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1 Introduction

Studies of charmed hadrons decays provide complementary information with respect to the
b-system on the structure of the Standard Model (SM), see e.g. ref. [1] for a review. From
a theoretical point of view, however, a robust description of the charm sector is currently
more challenging due to the smaller value of the charm quark mass and, correspondingly,
the larger size of the strong coupling at this scale. In spite of this, it was recently found
that lifetimes of charmed mesons and baryons can be consistently computed within the
heavy quark expansion (HQE), yielding results in agreement [2–4] with the experimental
data [5] within uncertainties. This framework is currently quite advanced, with NLO-QCD
corrections to the spectator quark contributions [6–8], as well as the coefficient at LO-QCD of
the Darwin operator [9–11] known by now and, in the case of charmed mesons, also three-loop
sum rule estimates for the matrix element of the arising four-quark dimension-six operators
available [12, 13] — in addition, first steps towards a determination of these non-perturbative
inputs using Lattice QCD are being taken [14]. On the other hand, the applicability of the
HQE to mixing observables is plagued by the presence of an extreme GIM [15] suppression,
making the theoretical interpretation of these quantities still not fully understood. Specifically,
analyses based on simplified investigations of exclusive decays [16, 17], i.e. taking only phase
space effects into account but no dynamical QCD contributions, lead to a range of values
for the mixing parameters that is consistent with the experimental data [5], whereas studies
computed within the HQE yield extremely suppressed results, see e.g. ref. [18]. Despite recent
progress made in assessing the uncertainty of the HQE prediction [19], it is still unclear how
to deal with such a strong GIM suppression from a theoretical point of view.

Another peculiarity of the charm system is that CP violation effects are expected to
be tiny, see e.g. ref. [1]. Therefore, it came as a big surprise when in 2011 [20] the LHCb
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Collaboration found evidence of sizable CP violating effects in singly Cabibbo suppressed
decays of neutral D mesons into two pions or two kaons. The quantity considered is the
difference of two time-integrated CP asymmetries, i.e.

∆ACP ≡ ACP(K+K−)−ACP(π+π−) , (1.1)

with the time dependent asymmetry defined as

ACP(f ; t) =
Γ(D0(t) → f)− Γ(D0(t) → f)
Γ(D0(t) → f) + Γ(D0(t) → f)

, (1.2)

for an arbitrary final state f . The experimental discovery was finally made by the LHCb
Collaboration in 2019 [21]. As the dominant contribution to eq. (1.2) comes from direct CP
violation, in the following we will consider only ∆adir

CP. The current experimental average
reads [21]

∆adir
CP
∣∣
exp = (−15.7± 2.9)× 10−4 , (1.3)

while a comprehensive summary of the evolution of both the experimental and theoretical
determinations for this observable can be found in ref. [22] (from 2013) and in ref. [23]
(from 2019). Recently, the LHCb Collaboration also presented a new measurement of the
CP asymmetry in the D0 → K+K− channel [24]. The latter, combined with the result
for ∆adir

CP in eq. (1.3), leads to the following values for the size of CP asymmetry in the
two individual modes, namely

adir
CP(K+K−)|exp = (7.7± 5.7)× 10−4 , (1.4)

adir
CP(π+π−)|exp = (23.2± 6.1)× 10−4 , (1.5)

where eq. (1.5) provides the first evidence of CP violation in a specific D-meson decay.
Exclusive hadronic decays of charmed hadrons pose further challenges to robust theoretical

predictions and a wide range of theory results can be found in the literature. From naive
estimates, see e.g. ref. [25], the value of ∆adir

CP is expected to be approximately one order of
magnitude smaller than the one in eq. (1.3). This result was also confirmed in ref. [26] using the
framework of light-cone sum rule (LCSR) [27–29] with pion and kaon light-cone distribution
amplitudes (LCDAs), and similar conclusions were obtained in a recent analysis of final state
interactions employing dispersion relations [30]. Consequently, the large experimental value in
eq. (1.3) has also triggered several investigations of physics beyond the SM (BSM) [23, 31–33].

At the same time, in the literature there are also theory estimates that point towards a SM
origin of the experimental result for ∆ACP. These include analyses based on U-spin relations,
see e.g. ref. [34], studies of rescattering contributions with potential large enhancements due
to nearby resonances like the f0(1710) or f0(1790) [35], as well as investigations of final
state interactions [36]. On the other hand, the effect of nearby resonances is in principle
also included in the approach of ref. [30], where no sign of large enhancement was found
and, furthermore, ref. [30] points out some inconsistencies e.g. in ref. [36]. In addition, also
approaches based on topological diagram analyses have been employed [37–39]. In particular,
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in ref. [38] the experimental data were combined with certain theory assumptions, including
ad-hoc guesses on the relative size of the QCD-penguin exchange graphs, in order to estimate
the different topological contributions, clearly not constituting a first principle determination.
Finally, it is also worth commenting that the new experimental results for the individual CP
asymmetries shown in eqs. (1.4), (1.5), would imply a huge U-spin symmetry breaking [40, 41].
Currently then, a clear theory interpretation of the data is still missing.

In ref. [26], Khodjamirian and Petrov used LCSR to estimate the size of penguin
contributions in D0 → π+π− and D0 → K+K−, whereas the value of the leading decay
amplitude, needed to predict ∆adir

CP, see section 2, was extracted from experimental data
on the corresponding branching fractions. The latter are known quite precisely, and the
PDG quotes [42]

B(D0 → K+K−)
∣∣
exp = (4.08± 0.06)× 10−3 , (1.6)

B(D0 → π+π−)
∣∣
exp = (1.454± 0.024)× 10−3 . (1.7)

The result obtained for the penguin amplitude was approximately one order of magnitude
smaller than what would be required to explain the value of ∆adir

CP in eq. (1.3). To gain
further insight into the question whether this difference is an artefact of the method used
or a signal of tension between the SM prediction and the data, in this paper we present a
new determination of the leading contribution to the decay amplitude of two-body singly
Cabibbo suppressed D0 decays, employing the same method as used in ref. [26] for the
penguin contribution, i.e. LCSRs. Specifically, we compute for the first time within this
framework the tree-level amplitudes for the modes D0 → π+π− and D0 → K+K−, and thus
the corresponding branching fractions, in order to compare with the experimental values in
eqs. (1.6), (1.7). In addition, we also extend our analysis to the Cabibbo favoured and doubly
Cabibbo suppressed decays D0 → π+K− and D0 → K+π−, for which the experimental
results of the branching fractions read [42]

B(D0 → π+K−)
∣∣
exp = (3.947± 0.030)× 10−2 , (1.8)

B(D0 → K+π−)
∣∣
exp = (1.50± 0.07)× 10−4 . (1.9)

Obtaining a good agreement would considerably strengthen our confidence in the applicability
of LCSR for two-body non-leptonic D0 meson decays, and represent a first crucial step
towards a more robust understanding of the strong dynamics in these channels.

Our paper is organised as follows: in section 2 we introduce the theoretical framework
needed to describe branching ratios and CP asymmetries, starting from the effective Hamil-
tonian. In section 3 we revisit the naive QCD factorisation estimates for the branching
fractions, using updated theoretical and experimental inputs. The main result of our paper,
the calculation of the tree-level amplitude from LCSR, is described in section 4. Section 5 is
devoted to the description of the numerical analysis and the discussion of our results, including
predictions for the branching fractions and their implications on the bound on |∆adir

CP|. Finally,
in section 6 we conclude and discuss future potential improvements to our calculation.
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2 The general framework

2.1 Effective Hamiltonian and decay amplitudes

The singly Cabibbo suppressed decays1 D0 → K+K−, D0 → π+π−, can be described by
introducing the ∆C = 1 effective Hamiltonian governing the flavour-changing charm-quark
transitions c → qq̄u, with q = d, s, namely [43]

Heff = GF√
2
∑
q=d,s

λq
(
C1O

q
1 + C2O

q
2

)
+ h.c. , (2.1)

where λq ≡ V ∗
cqVuq are the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and

the current-current operators Oq1,2 read respectively

Oq1 = (q̄iΓµci)(ūjΓµqj) , Oq2 = (q̄iΓµcj)(ūjΓµqi) . (2.2)

Here Γµ ≡ γµ(1 − γ5), i, j, are colour indices, and the corresponding Wilson coefficients
Ci(µ1) are evaluated at the renormalisation scale µ1 ∼ mc, with their numerical values shown
in table 1. Note that in eq. (2.1) the contribution of the penguin and chromomagnetic
operators has been neglected due to the smallness of their Wilson coefficients compared
to the accuracy of our study.

Similarly to ref. [26], we also introduce a compact notation for the combination of the
effective operators Oq1,2 and of their Wilson coefficients in eq. (2.1), i.e.

Oq ≡ −GF√
2
∑
i=1,2

CiO
q
i , with q = d, s , (2.3)

so that each decay amplitude can be expressed in terms of the corresponding CKM structure
respectively as [26]

A(D0 → π+π−) = λd⟨π+π−|Od|D0⟩+ λs⟨π+π−|Os|D0⟩ , (2.4)

A(D0 → K+K−) = λs⟨K+K−|Os|D0⟩+ λd⟨K+K−|Od|D0⟩ . (2.5)

Using the unitarity of the CKM matrix λd + λs + λb = 0, eqs. (2.4), (2.5), are then recast
in the following form

A(D0 → π+π−) = λdAππ

[
1− λb

λd

Pππ
Aππ

]
, (2.6)

A(D0 → K+K−) = λsAKK

[
1− λb

λs

PKK
AKK

]
, (2.7)

where we have defined, respectively [26]

Aππ = ⟨π+π−|Od|D0⟩ − ⟨π+π−|Os|D0⟩ , (2.8)

AKK = ⟨K+K−|Os|D0⟩ − ⟨K+K−|Od|D0⟩ , (2.9)
1Note that the description can be easily generalised to the Cabibbo favoured and doubly Cabibbo suppressed

decays D0 → π+K− and D0 → K+π−. We omit this for brevity.
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Figure 1. Examples of tree-level (a), exchange (b) and penguin (c) topologies contributing to AKK .
Example of penguin topology contributing to PKK (d). The corresponding diagrams for Aππ and
Pππ can be obtained replacing K → π, s↔ d.

µ1[GeV] 1 1.27 1.5 2

C1(µ1)
1.34
(1.25)

1.27
(1.20)

1.24
(1.18)

1.19
(1.14)

C2(µ1)
−0.62
(−0.48)

−0.53
(−0.40)

−0.47
(−0.36)

−0.40
(−0.30)

Table 1. Comparison of the Wilson coefficients at LO-QCD (NLO-QCD) for different values of the
renormalisation scale µ1.

and
Pππ = ⟨π+π−|Os|D0⟩ , PKK = ⟨K+K−|Od|D0⟩ . (2.10)

The leading CKM amplitudes Aππ, AKK , in eqs. (2.8), (2.9), receive contributions from
color-allowed tree-level, exchange and penguin topologies, on the other hand, only the penguin
topology can contribute to Pππ, PKK , in eq. (2.10), cf. figure 1.

2.2 Branching fractions and CP asymmetries

The branching ratio for the decay D0 → K+K− can be then expressed as

B(D0 → K+K−) = NKK |λs|2|AKK |2
∣∣∣∣1− λb

λs

PKK
AKK

∣∣∣∣2 , (2.11)

– 5 –



J
H
E
P
0
3
(
2
0
2
4
)
1
5
1

where the prefactor NKK is

NKK ≡

√
λ(m2

D,m
2
K ,m

2
K)

16πm3
D

τ(D0) , (2.12)

with λ(a, b, c) ≡ (a − b − c)2 − 4bc being the Källen function and τ(D0) the total lifetime
of the D0 meson. Similarly, the direct CP asymmetry, defined as

adir
CP(f) ≡

Γ(D0 → f)− Γ(D0 → f̄)
Γ(D0 → f) + Γ(D0 → f̄)

, (2.13)

reads

adir
CP(K+K−) = −

2
∣∣∣∣λbλs

∣∣∣∣ sin γ ∣∣∣∣PKKAKK

∣∣∣∣ sinϕKK
1− 2

∣∣∣∣λbλs
∣∣∣∣ cos γ ∣∣∣∣PKKAKK

∣∣∣∣ cosϕKK +
∣∣∣∣λbλs

∣∣∣∣2 ∣∣∣∣PKKAKK

∣∣∣∣2
, (2.14)

where we have defined the strong phase difference ϕKK ≡ arg (PKK/AKK), and introduced the
angle γ ≡ − arg(λb/λs). Note that the corresponding expressions for the mode D0 → π+π−

can be obtained by replacing KK → ππ, λs → λd and sin γ → − sin γ in eqs. (2.11), (2.12),
and (2.14).

Taking into account that λb/λd,s ≪ 1, it thus follows that while the amplitudes Aππ,
AKK , give the dominant contribution to the branching fractions, i.e.

B(D0 → π+π−) ≃ Nππ|λd|2|Aππ|2 , (2.15)

B(D0 → K+K−) ≃ NKK |λs|2|AKK |2 , (2.16)

the direct CP asymmetries are driven by the ratio of the penguin over the CKM leading
amplitudes, that is

adir
CP(π+π−) ≃ 2

∣∣∣∣λbλd
∣∣∣∣ sin γ ∣∣∣∣PππAππ

∣∣∣∣ sinϕππ , (2.17)

adir
CP(K+K−) ≃ −2

∣∣∣∣λbλs
∣∣∣∣ sin γ ∣∣∣∣PKKAKK

∣∣∣∣ sinϕKK . (2.18)

From the above results, together with |λd| ≃ |λs|, we arrive at the following expression for
the difference of direct CP asymmetries ∆adir

CP, that is

∆adir
CP ≃ −2

∣∣∣∣λbλs
∣∣∣∣ sin γ (∣∣∣∣PKKAKK

∣∣∣∣ sinϕKK +
∣∣∣∣PππAππ

∣∣∣∣ sinϕππ) . (2.19)

The penguin amplitudes Pππ, PKK , were estimated in ref. [26] using the framework of LCSR
with respectively pion and kaon LCDAs, and following previous studies of the B → ππ

decay [44, 45]. The values of |Aππ| and |AKK |, required to determine adir
CP, were instead

extracted from the precise experimental data available on the branching ratios, taking into
account the relations in eqs. (2.15), (2.16). At the same time, assuming naive power counting,
we can express Aππ and AKK in eqs. (2.8), (2.9), as

Aππ = ⟨π+π−|Od|D0⟩
∣∣∣
tree

+O(αs) +O(1/mc) , (2.20)

AKK = ⟨K+K−|Os|D0⟩
∣∣∣
tree

+O(αs) +O(1/mc) , (2.21)
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retaining the dominant contribution due to the tree-level amplitude and neglecting sub-leading
diagrams due to both hard and soft QCD corrections. In this approximation it thus follows that

Aππ ≃ −GF√
2

(
C1 +

C2
3

)
⟨π+π−|Od1 |D0⟩

∣∣∣
tree

, (2.22)

AKK ≃ −GF√
2

(
C1 +

C2
3

)
⟨K+K−|Os1|D0⟩

∣∣∣
tree

. (2.23)

The tree-level matrix elements in eqs. (2.22), (2.23), can be then estimated using naive
QCD factorisation (nQCDf), see section 3, or determined from a LCSR computation, see
section 4. Importantly, in the latter case, the combination with the results for Pππ, PKK ,
obtained in ref. [26], allows us to consistently estimate the ratios in eqs. (2.17), (2.18), and
ultimately to obtain a constraint on |∆adir

CP| entirely within the same theoretical framework.
Note that for brevity, the suffix “tree” will be omitted in the following, although this should
always be understood.

The computation of the tree-level hadronic matrix elements for the singly Cabibbo
suppressed D0 decays can be easily extended to the Cabibbo favourite and doubly Cabibbo
suppressed decays D0 → π+K− and D0 → K+π−, which are also driven by color-allowed
tree-level topologies. Therefore, we include these two additional channels in our analysis.
As for the color-suppressed tree-level decays like D0 → π0π0, the prefactor (C1 + C2/3) is
replaced by (C2 + C1/3), where the latter combination shows an almost perfect cancellation.
This makes the analysis of these decays extremely sensitive to the accuracy of the computation,
and hence we leave the inclusion of these channels to future studies that will also take higher
order perturbative contributions into account.

3 The decay amplitudes in naive QCDf

A first estimate of the tree-level hadronic matrix elements in eqs. (2.22), (2.23), can be
obtained within nQCDf. Considering, for instance, the decay D0 → K+K−, the nQCDf
approximation leads to

⟨K+K−|Os1|D0⟩
∣∣∣
nQCDf

= ifK(m2
D −m2

K)fDK0 (m2
K) , (3.1)

where fK is the kaon decay constant and fDK0 (m2
K) the scalar form factor evaluated at

q2 = m2
K . Hence, the amplitude AKK becomes

AKK

∣∣∣
nQCDf

= −iGF√
2

(
C1 +

C2
3

)
fK(m2

D −m2
K)fDK0 (m2

K) . (3.2)

Similar expressions for the remaining modes can be easily obtained by properly replacing
fK → fπ, fDK0 (m2

K) → fDπ0 (m2
π) ≃ fDπ0 (0), etc.

Using the values for the Wilson coefficients shown in table 1, and for parameters like,
masses, decay constants, etc., those presented in table 2, as well as Lattice QCD determinations

– 7 –
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for the form factors [46],2 namely

fDK0 (0) = 0.765± 0.031 , fDK0 (m2
K) = 0.789± 0.028 , (3.3)

fDπ0 (0) = 0.612± 0.035 , fDπ0 (m2
K) = 0.639± 0.032 , (3.4)

we arrive at the following estimates for the branching fractions

B(D0 → K+K−)
∣∣∣
nQCDf

=
(
3.40+0.40

−0.35

)
× 10−3 , (3.5)

B(D0 → π+ π−)
∣∣∣
nQCDf

=
(
1.90+0.28

−0.26

)
× 10−3 , (3.6)

B(D0 → π+K−)
∣∣∣
nQCDf

=
(
4.55+0.56

−0.50

)
× 10−2 , (3.7)

B(D0 → K+π−)
∣∣∣
nQCDf

=
(
1.48+0.20

−0.19

)
× 10−4 , (3.8)

where the quoted uncertainties include the variation of the input parameters, as well as of
the renormalisation scale in the interval 1GeV ≤ µ1 ≤ 2GeV, all combined in quadrature.
We stress however, that these should not be understood as the final theory errors, since
uncertainties due to contributions that cannot be captured by the nQCDf approximation
are not included and could potentially be sizable.

Given the non-trivial hadronic structure of these decays and the challenges posed by the
charm sector, the agreement between the nQCDf estimates and the corresponding data in
eqs. (1.6)–(1.9) appears, surprisingly, excellent. In particular, using updated input values
for the form factors, we are able to reproduce the large experimental result for the SU(3)f
breaking in the D0 → K+K− and D0 → π+π− modes.

To get a first idea of the possible size of sub-leading contributions to the decay amplitude,
we consider the deviation of the experimental branching ratios from the nQCDf results in
eqs. (3.5)–(3.8), as well as the corresponding deviation at the amplitude level in order to
subtract the effect of simple phase space and CKM factors. Specifically, we define

δBnQCDf ≡ (Bexp − BnQCDf)
Bexp , δAnQCDf ≡ (Aexp −AnQCDf)

Aexp , (3.9)

obtaining the values summarised in the table below.

D0 → K+K− D0 → π+π− D0 → π+K− D0 → K+π−

δBnQCDf 0.17 −0.31 −0.15 0.02

δAnQCDf 0.09 −0.14 −0.07 0.01

These results demonstrate that the decay amplitudes for the channels considered are indeed
dominated by the contribution of the tree-level topology, and that therefore there is no

2We use the most recent and so far only published Lattice QCD results using Nf = 2+1+1 ensembles [46],
There are, in fact, also older Lattice QCD determinations based on using Nf = 2+ 1 ensembles [47, 48], which
indicate slightly smaller SU(3)f breaking effects in the form factors compared to ref. [46]. For more details,
see the FLAG review [49].
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indication for a large enhancement of sub-leading diagrams. It is important to stress that
compared to previous analyses, like e.g. ref. [25], several inputs have changed considerably.
For instance, the D → π and D → K form factors show now a significant SU(3)f breaking
effect, cf. eqs. (3.3), (3.4), whereas the values from 2005 used in ref. [25] were almost SU(3)f
symmetric. In addition, the experimental data for the branching ratios have also changed,
e.g. the value of Γ(D0 → K0K̄0), which is expected to vanish in nQCDf, went down by more
than a factor of five, while it seemed to be sizable in 2006, thus potentially contradicting
the nQCDf estimate.

4 The decay amplitudes from LCSR

In this section, we outline the computation of the tree-level matrix elements in eqs. (2.22),
(2.23), using the framework of LCSR. For definiteness, we consider the decay D0 → K+K−,
as it is more general. The calculation of the remaining channels is in fact analogous and the
corresponding results can be obtained from those presented here implementing the proper
replacements i.e. K → π, ms → md → 0, mK → mπ → 0, etc. Note that the analysis largely
follows the studies of the B → ππ and B → πK decays performed in refs. [44, 50].

We start by introducing the three-point correlation function

Fµ(p, q) = i2
∫
d4x e−ip·x

∫
d4y eiq·y ⟨K−(p− q)|T

{
jD5 (x), Os1(0), jKµ (y)

}
|0⟩ , (4.1)

where jKµ = s̄γµγ5u and jD0
5 = imc c̄γ5u are interpolating currents of the K+ and D0 mesons,

respectively, with the corresponding off-shell momenta pµ and qµ. The correlation function
Fµ(p, q) admits the Lorentz decomposition

Fµ(p, q) = Fq(p2, q2) qµ + Fp(p2, q2) pµ , (4.2)

in terms of the scalar functions Fq(p2, q2) and Fp(p2, q2), depending on the two independent
Lorentz invariant variables p2 and q2. We stress that only the coefficient of qµ contributes
to the dispersion relations and is thus relevant for our analysis.

For sufficiently large space-like values of the momenta squared P 2 ≡ −p2 ≫ Λ2, Q2 ≡
−q2 ≫ Λ2, with Λ denoting a hadronic scale of the order of few hundreds MeV, one can
show that the dominant contribution to the integrals in eq. (4.1) comes from the light-cone
region x2 ∼ 0 and y2 ∼ 0, see e.g. ref. [44]. Therefore, with the kinematics fixed above,
the so-called light-cone operator-product expansion (LC-OPE) is applicable, allowing us to
represent the correlation function in the form of convolution of hard scattering kernels with
the corresponding kaon LCDAs of growing twist.

The general expression for the non-local two-particle kaon-to-vacuum matrix element
expanded near the light-cone and up to twist-4, can be found e.g. in the appendix of ref. [51],
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c
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u

u
s

Os
1

K−

Figure 2. Diagram relevant for the computation of the LC-OPE for the correlation function in
eq. (4.1).

and reads

⟨K−(k)|s̄iα(x1)ujβ(x2)|0⟩ =
iδij

12 fK
1∫

0

eiu(k·x1)+iū(k·x2)
(
[/pγ5]βαϕ2K(u) (4.3)

− [γ5]βαµKϕp3K(u) + 1
6[σµνγ5]βαkµ(x1 − x2)νµKϕσ3K(u)

+ 1
16[/pγ5]βα(x1 − x2)2ϕ4K(u)− i

2[(/x1 − /x2)γ5]βα
u∫

0

dvψ4K(v)
)
,

where i, j, denote the quark colour indices, α, β, are spinor indices, fK is the kaon de-
cay constant, ϕ2K , . . . , ψ4K , are the kaon LCDAs of twist-2, 3, and 4, ū = 1 − u, and
µK = m2

K/(mu + ms) denotes the chirally enhanced parameter. The diagram relevant
for the derivation of the LC-OPE is shown in figure 2,3 and its computation leads to the
following result

Fq(p2, q2)
∣∣∣
OPE

= mc fK

1∫
0

du
∑
ϕ

ϕ(u)
3∑

n=1

cϕn(u, q2)[
s̃(u, q2)− p2]n ln

(
m2
s − q2

µ2

)
, (4.4)

where ϕ = {ϕ2K(u), . . . , ψ4K(u)}, and we have only retained the logarithmic term arising
from the loop calculation, as this is the only relevant for the derivation of the dispersion
relations. Moreover, the function s̃(u, q2) in eq. (4.4) reads

s̃(u, q2) = m2
c − ūq2 + uūm2

K

u
, (4.5)

and note that the coefficients cnϕ(u, q2) have been suitably manipulated so that the dependence
on p2 is contained only in the denominators. Their explicit expressions can be found in
appendix A.

3The computation of the correlator in eq. (4.1) actually leads also to a second diagram corresponding to an
annihilation topology. However, its contribution to the dispersion relations vanishes, as expected, given the
LO-QCD accuracy of our analysis.
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The OPE result in eq. (4.4) can be then linked to the desired matrix element via the
derivation of hadronic dispersion relations, see e.g. refs. [44, 52] for details. In particular,
after isolating the ground D0- and K+-meson states in the p2- and q2-channels, respectively,
the contribution of the excited states and of the continuum is approximated by means of the
quark hadron duality, the latter introducing two effective threshold parameters sD0 and sK0 .
In addition, a Borel transformation in both channels i.e. p2 →M2, q2 →M ′2 , is performed in
order to suppress the contribution of the continuum. The final sum-rule takes then the form

i⟨K+K−|Os1|D0⟩ = em
2
D/M

2
em

2
K/M

′2

π2fKfDm2
D

sK
0∫

m2
s

ds′
sD

0∫
m2

c

ds e−s/M
2
e−s

′/M ′2 Ims′Ims
[
Fq(s, s′)

]
OPE ,

(4.6)
where the expression for the imaginary part of Fq(s, s′)|OPE can be easily derived using the
results given e.g. in the appendix of ref. [52].

It is worth emphasising that up to power corrections of the order of sK0 /m2
D, the result

in eq. (4.6) can be factorized into the product of the two-point sum rule for the decay
constant fK and of the LCSR for the D → K form factor, both at LO-QCD, see e.g. ref. [44]
for more details.

5 Numerical analysis and results

In this section we discuss the choice of the input parameters and present our results for the
leading contribution to the amplitudes Aππ, AKK , in eqs. (2.22), (2.23). For convenience,
all the values used in the numerical analysis are also summarised in table 2.

For the pion and kaon LCDAs up to twist-4, we use the same expressions as in the
corresponding LCSR studies of the D → π and D → K form factors [56]. In particular,
the twist-2 LCDAs are obtained in the form of a truncated expansion in the Gegenbauer
polynomials C(3/2)

n (u− ū) with corresponding coefficients aπn and aKn , respectively. For the
pion LCDAs, the odd Gegenbauer coefficients vanish, the values of aπ2 and aπ4 are taken
from the recent study [54], while we neglect aπn>4. For the kaon LCDAs, we take the value
of aK1 from ref. [55], of aK2 from ref. [56] (based on refs. [60, 61]), and neglect aKn>2.4 The
value of the chirally-enhanced parameters µπ and µK , entering the twist-3 LCDAs, are
obtained by employing well-known relations in chiral perturbation theory [65], and can be
found e.g. in ref. [53]. The remaining parameters entering the twist-3 and twist-4 LCDAs
are taken to be the same as in the study [56], corresponding to the values obtained in
ref. [57]. As for the renormalisation scale µ, following ref. [56], we fix the central value
to µ = 1.5GeV ∼

√
m2
D −m2

c , and vary this in the interval 1GeV ≤ µ ≤ 2GeV. The
scale dependence at one-loop accuracy for the LCDAs parameters is taken from ref. [57].
The running of the strong coupling, as well as of the quark masses in the MS-scheme,
is implemented using the Mathematica package RunDec [66], fixing the values of αs(mZ),
mc(mc), and ms(2GeV) as given in ref. [42].

4Other determinations of the Gegenbauer coefficients aπ,K
n are available in the literature, see e.g. refs. [60, 62–

64]. However, we have explicitly checked that the effect of using different values for these parameters is
negligible compared to the accuracy of our study and amounts to at most a few percent, as expected, since
these parametrise subleading corrections in the conformal expansion of the LCDAs.
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Parameters of the LCDAs

µπ (2.50± 0.30)GeV [53] µK (2.49± 0.26)GeV [53]

aπ2 0.275± 0.055 [54] aK1 0.10± 0.04 [55]

aπ4 0.185± 0.065 [54] aK2 0.25± 0.15 [56]

fπ3 (0.0045± 0.0015)GeV2 [57] fK3 (0.0045± 0.0020)GeV2 [57]

ωπ3 −1.5± 0.7 [57] ωK3 −1.2± 0.7 [57]

λπ3 0 — λK3 1.6± 0.4 [57]

δ2
π (0.18± 0.06)GeV2 [57] δ2

K (0.20± 0.06)GeV2 [57]

ωπ4 0.2± 0.1 [57] ωK4 0.2± 0.1 [57]

κ4π 0 — κ4K −0.12± 0.01 [57]

Sum rule parameters

sπ0 (0.7± 0.1)GeV2 [26] sK0 (1.2± 0.1)GeV2 [26]

M2
π (1.0± 0.5)GeV2 [58] M2

K (1.0± 0.5)GeV2 [58]

sD0 8.2+1.4
−0.6 GeV2 (5.1) M2

D (4.5± 1.0)GeV2 [56]

CKM parameters

|Vus| 0.22500+0.00024
−0.00021 [59] |Vub|

|Vcb| 0.08848+0.00224
−0.00219 [59]

|Vcb| 0.04145+0.00035
−0.00061 [59] δ

(
65.5+1.3

−1.2

)◦
[59]

Other parameters

mπ± 0.13957GeV [42] mK± 0.493677GeV [42]

fπ (0.1302± 0.0008)GeV [49] fK (0.1557± 0.0003)GeV [49]

mc (1.27± 0.02)GeV [42] ms (0.0934+0.0086
−0.0034)GeV [42]

αs(mZ) 0.1179± 0.0009 [42] mD0 1.86484GeV [42]

fD (0.2120± 0.0007)GeV [49] τ(D0) (0.4013± 0.0010) ps [42]

Table 2. Values of the parameters used in the numerical analysis. All numbers quoted correspond to
the non-perturbative parameters evaluated at the renormalistation scale µ = 1GeV, apart from µπ

and µK , whose values are given at µ = 2GeV.

– 12 –



J
H
E
P
0
3
(
2
0
2
4
)
1
5
1

Meson decay constants are determined precisely from Lattice QCD calculations, and we
take their values from ref. [49]. Meson masses, also known very precisely, are taken from
the PDG [42]. Finally, to predict branching fractions and ∆adir

CP, we need in addition to
fix the value of the Wilson coefficients and the CKM parameters. Leading-order results for
C1(µ1) and C2(µ1) are implemented using the expressions given in ref. [43], see also table 3 of
ref. [2], and we vary the renormalisation scale in the interval µ1 = (1.5± 0.5)GeV. As for the
CKM matrix elements, we use the standard parametrisation, taking the values of |Vus|, |Vcb|,
|Vub/Vcb|, and δ, from the CKMfitter [59] (similar values can be obtained from the UTFit [67]).

Concerning the choice of the sum rule parameters, we mostly follow ref. [26]. Thus, for the
Borel parameters we adopt the same interval M ′2 = (1±0.5)GeV2 for both the pion and kaon
channels, while for the respective threshold continuum parameters we use sπ0 = (0.7±0.1)GeV2

and sK0 = (1.2± 0.1)GeV2 [68, 69]. The Borel parameter for the D-meson channel is chosen
to be in the interval M2 = (4.5 ± 1.0)GeV2, following ref. [56], while we fix the threshold
continuum parameter sD0 by differentiating with respect to 1/M2 both sides of the sum-rule
in the case of pion final state, cf. eq. (4.6), obtaining the following relation

[m2
D0 ]LCSR =

∫ sD
0

m2
c

ds s e−s/M
2
∫ sπ

0

0
ds′e−s

′/M ′2 Ims′Ims
[
Fq(s, s′)

]
OPE∫ sD

0

m2
c

ds e−s/M
2
∫ sπ

0

0
ds′e−s

′/M ′2 Ims′Ims
[
Fq(s, s′)

]
OPE

. (5.1)

The sum-rule result for the D0-meson mass squared is then fitted to its experimental value,
leading to sD0 ≈ 8.2GeV2 in correspondence of the central values of the remaining input
parameters. The uncertainty on sD0 , shown in table 2, is derived varying M2 within its
error range.

Using the values of the input parameters as described above, we obtain the following
LCSR predictions for the tree-level matrix elements of the four modes analysed5

⟨K+K−|Os1|D0⟩
∣∣∣
LCSR

= i
(
0.413+0.069

−0.111 ± 0.165
)
GeV3 = i 0.413+0.179

−0.199 GeV3, (5.2)

⟨π+π−|Od1 |D0⟩
∣∣∣
LCSR

= i
(
0.236+0.047

−0.073 ± 0.094
)
GeV3 = i 0.236+0.105

−0.119 GeV3 , (5.3)

⟨π+K−|Osd1 |D0⟩
∣∣∣
LCSR

= i
(
0.261+0.049

−0.079 ± 0.105
)
GeV3 = i 0.261+0.116

−0.131 GeV3 , (5.4)

⟨K+π−|Ods1 |D0⟩
∣∣∣
LCSR

= i
(
0.380+0.067

−0.106 ± 0.152
)
GeV3 = i 0.380+0.166

−0.185 GeV3 , (5.5)

where the first uncertainties are due to variation of all the input parameters and of the
renormalisation scale, and the second account for missing higher-order QCD effects, which
we conservatively estimate within the 40% range.

With the LCSR results in eq. (5.2)–(5.5), and the expressions derived in section 2 for
the amplitude and branching fraction, cf. eqs. (2.15), (2.22), we arrive at the following values

5The operators introduced in eqs. (5.4), (5.5), read Oq1q2
1 = (q̄i

1Γµci)(ūjΓµqj
2), with qi = d, s.
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for the decays considered

B(D0 → K+K−)
∣∣
LCSR =

(
3.67+3.90

−2.69

)
× 10−3 , (5.6)

B(D0 → π+ π−)
∣∣
LCSR =

(
1.40+1.53

−1.06

)
× 10−3 , (5.7)

B(D0 → π+K−)
∣∣
LCSR =

(
2.99+3.26

−2.26

)
× 10−2 , (5.8)

B(D0 → K+π−)
∣∣
LCSR =

(
1.80+1.93

−1.33

)
× 10−4 . (5.9)

The central values of the LCSR predictions are in surprisingly good agreement with the data
in eqs. (1.6)–(1.9); on the other hand, the uncertainties are large, which mainly follows from
our very conservative treatment of missing corrections. Again, these results do not indicate
the presence of unexpectedly big sub-leading effects.

Next, we discuss our estimate for |∆adir
CP|. With the results for AKK , Aππ, obtained

using eqs. (5.2), (5.3), and implementing the expressions for the penguin matrix elements
PKK , Pππ, from ref. [26], in order to account for correlations originating from the use of
the same theoretical framework and input parameters, we obtain the following values for
the ratios entering eqs. (2.17), (2.18), that is∣∣∣∣PKKAKK

∣∣∣∣
LCSR

= 0.066+0.031
−0.029 ,

∣∣∣∣PππAππ

∣∣∣∣
LCSR

= 0.089+0.042
−0.037 , (5.10)

in perfect agreement with the results of ref. [26]. Note that we have again added a conservative
40% uncertainty, to account for missing higher-order QCD contributions, higher-twist effects,
and corrections of the order O(sK,π0 /m2

D) not included in ref. [26]. Using the results in
eq. (5.10), and allowing for arbitrary strong phase differences, that is varying both sinϕππ and
sinϕKK from −1 to 1 in eq. (2.19), we obtain the following upper bound for |∆adir

CP|, namely

|∆adir
CP|LCSR ≤ 2.4× 10−4 , (5.11)

which is about 6 times smaller than the current central experimental value in eq. (1.3).
Before concluding, it is worth emphasising that we also computed the tree-level matrix

elements in eqs. (2.22), (2.23), using LCSR with D-meson LCDAs. In the latter case,
which largely follows the calculation performed in the recent study of non-leptonic B-meson
decays [52], the parameters of the D-meson LCDAs were taken from the corresponding ones for
the B-meson assuming heavy quark flavour symmetry. Interestingly, including contributions
with two-particle D-meson LCDAs up to twist-3, we obtained central values in agreement
with the results in eqs. (5.6), (5.7). On the other hand, the respective uncertainties were also
found to be huge, reflecting the poor precision with which the D-meson LCDAs are known.

6 Conclusion and outlook

In this paper we have employed the framework of LCSR to determine the SM predictions for
several non-leptonic D0 decays. Focusing on the computation of the leading contribution to
the decay amplitude, i.e. considering only the color-allowed tree-level topology at leading order
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in QCD and including two-particle pion/kaon LCDAs up to twist-4, we find a surprisingly good
agreement with the experimental values of the branching ratios for the modes D0 → π+K−,
D0 → K+K−, D0 → π+π− andD0 → K+π−. Our results for the decay amplitudes, combined
with the expressions for the penguin diagrams obtained within LCSR in ref. [26], lead to a
bound for |∆adir

CP| which is considerably lower than the current experimental determination.
To obtain a more profound statement, we plan to extend our theoretical study to include

the following improvements:

1. Calculate the contribution of condensate and soft-gluon effects, i.e. three-particle LCDAs.
Furthermore, higher-twist corrections could be investigated.

2. Extend our study to decays that are governed by color-suppressed tree-level topologies.

3. Calculate higher order perturbative QCD corrections to the sum-rule result. This will
also allow to extend our approach to other topologies than the color-allowed tree-level
one, like annihilation and penguin diagrams, and will have a crucial impact on the
theoretical determination of the strong phases.

Finally, in light of the surprising agreement of our results — and in particular of the
nQCDf estimates — with the experimental branching ratios, we consider it to be valuable
to contemplate a scenario in which the above listed future improvements to the sum-rule
predictions will not change considerably the current picture. In such a scenario we could
conclude:

⋄ The framework of LCSR can be successfully employed to predict the branching ratios for
the decays D0 → π+π−, K+π−, π+K−, K+K−. The color-allowed tree-level diagrams
give the dominant contribution to the branching fractions and the remaining topologies
only lead to smaller corrections. The current large uncertainties in the theoretical
predictions presented in eqs. (5.6)–(5.9) can be systematically reduced including the
improvements listed above.

⋄ The size of SU(3)f breaking effects turns out to be very large and it is well accommodated
by the values of the decay constants and form factors. Comparing the central values
of eq. (5.2) and eq. (5.3) we find SU(3)f breaking effects of the order of 75% at the
amplitude level, thus questioning the applicability of this symmetry for D-meson decays.
In this respect, we would like to note that studies like refs. [70–72] only set a lower limit
of 30% on the possible size of the SU(3)f breaking, while allowing also much larger
values, in consistency with our finding.

⋄ The upper bound on |∆adir
CP|, given in eq. (5.11), is found to be about a factor of 6

smaller than the current experimental average given in eq. (1.3). If the experimental
numbers will stay, in particular the central values for the individual CP asymmetries
given in eqs. (1.4), (1.5), then this could be a first glimpse of physics beyond the SM.
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Note added. While this work was being completed, ref. [73] appeared on the arXiv.
Assuming the validity of the SM for the description of D0 decays, the authors find experimental
evidence for large penguin/rescattering effects. Despite being a very interesting study, this
cannot provide a decisive statement on the actual nature of these large effects, namely if they
could be accommodated within the SM or not. Therefore, the latter work does not contradict
the conclusions of our paper, where first steps towards a fully QCD based calculation indicate
that the current experimental value for ∆adir

CP cannot be reproduced in the SM.

A Expressions of the OPE coefficients

Here, we list the non-vanishing coefficients cϕn(u, q2), introduced in eq. (4.4).

cϕ2K
1 = mc

(
m2
s − q2) 2

8π2q6u2

[
m2
c

(
2m2

s + q2
)
+ q2

(
q2(2u− 1)− u2m2

K

)
+m2

s

(
q2(u− 2)− 2u2m2

K

)]
, (A.1)

c
ϕp

3K
1 = µK

(
m2
s − q2) 2

8π2q6u

[
m2
c

(
2m2

s + q2
)
+ q2

(
−u2m2

K + 2q2u− q2
)

+m2
s

(
−2u2m2

K + q2u+ q2
)]
, (A.2)

c
ϕσ

3K
1 = µK

(
m2
s − q2) 2

48π2q6u2

[
m2
c

(
2m2

s + q2
)
+ q2

(
−u2m2

K + 4q2u− 3q2
)

+m2
s

(
−2u2m2

K + 2q2u− 3q2
)]
, (A.3)

c
ϕσ

3K
2 = µK

(
m2
s − q2) 2

48π2q6u3

[
m4
c

(
2m2

s + q2
)

+m2
c

(
m2
s

(
q2(u− 3)− 4u2m2

K

)
+ 2q2u

(
q2 − um2

K

))
(A.4)

+
(
q2 − u2m2

K

) (
m2
s

(
−2u2m2

K + (u+ 1)q2
)
+ q2

(
−u2m2

K + (2u− 1)q2
))]

,

cϕ4K
2 = m3

c

(
m2
s − q2) 2 (2m2

s + q2)
16π2q6u3 , (A.5)

cϕ4K
3 = −m

3
c

(
m2
s − q2) 2

16π2q6u4

[
m2
c

(
2m2

s + q2
)
+ q2

(
q2(2u− 1)− u2m2

K

)
+m2

s

(
q2(u− 2)− 2u2m2

K

)]
, (A.6)
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cψ4K
1 = mc

(
m2
s − q2) 2 (2m2

s + q2)
8π2q6u

, (A.7)

cψ4K
2 = −mc

(
m2
s − q2) 2

8π2q6u2

[
m2
c

(
2m2

s + q2
)
+ q2

(
−u2m2

K + 2q2u− q2
)

+m2
s

(
−2u2m2

K + q2u+ q2
)]
. (A.8)
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