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1 Introduction

The success of the numerical conformal bootstrap program has led to a resurgence of interest in
the S-matrix bootstrap — see [1] for a recent review. In recent times, the S-matrix bootstrap
has been used to examine various processes, including pion scattering [2–4], light-by-light
scattering [5], and even scattering in superstring theory [6, 7]. Much of the focus has been on
constraining low-energy data, such as scattering lengths and Wilson coefficients, using the
bootstrap. In many cases, positivity of the absorptive part of the amplitude leads to bounds
on low-energy effective field theories [8–45] — see also [46–51]. At high energies, there exists
the famous Froissart-Martin bound [52, 53], which says that for theories with no massless
particles, the total scattering cross-section in the forward limit cannot grow arbitrarily fast.
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Probing for such high-energy behaviour for phenomenologically interesting S-matrices using
the present formulation of the bootstrap seems out of reach.

In this work, we consider the fully crossing symmetric, massive scalar scattering amplitude,
which we denote by M(s, t). The present formulation of the numerical S-matrix bootstrap [54–
56] uses a clever set of variables that map the cut in each channel to the boundary of a
disc. Then, using these variables, one writes down a manifestly crossing symmetric basis
and imposes partial wave unitarity on the basis. Each basis element goes to a constant in
the high-energy limit. Since to do numerics, one is forced to truncate the number of terms
in the basis as well as the number of spins, one naturally gets a scattering cross-section
that goes to a constant in the high-energy limit. The Froissart-Martin bound indicates that
the partial wave spin sum gets effectively truncated, with the maximum spin depending on
the centre-of-mass energy. This essentially means that, in order to recover the high-energy
behaviour using the bootstrap, one needs to go to very large spins. This is computationally
expensive, and while some strategies have been proposed and briefly examined, no clear idea
has emerged to allow such studies at high energies.

Soon after the Froissart bound was put forth, Khuri and Kinoshita pointed out that
the quantity ρKK(s), defined as the ratio of the real and imaginary parts of the scattering
amplitude in the forward limit, can be constrained using ideas in geometric function theory [57,
58] — see [59, 60] for reviews. The ρ-parameter can be (and is being) experimentally measured
in accelerators.1 We have

ρKK(s) = Re[M(s, 0)]
Im[M(s, 0)] . (1.1)

where we introduce the subscript KK after Khuri-Kinoshita to avoid confusion with other
usages2 of ρ. Khuri and Kinoshita found that for total scattering cross-sections in the forward
limit growing like σtot ∼ log2 s/s0,

ρKK ∼ π

log s
. (1.2)

Various possible behaviours [59] of ρKK depending on how fast σtot grows are depicted in
figure 1(a). At the time when this was examined, the experimental measurements in proton-
proton scattering had found ρKK to be negative. The Khuri-Kinoshita prediction, based
on the expectation that eventually, the scattering cross-section would rise, was that ρKK

must change sign at higher energies. This was later borne out, and the latest experimental
status is depicted in figure 1(b). In [62], Andre Martin described the ρKK measurements
in the following way: “This modest experiment in an unglamorous field, deserted by many
experimentalists and abandoned by most theoreticians because of calculational difficulties,
might be a pointer to new physics, accessible at CERN and at Fermilab.” It has been pointed
out that if ρKK does not obey one of the expected behaviours, it could indicate the breaking
down of one of the assumptions that goes into deriving the dispersive representation (most
likely polynomial boundedness) [63]. The time has come to use modern tools such as the
numerical bootstrap to study this quantity in more detail.

1Recently, [61] examined the phase of the S-matrix constrained by elastic unitarity, using Neural Networks.
2ρ is used both for the basis variable in the S-matrix bootstrap as well as the ρ-meson!
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Figure 1. (a) Behaviour of ρ(s) [59] for various ranges of s. (b) Experimental observations.

The main goals of this paper are to examine ρKK using the numerical bootstrap, explore
cases where the quantity changes sign, and whether the expected behaviours in figure 1(a)
are seen. We introduce a different way to do numerics (employing the primal optimization
approach) using the crossing symmetric dispersion relation (CSDR). While twice subtracted,
fixed-t dispersion relations are bread and butter for a theoretical high-energy physicist [1–
4, 14, 64–66, 68–83] (see also [84, 85]), the CSDR is less familiar. In the standard dispersion
relation, one holds t-fixed and writes a dispersive integral in s. The CSDR, resurrected
in [13], builds on an old but forgotten paper by Auberson and Khuri [86]. It maintains
manifest crossing symmetry in all three channels at the cost of losing manifest locality.
Locality is restored by imposing raints which are equivalent to the so-called “null constraints”
that arise as a consequence of crossing symmetry in the fixed-t scenario. The partial wave
expansion resulting from this representation is dubbed the Dyson block expansion [13] and
is spin-wise Regge-bounded. After removing the non-local pieces, one gets an expansion in
terms of crossing symmetric partial waves that are local but no longer Regge-bounded. This
is reminiscent of Feynman diagrams and includes very important polynomial pieces or contact
terms. This is dubbed as the Feynman block expansion [13] — explicit expressions were first
worked out in [96]. In both cases, raints have to be imposed separately.

Recently, a very compact dispersive representation for the Feynman block expansion was
found [87], which we refer to as the local CSDR or LCSDR for short. This gives a very compact
way of getting the contact terms for any spin. It also enables us to examine the domain of
convergence. For instance, by examining the mass-level expansion of the Virasoro-Shapiro
amplitude, we find that the Feynman block expansion converges everywhere except at the
expected poles, while both the fixed-t and CSDR have finite domains of convergence.

We use both the CSDR and LCSDR to obtain a different basis than what is being
currently used in the literature. This is done by first writing the Roy equation [88] using the
CSDR/LCSDR which gives us the real part of the partial waves in terms of their imaginary
parts. We then only need to make an ansatz for the imaginary part. The next steps are
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essentially the same: we impose non-linear unitarity on the partial waves using SDPB [89]
and examine various quantities. We also compare our approach with existing ones in the
literature. We introduce some nomenclature, essentially for brevity in writing:

• The existing approach based on the ρ variable [54, 55] and extended using wavelet
physics ideas [56], will be called ρW -bootstrap.

• The Feynman block motivated basis whose compact representation is given via the
LCSDR will be called FB-bootstrap.

• The Dyson block motivated basis will be called DB-bootstrap.

For starters, we show that we can reproduce various existing low-energy bounds and also
obtain some analytic and semi-analytic results more elegantly. Then we turn our attention to
ρKK . In doing so, we find that the DB-bootstrap is better suited for numerics. Rather than
maximizing ρKK itself, which cannot be implemented directly using SDP, we fix some low-
energy data such as scattering lengths and extremise the quartic coupling or other scattering
lengths. Furthermore, note that the latest LHC data [90, 91] in figure 1(b) suggests that the
pp total cross-section grows slower than the Froissart behaviour. As such, it makes sense to
fix low-energy data and let bootstrap determine the high-energy growth. Figure 1(b) is for
pp-scattering. It is conventional in the literature to use intuition from pion-pion scattering and
apply it here. Since the mass of a proton is approximately 1GeV, the crossing point is roughly
at s ∼ 530 in these units, while the peak is at s ∼ 106. The Froissart bound indicates that
there should be a truncation in spin to Lmax ∼

√
s log s/s0. Assuming log s/s0 ∼ O(1), and

using Lmax ∼
√

s as the estimate for the number of partial wave spins, we see that getting the
zero reliably will optimistically require approximately 20−30 spins while getting the peak will
require L ≈ 103 spins — the latter seems beyond the current scope of numerics. In our case,
we do the analysis by fixing the spin-0 and spin-2 scattering lengths to the pion experimental
values. In this case, we find that the crossing and the peak lie at much lower values, needing
O(10) spins for convergence. In any case, our goal is to study qualitative features of figure 1(b).
The kinds of questions that the bootstrap enables us to probe are as follows.

• Figure 1(a) suggests only one change of sign if any. But can there be multiple sign
changes? The high energy values in figure 1(b) do indicate a faster fall-off after the
peak than that expected from a dispersion-relation-motivated interpolation (which is
trustworthy only at asymptotic energies).

• For the cases where there is a change of sign in ρKK , do low-energy observables control
the location where this happens? To address this question, we will consider two
main scenarios (i) Fixing spin-0 and spin-2 scattering lengths to the pion values and
minimising the coupling (related to M(4/3, 4/3)). (ii) Fixing the spin-2 scattering
length to the pion value and minimising the spin-0 scattering length. The two results
look similar except around s = 4, which suggests that the spin-2 scattering length is
what controls the higher energy behaviour in both cases. We also look at various other
interesting possibilities for ρKK in appendix E. In many cases, we find markedly distinct
behaviour than what is shown in figure 1(a).
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• Beyond some large enough s, the physics should be sensitive to extra dimensions if
they exist. In that case, we should impose higher dimensional unitarity. How does this
manifest itself in ρKK? Can the deviation of the experimental values in figure 1(b) be
explained using extra dimensions?

Fixing the scattering lengths to phenomenological pion values gives faster convergence
in spin, needing O(10) spins. There already exist bounds due to Lopez and Mennessier [92]
from 1976 on the coupling as a function of the spin-2 scattering length, arising from the
dual optimization problem. Our primal approach gives good agreement with this remarkable
work done almost five decades back, in the absence of Mathematica, SDPB and 40-core
workstations.3

This paper is organized as follows: in section 2, we study a manifestly crossing symmetric,
three-channels-plus-contact-terms representation of the Virasoro-Shapiro amplitude that
arises from the LCSDR. This is to motivate the use of CSDR/LCSDR to obtain a basis to set
up the numerical bootstrap. In section 3, we review the CSDR and the LCSDR. We use these
to obtain some analytic and semi-analytic bounds in section 4. In section 5, we use these to
set up numerical S-matrix bootstrap with a new basis. We re-derive many existing results
and also provide a fresh derivation of certain old numerical results. In section 6, we turn to
ρKK and examine it using the bootstrap in some detail. We conclude with a discussion of
our methods and results, and list some future directions in section 7. The appendices have
many helpful intermediate results and details that complement the main text, including a
comparison of our techniques with existing numerical methods.

2 A string theory motivation

Why should one consider a basis inspired by the crossing symmetric dispersion relation? To
motivate this, let’s examine the 2-2 scattering amplitude of tachyons in bosonic closed string
theory4 which is given by the Virasoro-Shapiro amplitude.

MV S(s, t) =
Γ(−1− s

4)Γ(−1− t
4)Γ(−1− u

4 )
Γ(2 + s

4)Γ(2 +
t
4)Γ(2 +

u
4 )

. (2.1)

From the worldsheet picture, it comes from

− 1
2πi

∫
d2σ|σ|−

u
2 −4|σ − 1|−

s
2−4 . (2.2)

Here s+t+u = −16 as the external particles are tachyonic. To go from the worldsheet form to
the Gamma-function form, we need to analytically continue. Recently, in [93], using insights
from string field theory, a representation was given whereby the need for analytic continuation
was avoided. The result was a representation in terms of a sum over the exchanged mass
states, which had contributions from all three channels, but crucially, needed contact terms.
That such a form is possible has been known for a long time and is discussed in chapter 9

3Needless to say, much of the work in this paper was done using these tools!
4This is usually the first amplitude one learns in a string theory course. Our analysis is applicable more

generally whenever there is a mass gap. The case of four-dilaton scattering amplitude, which admits a graviton
exchange is a bit more subtle and will be considered elsewhere.
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of Polchinski’s textbook [94]. However, to the best of our knowledge, no explicit form has
ever been reported in the literature. The form reported in [93] is not fully explicit since
the contact terms there can only be evaluated numerically. Thus, the challenge in front of
us is to use dispersion relations to come up with a similar representation that is analytic
for any s, t except at the massive poles. We will consider the fixed-t dispersion relation as
well as the crossing symmetric dispersion relations one by one, quoting the final answers
and comparing with the string field theory form.

Using a fixed-t dispersion relation,5 we get

M
(fixed−t)
V S =MV S

(
−16

3 , t

)
+

∞∑
k=0

[
1

k− s
4 −1 +

1
k− u

4 −1−
1

k+ t
4 +

5
3
− 1

k+ 1
3

] (( t
4 +2

)
k

)
2

(k!)2 .

(2.4)
The notation (a)b = Γ(a + b)/Γ(a) is the Pochhammer symbol. This representation is not
explicitly crossing symmetric. As such, to reproduce the correct set of t-channel poles, it
is expected that there is a finite domain of analyticity, which is precisely what happens;
as quoted below, the representation does not converge for arbitrary t. For the crossing-
symmetric dispersion relation, we find

M
(CSDR)
V S = Γ(1/3)3

Γ(2/3)3 +
∞∑

k=0

[
1

k − s
4 − 1 + 1

k − t
4 − 1

+ 1
k − u

4 − 1 − 3
k + 1

3

] ((Λ(k)
)

k

)
2

(k!)2 ,

(2.5)
where

Λ(k) = 1
6

(
(3k + 1)

(√
12a

−3a + 12k + 4 + 1− 1
)
+ 4

)
. (2.6)

Here a = y/x where x = −(s1s2 + s1s3 + s2s3), y = −s1s2s3 with si’s being the shifted
Mandelstam variables s1 = s + 16/3, s2 = t + 16/3, s3 = u + 16/3. This representation is
manifestly crossing symmetric. While encouraging, some further analysis shows that even
this does not converge for all values of a — see below. One drawback of this representation,
compared to the string field theory form, is that, as discussed in [13], this representation is not
manifestly local. On expanding around a = 0, we get negative powers of x for a fixed mass
level, which is not expected in a local theory. In [13, 95], it was shown that a manifestly local
form is possible after subtracting off the non-local terms. In [96], hints were found that this
local form has a larger domain of convergence. Recently, in [87], a local compact dispersive
form was worked out, which coincided with the local form proposed in [13]. The advantage of
this local dispersive form is its simplicity — to be reviewed below — which avoids the need
to work out the contact terms for each partial wave separately. This form leads to:

M
(LCSDR)
V S (s, t) =

∞∑
k=0

[
1

k − s
4 − 1 + 1

k − t
4 − 1

+ 1
k − u

4 − 1 − 1
k + 1

3

] ((Λ(k)
L

)
k

)
2

(k!)2 (2.7)

5The fixed t dispersive representation we consider (in terms of the shifted variables si) is

M (s1, s2)
(b − s1) (s1 + s2 + b) = 1

2πi

∮
s1

ds′1
(s′1 − s1)

M (s′1, s2)
(b − s′1) (s′1 + s2 + b) , (2.3)

The above contour only contains the pole s1 in the s′1-plane. One can open up the contour and pick up the
other poles (and branch cuts). We choose b = 0.
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where
Λ(k)

L = 1
6

(
(3k + 1)

(√
y

16(k + 1
3)3

+ 1− 1
)
+ 4

)
. (2.8)

Now, remarkably, this representation converges everywhere, much like what is expected from
the string field theory form. Despite appearances, at each k’th mass level, the combination of
Pochhammers simplify to a degree-k polynomial in y with integer zeros at y < 0 and moreover,
the poles in each channel get multiplied by the same, manifestly positive (for real Mandelstam
variables) quantity.6 Thus, we now have an explicit analytic answer, unlike [93]. Although not
obvious, the residues at the poles coincide in both representations and agree with the Gamma
function form. The two representations in eq. (2.5) and eq. (2.7) also give the same regular
pieces or contact terms after removing the non-local terms in eq. (2.5). The locality/null
constraints get mapped to Regge boundedness constraints in the new representation. We
summarize the situation with convergence below.

Convergence: we compute the large k limit of the summand in all three representations
and find

CSDR ≈ k− 11
3 +a

2

Fixed-t ≈ k− 11
3 + s2

2

L-CSDR ≈ k− 11
3 log(k) .

(2.9)

Hence we have convergence for ℜ(a) < 16
3 in the case of CSDR and for ℜ(s2) < 16

3 in the
case of fixed-t. The LCSDR converges for any choice of a or s2 as large k is independent of
them. Numerical comparison of convergence is given in the table (19) in appendix C. Thus
the crossing symmetric dispersion relation, with non-local pieces discarded, promises to have
a bigger domain of convergence. Roy and Wanders in 1978 already reported on the possibility
of a bigger domain of convergence using a CSDR [97] and in the future, it will be worthwhile
to take this line of research to completion. We do not do this here but find the above example
a good motivation to set up the numerical S-matrix bootstrap using the (L)CSDR.

3 CSDR: a brief review

We consider 2-2 scattering amplitude of identical massive scalars. It is crossing symmetric
in all three channels and, when polynomial boundedness and unitarity are obeyed, respects
the Froissart-Martin bound [52, 53]. These properties, combined with assumptions of the
analyticity domain, allow us to derive a dispersive representation that maintains full crossing
symmetry [13, 86, 95]. Such a representation is not only mathematically elegant but also
provides valuable analytical tools for various inquiries within the framework of the bootstrap
approach [14, 15, 49, 98–104]. It is given as

M0 (s1, s2) = α0 +
1
π

∫ ∞

8
3

dτ

τ
A0 (τ ; ŝ2 (τ, β))× H0 (τ ; s1, s2, s3) , (3.1)

6The Regge behaviour of this representation is far from obvious but it can be numerically verified that it
indeed has the expected form. Another point we note here is that each individual Pochhammer is also positive
for s, t > 0.
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where α0 = M0(0, 0) is the subtraction constant, A0 (s1; s2) is the s-channel discontinuity and

H0(τ ; s1, s2, s3) ≡
s1

τ − s1
+ s2

τ − s2
+ s3

τ − s3
,

ŝ2(τ, β) ≡ τ
−1 +

√
1 + 4β

2 , β = a

τ − a

We will shift between the following two notations as per convenience: M(s, t) = M0 (s1, s2),
A(s, t) = A0 (s1, s2) and H0 (τ ; s1, s2, s3) = H (s′; s, t, u), where we replace s1 by s− 4

3 , s2 by
t−4/3 in the arguments and change the integration variable τ to s′ = τ+ 4

3 . Lorentz symmetry
allows us to expand the amplitude in a basis of Legendre polynomials Pℓ (z) in d = 4 as follows

M(s, t) = 32π

√
s

s − 4

∞∑
ℓ=0

(2ℓ + 1)fℓ(s)Pℓ

(
z ≡ 1 + 2t

s − 4

)
. (3.2)

where fℓ(s) are the partial wave coefficients that can be extracted from the amplitude using
orthogonality of the Legendre polynomials. We get

fℓ(s) =
1

32π

√
s − 4

s

∫ 1

−1

dz

2 Pℓ(z)M
(

s, t ≡ (s − 4)(z − 1)
2

)
(3.3)

The Dyson block expansion, Roy equations and locality constraints. Plugging (3.2)
for the absorptive part in (3.1), we get an expansion of the dispersive representation in partial
waves. This expansion is referred to as the Dyson block expansion [13]. Explicitly,

M(s, t) = α0 +
1
π

∫ ∞

4

ds′

s′ − 4
3

H(s′; s, t, u)

32π

√
s′

s′ − 4

∞∑
ℓ=0

(2ℓ + 1)Imfℓ(s′)Pℓ(
√

ξ(s′, a))


(3.4)

where ξ(s′, a) =
(

s′− 4
3

s′−4

)2
s′− 4

3+3a

s′− 4
3−a

. We can plug (3.4) into (3.2) to get the Refℓ(s) for any
spin ℓ in terms of imaginary parts Refℓ′(s) for all the spins ℓ′. This set of dispersive integral
equations for the partial waves are known as the Roy equations [88]. They will be important
for us to set up our numerics as discussed in section 5.
The Dyson block expansion, although fully crossing symmetric and spin-wise Regge bounded,
comes at the price that it is not local. Consider the following expansion of the amplitude.

M(s, t) =
∞∑

p=0,q=0
Wp,qxpyq . (3.5)

x and y are crossing symmetric polynomials defined previously. This expansion is completely
general; all higher-degree crossing invariant polynomials can be expressed in terms of products
of x and y. The expansion coefficients Wp,q are called Wilson coefficients. Crucially, in any
local QFT, no terms with negative powers of x can appear in the above expansion. One
way to see this is that such terms cannot arise from a local Lagrangian consisting of only
fields and their derivatives. Therefore,

for any positive integer p and q > p, W−p,q = 0. (Null/locality constraints) (3.6)
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We use the terminology “null” or “locality” constraints interchangeably. In the case of fixed-t
dispersion relations (which are local by construction), the same constraints arise on imposing
crossing symmetry [10, 11], as was shown in [13, 95]. The Dyson block expansion leads to
the following general formula for the Wilson coefficients [13].

Wn−m,m =
∫ ∞

4

ds′

s′ − 4
3

1(
s′ − 4

3

)2n+m 32π

√
s′

s′ − 4

∞∑
ℓ=0

(2ℓ + 1)Imfℓ

(
s′
)
B(ℓ)

n,m(s′),

B(ℓ)
n,m(s′) =

m∑
j=0

p
(j)
ℓ (ξ0) (4ξ0)j (3j − m − 2n)(−n)m

πj!(m − j)!(−n)j+1
, p

(j)
ℓ (ξ0) = ∂jCℓ(

√
ξ)/∂ξj |ξ=ξ0

(3.7)

where ξ0 =

(
s′ − 4

3

)2
(s′ − 4)2 .

The local CSDR and the Feynman Block expansion. Recently, a local crossing
symmetric dispersion relation (LCSDR, for short) was derived in [87]. The representation
is derived by subtracting the non-local terms from the CSDR. It is given by

M0(s1, s2) = α0+
1
π

∫ ∞

2µ
3

dτ

τ
(A0 (τ, ŝ2 (τ, η))H0 (τ ; s1, s2, s3) + 2 (A0 (τ, ŝ2 (τ, η))−A0(τ, 0)))

(3.8)
where η = −s1s2s3

τ3 . The partial wave expansion of the LCSDR consists of the three-channel
exchange terms and an additional infinite sum of contact terms which are polynomials in
s, t, u. The expansion was called the Feynman block expansion in [13] and is given by

M(s, t) = α0 +
1
π

∞∑
ℓ=0

∫ ∞

4

ds′

(s′ − 4)ℓ
32π

√
s′

s′ − 4(2ℓ + 1)Imfℓ(s′)MF
ℓ (s′; s, t) (3.9)

where the Feynman blocks are

MF
ℓ (s′; s, t) =

3∑
i=1

M
(i)
ℓ (s′; s, t) + M

(c)
ℓ (s′; s, t) (3.10)

with

M
(1)
ℓ (s′; s, t) = (s − 4)ℓ Pℓ

(
1 + 2t

s − 4

)( 1
s′ − s

− 1
s′ − 4

3

)
,

M
(2)
ℓ (s′; s, t) = M

(1)
ℓ (s′; t, u) , M

(3)
ℓ (s′; s, t) = M

(1)
ℓ (s′;u, s)

(3.11)

and M
(c)
ℓ (s′; s, t) are the contact terms. Their explicit forms were derived first in [96] by

subtracting non-local terms block-by-block from the Dyson blocks. However, the LCSDR
offers a compact and simpler way to get them directly.

4 Some analytic/semi-analytic bounds

In this section, we list some simple results that can be derived using the CSDR/LCSDR.
We present some analytic bounds that follow from the positivity properties of Legendre
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Figure 2. Bound from the DB-bootstrap. Unitarity was imposed up to L = 16 and smax ≈ 4950.
Null constraint −10−12 ≤ W−1,2 ≤ 0 was imposed.

polynomials and linear unitarity (Imfℓ(s) > 0), as well as some semi-analytic bounds which
require input from bounds obtained from the numerical bootstrap. Let us begin with a
theorem that is known using the fixed-t dispersion relation [105].
Theorem: If the scattering amplitude is real, then the subtracted scattering amplitude
M(s, t)−M

(
4
3 , 4

3

)
is non-negative, i.e. M(s, t)−M

(
4
3 , 4

3

)
≥ 0 for s < 4, t < 4, and u < 4.

Proof: the scattering amplitude is known to be real in the domain defined by s < 4, t < 4,
and u < 4. This domain forms a triangular region in the t-s plane, which we will call the
reality triangle. In the Dyson block expansion, as expressed in equation (3.4), the Legendre
polynomials that appear are always positive when −8

9 < a < 8
3 as proven in [14]. This

positivity property can be attributed to the fact that
√

ξ(s′, a) ≥ 1 for −8
9 < a < 8

3 and
s′ > 4.
To prove the theorem, we only need to determine the common domain in which the kernel
H(s′, s, t) is positive and −8

9 < a < 8
3 . Interestingly, this is always true within the reality

triangle for s′ > 4. Positivity of the absorptive partial wave coefficients then ensures that
the full integral in equation (3.4) is always non-negative. The theorem can also be obtained
using the LCSDR.

Semi-analytic upper bound on W1,0. The bound on W1,0 can be derived from the
fact that the following inequality always holds

M
(4
3 , 0

)
−M

(4
3 ,

4
3

)
= 32

π

∫ ∞

4
ds

A
(
s, 4

3

)
9(s − 4

3)3 − 16(s − 4
3)

>
32
π

∫ ∞

4
ds

A
(
s, 4

3

)
9
(
s − 4

3

)3 = 16W1,0
9 .

(4.1)
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Figure 3. Upper bound on W2,0 from the DB-bootstrap. Unitarity was imposed up to L = 16 and
smax ≈ 4950. Null constraint −10−12 ≤ W−1,2 ≤ 0 was imposed. Black dashed line corresponds to
the bound from (4.4).

Now, we can use the bounds M( 4
3 ,0)

32π < 3.16 [92] and M( 4
3 , 4

3)
32π > −8.08 [69] which gives

W1,0
64π < 3.161. We also bound the l.h.s. directly using the numerical bootstrap. Figure 2 shows

our results (using the DB-bootstrap to be elaborated on in the next section; the ρW -bootstrap
gives a similar result). Imposing unitarity up to spin 16 and one null constraint, we find
M( 4

3 ,0)−M( 4
3 , 4

3)
32π < 4.65. As can be seen in figure 2, this bound is close to converging but has

not fully converged. So the actual bound must be bigger than this. Nevertheless, this leads to

W1,0
64π

< 1.31, (4.2)

close to the bound 0.93 found in [56] by directly maximising W1,0/(64π).

Semi-analytic upper bound on Wn,0. The expression for the Wilson coefficients Wn,0
can be written in a simplified form as

Wn,0 =
2
π

∫ ∞

8
3

dτ

τ
Imfℓ

(
τ + 4

3

)
Pℓ

(
τ

τ − 2µ
3

)( 1
τ2

)n

. (4.3)

Now using the fact that throughout the integration range, the Legendre polynomial is always
positive and 1

τ2 <
(
3
8

)2
, and W1,0

64π < 0.93 [56], we can write

0 ≤ Wn,0
64π

≲ 0.93×
(3
8

)2n−2
. (4.4)
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Figure 4. Lower bounds on W0,1 and W1,1 from the FB-bootstrap. Unitarity was imposed up to
L = 4 and smax ≈ 265. Black dashed lines correspond to the bound from (4.7).

This gives W2,0
64π ≲ 0.131 ,

W3,0
64π ≲ 0.0184 ,

W10,0
64π ≲ 2.00× 10−8 ,

W100,0
64π ≲ 4.23× 10−85 .

Using the numerical bootstrap, we check these bounds for the case of W2,0 as depicted
in figure 3. We find

W2,0
64π

<
22.76
64π

= 0.113 (4.5)

Again, since the bound hasn’t fully converged, the actual bound must be slightly bigger.
This bound is in close agreement with the bounds arising from positivity/typically-real
considerations [10, 11, 14, 98, 100] on W2,0/W1,0.

Rigorous lower bound on Wn−1,1. From the inversion formula for Wn−1,1, we can show
that the spin 0 contribution is always negative while all higher-spin contributions are positive.
Thus, keeping only the spin 0 contribution, we get the inequality

Wn−1,1 ≥ −
∫ ∞

8
3

dτ

τ2n+2

(
32(2n + 1)

√
12

3τ − 8 + 1
)

, (4.6)

where we have put Imfℓ=0(s) = 1. After performing the integral, we get in terms of the
regularized hypergeometric function 2F̃1,

Wn−1,1 ≥ −12
√

π

(3
8

)2n

Γ(2n + 2)2F̃1

(
−1
2 , 2n + 1; 2n + 3

2;−
1
2

)
. (4.7)

For example, W0,1 ≳ −6.4514 , W1,1 ≳ −1.1627 , W10,1 ≳ −5.32× 10−8 , W100,1 ≳ −3.34×
10−84. When n ≫ 1, the r.h.s. asymptotes to −24

√
2πn(3/8)2n+1/2, which is an exponential

suppression. In figure 4, we show the results from the numerical bootstrap. The plots
seem to suggest that the numerical bounds converge to the numbers above, suggesting that
these bounds are optimal.

5 Numerics: a new take on old results

The S-matrix bootstrap has seen exciting advancements thanks to the numerical implementa-
tion of unitarity, crossing symmetry, and analyticity. The problem of optimizing any quantity
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given some constraints can be viewed from two different approaches — primal and dual. The
primal approach involves finding bounds by scanning the space of amplitudes that are allowed
by the bootstrap constraints. Since, in practice, we can only impose a finite set of constraints,
it means that the bounds are not rigorous, as adding new constraints may disallow some of
the amplitudes that were allowed before. On the other hand, the dual approach involves
finding bounds by scanning the space of amplitudes that are disallowed by the bootstrap
constraints. This leads to rigorous bounds as any amplitude, once disallowed, cannot be
ruled in by adding new constraints. Since the dual and the primal formulation approach the
boundary of the allowed space of amplitudes from two different sides, the boundary must
rigorously lie somewhere in the gap between the two, called the duality gap. Most recent
studies have focused on the primal approach. The dual problem in d = 2 was solved in [67]
while d > 2 has proven to be more challenging to set up (see [68–70] for some recent works).

In this paper, we set up the numerical S-matrix bootstrap in the primal approach using
the CSDR/LCSDR. Contrary to the previous approaches where a crossing symmetric ansatz
is made directly for the amplitude, in our approach, we use the CSDR/LCSDR to write down
Roy equations that express the real part of the partial waves in terms of their imaginary
part (as discussed in section 3). This naturally leads to a crossing symmetric basis for the
amplitude. Our basis assumes maximal analyticity, i.e. it is analytic everywhere apart from a
cut along the positive real axis starting at s = 4 and its images under crossing symmetry.
We do not include any bound state poles, but our approach allows for them. Further, in
contrast to the previous approaches, a simplifying feature of our approach is that we only
need to specify an ansatz for Imfℓ(s), which are one-variable functions. In section 2, we
examined the crossing symmetric 3-channel representation of the tree level Virasoro-Shapiro
string amplitude. This representation is the (infinitely) narrow-width approximation, where
the lifetime of the massive states is infinite. We expect loops to broaden the widths. This
motivates representing the absorptive part of the partial waves using a Breit-Wigner type
basis. Based on this line of reasoning, we assume the following ansatz

Imfℓ(s) = b0δℓ,0 +
∑
κ∈Σ

bℓ,κ Im∆ℓ,κ(s), s ≥ 4 (5.1)

where ∆ℓ,κ(s) =
(

s−4
s

)2ℓ+ 1
2 Γ

(s−κ)2+Γ ρκ(s), ρκ(s) =
√
4−s−

√
κ−4√

4−s+
√

κ−4 and

Im∆ℓ,κ(s) =
(

s − 4
s

)2ℓ+ 1
2
sin
(
2 arctan

√
s − 4
κ − 4

)
Γ

(s − κ)2 + Γ . (5.2)

The ansatz is chosen so that the amplitude has an s-channel discontinuity starting at s = 4.
We add an additional parameter b0 to the spin 0 absorptive partial wave. Having this factor
allows for an infinite spin 0 scattering length (see section 5.2 for more). Further, the threshold
behaviour is fixed by demanding that elastic unitarity is satisfied at s = 4 for all partial
waves [106]. This is what leads to the explicit

(
s−4

s

)2ℓ+ 1
2 factor. We have an additional

“Breit-Wigner wavelet” type factor Γ
(s−κ)2+Γ . This introduces peaks in the ansatz when s = κ

and Γ controls the width of the peak. The motivation to introduce this is to capture the
low-lying resonance peaks in the partial waves. Figure 5 illustrates the form of the wavelets
we use for spin 0 and spin 2 partial waves.
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Figure 5. Ansatz for the imaginary part of spin 0 and spin 2 partial waves.

The partial wave coefficients must satisfy unitarity, which in our convention reads
|fℓ(s)|2 ≤ Imfℓ(s) ≤ 1. In practice, we impose it via the following positive semi-definiteness
condition: (

1 + 2Refℓ(s) 1− 2Imfℓ(s)
1− 2Imfℓ(s) 1− 2Refℓ(s)

)
⪰ 0, s ≥ 4 . (5.3)

Additionally, as mentioned in section 2, while the CSDR respects crossing symmetry, it is
not local. We must therefore impose locality constraints. These are imposed on the partial
wave coefficients using the general formula (3.7).

We impose the unitarity and locality constraints numerically using the package SDPB.7
We only impose these constraints up to some maximum spin L and along a grid of values for
s up to some smax. We also discretize the variable κ, which controls where the wavelets (or,
more precisely, their peaks) are placed. In general, we find that to get convergent bounds
when we impose unitarity up to some large smax, we also need to place the wavelets up
to some large enough value of κ. This is intuitive because the wavelets placed at large κ

are expected to capture the properties of the partial waves at large s. We provide more
details about the numerics in appendix A. We also compare our bounds and numerics with
that of [56] in appendix D.

Numerical bootstrap using the CSDR or the LCSDR? We can set up the numerics
using both the CSDR and the LCSDR, which we call the DB-bootstrap and FB-bootstrap
respectively. A feature of the local representation is that if we truncate the spin sum up
to some ℓ = L, the amplitude is not Regge-bounded but grows polynomially with s due to
the contact terms. A sum over infinite spins is therefore required to get the correct Regge
behaviour. Since, while doing numerics, we always have to truncate up to some spin, using
the LCSDR, it is hard (requires a lot of parameters) to impose unitarity for higher spins
for a fixed value of smax. It may be possible to ameliorate this by imposing some extra
Regge-boundedness conditions but we could not think of an efficient way to implement this
and leave it for future investigation. The Dyson block/non-local representation however,

7Recent versions of Mathematica can do SDP up to machine precision. We examined this and concluded
that machine precision is not sufficient for our purposes, unfortunately.
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Figure 6. Ansatz for the real part of spin two partial waves using the LCSDR and the CSDR.

always has a bounded Regge growth, making it more suitable to impose unitarity for higher
spins. In practice, therefore, we can use the LCSDR to place bounds only on observables
that exhibit convergence with fewer spins (low-spin dominance). The CSDR/Dyson block
representation is applicable everywhere. Figure 6 illustrates the growth of the basis functions
∆̃(κ)

ℓ,ℓ′(s) that multiply the parameters bℓ,κ in the expression for Refℓ(s) (after performing the
dispersive s′ and the z integral) while using the CSDR and the LCSDR.

In the next section, we present the numerical bounds on various observables using our
approach.

5.1 Bounds on the quartic coupling

The quartic coupling λ is defined as the value of the scattering amplitude at the crossing
symmetric but unphysical point. λ = 1

32πM
(
4
3 , 4

3

)
= α0

32π , in the notation of eq. (3.4).
In figure 7, we illustrate the convergence of the upper bound for the quartic coupling

using the LCSDR. From the plot, one can see that imposing unitarity on the spin 0 partial
wave alone is sufficient to get the bound. In contrast, the lower bound takes a large number
of spins to converge and is not feasible using the FB-bootstrap. Figure 8 shows convergence
using the DB-bootstrap.

It is more interesting to study bounds on the quartic coupling as a function of the scattering
lengths. These are experimentally measurable quantities that capture the behaviour of the
partial waves near the threshold. They are defined via8 [2]:

Refℓ(s) =
(

s − 4
4

)ℓ+ 1
2
(

aℓ +
(

bℓ

4 − aℓ

8

)
(s − 4) + · · ·

)
, (5.4)

where aℓ are the spin-ℓ scattering lengths and bℓ are the corresponding effective ranges. a0 is
called the S-wave scattering length, a2 the D-wave scattering length and so on. In appendix B,
eq. (B.3), we derive the inequality a0 ≥ α0/(32π).

8We have converted to our conventions and given directly the formula in terms of fℓ(s).
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In figure 9, on the left, we present bounds on the quartic coupling λ with a2 fixed to the
value for pion scattering, namely a2 = a

(pion)
2 = 0.00175 [113]. The plot on the right gives a

zoomed-in version for small a2 for comparison with [92]. In practice, we use the following
dispersive representation of a2 given by Yndurain [107]

a2 =
1

30π2

∫ ∞

4

A(s, 4)
s3

ds . (5.5)

Unlike the case when a2 is not fixed, we observe that when a2 is fixed and small, convergence
is achieved with just the first few spins. This is explained by the fact that fixing scattering
lengths imposes polynomial boundedness of the amplitude and leads to an effective truncation
in spin. For instance, in the derivation of the Froissart bound (see e.g. [107, 108]), a2 is held
fixed, and the spin-sum entering in the definition of the forward scattering amplitude beyond
ℓ > L, with L ∼

√
s log s/s0 works out to be exponentially small — this immediately leads to

the Froissart bound on setting aℓ(s) = 1 for ℓ < L. Here s0 is needed for dimensional grounds.
To see this more explicitly, we refer the reader to appendix B where we have written the
dispersive representation of the scattering lengths. As is evident, this involves an integral
over the absorptive part of the amplitude. It can be checked that each partial wave spin
contributes positively to the absorptive part. Thus, if the scattering lengths are fixed to be
small and positive, the number of partial wave spins contributing also gets restricted, and we
expect the bounds to converge with fewer spins. The numerics bear out this expectation.

5.2 Minimizing a0, keeping a2 fixed

The scattering lengths are known to be unbounded from above [55] but bounded from below.
For the S-wave scattering length a0, previous studies [55, 118] quote a value for the lower bound
around −1.7. We search for the minimum of a0 when a2 = a

(pion)
2 and find (see figure 10)

min(a0)|a2=a
(pion)
2

≈ −0.41 (5.6)
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6 ρKK from the numerical bootstrap

With the advent of the LHC, collision energies have increased by orders of magnitude.
For example, proton-proton collisions are now accessible at energies

√
s ∼ 10TeV so that

log(s/m2) ∼ O(10). In particular, experiments can now test the rigorous bounds derived
using dispersion relations and, thereby, examine the validity of the QFT axioms that go into
deriving them. In this section, we consider the observable ρKK(s) introduced by Khuri and
Kinoshita [57], which is defined for elastic processes via

ρKK(s) = ReM(s, 0)
ImM(s, 0) . (6.1)

In the case of 2-2 scattering of identical massive scalar particles, dispersion relations imply
that at large energies, ρ and the total cross section σ in the forward limit are related by
a simple relation [111, 112] given as9

lim
s→∞

ρKK(s) = π

2
∂ log σ(s)

∂ log s
. (6.2)

The above equation essentially means that the asymptotic behaviour of ρKK(s) captures the
asymptotic rate of growth of the total cross-section. For example, for amplitudes saturating the
Froissart bound, i.e. σ(s) ∼ log2(s), the above formula gives ρKK(s) ∼ 1/ log(s). Figure 1(b)
shows the latest measurement of ρKK for proton-proton scattering by the ATLAS detector.
One can see from the figure that ρKK changes sign from negative to positive and then
turns around and starts to slope downwards at high energies. However, the energies probed
currently at the LHC are not large enough to infer the exact large s behaviour of ρ. So,

9It is unclear, however, at what s-values this formula is a good approximation. For the modest s-values
considered in this paper, we could not demonstrate this formula for all cases convincingly.
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a comparison with the dispersion relation prediction (6.2) is not possible. Our objective
is to use the numerical bootstrap to study the behaviour of ρKK at intermediate energies
for which the experimental data exists. In particular, we want to see if we can reproduce
some of the features for ρKK as observed in pp experiments. Quite interestingly, we are
able to construct some S-matrices that do display similar features, which we will discuss
next. We note here the threshold behaviour for ρKK . In the case where there is a finite
spin-0 scattering length a0, we have

ρKK(s) ∼ 2
a0
√

s − 4
, (6.3)

which means that ρKK(s) → ±∞ depending on the sign of a0. If a0 is infinite, then writing
Imf0(s → 4) = b0, we have

ρKK(s) ∼
√

1− b0
b0

. (6.4)

This is the situation which gives rise to the maximum coupling. In that case, we find that
b0 → 1 and thus ρKK → 0 at s = 4.

6.1 ρKK : minimising λ, keeping a0, a2 fixed

In appendix D, we study ρKK for maximum coupling — see figure 22(b). There it is clear
that no change of sign occurs in ρKK . In this section, we study ρKK for the amplitude with
the minimal quartic coupling when the spin 0 and spin 2 scattering lengths are fixed to the
pion values, i.e. a0 = a

(pion)
0 = 0.22 and a2 = a

(pion)
2 = 0.00175 [113]. The numerics are done

using the DB-bootstrap with unitarity imposed up to L = 16 and smax ≈ 4950. We also
impose the null constraint −10−12 ≤ W−1,2 ≤ 0. Figure 11 shows our findings.

Near s ≈ 4, ρKK is positive as expected because a0 is fixed to be positive. But then it
immediately dives and becomes negative. Then we notice the first turnover and a change to
positive values. We denote the location of this zero by s

(1)
c . After this, we see a peak. The

zero s
(1)
c and the peak are features, very similar to what is observed in the experimental pp

scattering plot (see 1(b)). However, quite interestingly, in our case, ρKK becomes negative
again after the peak. We denote this zero by s

(2)
c . In appendix D, we show that ρW -bootstrap

gives identical results. In appendix E, we plot ρKK for several other amplitudes taken from
the leaf plot of [56] and find that in many cases, there may even be more than one peak and
more than two zeroes before ρKK asymptotes. This indicates that ρKK for pp scattering
might also undergo multiple changes in sign before asymptoting at large energies unlike
what figure 1(a) suggests.

How does low-energy data affect the behavior of ρKK? We study how the location
of zeroes s

(1)
c and s

(2)
c changes as we vary a0 and a2. We find that changing a0 only changes

the value of ρKK near s = 4, leaving the location of the two zeros unchanged. However,
changing a2 has a significant effect on the location and the separation of the two zeroes,
which we show in figure 12. This indicates that the behavior of ρKK beyond the threshold
is largely determined by the value of a2. This observation is also supported by ρKK for
the amplitude we consider next.
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Figure 11. Left: behavior of ρKK with s for the amplitude with the minimum quartic coupling
with a0 = a

(pion)
0 and a2 = a

(pion)
2 . Right: behavior of ρKK and σtot with s for the same amplitude at

L = 16.
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Figure 12. Change in the difference between the two zeroes — s
(1)
c (blue dot) and s

(2)
c (red dot)

of ρKK on the s-axis as we vary a2. The corresponding values of λmin have been denoted adjacent
to the plot points. The above plot was obtained using DB-bootstrap with unitarity imposed up to
L = 10 and smax ≈ 4950.
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Figure 13. Left: behavior of ρKK with s for the amplitude with the minimum a0 and fixed
a2 = a

(pion)
2 . Right: behavior of ρKK and σtot with s for the same amplitude at L = 16.

6.2 ρKK : minimising a0, keeping a2 fixed

The next amplitude we study ρKK for is the one with the minimum a0 when a2 = a
(pion)
2 .

We studied this in section 5.2 and found min(a0)|a2=a
(pion)
2

≈ −0.41. Figure 13 shows the
behaviour of ρKK . The behaviour here is quite similar to what we found in figure 11(a).
This is suggestive of the more important role that a2 plays in determining the higher s

behaviour of ρKK .

6.3 Phenomenological ρKK(s) using bootstrap

In this section, we will briefly examine ρKK in the context of the pion bootstrap.10 In modern
times, pion bootstrap was initiated in [2] and examined in further detail in other contexts
in [3, 4]. We will use the pion S-matrices obtained in [4] and the reader is referred to that
paper for further details. The idea of the pion bootstrap was to use the S-matrix bootstrap in
the context of 2-2 scattering of π0, π± in QCD (ignoring electromagnetic interactions). The
space of S-matrices was parametrized by the isospin-0 and isospin-2 Adler zeros. In [2], the
spin-1 ρ resonance (not to be confused with ρKK) was used as input. Then unitarity confined
theories to lie outside a region dubbed as the “lake” (L). As is clear from figure 14(a), this
gives a very big space of allowed S-matrices. Then putting in the known phenomenological
scattering lengths as further input (importantly, a0 = a

(pion)
0 , a restricted region called

“peninsula” (P) was obtained. The QCD point is indicated by a red cross in figure 14(a).
In [3, 4], the dispersive constraints on the spin-2 scattering length and a similar constraint
motivated by phenomenological observations on the spin-0 scattering length were imposed
without imposing the phenomenological constraints directly. This gave rise to a bigger region,
indicated in blue in the figure, dubbed as the “river”. The QCD-point (in the sense of
the Adler-zeros) was strikingly close to a kink-type feature and remarkably gave very good

10To repeat, we set mπ = 1.
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(a) (b)

Figure 14. Left: the pion river obtained in [4]. s0, s2 are the isospin-0 and isospin-2 Adler zeros. The
red cross is the χ − PT value. The L and P indicate the lake and peninsula regions obtained in [2].
The green lines indicate where resonances reggeized. Right: the behaviour of ρ̃KK = 2(s−4)− 1

2 ρ−1
KK(s)

on the upper boundary. The brown band is for the S-matrices corresponding to s0 = 0.35 to s0 = 0.4,
and all exhibit reggeized trajectories. The red box indicates experimental pion a0 values. The black
line in the inset is a fit using ρKK = π/ log(s/s0) with s0 = 32.

50 100 150 200
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-30

-20

-10

ρKK(s)

Figure 15. Behavior of ρKK(s) for the reaction π+ + π+ → π+ + π+, plotted for S-matrices from
s0 = 0.35 to s0 = 0.4 which exhibit approximately linear Regge trajectories.
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scattering lengths. Furthermore, in [4], it was observed that the peaks in the partial wave
amplitudes lined up in small regions, indicated by green in the plot. Approximately the
leading Regge trajectory, including the spin-0 resonance, obeyed:

α(t) = α0 + α′t ≈ 0.38 + 0.51m−2
ρ t , (6.5)

where mρ is the real part of the rho-meson mass. This is roughly what is expected from
the Regge behaviour observed in experiments which gives α0 = 0.27, α′ = 0.54. According
to Regge theory and assuming an Eikonal model [109], eq. (6.5) leads to the total forward
scattering cross-section behaving like σtot ∝ log2 s/s0, where s0 is an undetermined constant.
This is the expected behaviour interpolated from eq. (6.5), which can be extracted from low-
lying spin resonances to asymptotic energies. In practice, we cannot observe this asymptotic
behaviour directly from the bootstrap. The green region in the lower boundary of the river
had large scattering lengths as well as effective ranges and did not agree with phenomenology.

In figure 14(b), we show the behaviour of ρ̃KK(s) = 2(s − 4)−1/2/ρKK(s). This quantity
directly gives the scattering length at s = 4. Quite strikingly, there is a distinct change in
behaviour in ρKK for the S-matrices close to the QCD-point! A similar observation is made
for the Reggeized S-matrices for the lower boundary of the river, except that these gave large
scattering lengths. From eq. (1.2) we expect that for large energies, ρ̃KK = 2/(πs1/2) log(s/s0).
Fitting this form beyond s ∼ 70 to the data in figure 14(b), gives s0 ≈ 32. This is very
interesting since [110] quotes the phenomenological value of s0 = 17 in this case to fit the
total scattering cross-section at s = 50.

The following points are noteworthy:

• The ρKK for π0π0 is distinct from the one in pp scattering. Since we are plotting inverse
ρKK in figure 14(b), it is clear that here the quantity has the same sign throughout
since if it had a zero, it would show up as a pole in ρ̃KK . The difference arises since
the strong force in pp scattering at low energies gives rise to an attractive potential
and hence a negative scattering length. Since pp cross-section is expected to rise, ρKK

is expected to approach zero from above. Khuri-Kinoshita pointed out that it should
change sign somewhere, which is what the experimental data bears out.

• For the S-matrices lying beyond the green “Regge” region in figure 14(a), eventually
ρKK does cross the real axis from above. All the S-matrices in the lower river boundary
have this feature, except the ones in the green “Regge region”.

• We plot ρKK(s) for the reaction π+ + π+ → π+ + π+ for the “Reggeized” S-matrices
in figure 15. This reaction is closer to the pp scattering carried out in experiments.
Note that there is indeed a zero, and the ρKK(s) goes to zero from above, much like
Khuri-Kinoshita pointed out. This behaviour is only true for S-matrices close to the
“Regge” region, providing another argument for the QCD-like point being in its vicinity.

6.4 d > 4 unitarity at high energies: a preliminary attempt

If extra spatial dimensions exist, the physics at sufficiently high energies should be sensitive
to them. The energy scale beyond which that happens gives a measure of the characteristic

– 23 –



J
H
E
P
0
3
(
2
0
2
4
)
1
5
7

20 40 60 80 100
s

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0
ρKK(s)

d = 6, L = 16 d = 4, L = 16

Figure 16. Behaviour of ρKK(s) for the amplitude with minimum quartic coupling and a0, a2 fixed
to the pion values after imposing higher d = 6 unitarity constraints. The red line denotes the usual
ρKK(s) obtained by using d = 4 unitarity constraints at L = 16. The shaded blue band denotes the
ρKK(s) obtained by using d = 6 unitarity constraints at L = 16. There are two blue lines. The blue
line with a bigger peak and a slower fall-off is when s0 ≈ 50, whereas the blue line that is closer to the
red line is for s0 ≈ 450. We use DB-bootstrap and impose unitarity till smax ≈ 4950.

length of the extra dimensions. Recently [115] established the existence of dispersion relations
in the presence of Kaluza-Klein (KK) modes. In scattering experiments, the signature would
be the production of KK particles at very high energies. Experiments conducted so far at
the LHC have found no signs of extra spatial dimensions, giving us at least a lower bound
for the energy scale at which they become important. We would like to model this using
the bootstrap. We fix a scale s0 below which we impose (3 + 1) d unitarity and fix the spin
0 and spin 2 scattering lengths, a0 and a2, to pion values. Beyond s0, we impose higher
dimensional unitarity. The partial waves in general d are given by

fℓ(s) =
Γ
(

d−3
2

)
ℓ!

2d+1π
d−1

2 Γ (ℓ + d − 3)
(s − 4) d−3

2

s
1
2

∫ 1

−1

dz

2 (1− z2)
d−4

2 C
d−3

2
ℓ (z)M(s, t) (6.6)

Here, C
d−3

2
ℓ (z) are the d-dimensional Gegenbauer polynomials. In our conventions, the

unitarity constraint is given by the same equation (5.3) in all dimensions. We then study ρKK

for the amplitude with the minimum quartic coupling and see how the low energy (s < s0)
behaviour of ρKK changes compared to the case where no extra dimensions appear. The
choice of s0 is important. In figure 11, the crossover from negative to positive and then a peak
are two features that the experimental ρKK data for pp scattering also shows (figure 1(b)).
So we will pick s0 to be near and beyond the peak and study the effect on the location of
the zero and the peak due to extra dimensions.
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Figure 16 reports our findings. As is evident from the figure, imposing higher dimensional
unitarity beyond the peak (i) moves the peak to the right (ii) moves the second zero to the
right. As we increase s0, the result begins to coincide more with the d = 4 case, as we would
naively expect. Thus extra dimensions may not be the explanation for the faster fall-off in
figure 1(b). A likely explanation of the deviation is the non-applicability of the high-energy
asymptotic behaviour to get the dispersive band, as reviewed in [59]. It has also been proposed
that the faster drop could be due to a new trajectory called the “odderon” [90].11 It will
be interesting to explore this further using the bootstrap.

7 Discussion

In this paper, we introduced a new basis to implement numerical S-matrix bootstrap using
the CSDR/LCSDR. We compared with existing methods and found very good agreement. We
also found that there is improvement in convergence using our approach. There are several
key findings which we summarize below and discuss some open directions.

One of the main lines of investigation in this paper was to examine ρKK(s). Different
high-energy behaviours lead to different predictions for this quantity, relying on a dispersion
relation. One main feature is the fact that it can change sign from negative to positive, which
is what is observed in pp-scattering experiments. This sign change is something that we
observed in our case studies as well. In particular, we found that the s-value at the crossing
was sensitive to the spin-2 scattering length but less dependent on the spin-0 scattering
length. Another point that we observed was that to get convergent S-matrices even at
modest values of s, we needed to impose unitarity up to very high energies. This was a
feature that was confirmed by both the ρW -bootstrap as well as the DB-bootstrap. To be
specific, as figure 18 shows, imposing unitarity up to different maximum s-values alters the
location of the second zero in ρKK .

In figure 1(a), we had indicated several possible behaviours of ρKK [59]. From the
bootstrap, we see features in common but also differences. For instance, we see the change of
sign, followed by a peak. But the main (and possibly important) difference is that we also
witness a second change of sign. This feature is corroborated by both DB-bootstrap as well
as ρW -bootstrap. This suggests that unlike figure 1(a), there could be multiple changes of
sign before ρKK asymptotes at high energies. In fact, the TOTEM and ATLAS values in
figure 1(b) do indicate a sharper fall-off, possibly hinting at a second zero.

This raises the question: how do we know that we have reached asymptotic high energies?
We do not have a clear answer to this question.12 In the literature [111, 112], for asymptotic
high energies, several papers have looked at what is called the quasi-local differential form,
which leads to equations like eq. (6.2). This is a remarkable form since, instead of the
integration that one faces in the dispersion relation, one gets a simple local relation between
the real and imaginary parts through such a relation. In figure 11(b), the zeros of ρKK do
appear to line up with the turning points of σtot. Nevertheless, we did not find any conclusive
evidence that a local relation like eq. (6.2) holds at the intermediate values of energies that

11The leading particle on this trajectory is a 3-gluon bound state.
12It is possible that subleading terms in the Froissart-Martin bound are important to retain in order to

explain the data — see [114] for example.
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we have investigated in this paper — for figure 11(b), multiplying the r.h.s. of eq. (6.2) by
a phenomenological factor of 0.2 appears to give a good fit between s = 32 − 250 but not
beyond. We believe it is important to understand and re-examine the situation with this
quasi-local form in the future as it would be a very convenient way to impose high energy
constraints, which can potentially improve convergence.

Another line of investigation would be to see if the numerics can be made more efficient by
using other bounded functions like tanh(s) and its powers in the DB-bootstrap. Such bounded
functions are regularly used in the context of neural networks and it would be fascinating to
use such techniques to further understand ρKK , similar to the recent attempt to understand
the phase of the amplitude constrained by elastic unitarity in [61]. It may also be worthwhile
to use other standard wavelets which are used in wavelet transform in the DB-bootstrap.
Similar techniques will also be useful to analyse scattering in AdS space [116, 117].

The most important line to investigate in the near future is the dual bootstrap problem,
as it leads to completely rigorous bounds. As discussed in section 2, the Virasoro-Shapiro
amplitude provides evidence that the CSDR may have a bigger domain of convergence than
a fixed-t dispersion relation, and the LCSDR may have the biggest domain of convergence
among all three. This makes setting up the numerical bootstrap using CSDR/LCSDR more
advantageous. This is because the dual approach involves constructing a dual Lagrangian,
which consists of an integral over the domain of analyticity of the amplitude. The bigger the
domain of analyticity, the more constraints are being imposed and, therefore, the stronger
the bound.
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A Details of numerics

We impose the unitarity condition in terms of the partial waves by imposing the positive
semi-definiteness condition given in (5.3). We repeat it here for convenience(

1 + 2Refℓ(s) 1− 2Imfℓ(s)
1− 2Imfℓ(s) 1− 2Refℓ(s)

)
⪰ 0, s ≥ 4 . (A.1)

where Imfℓ(s) is parametrized by the ansatz given in (5.1). To compute Refℓ(s), we use
the Roy equations as discussed in section 3. We impose unitarity for all spins up to some
cut-off ℓ ≤ L and for a grid of s values in the interval (4,∞). As is typical, we use a
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SDPB precision 1024 (binary)
dualityGapThreshold 10−7

Mathematica internal precision 200 (decimal)

Table 1. SDPB parameters.

Chebyshev grid defined by

s(j) =
4
3(1− ρ(j))2 + 16ρ(j)

(1 + ρ(j))2 , ρ(j) = ei jπ
203 (A.2)

For all the bounds, while working with the LCSDR, we impose unitarity up to s(j = 190) ≈
265, while with the CSDR, we go up to s(j = 200) ≈ 4950. We use the same grid to discretize
the “wavelet” parameter κ ≡ κ(q). As described in the main text, this parameter controls
the location of the peaks in our ansatz. The peaks are meant to capture the local features of
the partial waves, and therefore, we sprinkle them along the same interval where we impose
unitarity, i.e. κ ∈ (4,∞). We fix the parameter Γ that controls the width of the peaks to a
constant ≈ 136. This is a choice; we observe that any value of Γ which is not too small or too
large leads to well-convergent numerics. We divide the basis elements into two sets — the “low
energy” wavelets that are placed from q = 1 to q = Q1 in steps of qs1 and the “high energy”
wavelets that are placed from q = Q1 + 1 to q = Q in steps of qs2. To claim convergence for
any bound, we increase the number of parameters by decreasing qs1 till we get a stable plateau
of constant values for the bound for a large range of parameters. For the DB-bootstrap, we
fix Q1 = 177, Q = 200 and qs2 = 1, while for the FB-bootstrap, we fix Q = 190, qs2 = 1
and need to vary Q1 for different L. For example, for the max

( α0
32π

)
plot using FB-bootstrap

(figure 7), we use Q1(L = 0) = 180, Q1(L = 2) = 165 and Q1(L = 4) = 150. The number of
parameters used per spin (without α0 and b0) is given by N =

⌊
Q1−1

qs1

⌋
+
⌊

Q−Q1−1
qs2

⌋
+ 2. In

addition to these, we have the extra parameters b0 and the quartic coupling α0, making the
total number of parameters in our ansatz Ntot = N

(
L
2 + 1

)
+ 2.

The positive semi-definiteness condition is imposed using SDPB. The parameters we use
for SDPB are summarized in table (1).

Additionally, while doing numerics using the DB-bootstrap, we impose one null constraint,
namely −10−12 ≤ W−1,2 ≤ 0, on the partial wave coefficients using the formula (3.7). We
observe that our results don’t change much by imposing additional null constraints. For
example, figure 17 shows the change in ρKK(s) for the amplitude with minimum quartic
coupling, a0 = a

(pion)
0 and a2 = a

(pion)
2 , when three null constraints are imposed instead of

one. While imposing three null constraints, we impose −10−12 ≤ W−2,3 ≤ 0 and −10−12 ≤
W−3,4 ≤ 0 in addition to imposing −10−12 ≤ W−1,2 ≤ 0.

We also verify convergence in smax. Figure 18 shows that ρKK for the amplitude with
minimum quartic coupling, a0 = a

(pion)
0 and a2 = a

(pion)
2 doesn’t change after we impose

unitarity beyond a certain smax.
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Figure 17. Behaviour of ρKK(s) for the amplitude with minimum quartic coupling and a0, a2 fixed
to the pion values after imposing 1 null constraint and 3 null constraints. We use DB-bootstrap and
unitarity is imposed till L = 10 and smax ≈ 4950.
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Figure 18. Convergence of ρKK(s) with smax for the amplitude with minimum quartic coupling and
a0 and a2 fixed to the pion values. We use DB-bootstrap and impose unitarity till L = 10.
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B Representation for a0, a2 using CSDR

To obtain the formula for a0 from CSDR (equation (3.1)), we first evaluate the integral at
s = 4. Note that at s = 4, the kernel H0 = 96

9τ2−12τ−32 and s
(+)
2 |s=4 = 1

2τ
(√

1− 32
9τ+8 − 1

)
.

Now, since a0 = 1
32π lims→4

1
2
∫ 1
−1M(s, (s− 4)(x− 1)/2)dx, we can substitute the expressions

for H0 and s
(+)
2 at s = 4 to obtain the formula for a0 from CSDR.

a0 =
α0
32π

+ 1
32π

∫ ∞

8
3

dτ
96A0

(
τ, 1

2τ
(√

1− 32
9τ+8 − 1

))
πτ (9τ2 − 12τ − 32) . (B.1)

Similarly, we have the formula for a0 from LCSDR.

a0 =
α0
32π

+
∫ ∞

8
3

dτ

(
− 8

3τ+4 + 8
3τ−8 + 2

)
A0
(
τ, 1

18

(√
81− 1536

τ3 − 9
)

τ
)
− 2A0(τ, 0)

32π2τ
. (B.2)

An interesting feature of both formulas is that they both imply the inequality

a0 ≥
α0
32π

(B.3)

This inequality holds because the integral can be shown to be positive.
The formula for a2 using the CSDR (although we use the formula (5.5) for numerics)

is given by

a2 =
∫ ∞

8
3

dτ
9A

(
τ, 1

2τ
(√

1− 32
9τ+8 − 1

))
160π2(3τ + 4)3 +

9
√
3τA′

(
τ, 1

2τ
(√

1− 32
9τ+8 − 1

))
5π2(3τ − 8)3/2(3τ + 4)(9τ + 8)3/2 . (B.4)

where A′(τ, s2) = ∂
∂τ A(τ, s2).

C String theory redux

A numerical comparison between the mass-level expansion for the tachyon amplitude in the
main text obtained using fixed-t, CSDR and LCSDR is given in the table (19). The LCSDR
always gives better convergence for each case.

In the string theory case, ρKK behaves as in figure 20. Since the absorptive part has
delta function support, to obtain this figure, we are forced to put an iϵ regulator and also
forced to work away from the strict forward (t = 0) limit. This can be thought of as giving a
finite width to the massive states. The oscillatory behaviour is expected. Contrary to the fall
off predicted by Khuri-Kinoshita, the enveloping function is in fact an increasing function.
This is indicative of the lack of polynomial boundedness of tree-level string theory. It will
be fascinating to revisit ρKK using one-loop string theory results.

D Comparison with existing methods

In this section, we shall compare our results with the numerical bootstrap set up in [56].
They work with the following ansatz

MρW (s, t, u) = τ0 +
∑

w ∈W
τw (σs (w) + σt (w) + σu (w))

+
∑

(w1,w2) ∈W2

τw1,w2 [(σs (w1)σt (w2) + σs (w2)σt (w1)) + (s ↔ u) + (t ↔ u)]
(D.1)
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Figure 19. Table for comparison of various dispersion relations.
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Figure 20. ρKK(s) for string theory.

where W and W2 are the wavelet grids parameterized by the number Nmax, the details of
which can be found in the appendix of [56]. σs(w) is the usual conformal mapping,

σs(w) =
√

w − s −
√
4− s√

w − s +
√
4− s

(D.2)

We calculate the partial waves fℓ(s) by integrating over z (3.2) and impose the partial wave
unitarity for s ∈ W, up to some chosen Lmax. We choose the grid values in W in the same
way as [56], but we only consider points satisfying s ≤ smax. We also impose the improved
positivity constraints as they do, given as

AρW (s, t) − 32π

√
s

s − 4

Lmax∑
ℓ = 0

(2ℓ + 1) Imfℓ(s) Pℓ

(
1 + 2t

s − 4

)
≥ 0 (D.3)

for s ∈ W and for 0 ≤ t ≤ 4. We call this the ρW -bootstrap approach. Note that we do not
include the high-energy improvement terms in this analysis.
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Constraints Lmax Parameters -λmin sc
(1) sc

(2)

1251(DB),7670(ρW) 10 175(DB),173(ρW) 0.485(DB),0.485(ρW) 39(DB),40(ρW) 84(DB),113(ρW)

1251(DB),7670(ρW) 10 247(DB),238(ρW) 0.487(DB),0.488(ρW) 41(DB),42(ρW) 85(DB),129(ρW)

1667(DB),8226(ρW) 14 377(DB),378(ρW) 0.488(DB),0.492(ρW) 42(DB),45(ρW) 87(DB),122(ρW)

Figure 21. Comparison of values obtained with the DB approach and the ρW approach of [56]. We
compute λmin with a0 and a2 fixed to the pion values. The first two rows are made with L = Lmax = 10
and the last row is with L = Lmax = 14. s

(1)
c and s

(2)
c stand for the first and second zeros of ρKK(s).

The large number of constraints in the ρW approach is due to the improved positivity constraints.
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Figure 22. Left: comparison plot of ρKK(s) for λmin with a0 and a2 fixed to the pion values. Right:
comparison plot for ρ̃KK(s) = 2

ρKK (s)
√

s−4 for λmax.

In order to compare the two methods, we minimize the quartic coupling λ while setting a0
and a2 to pion values. We see good agreement between the two approaches for a wide range
of parameters (see table 21). It is also interesting to note that DB has better convergence
for the position of the second zero of ρKK(s), s

(2)
c , in spite of the significantly less number

of constraints imposed (table 21). While for DB-bootstrap, we use smax ≈ 4950, for ρW -
bootstrap, we impose non-linear unitarity upto smax ≈ 5260 and the improved positivity
constraints up to smax ≈ 109. The ρKK(s) for λmin with a0 and a2 fixed to the pion values
and ρ̃KK(s) = 2

ρKK(s)
√

s−4 for λmax have been compared in fig (22(a)) and fig (22(b)) with
roughly the same number of parameters and we observe close agreement in their behaviors.

Finally, we also compare the amount of inelasticity in the amplitudes using both ap-
proaches as summarized in table 23. While the spin-0 results are comparable, there are
interesting differences for higher spins, which do not appear to affect the final outcome. It will
be interesting to incorporate elastic unitarity between 4 ≤ s ≤ 16 to see how the results change.
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ℓ s  4.016 s  4.504 s  40.761 s  370.298

0 1.0000 0.99900 0.99995 1.0000

2 0.000029196 0.99859 1.0000 1.0000

4 9.4031 × 10-12 0.00010874 0.99986 1.0000

6 2.2463 × 10-14 2.3997 × 10-6 0.98769 0.14262

8 1.8026 × 10-18 6.8977 × 10-11 0.81819 0.072950

10 3.6821 × 10-24 5.2349 × 10-15 0.0016910 0.99951

(a)

ℓ s  4.016 s  4.509 s  40.396 s  370.914

0 0.92765 0.99981 0.99997 0.98874

2 0.0065187 0.92934 0.72626 1.0000

4 2.4389 × 10-13 5.4390 × 10-8 0.025692 0.82304

6 1.0000 5.1505 × 10-11 1.0000 0.21801

8 3.0883 × 10-27 1.6253 × 10-13 0.0057426 0.037950

10 2.1327 × 10-33 8.1635 × 10-18 6.4918 × 10-6 0.24927

(b)

Figure 23. The quantity |fℓ(s)|2
Imfℓ(s) is equal to 1 for elastic unitarity and less than 1 otherwise. Left:

values of |fℓ(s)|2
Imfℓ(s) for the amplitude with minimum of the quartic coupling with a0 and a2 fixed to the

pion values using DB-bootstrap with unitarity imposed up to L = 10 and smax ≈ 4950. Right: same
values using the methods of [56] for Lmax = 10, Nmax = 10 and smax ≈ 5260.
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Figure 24. Points on the leaf plot for which we plot ρKK(s) in figure 25. Orange points don’t show
a change in sign beyond (near) the threshold. Blue points do.

E ρKK along the leaf

In this section, we plot ρKK for some of the points along the leaf plot (see figure 2 of [56]).13

Figure 24 shows the points for whch we plot ρKK(s) in figure 25.
We notice that the amplitude corresponding to the maximum quartic coupling (curve 1)

shows no change in sign anywhere. The amplitude corresponding to the origin of the leaf
(curve 2) shows interesting features. As can be (barely) seen in the main plot, it shoots up
very fast near s = 4. So we plot it in a mini-plot inside the main plot and see that after
shooting up, it starts oscillating sideways. The amplitude corresponding to the minimum
quartic coupling (curve 4) and its adjacent points (curves 3 and 5) show somewhat similar
behaviours. Interestingly, they show three changes in sign and two peaks before asymptoting,

13We thank Joan Miro and Mehmet Gumus for sharing their data.
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Figure 25. ρKK(s) for points on the leaf. The mini plot shows ρKK(s) for point 2 separately as it
shoots up very fast and is barely visible in the main plot.

compared to the amplitude with minimum λ and a2 = a
(pion)
2 which shows only one peak

and two zeroes — s
(1)
c and s

(2)
c .

F Computation of phase shifts

Defining Sℓ(s) = 1+2ifℓ(s) allows us to express the unitarity condition |fℓ(s)|2 ≤ Imfℓ(s) ≤ 1
simply as |Sℓ(s)| ≤ 1. We can the define the phase shifts δl(s) as Sℓ(s) = e2iδl(s). δl(s)
are purely real only in the elastic region 4 ≤ s ≤ 16; in general, they are complex with a
non-negative imaginary part to satisfy unitarity. Since we do not impose elastic unitarity, for
the amplitudes we construct, the phase shifts can always be complex.

In the figure 26, for the amplitude with minimum λ, and a0 and a2 fixed to pion values,
we show how Re δℓ(s) behaves as we increase the total number of null constraints imposed.

We notice that Re δℓ(s) converges well with just 3 null constraints (W−1,m, m = 2, 3, 4)
upto spin 10. Beyond that, we need more null constraints. We have checked convergence
upto Re δ16(s) has requires 5 null constraints (W−1,m, m = 2, 3, 4, 5, 6).

In the figure (27), we also show how Re δ0(s) behaves for the amplitudes with maximum
and minimum λ respectively.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Figure 26. Behaviour of Re δℓ(s) as the number of null constraints is increased for the amplitude
with minimum λ and a0, a2 fixed to pion values.
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