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1 Introduction

Chaos and dynamical phenomena have turned out to provide a fundamental insight into the
structure and information content of black holes and gravity in general. Since the discovery
of the black hole scrambling concept [1, 2], chaos bound and OTOC-ology [3, 4] and on
the other hand the questions of factorization and microscopic statistics stemming from the
replica wormhole proposal in the context of the information paradox [5–7], it is becoming
clear that nonlinear dynamics is an integral part of high-energy theory, as many questions in
gravity and string theory are naturally formulated in terms of scrambling, thermalization
and microscopic chaos.

The time is now ripe to move beyond semiclassical horizons and black holes in general
relativity. The same questions of scrambling, universal timescales and the like can be
asked also for stringy black hole solutions [8] or for solutions proposed to replace black
holes by horizonless stringy objects (microstate geometries and fuzzballs) [9]. With stringy
corrections, things become much more difficult and less universal. One possible approach
is the string/black hole (string/BH) complementarity paradigm [10–12]: a highly excited
string should look like a black hole in the weak coupling regime.

The idea of string/BH complementarity stems from the fact that at sufficiently high
occupation numbers, the Schwarzschild radius of the HES becomes smaller than the string
scale, hence the string should collapse into a black hole. To remind, the mass of a string
Ms and the mass of a black hole MBH in d + 1 spacetime dimension are

MBH ∼ rd−2
s

G
, Ms ∼ N

α′
, (1.1)
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where α′ is the string tension, G is the Newton’s constant and N the occupation number
(level). At the string/BH transition, we expect the string length scale to be ℓs =

√
α′ ∼ rs;

then a string of mass Ms can become a black hole of mass MBH = Ms ≡ M . Equating the
mass and length scales and taking into account that G ∼ g2α′ where g is the string coupling,
we find the condition for the black hole description of the string:

Ng4 ∼ (α′)d−3 ⇒ gc ∝ N−1/4(α′)
d−3

4 . (1.2)

Therefore, when the total occupation number N is large the string will approximately describe
a black hole already at small g, i.e. in the perturbative regime. This is the motivation behind
the recent works on the scattering amplitudes of highly excited strings (HES). By HES we
mean simply a string with N ≫ 1, and scattering amplitudes of the form HES → HES + A
or HES + A → HES + B provide a stringy equivalent to the scrambling perspective for black
holes, where we scatter a field on an AdS black hole, obtaining a time-disordered correlation
function as a probe of chaos [13–15]. In [16] a general framework for computing the HES
scattering amplitudes was formulated, based on the Del Giudice-Di Vecchia-Fubini (DDF)
formalism [17–20]. The idea is to obtain the HES in a controlled way, by adding photonic
excitations to a tachyon (vacuum of the bosonic string). In [21–24] the poles and zeros of the
resulting amplitudes are studied within the framework of random matrix theory (RMT), also
making use of a novel chaos indicator, the ratio of eigenvalue spacings, discussed in [25, 26].

We are thus dealing with (possibly chaotic) quantum scattering. The reader is perhaps
better acquainted with the study of quantum chaos in closed systems, i.e. the study of quantum
Hamiltonians [27], where strong chaos is successfully described by the RMT approach [28]. To
remind, quantum chaotic Hamiltonians of sufficiently large size approach Gaussian random
matrices in their behavior, and can be described by the Gaussian ensemble statistics. In
particular, the eigenvalue (i.e., eigenenergy) spacings obey the celebrated Wigner-Dyson
distribution, and the system is chaotic in the RMT sense if the eigenvalue spacing histogram
is well fit by the Wigner-Dyson curve.

A scattering problem is inherently different. Instead of a Hamiltonian, we deal with
scattering amplitudes and the S-matrix which describes the probability amplitudes of all
possible scattering outcomes. A difference of principle is that the scattered object ends up
“at infinity”, i.e. the system is not closed in the usual sense. For classical scattering, this
means that exit curves behave in a sense like attractors in dissipative chaos, i.e. they tell
us where the orbits end up when t → ∞. A measure of chaos is then the very complex
(usually fractal) dependence of the final state (e.g. scattering angle) on the initial conditions.
Therefore, we might expect a similar fractal behavior for the dependence of amplitudes on
the scattering angle. This approach was used in [23]. Another approach is to look at the
spacings of special points in the amplitudes and to test if these satisfy the RMT statistics,
analogously to the eigenenergy spacings in Hamiltonian systems; this approach was taken
in [21, 22, 24, 26, 29]. The outcome of these works is very interesting and has uncovered
several important ideas, e.g. the emergence of thermalization in [24] but concerning the chaos
itself it is inconclusive: while there are clear signs of chaos some indicators, e.g. the spacing
ratios in [26] deviate significantly from the RMT predictions, and the angular dependence
of the amplitudes, while complex, is not fractal [23].
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In this work we continue the exploration of chaos in HES scattering but attempt a more
systematic approach, studying directly the S-matrix rather than individual amplitudes. We
also introduce a novel element of “geometric” chaos which arises when we look at non-scalar
scatterers, i.e. the process HES + photon instead of HES + tachyon. For the S-matrix a
rigorous generalization of the RMT approach exists [30, 31]: the role of eigenenergies is taken
by the eigenphases, i.e. the phases of the (complex) eigenvalues of the S-matrix. Now the
eigenphase spacings are expected to obey the Wigner-Dyson distribution. It will turn out
that the study of the S-matrix as a whole reveals some additional surprises: we find clear
signs of chaos only for special values of the angles and/or momenta, and the underlying
mechanism is the competition between different (”short” and “long”) partitions of the total
occupation number N . This “combinatorial” approach to chaos will also reveal the existence
of quasi-invariant states, which necessarily spoil the chaos — in other words, despite finding
strong chaos at special points in parameter space, we argue that there is always a regular
component. All of the above holds for bosonic strings: we do not consider superstrings in
this work so from now on it is understood that “string” means bosonic string.

Recently the work [32] has appeared which also studies the properties of the S-matrix and
likewise sees a crossover between “short” and “long” partitions as dominant in the scattering
(though their terminology is different). There is therefore some overlap of our work and [32]
but our results are mostly complementary: in [32] the influence of the polarization of the
DDF photons is studied, typicality of states is probed and in addition important indications
of eigenstate thermalization are found, whereas we study in more detail the dynamics itself
and introduce the photon (instead of tachyon) scattering. We warmly recommend the reader
to study [32] in addition to our paper.

With some hindsight, we can say that our results indicate that HES scattering is never
uniformly chaotic and therefore does not directly provide a look at black holes in the stringy
regime; the naive hope that the string/BH complementarity can be seen directly in the HES S-
matrix is thus invalid. But this conclusion is also useful for future work, and the HES S-matrix
is in itself worth studying, as it shows some novel phenomena of quantum chaotic scattering.

The plan of the paper is the following. In section 2 we briefly recapitulate the construction
of the HES in the DDF formalism and the calculation of the HES-tachyon amplitude; then
we compute the HES-photon amplitude which was never studied so far. In section 3 we
introduce the tools and ideas for studying the S-matrix dynamics: eigenphase statistics
and the combinatorics of partitions/states. Section 4 brings the results of the analysis
described in section 3, and in section 5 we discuss the implications of our findings and
directions of further work.

2 Highly excited strings and their scattering amplitudes

In this section we set the stage: we construct the highly excited string states and then write
the tree-level scattering amplitude for a few simple 2 → 2 processes, scattering a tachyon
t or a photon γ off a HES:

HES + t −→ HES′ + t′ (2.1)
HES + γ −→ HES′ + γ′. (2.2)
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For open strings we closely follow the formalism of [16, 19] and specifically the calculations
of [23]. For closed strings we construct the amplitude exploiting the KLT relations [33–35] and
check the result by direct integration on the worldsheet. The KLT duality applied to eqs. (2.1)
and (2.2) will yield the processes with closed HES (cHES) and tachyon or graviton respectively:

cHES + t −→ cHES′ + t′ (2.3)
cHES + g −→ cHES′ + g′. (2.4)

In the rest of the paper we do not differentiate between open and closed HES in notation,
i.e. we use HES (rather than cHES) for both cases, as the open/closed nature of the string
will always be stated explicitly. Of course, we do differentiate between a photon γ and a
graviton g as the two have different spins. We will thus always call the process in eq. (2.2) the
HES-photon scattering and the process in eq. (2.4) will be called the HES-graviton scattering.

2.1 Open HES - tachyon amplitudes

The HES represents the state with a large number of excitations {nk}, or equivalently with a
high level N =

∑∞
k=1 nk, where k labels the modes and nk is the occupation number of the

k-th mode. Following the DDF formalism [17, 19, 20], a convenient way to think of the HES
state is as a state created in a process in which the tachyon absorbs J photons (we will call
them DDF photons) with momenta qa and polarizations λa (a = 1, . . . J), one by one, as in
figure 1. In the lightcone quantization the general HES state then has the form [19]:

|HES⟩ ∝ ξi1...iJ P
(
∂X, (∂X)2 , . . . (∂X)N

)
i1...iJ

|0, p⟩ (2.5)

where ξi1...iJ is the polarization tensor, P is a polynomial of degree N over the derivatives
of the string coordinates Xµ and |0, p⟩ is the tachyon state (ground state of the bosonic
string) with momentum p. Hence, the physical process in eq. (2.1) can be described by
writing it formally as

tachyon(1)+(tachyon (2) + J photons) −→ tachyon(1′)+
(
tachyon

(
2′
)
+ J ′ photons

)
, (2.6)

and then picking out the poles so that the (tachyon + J photons) part of the amplitude
creates an intermediate on-shell HES state, as shown schematically in figure 1.

For this procedure to correctly describe the absorption of J photons by the tachyon
one by one, it is necessary to remove the terms which couple the photons to each other.
These are proportional to λa · λb, so we must take the polarizations of different photons
to be orthogonal to each other. For the sake of simplicity, we achieve this by making two
special choices, again following [23]:1

1. We take all photons to have the same polarization λa ≡ λ such that λ · λ = 0.

2. The momenta of DDF photons are taken to be equal to qa = −Naq (a = 1, . . . J) where
Na is a positive integer. Now q must satisfy the condition q · λ = 0 (this essentially
states that all polarizations are transverse, as they have to be for photons).

1These special choices essentially limit the polarization tensor ξi1...iJ to a subset of all possible values.
We have not explored more general choices; a more detailed discussion of the influence of the DDF photon
polarization can be found in [32].
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Figure 1. String amplitude for the HES-tachyon scattering process (2.1). The tachyon labeled by its
momentum p2 absorbs J photons with momenta and polarizations {−Nkq, λ} which (after picking
out appropriate poles) results in a HES state labeled by v (similarly for the HES′). The two HES
states interact with tachyons labeled by p1 and p′

1. Adapted from [23].

For the HES′ state, on the right-hand side of eq. (2.1), we similarly take λ′ · λ′ = 0 and
q′b = −N ′bq

′. To find the tree-level amplitude we use the tachyon vertex operator Vt(z, p) =:
eipX(z) :, then we employ a computational trick to replace the photon vertex operators Vp(z, p)
by : eiζ∂X+ikX : and keep only the part linear in the polarization ζ.

When the HES state is constructed as described above, we can express the tree-level
amplitude as the path integral over the product of the vertex operators:

A =
∫ DXe−SP

Vol (SL (2,R))

∫ ∏
i

dwiVt(wi, pi)
J∏

a=1
dzaVp(za,−Naq, λ)

J ′∏
b=1

dz′bVp(z′b,−N ′bq, λ) (2.7)

where i ∈ {1, 2, 1′, 2′} runs over the tachyons (1 and 1′ are physical tachyons and 2 and 2′ are
DDF tachyons), a ∈ {1, . . . , J} runs over the photons in HES, b ∈ {1, . . . , J ′} runs over the
photons in HES′ and the integration variables z and w run over the worldsheet. The action
in the path integral is the usual Polyakov action SP = − 1

4πα′
∫

z dz(∂X)2. For open string
calculations we set α′ = 1

2 , while for closed strings in subsection 2.3 we take α′ = 2. Next,
still following [23], we make two more special choices to further simplify calculations:

1. The polarizations of DDF photons in HES and HES’ satisfy λ′ ∝ λ.

2. The momenta of DDF photons in HES and HES’ satisfy q′ ∝ q.2

2This choice was introduced in [20] and put to use also in [36, 37].
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Using the above simplifications and performing the contractions we obtain:

A = 1
Vol (SL (2,R))

∫ ∞
−∞

∏
i

dwi

∫ ∞
−∞

J∏
a=1

dza

∫ ∞
−∞

J ′∏
b=1

dz′b ×

×
∏
i<j

|wi − wj |pi·pj
∏
a,i

|za − wi|−αi
∑

i

−pi · λ

wi − za

∏
b,j

|z′b − wj |−βj
∑

j

−pj · λ′

wj − z′b
, (2.8)

where we have expanded the integrand to linear order in photon polarizations, and introduced
αi ≡ Napi · q and βj ≡ N ′bpj · q′. Exploiting the residual SL(2,R) gauge invariance of the
worldsheet to fix three out of four wi values, we end up with six channels of the amplitude,
labeled in terms of the Mandelstam variables s, t, u defined the usual way:3

A = Ast +Atu +Aus +Ats +Aut +Asu. (2.9)

It is enough to state in full the expression for one channel; the others are then obtained by
simple permutations of the momenta.4 We give the expression for the st channel:

Ast = A|w′
1=−∞,w2=0,w1=w,w′

2=1 =

=
∫ 1

0
dwwp1·p2(1− w)p1·p′2

J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w), (2.10)

where the integrals Zijk
a are defined in [23] as

Zijk
a (α, p, λ;w) ≡ Za(αi, αj , αk, p, λ;w) ≡ (2.11)

≡
∫ ∞
−∞

dza|za|−αi |za − w|−αj |za − 1|−αk

(−pi · λ

−za
+ −pj · λ

w − za
+ −pk · λ

1− za

)
.

The other channels are now related to the st channel in the following way:

Atu = A|w2=−∞,w′
2=0,w1=w,w′

1=1 = Ast|2→2′,2′→1′ , (2.12)
Aus = A|w′

2=−∞,w′
1=0,w1=w,w2=1 = Ast|2→1′,2′→2, (2.13)

Ats = Ast|2←→2′ , (2.14)
Aut = Atu|2′←→1′ , (2.15)
Asu = Aus|1′←→2. (2.16)

The on-shell condition needed to create HES and HES′ is that after the first j ≤ J photons
have been absorbed, the mass of the intermediate state is Mj = 2(

∑
a≤j Na − 1). Having

3The definition is given in the description of kinematics, in eq. (2.27). At this place we do not need the
definition of Mandelstam variables, we just want to emphasize that, depending on the permutations of the
insertion points on the worldsheet, we get six different channels; for this reason we only give the definitions of
s, t, u later in the text, when we have defined all the momenta.

4We write the amplitude without Chan-Patton factors so it reduces to the sum of the six cyclic orderings;
equivalently, one can imagine Chan-Patton factors of an Abelian U(1) group which reduce to just an overall
multiplication of the sum. It would be interesting to consider nontrivial Chan-Patton factors as additional
group structure could well further reduce chaos and divide the S-matrix into symmetry sectors. But at the
present level of understanding this would be a superfluous complication.
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in mind that the total momentum of this intermediate state is p2 −
∑

a≤j q, and using the
on-shell condition for tachyons −p2

2 = −2, we obtain:

α2 → Na, β′2 → N ′b (2.17)

where the second condition comes from HES′. The Zijk
a integrals can be written in terms of

regularized hypergeometric functions 2F̃1(a, b; c; z) ≡ 2F1(a, b; c; z)/Γ(c). The coefficients of
their Taylor expansions are then expressed in terms of gamma functions. This calculation
is thoroughly described in [23], the result for the st channel being

Ast =
∑

ia∈{2,2′}

∑
jb∈{2,2′}

Na∑
ka=1

N ′
b∑

lb=1

( J∏
a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pjb
·λ′)d(jb)

lb

)
B

(
−1− s

2 +k,−1− t

2 + l

)
,

(2.18)
where l ≡

∑J ′
b lb, k ≡

∑J
a ka, the coefficients c and d are defined as:

c
(2)
k = ck(α2 + 1, α1 + 1, α′2), (2.19)

c
(2′)
k = −ck−1(α2, α1, α′2 + 1), (2.20)

d
(2)
l = −cl−1(β′2, β1, β2 + 1), (2.21)

d
(2′)
l = cl(β′2 + 1, β1 + 1, β2), (2.22)

using the function:

ck(α2, α1, α′2) = (−1)α2+k−1 π

sin (πα2)
Γ(α2 − k + α1 − 1)Γ(α′2 + k)
Γ(α1)Γ(α′2)Γ(α2 − k)Γ(k + 1) , (2.23)

and finally the beta function is defined as usual: B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y).
Because of the condition (2.17), the coefficients c and d from eqs. (2.19)–(2.22) diverge

as we can see from the factor π/ sin(πα2) in eq. (2.23). This divergence is just the expected
behavior of the amplitude when one of the internal momenta in the diagram goes on-shell.
In order to extract the amplitude of the HES + t −→ HES′ + t′ process we thus have to
regularize the amplitude. To achieve this we simply omit the divergent factor π/ sin(πα2)
in the definition (2.23), resulting in a finite expression for the amplitude (except of course
for special choices of kinematic variables).5

For a generic partition
∑J

a=1 Na = N the number of operations needed to compute the
amplitude (2.18) increases rapidly with the partition lengths J and J ′ due to the increase
of the number of sums over ka and lb. In addition, the number of states with fixed level
N grows exponentially in

√
N . These two effects make the calculation of the S-matrix in

the whole subspace of fixed N and fixed kinematic variables computationally demanding,
heavily limiting the maximum value of N we can work with and requiring the use of a
cluster for larger values of N .

5This procedure is essentially the same as the one in quantum field theory where one would remove the
divergence by multiplying the amplitude by the inverse propagator of the internal on-shell particle.
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2.1.1 Kinematics

A look at the expression (2.18) for Ast tells that the kinematics is highly non-unique: there are
many momenta and polarizations involved and we have many parameters to choose. We have
made no attempt to consider their influence in full detail. We have varied the momenta and
the scattering angles (one at a time) over some representative intervals; with some hindsight,
we can say that for tachyon scattering only the magnitude of the incoming momentum is
crucial. As noted above, p1 and p′1 are the momenta of the on-shell tachyons while HES is
created from the tachyon with momentum p2 and a set of J photons with momenta {−Naq}
whose polarizations are all equal to λ (similarly for the HES′ we have p′2, J ′, {N ′b}, q′ and λ′).
The on-shell conditions and the momentum conservation equation now read:

p2
1 = p2

2 =
(
p′1
)2 =

(
p′2
)2 = 2, q2 = q′2 = 0 (2.24)

p1 + (p2 − Nq) + p′1 + (p′2 − Nq′) = 0. (2.25)

The total mass of HES (and HES′) is given by the total occupation number M = 2(N − 1) =
2(N ′ − 1), while J and J ′ represent the total spin of HES and HES′ respectively because the
photons have identical polarizations. We choose to work in the center-of-mass frame and,
as we already mentioned, for simplicity we take the polarizations and photon momenta to
satisfy λ = −λ′, λ · λ = 0 and q′ ∝ q. In order to satisfy these conditions we parametrize
momenta and polarizations in the following way:

q = 1√
2(N −1)+p2−pcosθ

(−1,0,0,1)T

q′ = 1√
2(N −1)+p2−pcosθ′

(1,0,0,−1)T

p1 =
(√

p2−2,psinθ,0,pcosθ

)T

p′1 = −
(√

p2−2,psinθ′ cosϕ′,psinθ′ sinϕ′,pcosθ′
)T

p2 =
(√

2N −2+p2− N√
2N −2+p2−pcosθ

,−psinθ,0,−pcosθ+ N√
2N −2+p2−pcosθ

)T

p′2 =
(
−
√
2N ′−2+p2+ N ′√

2N ′−2+p2−pcosθ′
,psinθ′ cosϕ′,psinθ′ sinϕ′,

pcosθ′− N√
2N −2+p2−pcosθ′

)T

λ = 1√
2
(0,1, i,0)T . (2.26)

Defining the Mandelstam variables in terms of momenta:

s = − (p1 + p2 − Nq)2 , t = −
(
p1 + p′2 − N ′q′

)2
, u = −

(
p1 + p′1

)2
, (2.27)

we obtain p2 · q = p′2 · q′ = 1 as required by the on-shell conditions (2.17). Furthermore,
the only imaginary contribution to Ast comes from the (p · λ) factors which we calculate to
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be p′2 · λ′ = −p sin θ′√
2 eiϕ′ . Hence for ϕ′ = 0 the amplitudes calculated from eq. (2.18) will be

real. For the collinear kinematics, that is θ, θ′ ∈ {0, π}, the amplitude vanishes as can be
seen from the fact that λ is orthogonal to all momenta.

From the above, the amplitude is fully characterized by the module of the momentum p,
scattering angles θ, θ′ and ϕ′, and by the partitions of the levels Na and N ′b. The amplitudes
then define the elements of the S-matrix for fixed kinematics (p, θ, θ′, ϕ′) in the basis of
different partitions of the level N .

2.2 Open HES-photon amplitudes

It will turn out crucial to check also the dynamics of a spinful (non-scalar) state scattering on
the HES — some novel aspects of transient chaos will only show up for initial states with spin.
We thus consider the HES-photon scattering process (2.2).6 The DDF construction of HES
states proceeds exactly the same way as before, with the same assumptions and conditions on
the momenta q, q′ and polarizations λ, λ′ of DDF photons and the momenta p2, p′2 of DDF
tachyons. The sole difference lies in the states 1, 1′ which now describe photons with vertex
operators Vγ , momenta p1, p′1 satisfying p2

1 = (p′1)
2 = 0 and polarizations ξ1 ≡ ξ, ξ1′ ≡ ξ′

satisfying the gauge invariance condition ξ · p1 = ξ′ · p′1 = 0. The amplitude is now

Aγ = 1
Vol (SL (2,R))

∫
DXe−SP

∫ ∏
i

dwiVt(wi, pi)
∫ ∏

K

dwKVγ(wK , pK)×

×
J∏

a=1
dzaVp(za,−Naq, λ)

J ′∏
b=1

dz′bVp(z′b,−N ′bq, λ), (2.28)

where now i, j ∈ {2, 2′} are DDF tachyons, K, L ∈ {1, 1′} are the physical photons, and the
rest of the notation is the same as in eq. (2.7). Writing out the insertions of the vertex
operators, we can write the amlitude as

Aγ = 1
Vol (SL (2,R))

∫ ∞
−∞

∏
i

dwi

∏
K

dwK

∫ ∞
−∞

J∏
a=1

dza

∫ ∞
−∞

J ′∏
b=1

dz′b aIaIIaIII, (2.29)

where the factors aI,II,III denote the tachyon-tachyon, tachyon-photon and photon-photon
terms respectively:

aI =
∏
i<j

|wi − wj |pi·pj

aII =
∏
i,K

|wi − wK |pi·pK
∑

i

−pi · ξK

wi − wK

∏
i,a

|za − wi|−αi
∑

i

−pi · λ

wi − za

∏
j,b

|z′b − wj |−βj
∑

j

−pj · λ′

wj − z′b

aIII =
∏
K,a

|za − wK |−αK
∏
L,b

|z′b − wL|−βL
∏

K<L

|wK − wL|pK ·pL × exp
[ ∑

K<L

ξK · ξL

2w2
KL

+ (2.30)

×
∑
K,a

(−pa · ξK + pK · λ

wK − za
+ ξK · λ

2|wK − za|2
)
+
∑
L,b

(
−pb · ξL + pL · λ′

wL − z′b
+ ξL · λ′

2|wL − zb|2

)]
.

6As we have mentioned, the HES-graviton process is obtained by applying the KLT relations to the
HES-photon process.
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Here αi, αK , βj , βL have the same meaning as before (taking into account the definition of
i, j, K, L above), and it is understood as usual that we only take the terms in the expansion of
the exponent which are linear in every single polarization. The integrals in eq. (2.29) can again
be expressed in terms of the same functions Zijk

a from eq. (2.12), and different permutations
of the insertion points on the worldsheet again produce the sum of contributions for various
permutations as in eqs. (2.9), (2.12)–(2.16). But now the photon-photon interaction terms,
encapsulated in aIII from eq. (2.30) cannot in general be avoided: we cannot in general impose
the additional conditions on the physical photons 1, 1′ akin to those for DDF photons as we
would not have enough equations to satisfy the momentum conservation. Therefore, many
additional terms will appear in the expression for each channel. We again give the expression
for Ast, understanding that the others are obtained by permutations of the indices 1, 2, 1′, 2′:

Aγ
st = A|w′

1=−∞,w2=0,w1=w,w′
2=1 =

∫ 1

0
dwwp1·p2(1− w)p1·p′2 ×

×
[(

p2 · ξ1
w

+ p′2 · ξ1
1− w

) J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w) +

+ (q · ξ1 − p1 · λ)
J∏

a=1
Z212′

a (α, p, λ;w;−1)
J ′∏

b=1
Z212′

b (β, p, λ′;w) +

+
(
q′ · ξ1 − p1 · λ′

) J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w;−1) +

+ (ξ1 · λ)
J∏

a=1
Z212′

a (α, p, λ;w;−2)
J ′∏

b=1
Z212′

b (β, p, λ′;w) +

+
(
ξ1 · λ′

) J∏
a=1

Z212′
a (α, p, λ;w)

J ′∏
b=1

Z212′
b (β, p, λ′;w;−2)

]
. (2.31)

Here we introduce the notation Z212′
a (α, p, λ;w;−σ) with σ a positive integer. This is defined as

ZiKj
a (α, p, λ;w;−σ) ≡ Za(αi − σ, αK , αj , p, λ;w) + Za(αi, αK , αj − σ, p, λ;w). (2.32)

In other words, the argument −σ means we sum over the values of the original ZiKj
a as

defined in eq. (2.12) with the arguments αi, αj being reduced by σ one at a time. Notice
that we do not include the function with αK − σ in the sum in (2.32), i.e. we only reduce
the α’s corresponding to DDF tachyons, not physical photons. The outcome is that the
photon amplitude Aγ

st consists of the same building blocks as the tachyon amplitude Ast

given in eqs. (2.10), (2.18) but with different coefficients and arguments of the gamma and
beta functions. Writing out in full the expression (2.31) we obtain:

Aγ
st =

∑
ia∈{2,2′}

∑
Kb∈{2,2′}

Na∑
ka=1

N ′
b∑

lb=1

(
b0 + b−1 + b′−1 + b−2 + b′−2

)
. (2.33)

– 10 –



J
H
E
P
0
3
(
2
0
2
4
)
1
0
1

Note that the terms b0,−1,−2 and b′−1,−2 are not related in any simple way to aI,II,III from
eqs. (2.30). They are defined as:

b0 =
( J∏

a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)[
(pia ·ξKb

)B
(
−2−s

2+k,−1− t

2+l

)
+

+(pia ·ξKb
)B
(
−1−s

2+k,−2− t

2+l

)]
(2.34)

b−1 = (q·ξKb
−pia ·λ)

[( J∏
a

(pia ·λ)c̄
(′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−1−s

2+k,−2− t

2+l

)
+

+
( J∏

a

(pia ·λ)c̄
(′′′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−2−s

2+k,−1− t

2+l

)]
(2.35)

b′−1 =
(
q′·ξKb

−pia ·λ′
)( J∏

a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pKb
·λ′)d̄(′′Kb)

lb

)
B

(
−1−s

2+k,−1− t

2+l

)
(2.36)

b−2 = (ξKb
·λ)
[( J∏

a

(pia ·λ)¯̄c
(′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−1−s

2+k,−3− t

2+l

)
+

+
( J∏

a

(pia ·λ)¯̄c
(′′′ia)
ka

)( J ′∏
b

(pKb
·λ′)d(Kb)

lb

)
B

(
−3−s

2+k,−1− t

2+l

)]
(2.37)

b′−2 =
(
ξKb

·λ′
)( J∏

a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pKb
·λ′) ¯̄d(′′Kb)

lb

)
B

(
−2−s

2+k,−2− t

2+l

)
. (2.38)

The coefficients c
(i)
k , d

(K)
l and the function ck(αi, αK , αj) have the same meaning as in

eqs. (2.19)–(2.23). The newly introduced coefficients are defined as:

c̄
(′2)
k = ck(α2, α1 + 1, α′2), c̄

(′′′2)
k = ck(α2 + 1, α1 + 1, α′2 − 1), (2.39)

c̄
(′2′)
k = −ck−1(α2 − 1, α1, α′2 + 1), c̄

(′′′2′)
k = −ck−1(α2, α1, α′2), (2.40)

d̄
(′′2)
l = −cl−1(β′2, β1 − 1, β2 + 1), (2.41)

d̄
(′′2′)
l = cl(β′2 + 1, β1, β2) (2.42)

and analogously for the two-bar coefficients:

¯̄c(′2)
k = ck(α2 − 1, α1 + 1, α′2), ¯̄c(′′′2)

k = ck(α2 + 1, α1 + 1, α′2 − 2), (2.43)
¯̄c(′2′)

k = −ck−1(α2 − 2, α1, α′2 + 1), ¯̄c(′′′2′)
k = −ck−1(α2, α1, α′2 − 1), (2.44)

¯̄d(′′2)
l = −cl−1(β′2, β1 − 2, β2 + 1), (2.45)

¯̄d(′′2′)
l = cl(β′2 + 1, β1 − 1, β2). (2.46)

In other words, the number of bars (one or two) corresponds to the value of σ in the
function ZiKj

a (α, p, λ;w;−σ) in eq. (2.32), and the additional superscript ′, ′′ or ′′′ means
we should subtract σ from the first, second or third argument of the function ck(αi, αK , αj)
from eq. (2.23).

– 11 –



J
H
E
P
0
3
(
2
0
2
4
)
1
0
1

Finally, we should define the kinematics. We minimally modify the setup for the HES-
tachyon process in the subsubsection 2.1.1. Energy and momentum conservation now read

p2
2 =

(
p′2
)2 = 2, p2

1 =
(
p′1
)2 = q2 = q′2 = 0 (2.47)

p1 + (p2 − Nq) + p′1 + (p′2 − Nq′) = 0. (2.48)

The momenta and polarizations of the physical photons are now given by

p1 = (p, p sin θ, 0, p cos θ)T

p′1 = −
(
p, p sin θ′ cosϕ′, p sin θ′ sinϕ′, p cos θ′

)T (2.49)
ξ1 ≡ ξ = (0, cos θ, 0,− sin θ)T

ξ′1 ≡ ξ′ = (0,− cos θ′, 0, sin θ′ cosϕ′), (2.50)

whereas all the other momenta are the same as for the HES-tachyon scattering, as given in
eq. (2.50). The simplifications which eliminate the interaction terms among the DDF photons
are still in place. For the physical photons they are absent (indeed, it seems the number of free
parameters is insufficient to require ξ′ ∝ ξ after implementing the conservation laws) therefore
we indeed have photon-photon terms in the amplitudes as we found in eqs. (2.30)–(2.38).

2.3 Closed string amplitudes

In the previous section we have described the HES-tachyon scattering for open (bosonic) HES.
This process already shows interesting physics as we will see, however to make closer contact
with black holes or with the results on classical string scattering in the literature [38–40],
we should also consider closed string amplitudes. This can be achieved in a similar way as
for the open case, making use of the DDF operators. But at tree level we can circumvent
this calculation by employing the celebrated KLT relations [33–35]. To remind, the idea
behind the KLT relations is that a closed string amplitude can be constructed from two open
string amplitudes coupled by a momentum-dependent kernel.7 Schematically, an M -point
closed string amplitude AM

closed is given by:

AM
closed ∝

∑
P,P ′

A(P )M
openĀ(P ′)M

openeiF (P,P ′) (2.51)

where P and P ′ denote the permutations of the M external legs, A(P )M
open is the ordered

M -point open string amplitude and F is a phase determined by the kinematics. In the
case of interest for us, that is for the four-leg (2 → 2) scattering, the KLT relation becomes
particularly simple:

ζµ1...µ4,ν1,...ν4A
µ1...µ4,ν1...ν4
closed = −π sin(πp2 · p′1)ξµ1...µ4Aµ1...µ4

open (s, t)ξ′ν1...ν4A
′ν1...ν4
open (t, u). (2.52)

This enables us to construct the closed string S-matrix as a direct product of the st and
tu contributions to the open string S-matrix. If we consider fixed kinematics and vary
the partitions, the direct product structure changes the dimensions of the S-matrix from

7The connection between open and closed tree-level amplitudes can be seen from the fact that the closed
string propagator can be constructed by joining the two open string propagators.
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p(N) × p(N) for open to p(N)2 × p(N)2 for closed strings, which is a big enhancement in
size having in mind the fast growth of the number of partitions p(N) with N . In this way
we obtain the closed HES-tachyon and the closed HES-graviton processes of eqs. (2.3), (2.4)
from the open HES processes of eqs. (2.1), (2.2) respectively.

For our main interest — inspecting the eigenphase statistics and chaos of the S-matrix —
the KLT method may be potentially risky as it yields the closed string amplitudes in the
uncorrelated basis, i.e. the closed string states are expressed in terms of direct products of
open-string states |n⃗⟩ ⊗ | ⃗̃m⟩ projected to the subspace satisfying N = Ñ , i.e.

∑
a na =

∑
b m̃b.

In this basis the symmetry between the left- and right-moving modes is not manifest so even
and odd states under this symmetry are dumped together. It is known that expressing the
Hamiltonian/S-matrix in a basis which is not adapted to the symmetries of the system can
invalidate the results in the sense that Wigner-Dyson statistics does not show up even if
the system is in fact RMT chaotic. We have thus checked our results for small occupation
numbers N ≤ 6 against numerically computed S-matrices in the even and odd sector separately
(obtained by performing the worldsheet integrals via a grid method). We find no discrepancy
between the resulting eigenphase statistics, however for larger N we were unable to perform
this test as the numerical integration becomes unfeasible. Nevertheless, we consistently find
equal or stronger chaos for closed than for open HES, meaning that there is no artifical
reduction of chaos because the spectrum unfolding is not performed.8

3 The structure of the S-matrix

Our basic object is the S-matrix for the processes (2.1)–(2.2) involving two HES states and the
two tachyons or two photons. Because of the complexity of the expressions for the amplitudes,
in particular the photon amplitude Aγ , the computation time grows rapidly, limiting the
laptop calculations to N ≤ 12.9 We first calculate the amplitudes for fixed kinematics and all
possible partitions specifying the two HES states and from these we obtain the S-matrix on
the subspace of fixed kinematics (which we call simply the S-matrix).

3.1 The partition basis

The S-matrix is characterized by its eigenvalues and eigenvectors. Being unitary, it has
eigenvalues on the unit circle, and of particular relevance for the RMT statistics are the
eigenphases, i.e. the phases of the eigenvalues. The natural basis for the analysis of eigenvectors
at HES level N is the basis of partitions {P}, i.e. the sets of K numbers {n1, . . . nK} with

8According to [25], testing the spacing ratios instead of spacings themselves is also helpful in such situations
the ratios r and R are less sensitive to folding/unfolding of the spectrum, and in our case again they give
similar results as the Wigner-Dyson fits themselves.

9In [16, 21, 24, 26] much larger N values were considered, however the calculations in these papers were
performed for the three-leg and four-leg processes including one HES state rather than two (IN and OUT)
as in our case, and only for a subset of amplitudes, not for the whole S-matrix. In [23] the 2 → 2 process
was considered as in our eq. (2.1) but again only for individual amplitudes, considering N ≤ 27. Essentially,
calculating individual amplitudes instead of the S-matrix allows one to go to much higher levels. In [32], where
the whole S-matrix was calculated, the calculations was limited to modest values of N just as in our case.
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∑K
k=1 nk = N and K the highest nonzero occupation number. The dimension of the Hilbert

space is the total number of partitions of N denoted by p(N).10

We define the partition length |P| as the total number of nonzero occupation numbers
nk in the partition (obviously between 1 and min(N, K)):11

∀ P = {n1, . . . nK} with
K∑

k=1
nk = N, K = max j|nj>0 : |P| ≡

∑
j

Θ(nj). (3.1)

In the above Θ(nj) is the Heaviside unit step: Θ(nj) = 1 for nj > 0 and Θ(nj) = 0
otherwise. Now we can order all possible partitions according to partition lengths |P|, from
1 (the shortest partitions, of length 1) to N (the longest partitions, of length N); when
several partitions have the same length their relative order is chosen arbitrarily. A more
widespread way to characterize the size of the partition is the partition rank, defined as
m(PN ) = max nj |nj>0 − |P|. While the rank lies between −(N − 1) and N − 1, the length
is between 1 and N and is thus more convenient for our purposes as we will also consider
the logarithms of the lengths.

A general eigenvector of the S-matrix is some linear combination of various partitions∑p(N)
j=1 cj |Pj⟩. We will argue that the distribution of the coefficients cj as a function of j is

a useful quantity when analyzing the scattering, in particular the relative contribution (i.e.
the absolute value of the coefficients |cj |) of short versus long partitions.

3.2 Tests of the RMT statistics

Once we have the eigenvalues (and eigenvectors), we can apply the textbook tests of quantum
chaos by comparing the eigenvalue statistics with the predictions for Gaussian random
ensembles. As we mentioned in the Introduction, the RMT theory of chaotic scattering
essentially replaces the eigenvalue spacings of the Hamiltonian in a closed system by the
eigenphase spacings of the scattering matrix [31]. To remind, eigenphase spacing is the
difference between the phases of two neighboring eigenvalues:

sn ≡ arg λn+1 − arg λn

s̄
, (3.2)

where s̄ is the average value of the spacings for the whole S-matrix, and λn are the eigenvalues
ordered according to their phases, i.e. argλ1 > argλ2 > . . . > argλp(N ) (or λp(N )2 for the
closed string). Therefore, if the scattering is chaotic in the RMT sense, then the distribution
of normalized spacings s obeys the Wigner-Dyson distribution:

Pβ(s) = Aβsβe−Bβs2
, (3.3)

10As we know, this number grows exponentially as p(N) ∼ exp
(√

N
)
.

11One might be confused that we denote partition elements, i.e. occupation numbers by nk whereas the
DDF photon momenta were previously denoted by Nkq, where again Nk are the elements of the partition.
The reason is that nk = Nk only for open strings. A closed string in the state |nk, ñk⟩ will have a different
momentum, i.e. different Nk even though the partition elements are the same. For this reason we keep the
notation separate.
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where β = 1, 2, 4 for orthogonal (GOE), unitary (GUE) or symplectic (GSE) ensemble,
respectively, and the constants Aβ and Bβ read

A1 = π

2 , B1 = π

4 (3.4)

A2 = 8
π

, B2 = 4
π

(3.5)

A4 =
( 64
9π

)3
, B4 = 64

9π
. (3.6)

(3.7)

As we know, the three classes are determined by the properties under the time-reversal
symmetry [27] — GOE describes time-reversal-invariant systems with “conventional time
reversal operator”, squaring to 1; GSE describes time-reversal-invariant systems with Kram-
mers degeneracy where time reversal squares to −1; GUE describes systems which break
time-reversal invariance. Our process is time-reversal invariant and the strings are bosonic
hence there cannot be any Krammers degeneracy. We thus expect the GOE statistics, with
β = 1. For purposes of checking the Wigner-Dyson statistics however we have tried fits
with different β values and we have also tried fitting the eigenphase spacing distribution
with β as a free fitting parameter. Finally, a regular scattering process can be written as a
collection of independent channels, leading to the Poisson distribution of eigenphase spacings:
P0(s) = exp(−s). The crucial physical difference between the two is that the Wigner-Dyson
distribution encapsulates eigenstate repulsion - one always has Pβ(s = 0) = 0 and there
is no clustering. The Poisson distribution, on the contrary, always has P0(s = 0) = 1 and
always leads to clustering of levels.

We will find that our S-matrices are typically not Gaussian random and certainly not
Poissonian, but can — in the simplest picture — be thought of as being generated from a
mixed ensemble with both Gaussian random matrices and integrable matrices. Therefore,
it will make sense to consider the distribution

Pc(s) ≡ wP P0(s) + (1− wP )Pβ(s). (3.8)

Importantly, while both the Wigner-Dyson and the Poison form follow from rigorous deriva-
tions, the above linear combination is purely phenomenological — there is no guarantee
that a system with mixed (regular-chaotic) dynamics will indeed have eq. (3.8) for the
eigenphase spacing distribution. We will use the size of wP , i.e. the relative contribution of
the Poisson contribution, as a rough indicator of non-chaoticity but it is not simply related
to any physical quantity.

One important caveat concerning the Wigner-Dyson test is that the eigenstates with
additional discrete symmetries that do not commute with time reversal can introduce novel
behavior, leading to the Altland-Zirnbauer tenfold way instead of the Dyson threefold way [41].
In our case however there are no obvious additional symmetries that behave nontrivially
under time reversal, so the threefold way of eqs. (3.4)–(3.6) remains valid.

Another measure of chaos which is perhaps more robust is the eigenspacing ratio, which
considers the ratio of the spacings between two neighboring pairs of eigenphases, i.e. between
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two neighboring spacings:

rn ≡ sn

sn−1
= arg λn+1 − arg λn

arg λn − arg λn−1
. (3.9)

Another possibility is to consider normalized ratios, defined as Rn = min(rn, 1/rn). This chaos
diagnostic was proposed in [42] and applied to field-theoretical systems in [43] and finally
to HES scattering amplitudes in [24, 26]. Its appeal lies in the fact that the normalization
cancels out hence this quantity is more robust to numerical fluctuations; in addition, it is
argued in [26] to be less sensitive to the mixing of states with different symmetries. One can
study the distributions P (r), P (R) or just the mean values ⟨r⟩, ⟨R⟩; the latter we find more
useful as it gives robust and concise information within just a single number.

A few words about the calculations are in order. For smaller excitation numbers N ≤ 12
it is easy to compute the S-matrix on a laptop in Wolfram Mathematica. For larger N we
perform the calculations on a cluster, and in addition we use approximate interpolation
formulas for beta and gamma functions to speed up the calculation, sacrificing some accuracy.
Still, when computing the whole S-matrix, we cannot go further than N ≈ 30. This is
an inherent difficulty when working with the S-matrix instead of just the amplitudes: the
matrix becomes huge.

Now we are ready to study the properties considered in this section — the structure
of the S-matrix and its eigenvectors, and the eigenvalue statistics — for the S-matrices of
the HES-tachyon, HES-photon and HES-graviton scattering.

4 S-matrix analysis of HES scattering processes

In this section we present numerical results on the S-matrix involving the HES states for the
setting described in the previous section. We start with the open string and then move to
discuss the physically more relevant closed string. Afterwards we provide some a posteriori
analytic arguments explaining the numerical findings.

4.1 The HES-tachyon S-matrix

4.1.1 The eigenphase statistics

The first test that gives an idea on the degree of chaos in the S-matrix is the fit of the
Wigner-Dyson distribution to the histogram of eigenphase spacings. Computing the S-matrix,
diagonalizing it and producing the histogram of the differences of the eigenphases normalized
by the mean of this difference, we typically obtain a picture such as figure 2. We give the
fit for both open and closed strings (panels (A) and (B) respectively), with the expected
GOE ensemble value β = 1, and with the GUE ensemble with β = 2; we do not give the fit
with β = 4 as this case gives far worse fit quality (and is physically untenable in a bosonic
system). The agreement with the RMT statistics is not impressive: in some cases (mainly
p = 16.1 for open strings and p = 4.1, 8.1 for closed strings) the agreement is decent but
far from perfect. For other momenta, in particular for large momenta in the closed HES
case, the disagreement is drastic. Indeed, at large momenta many eigenvalues coalesce and
the spacings cluster at s = 0.
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Figure 2. Normalized eigenphase spacing distribution for six momentum values p =
4.1, 8.1, 12.1, 16.1, 20.1, 24.1, with N = 10, θ = 0.23, θ′ = 0.5 and ϕ′ = 0.7, for open (A) and closed (B)
HES. The blue and red lines represent the best fits to the Wigner-Dyson distribution (eq. (3.3)) with
β = 1 (eq. (3.4)) and β = 2 (eq. (3.5)) respectively; the former corresponds to GOE, expected from the
time-reversal symmetry and the latter to GUE, for time-reversal-breaking systems. While the overall
shape of the distribution is close to the Wigner-Dyson function for intermediate momenta (roughly
p = 16.1 in (A) and p = 8.1 in (B)), the presence of near-zero spacings clearly excludes pure RMT statis-
tics. For the closed string there is strong clustering of levels at large momentum values; for that reason
we do not give the fit to Wigner-Dyson distributions for the closed string for p = 20.1 and p = 24.1.

The natural conclusion is that dynamics is mixed, consisting of contributions from both
Poisson and Wigner-Dyson distribution. Of course, for N = 10, the value used in figure 2,
the set of spacings available for an open string is rather small, so the outcome may well be
influenced by finite-size fluctuations. But the closed string already has a much larger S-matrix
(of size p(N)2 × p(N)2 instead of p(N)× p(N)) and significant finite-size effects seem unlikely.

The hypothesis of two-component dynamics (regular and chaotic) is checked by fitting
the combination of the two distribution functions (eq. (3.8)). The relevant quantity now
is wP , the contribution of the Poisson distribution, which is expected to be minimal when
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Figure 3. The relative contribution of the Poisson distribution wP when fitting the Poisson-Wigner-
Dyson combination to the histogram of eigenphase spacings as a function of momentum, for the same
values of momenta and angles as in figure 2, for open (A) and closed (B) string. The smallest regular
component, i.e. the smallest Poisson ratio wP (0 ≤ wP ≤ 1) is found for p ≈ 16.1 (A) and p ≈ 8.1 (B),
roughly the same values which yield the nicest fit to the Wigner-Dyson distribution in figure 2. For
large momenta we again see that the closed string becomes completely regular, with strong clustering
of eigenphases. We fit the Poisson+Wigner-Dyson distribution both with β = 1 (blue) and β = 2 (red).
The GOE value β = 1 gives somewhat better plots as we expect. The full lines are just to guide the eye.

chaos is the strongest. Its dependence on the momentum p is given in figure 3. Here and
in most other figures throughout the paper we perform the fit both with β = 1 and β = 2
but in general the former value, corresponding to GOE and time-reversal invariance agrees
better with the data as it should be.

Another way to characterize the proximity to the RMT-like chaotic behavior is the
average spacing ratio ⟨r⟩ defined in eq. (3.9), or its normalized variant ⟨R⟩. We find it
particularly convenient when studying the behavior of the S-matrix for increasing excitation
number N . We have tentatively found that the scattering shows clear signs of chaos only
for certain values of momentum, which we dub the crossover momentum pc for reasons that
will soon become clear. Now we fix this value (pc = 8.1 for the open string and pc = 16.1
for the closed string) and vary the total excitation number N (figure 4). Computing ⟨r⟩
(A) and ⟨R⟩ (B) for each N value at p = pc we find that already for N ≳ 9 the values are
very close to the predicted outcome for the time-reversal-invariant GOE random matrix
ensemble (black dashed line in figure 4). This suggests that indeed in a small interval of
momenta around pc the S-matrix shows clear signs of chaos which stay stable for large N

(in accordance with the string/black hole complementarity and the fast scrambling of black
holes, if there is strong chaos then indeed it has to remain strong (or become stronger and
stronger) as N grows). Still, a more refined measure such as the fit to the Wigner-Dyson
distribution or its combination with the Poisson distribution (figures 2, 3) reveals that even
at pc some non-chaoticity remains. Therefore, rather than a sharp strongly chaotic point it
is a smeared crossover region where chaos becomes strong but still non-uniform. Now we
will try to understand the nature of this crossover.
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Figure 4. The non-normalized (A) and normalized (B) average spacing ratio at the crossover
momentum pc = 16.1 for the closed HES-tachyon scattering at different excitation levels N of the
HES; the kinematic parameters are the same as in figures 2 and 4. For growing N the spacing ratios
stay firmly around the values ⟨r⟩ = 1.75 (A) and ⟨R⟩ = 0.536 (B) predicted for the GOE random
matrix dynamics (black dashed reference lines). The spacing ratio indicates stronger chaos at p ≈ pc

than the fits to the Wigner-Dyson distribution, which even around pc show visible discrepancies.

4.1.2 The crossover

We now invoke the partition basis described in the subsection 3.1 and the notion of partition
length from eq. (3.1). Finding the coordinates c

(n)
k (1 ≤ k ≤ p(N) for open HES and

1 ≤ k ≤ p(N)2 for closed HES) of the n-th S-matrix eigenvector |n⟩ in the partition basis, we
can speak of the relative contribution of short vs. long partitions to the eigenvector (large
c

(n)
k for small/large k implies dominant contribution of short/long partitions). One detail is

still arbitrary: the ordering of the eigenvectors themselves, i.e. the number n = 1, . . . p(N)
(n = 1, . . . p(N)2 for closed strings) in c

(n)
k as defined above. We opt to order the eigenvectors

according to the absolute value of the real part of their eigenvalues: thus |1⟩ is the “leading”
eigenvector, which contributes most to the OUT state after the scattering, and |p(N)⟩ (|p(N)2⟩
for closed strings) is the “least important” eigenvector, which contributes the least.

In figure 5, we plot the set of coordinates c
(n)
k for three eigenvectors, for a number of

S-matrices with different momenta and fixed angles θ, θ′ and ϕ′. We find that short partitions
dominantly contribute to the leading eigenvector (the one with the largest eigenvalue) at
small momenta p, while for large momenta long partitions dominate. The crossover from the
domination of short partitions to the domination of long partitions happens just around the
momentum where chaos is maximal, which we have denoted by pc in the previous subsection:
at p ≈ pc partitions of all lengths contribute equally. We find that pc slightly decreases
with increasing ϕ′ but overall is almost insensitive to the kinematics (for the tachyonic case
that we consider here).

The fact that at large energies (and momenta) long partitions dominantly contribute
to the dynamics is also seen from the plot of absolute values of the S-matrix elements in
figure 6 (remember the rows of the matrix are nothing but the eigenvectors in the partition
basis): the largest matrix element migrates from upper left corner (processes scattering short
states into short states) to upper right corner (short-to-long processes) to bottom right corner
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(long-to-long processes).12 This can be roughly understood in a simple way: for p ≪ pc

there is not enough energy to activate most modes so only a few modes contribute (and
they must have large occupation numbers nk in order to have the total excitation number
N); for p ≫ pc the kinetic energy is much larger than the interaction energy scale thus all
the modes are excited (and they must have mostly small occupation numbers so as not to
overshoot the total occupation N). For p ∼ pc these two factors balance each other and the
dominant eigenvectors consist of partitions of all lengths.

Now why is the chaos clearly visible precisely around these crossover momenta pc? For
small energies only a few states effectively participate in the scattering dynamics hence it
cannot be very complex. As we increase the energy more and more modes are activated
providing more channels for the interaction, forming a complex structure through which
chaotic behavior may develop. But at very high energies there is “less time” for the interaction
to occur, the strings just “fly away from each other”, which results in the suppression of
the chaotic behavior.13

We further support the above reasoning by calculating the Shannon information entropy
associated with the S-matrix. As we know, the Shannon entropy is defined as S =

∑
j pj log pj

for some classical probabilistic system with probability pj assigned to each state j. The usual
quantum-mechanical analogue is the von Neumann entropy, defined in terms of the density
matrix ρ as Trρ log ρ. Since we have a quanutm scattering process, one should in principle
speak of von Neumann rather than Shannon entropy. However, we work with the S-matrix
and do not have the density matrix so defining the von Neumann entropy the canonical way
would be tricky. We can introduce a phenomenological measure of entropy or complexity
for a single amplitude from the IN state |n⃗⟩ to the OUT state |m⃗⟩ simply as:

C (|n⃗⟩ → |m⃗⟩) = Re
[
A|n⃗⟩→|m⃗⟩ logA|n⃗⟩→|m⃗⟩

]
. (4.1)

Taking the real part is necessary as amplitudes are in general neither real nor positive.
For the whole scattering matrix, the natural choice is to sum the definition (4.1) for all
amplitudes, or equivalently to take the trace of the expression over the whole S-matrix. But
in the eigenbasis the S-matrix becomes diagonal, with elements N exp(iϕk), where ϕk is the
eigenphase of the state k and N is some overall normalization constant, which is irrelevant
for our purposes. Therefore we can write

C(S) = ReTrS logS = −
∑

k

ϕk sinϕk, (4.2)

where the sum goes from k = 1 to k = p(N) for open strings and from k = 1 to k = p(N)2

for closed strings.14 As the S-matrix becomes chaotic, we expect the information entropy to
12This was also seen and discussed in the recent paper [32].
13This situation is analogous to classical scattering, where likewise at low energies the skeleton of periodic

orbits (which defines the symbolic dynamics) is quite simple as most orbits see just a near-harmonic potential
well, at high energies most orbits barely feel the scattering potential and continue to infinity almost undisturbed,
and at intermediate energies the competition between the bounded and unbounded dynamics generates
sensitivity to initial conditions and chaos.

14For N → ∞ the index of the state becomes continuous and we get the differential entropy, the well-known
generalization of the Shannon entropy for continuous distributions. This limit is important for the string/BH
complementarity but we leave it for further work.
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Figure 5. Coefficients of the S-matrix eigenvector |n⟩ in the partition basis, for the leading eigenvector
and a few smaller eigenvectors, denoted by colored lines (see the plot legends). The partitions are
enumerated from shortest (of the form (0, . . . 0, N, 0, . . . 0)) to longest (of the form (1, . . . 1)). The
leading eigenstate n = 1 (blue line — corresponding to the largest eigenvalue, which dominates the
final state of the scattering process) consists mainly of short partitions for small momenta, becomes
approximately equipartitioned for intermediate momenta which we identify with the crossover scale
pc, and consists mainly of long partitions for high momenta. The eigenstates with n = 10 and n = 30
behave in a more or less complementary way (i.e. long partitions dominate for p < pc and short
partitions for p > pc), although for them the trends are less clear. Six momentum values are considered
(p = 8.1, 12.1, 14.1, 15.1, 16.1, 20.1 in (A), for open strings, and p = 12.1, 16.1, 17.1, 17.6, 18.1, 24.1 in
(B), for closed strings), with N = 9, θ = 0.23, θ′ = 0.30, ϕ′ = 0.70 (A) vs. N = 10, θ = 0.20, θ′ = 0.30
and ϕ′ = 0.20 (B). The crossovers in general happen at different momenta for open and closed strings;
here we have pc ≈ 15.1 for open HES (A) and pc ≈ 17.5 for closed HES (B).

increase, reflecting the increase in the complexity of dynamics. In fact, it is likely possible to
calculate C(S) in a closed form for a Gaussian random matrix ensemble but so far we have
not found an expression in terms of elementary functions. Still, figure 7 suggests that C(S)
is indeed a useful measure as it becomes maximal at about the same value where the spacing
analysis and the eigenvector structure from figure 5(B) show the crossover and strong chaos.
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Figure 6. The S-matrices in the partition basis for open (A) and closed (B) HES scattering, for the
same kinematics as in figure 5, the color code showing the module of the (generically complex) matrix
elements. For the open string the S-matrix and consequently the interval of the values of its elements
is much smaller hence it is convenient to use a linear color scale (normalized to the unit interval).
For the closed string the S-matrix is much larger and the magnitude of its elements varies by several
orders of magnitude hence we use the logarithmic color scale (again normalized to the unit interval).
In accordance with figure 5, the dominant processes for p < pc ≈ 15 involve short partitions with few
occupied levels and large occupation numbers (upper left corner), whereas for p > pc the opposite is
true and the lower left corner of the S-matrix is dominant.
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Figure 7. Shannon entropy C(S(p)) in computational units as a function of momentum p for the
same kinematics as in figure 5(B). We observe a peak in the entropy at the crossover momentum
pc ≈ 17.5. The line is just to guide the eye.

4.1.3 Quasi-invariant states

Returning again to the structure of the S-matrix akin to plots in figure 6, it is possible
to detect the regular structure that spoils the Wigner-Dyson statistics at all momenta (to
some extent even at pc). For this it is necessary to plot different channels separately as
they can behave very differently. In figure 8 we plot the st and tu parts of the open string
amplitude. In the tu matrix we see clear structures — stripes, while in the st part we do not
see any obvious regularities. Of course, the stripe structure of the tu channel induces similar
structure in the complete S-matrix (though less sharp as it combines with the featureless
structures of the other channels).

These quasi-invariant states are very intriguing for several reasons: (1) they provide
a specific mechanism which precludes the canonical random matrix behavior of the HES
S-matrix — we need to understand them if we want to know why the HES approach can
seemingly never peep into the black hole regime (2) they are a natural generalization of the
scar states which have drawn a lot of attention in quantum chaos studies in recent years
but here we find quasi-invariant states generically, not for fine-tuned initial conditions as is
usually the case for scars15 (3) analyzing the structure of the amplitudes starting from the
expressions (2.18)–(2.23) for the tachyon or (2.33)–(2.46) for the photon it might be possible

15In the context of our calculation of first-quantized string dynamics, we may see something like quantum-
mechanical scars introduced in [44], rather than the scars in quantum many-body systems such as those
in [45–47].
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Figure 8. Channels Ast and Atu of the open string (A) and the closed string (B) amplitude in
the partition basis for the same kinematics as in figure 5, the color code showing the phases of the
elements, normalized to the [0, 1] interval. The tu part shows stripes (i.e., sets of partitions with
lengths confined to some fixed interval), whose number increases at the crossover. The phase structure
of the st part is on the other hand more or less featureless. In (B) only a part of the S-matrix is shown
in order to zoom-in into the stripe structure; the rest of the S-matrix behaves in a similar manner.

to understand the quasi-invariant states analytically in future work. For now we can only
give some general hints as to their appearance, which we do in the discussion in section 5.
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Figure 9. The contribution of the Poisson distribution to the fit of the level spacing histogram of
the HES-graviton S-matrix, as a function of N for θ = 0.70 (A), and as a function of θ for N = 10
(B), in both cases for p = 10.1, θ′ = 0.25, ϕ′ = 0.70. There is obviously a relatively narrow interval of
angles where the eigenphase spacing distribution is almost of the RMT type, but this is not the case
for all values of N . For large N values, when HES becomes really highly excited, the chaos is actually
weaker. The fit is for β = 1, and the solid lines are just to guide the eye.

4.2 The HES-photon and HES-graviton S-matrices

For the HES-photon scattering (eq. (2.2)) and its closed-string equivalent, the HES-graviton
scattering (eq. (2.4)) we can perform a similar analysis as for the HES-tachyon scattering dis-
cussed in the previous subsection. The overall phenomenology is similar, with two differences:

1. Dependence of dynamics on the momentum p and the angles θ and θ′ is now much
stronger and more complicated, so that in some cases there is more than one value of
momentum where chaos becomes strong, but it only does so when the values of the
angles are also inside the chaotic window.

2. The strong chaos found for special p and θ values is mainly there for finite N values
and does not in general persist for growing N .

The above findings can be seen from figure 9. There is now a narrow interval in the
angle θ where the Poisson contribution wP becomes very low but this is only the case for
N = 10 and N = 15, otherwise the dynamics is again highly mixed. This suggests that the
mechanisms of chaos at work here are not relevant for the black hole scrambling and the
string/black hole complementarity picture: otherwise the chaos could only become stronger
for growing N . Therefore, unlike the tachyon case considered in figure 4, where indeed the
strong chaos at p ≈ pc persists for growing N , here it is a finite-N phenomenon.

The momentum dependence of the chaos indicators ⟨r⟩ and wP can be seen in figure 10.
Now we have several crossover values pc where the main contribution to the eigenvectors
goes back and forth between short and long partitions. In this example four pc values exhibit
clear signs of chaos. We note in passing that for mixed/weakly chaotic cases the ⟨r⟩ values
are now above the GOE value 1.75 whereas for the tachyon they are below. We do not know
the significance of this. For reference we also give a few plots of the eigenphase spacing
distribution in figure 11, for two crossover momenta (p = 1.3, 1.9) and two other momenta
(p = 1.0, 1.6), where we can directly observe an increased fit quality by the Wigner-Dyson
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Figure 10. Mean level spacing ratio ⟨r⟩ (A) and the Poisson contribution to the eigenphase spacing
histogram wP for a HES-photon process with N = 9, θ = 0.23, θ′ = 0.5, ϕ′ = 0.7, and a range of
momenta p. Now we have several chaotic momenta instead of just one, roughly at pc = 1.3, 1.9, 3.7, 6.1.
Both measures of chaos (⟨r⟩ and wP ) roughly agree in indicating chaotic dynamics at these points.
The fit is for β = 1 in the Wigner-Dyson distirbution.
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Figure 11. Eigenphase spacing distribution for the same kinematics as in figure 10 for four momentum
values p = 1.0, 1.3, 1.6, 1.9. The points p = 1.3 and p = 1.9 provide a better fit to the Wigner-Dyson
distribution with β = 1/β = 2 (blue/red line) than the other two, in accordance with the other chaos
indicators (⟨r⟩ and wP ).

distribution with β = 1 for the p = pc momenta. Here again we perform the Wigner-Dyson
fit also for β = 2 in addition to β = 1 for comparison, but the fit is again better for β = 1.

In conclusion, the scattering of spinful states (such as the photon) provides a more
complex phenomenology: strong chaos is still limited to special values of parameters, not
only momenta but also the angles and the occupation number. In this sense one could argue
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that this case is even less chaotic than the tachyonic case as chaos does not persist for infinite
N . On the other hand, highly erratic dependence on p and θ is more in accordance with
the classical chaotic scattering where precisely the high sensitivity of the scattering outcome
on the initial conditions encapsulates chaos [48, 49]. In fact, [50] has found precisely such
behavior also for the HES-tachyon process but for individual amplitudes only (here we have
shown it does not hold for the S-matrix as a whole, where just a single p value is special).
The result we have is akin to the classical scattering of the ring string off a black hole, studied
e.g. in [38–40] and numerous later works.

5 Discussion and conclusions

The S-matrices paint a complex picture of HES dynamics. The dynamics varies from
mostly regular, with strong eigenphase clustering, to mostly chaotic, in good agreement
with the usual RMT measures of chaos. There is no simple characterization of chaos as a
function of kinematics or the occupation number N , and spinful vs. scalar incoming state
also influences the outcome. This variation is in itself our first conclusion: the dynamics is
strongly non-uniform and no signs of black hole universality are seen.

The first important idea is that of a crossover at special momentum pc between two mostly
regular regimes in the HES-tachyon scattering: only when all the HES states are excited in the
scattering process the chaos dominates in the eigenphase statistics. For scattering of photons
and gravitons the picture is more complicated, and several values of special/chaotic momenta
and angles can be found. To some extent this is expected: only a non-scalar state can exhibit
strong dependence on the angles and geometry of the scattering process. But more important
is the very idea of the crossover. First, it tells us how the chaos arises: it arises through the
exponentially large number of excited states, a factor which makes up for the simplicity of
the Polyakov action for the scattering and the Veneziano- and Virasoro-type amplitudes.16

The second important idea is that of quasi-invariant states. They provide a clear reason
why chaos can never become uniform: as long as there are many IN states which give almost
the same OUT state there will be a strong clustering of eigenphases and no uniform eigenphase
repulsion. We plan to understand these states better in future work.

Both the crossover (mentioned also in [32]) and the quasi-invariant states could not
be seen from amplitudes alone, they are properties of the whole S-matrix. Therefore it is
important to move away from the study of individual amplitudes toward the study of the
whole S-matrix. Yet, this is computationally demanding. Indeed, one possible weakness
of this work is that we are forced to study relatively small N values (roughly around 10)
when working on a laptop, and even on a cluster we cannot move beyond N ≈ 30 and that
with an approximate evaluation of the gamma and beta functions. Therefore, one might
worry that we simply do not look at sufficiently high N to make our strings truly highly
excited. Could it be that in fact chaos will become uniform and black-hole-like when going
for much higher excitation numbers?

16Indeed, one may wonder how is it possible to see any chaos when the action is quadratic. The answer
lies in the fact that the Polyakov action has an additional constraint and, as we mentioned, in the fact that
we have an exponentially large number of amplitudes in the S-matrix, where each amplitude behaves as an
infinite sum of field-theoretical amplitudes.

– 27 –



J
H
E
P
0
3
(
2
0
2
4
)
1
0
1

We cannot provide a definite answer but we have some reasons to conjecture that the
answer is negative. First, we reach a seemingly constant ratio of regular to chaotic (Poisson
to Wigner-Dyson) eigenphase populations: it is possible but not very likely that this constant
ratio will suddenly drop at some N . Also, when studying individual amplitudes the authors
of [26] have gone for much higher N (over 105 in some cases) and they still do not see the
statistics collapse onto the RMT predictions. Finally, existing results on the eigenvalue
distribution of beta-Wishart matrices [51, 52] provide a path toward an analytic proof that
quasi-invariant states are present for S-matrices of arbitrarily large size. We plan to follow
this path in further work on the subject.

All of the above shows that HES scattering is very different from black hole scrambling:
in the latter, there are universal time and space scales encapsulated in the chaos bounds for
the Lyapunov exponent and the butterfly velocity. These rest essentially on the existence of
a (semi)classical horizon with an infinite redshift, thus any infalling wave behaves as a shock
wave and leads to a universal response. It seems that, despite the string/BH complementarity,
a perturbative tree-level string calculation just cannot describe the transition to a black
hole. One reason might be that we work in flat space background. This poses another
important task for the future: will we get different results if we allow at least for weak gravity,
taking it into account through perturbative vertex corrections? This question is in principle
approachable and is another task for the future. Finally, one may try to model the dynamics
at the transition point, which was studied in a number of recent works [53–55].
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