − q) , (A.9)

δ31 = 1
2(η3 + η1 − η2 − q) . (A.10)

So we see that for the construction of the two-point function for spin s currents, we should
realize the construction of the representation of the inversion matrix D(I(x12)) where:

Iµν(x12) = δµν − 2x̂12µx̂12ν , x̂12 = x12√
x2

12

(A.11)

which is more or less obvious and known. Another important property of this formulation
is that in the three-point function we can rearrange all three representations due to the
following important properties [77] of structural function (q = 0):

D i1
1 j1(I(x̂13))D i2

2 j2(I(x̂23)) tj1j2i3(X̂12)
= D i1

1 j1(I(x̂12))D i3
3 j3(I(x̂32)) t̃ j1i2j3(X̂13) = D i2

2 j2(I(x̂21))D i3
3 j3(I(x̂31)) t̂ i1j2j3(X̂32) ,

t̃ i1i2i3(X̂) = D i1
1 j1(I(X̂)) tj1i2i3(X̂), t̂ i1i2i3(X̂) = D i2

2 j2(I(X̂)) ti1j2i3(X̂) . (A.12)

It follows then, that in the case when all three representations are the same (i.e. same spin
currents) and the three-point function is symmetric for all fields O1, O2, O3, then:

ti2i1i3(X) = ti1i2i3(−X) , D i1
j1(I(X)) tj1i2i3(X) = ti3i1i2(−X). (A.13)

The first relation contains −X in r.h.s. because this object depends on the space-time
coordinates through the difference between the inversions of the first and second coordinates
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around the third point (A.7), and when we replace the first two operators we also exchange x1
with x2. The importance of the minus sign in the second relation we consider in detail during
the investigation of our ansatz for ti1i2i3(X). Then for irreducible representations, for which
the two-point functions are fixed as (A.4), we see consistent scaling behavior and covariance
with respect to inversions, rotations, and translations. All these mean that D(I(x12)) behaves
as a parallel transport transformation between two space-time points for local conformal
rotations. This fact is very important for understanding an analogous formula for three-point
functions. The important property of conformal transformations is that one can map any three
points into any other three points. This leads to an essentially (almost) unique three-point
function in general dimension d. The general form of the three-point function is considered
in [77] and presented here in (A.5). The original point of this consideration is that the
three-point function is described through the homogeneous tensor ti1i2i3(X) satisfying (A.6)
and (A.12). More details can be found in [77, 78] and [79], here we just note that if we
restrict ourselves to the polynomial function of unit vector:

ti1i2i3(X) = ti1i2i3(X̂), (A.14)

where

X̂µ = Xµ√
X2

, (A.15)

then in (A.8)–(A.10) we have

q = 0 (A.16)

and instead of

Iµα(x23)X̂12 α = x2
12

x2
13

X̂13 µ , Iµα(x13)X̂12 α = x2
12

x2
23

X̂32 µ , (A.17)

we have

Iµα(x23)X̂12 α = X̂13 µ , Iµα(x13)X̂12 α = X̂32 µ , (A.18)

and we see that inversion operators Iµα(xij), i ̸= j, i, j = 1, 2, 3 really rotate from one
direction to other unit inverted vectors X̂ij . This leads to the familiar expression for the
three-point function:

⟨Oi1
1 (x1)Oi2

2 (x2)Oi3
3 (x3)⟩ =

1
(x 2

12)δ12 (x 2
23)δ23 (x 2

31)δ31

×D i1
1 j1(I(x13))D i2

2 j2(I(x23)) tj1j2i3(X̂12) ,

(A.19)

where ti1i2i3(X̂) is a homogeneous and dimensionless tensor satisfying

D i1
1 j1(R)D i2

2 j2(R)D i3
3 j3(R) tj1j2j3(X̂) = ti1i2i3(RX̂) for all R , (A.20)

ti1i2i3(λX̂) = ti1i2i3(X̂) (A.21)

and

X̂12µ = −X̂21µ =
√

x 2
13x 2

23
x 2

12

[
x13µ

x 2
13
− x23µ

x 2
23

]
(A.22)
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The scaling dimensions of the fields for q = 0 are

δ12 = 1
2(η1 + η2 − η3) ,

δ23 = 1
2(η2 + η3 − η1) ,

δ31 = 1
2(η3 + η1 − η2) . (A.23)

Conservation condition. For the derivation of the conservation conditions, we note that:

(∇x1∂a)⟨J (s1)(a;x1)J (s2)(b;x2)J (s3)(c;x3)⟩

= ∇xµ
1

[
1

x∆12
12 x∆23

23 x∆31
31

∂aµI(s1)(a, a′;x13)
]
I(s2)(b, b′;x23) ∗(s1)

a′ ∗(s2)
b′ t(s3)(a′, b′; c; X̂12)

+ 1
x∆12

12 x∆23
23 x∆31

31
∂aµI(s1)(a, a′;x13)I(s2)(b, b′;x23) ∗(s1)

a′ ∗(s2)
b′ ∇xµ

1
t(s3)(a′, b′; c; X̂12) (A.24)

Using the following relations:

∇xµ
1

1
x∆12

12 x∆31
31

= − 1
x∆12

12 x∆31
31

[∆12x12µ

x2
12

+ ∆31x13µ

x2
13

]
= − 1

x∆12
12 x∆31

31

[
∆12X32µ + (∆12 +∆31)

x13µ

x2
13

]
= − 1

x∆12
12 x∆31+2

31

[
∆12Iµα(x13)

Xα
12

X2
12

+ (∆12 +∆31)
x13µ

x2
13

]
(A.25)

(∇x1∂a)I(s1)(a, a′;x13) = 2(d + s1 − 2)(x13∂a)
x2

13
I(s1)(a, a′;x13) (A.26)

∇xµ
1
t(s3)(a, b; c;X12) = ∇Xα

12
t(s3)(a, b; c;X12)

∂Xα
12

∂xµ
1

= ∇Xα
12

t(s3)(a, b; c;X12)
Iα

µ (x13)
x2

13
(A.27)

we see that the conservation condition is satisfied when:

∆12 +∆31 = 2∆(s1) = 2(d + s1 − 2) (A.28)

and:

(∇X∂a)t(s3)(a, b; c;X) = ∆12
(X∂a)

X2 t(s3)(a, b; c;X) (A.29)

This is the equation for structural tensor object t(s3)(a, b; c;X) which we use in the fourth
section. The equation (A.29) (or (4.6)) is equivalent to the conservation condition for the
first current in the three-point function.
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Now we can separate the traceless projector from “kernel” part and write (A.29) in
the following form:(
∇µ −∆12

X̂µ

√
X2

)
∂a

µE(s1)(a, a′) ∗s1
a′ t̃(s3)(a′, b, c; X̂) ∗s2

b ∗
s3
c E(s2)(b, b̃)E(s3)(c, c̃)

= 1
s1!

s1/2−1∑
k=0

(s1 − 2k)!λs1
k [a2]k

[(
(∇∂a)−∆12

(X̂∂a)√
X2

)
□k

a

− 1
d + 2s1 − 2k − 4

(
(a∇)−∆12

(aX̂)√
X2

)
□k+1

a

]
t̃(s3)(a, b, c; X̂) ∗s2

b ∗
s3
c E(s2)(b, b̃)E(s3)(c, c̃)

(A.30)

where t̃(s3)(a, b, c; X̂) now is:

t̃(s3)(a, b, c; X̂) = Is3(c, c′; X̂) ∗c′ H̃(s123)(a, b, c′; X̂)

=
∑

si∈[0,...si]
{si}∈A

(−1)ℓ3C̃ℓ1ℓ2ℓ3(X̂a)ℓ1(X̂b)ℓ2(X̂c)ℓ3(ab)αIβ(b, c; X̂)Iγ(c, a; X̂).

(A.31)

Then we compute the k-th trace as:

Φk(a;b,c;X̂;α,γ)

=□k
a(ab)α(ac)γ(X̂a)ℓ1

=
∑
p,q,n

p+q+n≤k

ρ

(
k;p,q,n

α,γ,ℓ1

)
(ab)α−k+n+q(ac)γ−k+n+p(bc)k−n−p−q(X̂a)ℓ1−2n−p−q(X̂b)p(X̂c)q,

(A.32)

where we neglected all terms of type O(b2, c2). From the equation

Φk+1(a; b, c; X̂;α, γ) = □aΦk(a; b, c; X̂;α, γ) (A.33)

we get the following recursion relation

ρ

(
k+1;p,q,n

α,γ,ℓ1

)
=2ρ

(
k;p,q,n

α,γ,ℓ1

)
(α−k+n+q)(γ−k+n+p)

+2ρ

(
k;p−1, q,n

α,γ,ℓ1

)
(α−k+n+q)(ℓ1−2n−p−q+1)

+2ρ

(
k;p,q−1,n

α,γ,ℓ1

)
(γ−k+n+p)(ℓ1−2n−p−q+1)

+ρ

(
k;p,q,n−1

α,γ,ℓ1

)
(ℓ1−2n−p−q+2)(ℓ1−2n−p−q+1) (A.34)

This equation after substitution

ρ

(
k; p, q, n

α, γ, ℓ1

)
= 2k−n[α]k−n−q[γ]k−n−p[ℓ1]2n+p+qρ̂(k; p, q, n) (A.35)

goes to Pascal’s identity for multinomials:

ρ̂(k + 1; p, q, n) = ρ̂(k; p, q, n) + ρ̂(k; p, q, n− 1)
+ ρ̂(k; p− 1, q, n) + ρ̂(k; p, q − 1, n) (A.36)
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with obvious solution

ρ̂(k; p, q, n) = [k]n+p+q

p!q!n! =
(

k

p, q, n

)
(A.37)

Then we can easily derive the kth trace of our ansatz:

□k
a t̃(s)(a, b, c; X̂) =

∑
ℓ1∈[2k,...s1];ℓ2,ℓ3∈[0,...s2,s3]

{ℓi}∈A

T
(k)
ℓ1,ℓ2,ℓ3

[
ℓ1 − 2k, ℓ2, ℓ3

α;β, γ

]
(A.38)

where we introduced notation:[
ℓ1, ℓ2, ℓ3
α;β, γ

]
= (X̂a)ℓ1(X̂b)ℓ2(X̂c)ℓ3(ab)αIβ(b, c; X̂)Iγ(c, a; X̂) (A.39)

and T
(k)
ℓ1,ℓ2,ℓ3

is kth trace map of C̃ℓ1ℓ2ℓ3

T
(k)
ℓ1,ℓ2,ℓ3

= (−1)ℓ3
∑
p,q,n

p+q+n≤k

C̃ℓ1−2k+2n+p+q,ℓ2−p,ℓ3−q ρ

(
k; p, q, n

α, γ, ℓ1

)
(A.40)

In this way substituting (A.38) in (A.30) one can straightforwardly derive the conservation
condition on T

(k)
ℓ1,ℓ2,ℓ3

given in (4.9).

B Examples

Coincident spins s1 = s2 = s3 = s. We present examples for the most symmetric
case of equal spins s1 = s2 = s3 = s. It is enough to write a “kernel” term with the
following symmetry properties:

t̃(s)(a, b; c; X̂) = t̃(s)(b, a; c;−X̂) (B.1)

Is(a, a′; X̂) ∗a′ t̃(s)(a′, b; c; X̂) = t̃(s)(c, a; b;−X̂) (B.2)

From these conditions, we derive the most general polynomial ansatz for t(s)(a, b; c; X̂):

t̃(s)(a, b; c; X̂) = Is(c, c′; X̂) ∗c′ H̃(s)(a, b, c′; X̂) (B.3)

t̃
(s)
1 (a, b; c; X̂) =

[
H̃(s)(a, b, c; X̂) + Is(a, a′; X̂) ∗a′ H̃(s)(a′, b, c;−X̂)
+ Is(b, b′; X̂) ∗b′ H̃(s)(a, b′, c; X̂)

]
(B.4)

where the main object, H̃, is given by

H̃(s)(a, b, c; X̂) =
∑

ℓ1,ℓ2,ℓ3∈[0,...s]
{ℓi}∈Ā

C̃ℓ1ℓ2ℓ3(X̂a)ℓ1(X̂b)ℓ2(X̂c)ℓ3(ab)α(bc)β(ca)γ . (B.5)

Here Ā is the range of indices defined by the following natural restrictions:

α + γ + ℓ1 = s (B.6)
α + β + ℓ2 = s (B.7)
γ + β + ℓ3 = s (B.8)
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These also can be resolved fixing α, β, γ for any choice of ℓ1, ℓ2, ℓ3:

2α = s + ℓ3 − ℓ1 − ℓk (B.9)
2β = s + ℓ1 − ℓ2 − ℓ3 (B.10)
2γ = s + ℓ2 − ℓ1 − ℓ3 (B.11)

The positiveness of α, β, γ for coincident spins leads to the triangle inequalities:

s + ℓi ≥ ℓj + ℓk i ̸= j ̸= k (B.12)

Another special point in consideration of equal spins is that conditions (B.1) and (B.2) force
the coefficients T

(0)
ℓ1ℓ2ℓ3

to be completely symmetric with respect to ℓ1, ℓ2, ℓ3. Then:

Is(a, a′; X̂) ∗a′ Is(b, b′; X̂) ∗b′ H̃(s)(a′, b′, c; X̂) = (−1)ℓ1+ℓ2+ℓ3Is(c, c′; X̂) ∗c′ H̃(s)(a, b, c′; X̂)
= Is(c, c′; X̂) ∗c′ H̃(s)(a, b, c′;−X̂) (B.13)

and we get even (odd) sum of ℓ’s for even (odd) spin s:∑
i=1,2,3

ℓi = 3s− 2(α + β + γ) . (B.14)

The relation (B.13) helps to explain the minus sign in condition (B.2) and we can make
the following simple derivation showing that (B.4) is equivalent to (B.3):

H̃(s)(a, b, c; X̂) + Is(a, a′; X̂) ∗a′ H̃(s)(a′, b, c;−X̂) + Is(b, b′; X̂) ∗b′ H̃(s)(a, b′, c; X̂)

= Is(c, c′; X̂) ∗c′
[
Is(c′, c′′; X̂) ∗c′′ H(s)(a, b, c′′; X̂) + Is(b, b′; X̂) ∗b′ H̃(s)(a, b′, c′; X̂)

+ Is(a, a′; X̂) ∗a′ H̃(s)(b, a′, c′; X̂)
]
= Is(c, c′; X̂) ∗c′ ¯̃H(s)(a, b, c′; X̂) (B.15)

where

¯̃H(s)(a, b, c′; X̂) =
∑

ℓ̄1,ℓ̄2,ℓ̄3∈[0,...s]
ℓ̄1+ℓ̄2+ℓ̄3=even

T̄
(0)
ℓ̄1ℓ̄2ℓ̄3

(X̂a)ℓ̄1(X̂b)ℓ̄2(X̂c)ℓ̃3(ab)ᾱ(bc)β̄(ca)γ̄ , (B.16)

T̄
(0)
ℓ̄1ℓ̄2ℓ̄3

= T̄ (0)(ℓ̄1|ℓ̄2ℓ̄3) + T̄ (0)(ℓ̄2|ℓ̄3ℓ̄1) + T̄ (0)(ℓ̄3|ℓ̄1ℓ̄2) , (B.17)

where (symmetric in all ℓ̄i; i = 1, 2, 3) coefficients T̄
(0)
ℓ̄1ℓ̄2ℓ̄3

are constructed as a cyclic permu-
tation (B.17) of the object that is symmetric in two indices only:

T̄ (0)(ℓ̄1|ℓ̄2ℓ̄3) = (−1)ℓ̄1
ℓ̄2,ℓ̄3∑
n2,n3

2n2+n3T
(0)
ℓ̄1−n2−n3,ℓ̄2−n2ℓ̄3−n3

(
ᾱ + n2

ᾱ

)(
γ̄ + n3

γ̄

)
(B.18)

The most general ansatz in this case is (B.3), with traceless projectors written as:

t(s)(ã, b̃; c̃; X̂) = E(s)(ã, a) ∗a t̃(s)(a, b; c; X̂) ∗b ∗cE(s)(b, b̃)E(s)(c, c̃). (B.19)
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Conservation condition for coincident spins. When all spins coincide, we need only
one equation for fully symmetric coefficients:

(α + 1)(2ℓ3 − 2k −∆(s) − s)T (k)
ℓ1−1,ℓ2−1,ℓ3

+ (γ + 1)(2ℓ2 − 2k −∆(s) − s)T (k)
ℓ1−1,ℓ2,ℓ3−1

+ (α + 1)(ℓ3 + 1)T (k)
ℓ1−1,ℓ2,ℓ3+1 + (γ + 1)(ℓ2 + 1)T (k)

ℓ1−1,ℓ2+1,ℓ3

+ 1
d + 2s− 2k − 4

[
2(ℓ2 − ℓ3)T (k+1)

ℓ1,ℓ2,ℓ3
+ 2(β + 1)

(
T

(k+1)
ℓ1+1,ℓ2,ℓ3−1 + T

(k+1)
ℓ1+1,ℓ2−1,ℓ3

)
− (ℓ2 + 1)T (k+1)

ℓ1+1,ℓ2+1,ℓ3
− (ℓ3 + 1)T (k+1)

ℓ1+1,ℓ2,ℓ3+1

]
= 0 (B.20)

where

T
(k+1)
ℓ1,ℓ2,ℓ3

=(ℓ1−2k)(ℓ1−2k−1)T (k)
ℓ1,ℓ2,ℓ3

+2(α+1)(γ+1)T (k)
ℓ1−2,ℓ2,ℓ3

+2(α+1)(ℓ1−2k−1)T (k)
ℓ1−1,ℓ2−1,ℓ3

−2(γ+1)(ℓ1−2k−1)T (k)
ℓ1−1,ℓ2,ℓ3−1 , (B.21)

and we need to solve only the first conservation condition for k = 0 (the rest follow from
tracelessness). Using the helpful ansatz (4.11), (4.12) we arrive to the following recursion
for (symmetric in ℓ1, ℓ2, ℓ3) expressions Cℓ1,ℓ2,ℓ3 and Tℓ1,ℓ2,ℓ3

Dℓ1,ℓ2,ℓ3 = (2ℓ3 −∆(s) − s)Cℓ1−1,ℓ2−1,ℓ3 − (2ℓ2 −∆(s) − s)Cℓ1−1,ℓ2,ℓ3−1

+ β(ℓ2 + 1)Cℓ1−1,ℓ2+1,ℓ3 − β(ℓ3 + 1)Cℓ1−1,ℓ2,ℓ3+1

+ 1
d + 2s− 4

[
2(ℓ2 − ℓ3)Tℓ1,ℓ2,ℓ3 + 2

(
γTℓ1+1,ℓ2−1,ℓ3 − αTℓ1+1,ℓ2,ℓ3−1

)
+ γ(ℓ3 + 1)Tℓ1+1,ℓ2,ℓ3+1 − α(ℓ2 + 1)Tℓ1+1,ℓ2+1,ℓ3 ] = 0 (B.22)

where

Tℓ1,ℓ2,ℓ3 = ℓ1(ℓ1 − 1)Cℓ1,ℓ2,ℓ3 + 2βCℓ1−2,ℓ2,ℓ3

+ 2(ℓ1 − 1)Cℓ1−1,ℓ2−1,ℓ3 + 2(ℓ1 − 1)Cℓ1−1,ℓ2,ℓ3−1 (B.23)

Computer-assisted solutions have s + 1 independent parameters as they should.

Spin 2 case: energy-momentum tensor and connection with (B.3), (B.5). First
we review construction in the case of spin two following [77]. For three point function of
energy-momentum tensors we have:

⟨Tµν(x1)Tσρ(x2)Tαβ(x3)⟩ =
1

x d
12 x d

13 x d
23
Iµν,µ′ν′(x13)Iσρ,σ′ρ′(x23) tµ′ν′σ′ρ′αβ(X12) , (B.24)

with tµνσραβ(X) homogeneous of degree zero in X, symmetric and traceless on each pair
of indices µν, σρ and αβ and from satisfying

tµνσραβ(X) = tσρµναβ(X) . (B.25)
Iµν,µ′ν′(X)tµ′ν′σραβ(X) = tαβµνσρ(X) . (B.26)

The conservation equations require just(
∂µ − d

Xµ

X2

)
tµνσραβ(X) = 0 (B.27)
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Defining

h1
µν(X̂) = X̂µX̂ν −

1
d

δµν , X̂µ = Xµ√
X2

(B.28)

h2
µνσρ(X̂) = X̂µX̂σδνρ + (µ↔ ν, σ ↔ ρ)

− 4
d

X̂µX̂νδσρ −
4
d

X̂σX̂ρδµν + 4
d2 δµνδσρ (B.29)

h3
µνσρ = δµσδνρ + δµρδνσ −

2
d

δµνδσρ = 2Eµν,σρ (B.30)

h4
µνσραβ(X̂) = h3

µνσαX̂ρX̂β + (σ ↔ ρ, α↔ β)

− 2
d

δσρh2
µναβ(X̂)− 2

d
δαβh2

µνσρ(X̂)− 8
d2 δσρδαβh1

µν(X̂) , (B.31)

h5
µνσραβ = δµσδναδρβ + (µ↔ ν, σ ↔ ρ, α↔ β)

− 4
d

δµνh3
σραβ −

4
d

δσρh3
µναβ −

4
d

δαβh3
µνσρ −

8
d2 δµνδσρδαβ , (B.32)

a general expansion for tµνσραβ(X) has the form

tµνσραβ(X) = a h5
µνσραβ + b h4

αβµνσρ(X̂) + b′
(
h4

µνσραβ(X̂) + h4
σρµναβ(X̂)

)
+ c h3

µνσρh1
αβ(X̂) + c′

(
h3

σραβh1
µν(X̂) + h3

µναβh1
σρ(X̂)

)
+ e h2

µνσρ(X̂)h1
αβ(X̂) + e′

(
h2

σραβ(X̂)h1
µν(X̂) + h2

µναβ(X̂)h1
σρ(X̂)

)
+ f h1

µν(X̂)h1
σρ(X̂)h1

αβ(X̂) . (B.33)

From the symmetry condition (B.25), (B.26) we have

b + b′ = −2a , c′ = c , e + e′ = −4b′ − 2c , (B.34)

so that a, b, c, e, f may be regarded as independent. Then using conservation condition (B.23)
we have two additional constraints:

d2a + 2(b + b′)− (d− 2)b′ − dc + e′ = 0 , (B.35)
d(d + 2)(2b′ + c) + 4(e + e′) + f = 0 . (B.36)

Therefore, we have three undetermined independent coefficients, say, a, b, c, which are the
free parameters of the three-point function (in arbitrary dimension d):

f = (d + 4)(d− 2)(4a + 2b− c), (B.37)
e′ = −(d + 4)(d− 2)a− (d− 2)b + dc, (B.38)
e = (d + 2)(da + b− c). (B.39)

Now we can compare these with our general formulation in the case of spin two. We should
look at ansatz (B.3) and (B.5) for the case of s = 2. First of all putting s = 2 in corresponding
number of solution of triangle inequality (3.18) we obtain N222 = 5 which is correct number
of parameters after applying symmetry constraints (B.3) then investigating these independent
five terms in ansatz (B.5), identifying with (B.33) and using notation

C̃ℓ1,ℓ2,ℓ3 = (−1)ℓ3Cℓ1,ℓ2,ℓ3 (B.40)
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where Cℓ1,ℓ2,ℓ3 is symmetric in ℓ1, ℓ2, ℓ3. we obtain the following connections between
coefficients:

a = C000
8 ; b = C110

8 ; b′ = −C000
4 − C110

8 ; (B.41)

c = c′ = C200
2 ; e = C000 + C110 +

C112
4 ; (B.42)

e′ = −C110
2 − C112

4 − C200; f = 4C110 + 4C112 + 8C200 + C222. (B.43)

So we see that these 8 coefficients a, b, b′, c, c′, e, e′, f from [77] expressed through the five
coefficients from our ansatz C000, C110, C200, C112, C222. Because triangle inequality and
symmetricity of Cℓ1,ℓ2,ℓ3 lead to the solution (B.25), (B.26) in general case. Then we can
investigate conservation condition (B.27). taking into account that our normalization here
slightly differ and we should insert in (B.5)

C̃ℓ1,ℓ2,ℓ3 = α!β!γ!Cℓ1,ℓ2,ℓ3 (B.44)

we see that for s = 2 we have only two nonzero independent equations:

D1,1,0 ∼ (8− d2 − 2d)C000 + (6− d)C110 + (4d + 8)C200 + 2C112 = 0 (B.45)
D1,2,1 ∼ (d2 − 12)C110 − 12C112 − 2d(d− 2)C200 − 4C222 = 0 (B.46)

Now we see that it is possible to express C112 and C222 through the remaining three arbitrary
parameter C000, C110 and C200 and these free parameters from (B.45), (B.46) are exactly
equivalent to a, b, c (see (B.41) and (B.42)). Moreover after some straightforward manipulation
we can see that all relations (B.34)–(B.39) are also satisfied exactly.

Spin 3 case: solution of the conservation condition (B.22). Finalizing this appendix
we just present solution of the conservation condition for spin three case. Here we have
eight different parameters in our ansatz and conservation equations expressed four from
them through the four independent:

C3,0,0 =
1

9(d+2)
[
(d−2)(d+8)C1,0,0+(d−14)C2,1,0−2C1,1,1−2C2,2,1

]
(B.47)

C3,1,1 =
1

6(d+2)
[
(d+8)(d−2)2C1,0,0+(d(d+2)+8)C1,1,1

−4(d(d+8)−4)C2,1,0+8C2,2,1
]

(B.48)

C3,2,2 =
1

12(d+2)
[
−(d+6)(d+8)(d−2)2C1,0,0−2(d(d+10)+32)C1,1,1

+2(d3+24d2+60d−96)C2,1,0+2(d(d−12)−44)C2,2,1
]

(B.49)

C3,3,3 =
1

54(d+2)
[
−(d+8)(d−2)2(d2−10d−60)C1,0,0

+(640−d4+2d3−12d2−200d)C1,1,1+4(d4+3d3−124d2−300d+480)C2,1,0

+(3d3−16d2+180d+736)C2,2,1
]

(B.50)
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