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1 Introduction

Integrability and conformal bootstrap have proved to be two of the most efficient tools to
obtain perturbative and non-perturbative CFT-data of many CF'Ts, and in particular, planar
4D N = 4 supersymmetric Yang-Mills theory (SYM) [1-15]. Recently, the combination of
the two techniques, called bootstrability, has yielded results beyond what is obtainable by
either of the techniques alone [16-20].

With these serving as inspiration, in this paper, we perform a careful analysis of the CFT-
data of planar 4D A =4 SYM at strong coupling. First we extract strong coupling spectral
information using the integrability-based quantum spectral curve (QSC) method [5, 21], in
particular its implementation developed in [22]. We then inject this spectral information into
constraints on the CFT-data at strong coupling, obtained in [23-26].

This allows us to solve for the OPE coefficients, and we obtain leading order expressions at
strong coupling, for the OPE coefficients of entire Kaluza-Klein (KK-)towers of local operators
in A/ =4 SYM. Our results can be used to extract further constraints on the CFT-data, which
could potentially be checked by generalising the computations of [26]. Finally, we observe that
leading order OPE coefficients of many entire KK-towers vanish, which hits at the possibility
of a drastic simplification in the CFT-data of planar 4D N =4 SYM at strong coupling.

Structure of the paper. In section 2 we describe the four-point function which we consider,
outline the current knowledge of the spectrum of N' =4 SYM at strong coupling and discuss
the constraints on the CFT data at strong coupling. Then in section 3 we present our main



results: a method to obtain R-charge independent average formulas constraining the CFT-data
at strong coupling, and explicit results for leading order OPE coefficients. Finally, in section 4
we discuss consequences of our analysis and which potential questions that stem from them.

2 Setup

We will restrict ourselves to planar 4D N = 4 SYM, which is obtained by taking the Yang-
Mills coupling gyy — 0 and the rank of the gauge group SU(N), N — oo in such a way that
a particular combination, called the 't Hooft coupling A = g3, N is kept finite.

Operators in the theory transform under representations of the group PSU(2,2[4). A
state is characterised by the quantum numbers: [A ¢1 f2 q1 p q2]. Here A is the scaling
dimension and /1, ¢5 are Lorentz spin labels of the 4D conformal group SO(4,2), and ¢, p, g2
are Dynkin labels of SO(6)r R-symmetry group.

2.1 Observable

We consider four-point functions of four protected operators Op. These are Lorentz scalars
which transform in the rank-k symmetric traceless representation of the SO(6)z group. Their
scaling dimension is A = k, and is protected by supersymmetry.

In particular, we consider the four-point function [27-31]
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are cross-ratios. Here and below, we follow the conventions of [26]. The four-point function
can be further decomposed as [29]
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where gf;;,jk}(U , Vi a, @) is the free theory contribution which can be evaluated by performing
Wick contractions [26], and 7 (U, V) is a reduced correlator which captures the non-trivial
contribution to the four-point function.

Furthermore, we consider separately the contributions of short, or protected supermulti-
plets and long, or unprotected supermultiplets to the reduced correlator:

T(U, V) — T(U, V)short 4 T(U, V)long . (23)

We are interested in the contribution of unprotected operators, whose scaling dimension
depends on the ’t Hooft coupling A. The reduced correlator admits an operator product
expansion (OPE) in two channels (s and ¢). In the respective channels, we get
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where we introduce the conformal blocks [29]
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In the expressions (2.4), the sum runs over the twists 7' = A — ¢, and “spins” ¢ of the
exchanged unprotected operators. The spin ¢ corresponds to equal Lorentz spin-labels [¢ £].
In the s-channel the exchanged operators have even spin and R-symmetry labels [0 0 0].
In the t-channel, exchanged operators can have either odd or even Lorentz spin, and have
R-symmetry labels [0 p 0], where p = k — 2. In the following, we refer to p as the R-charge.

Furthermore, we focus only on of the exchange of the single-trace “stringy” operators
whose anomalous dimension scales as A ~ A/ at strong coupling. In the following we
discuss the conformal data for only such operators. The OPE coefficients for the “stringy”
operators Cs and C; can be parameterised as [26]:
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Here T denotes the twist of the exchanged operator, and f; and f, are reduced OPE coefficients.
The OPE coefficient C; is the square of three-point structure constants (Oy O Oa)?, while
Cy is the product (Oy O3 Opa) x (O O, Op). Here Op refers to the exchanged operator.
As such, C; can be subjected to positivity constraints. The reduced OPE coefficients f
have the strong coupling expansions
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where chan € {s,t}. Moreover, fo becomes equal to fso, when £k = 2 = p = 0 [26].
Therefore, for simplicity of notation, we use a single notation fjy, and understand it to mean
f:.o when p # 0 and fs.0 = fr.o when p = 0. These reduced OPE coefficients are the main
observables targeted by our calculation.

2.2 Spectrum at strong coupling

Let us consider in detail the dimensions of unprotected operators exchanged in the OPE (2.4),
at strong coupling, in the planar limit.

We focus on the single-trace operators which are also called the “stringy” operators. At
strong coupling, the dimensions these operators have the expansion

d
= 1/4 1
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where 0, a positive integer, is the string mass level [32]. Thus, along with the spin ¢ and the

R-charge p, it is a good label for classifying the states exchanged in the OPE (2.4). In general,



however, there could be multiple states, which have the same labels (6 £ p). In order to break
this degeneracy, we need to look at higher orders in the strong coupling expansion (2.9) of A.

In [22], the dimensions of the lowest lying 219 states in N' = 4 SYM were computed
numerically using the QSC [5, 21, 33, 34]. The numerical spectrum was fitted at strong
coupling, and expressions for dy, and d; in the expansion (2.9) were obtained for many of
these operators. It was argued in [22] that value of dy = —2 is universal for all states in
planar NV = 4 SYM. Therefore, to lift the degeneracies, one must know the value of di,
for every state with the same labels (4 ¢ p).

While the precise value of d; for the various degenerate operators may not be known,
it is nevertheless possible to enumerate the degeneracies of operators with the same labels
(0 £ p). This was done in [35] by mapping the four-point function (O, Ok, Ok, Of,) in
planar 4D N = 4 at strong coupling, to a four-point closed string amplitude in AdS5 x S°
(the AdS Virasoro-Shapiro amplitude), in the flat-space limit. Then the stringy operators
exchanged in the OPE (2.4) map to massive string states in flat-space, compactified on
S5. To count these states, firstly representations of SO(9), the massive little group for R
were enumerated. The SO(9) representations were then decomposed into SO(5) x SO(4)
representations, corresponding to the split into AdSs and S°. Lastly, compactification of
five-directions into S° replaced every representation of SO(5) with Dynkin labels [m n], by
a KK-tower of SO(6) representations [36]:

KK[mn] = ZZ Z [€15825T+n*57p7r+5]

r=0s=0p=m—r

m—1n—1 o)
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r=0 s=0 p=m—r—1

Thus, in [35], a counting function count(d, /) was obtained, which, for every value of § and
¢, counts the number of KK-towers KK{, -

Out of all the choices for SO(5) labels, notice that only KKp, ¢ contains KK-towers
of states whose R-symmetry labels are of form [0 p 0]. Therefore, we are only interested
in such KK-towers. Furthermore, since KKj,, o) = >.;2,,[0 p 0] + ---, for states in such a
KK-tower, the R-charge p > m.

Let Ny be the number of KK-towers of type KKj,, g, with 0 <m < m’, outputted by
count(d,¢). It follows that the degeneracy of states with labels (9, ¢, p) is N,. Let M be the
maximal value of m, for which count(d, ¢) outputs a KK-tower of type KKj,, . Since there
can be no new KK-towers for higher values of the R-charge, for all p > M, and the degeneracy
states with labels (0 ¢ p) is Njs. Thus, in general, for a given 6 and ¢ the degeneracy of
KK-towers N, increases from p = 0 till p = M, from when it is a constant Ny, for all higher p.

In [22], the counting of [35] was confirmed by explicit computation of scaling dimensions of
operators in NV = 4 SYM; it was shown that the dimensions of states at strong coupling indeed
organised themselves into exactly the same KK-towers as predicted in [35]. Furthermore,
it was observed in [22] that the quadratic Casimir of PSU(2,2[4) (given in equation (A.1)),
was a good classifier of states into KK towers. Denote the strong coupling expansion of



the quadratic Casimir as

)2
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In particular, the constant term in the strong coupling expansion of the Casimir j;, was
observed to be the same for every state in a KK-tower. This led to a conjecture, predicting
the values of d; for all states in a KK-tower, given the value of j; on the tower. We have [22]
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2.3 Constraints at strong coupling

By exploiting the supersymmetry, conformal symmetry and Regge behaviour of the correla-
tor (2.1), the flat-space limit and number theoretic properties of the corresponding string
amplitude (the AdS Virasoro-Shapiro amplitude), in [23-26, 35, 37], constraints on the various
combinations of the strong coupling expansion coefficients of the OPE coefficients (2.8) and
the scaling dimensions (2.9), of stringy operators, were obtained.

These “average” formulas, constrain the sum over the particular combinations of expansion
coefficients of the CFT-data, of all states with the same labels (6 £ p). Moreover, analytical
formulas were found for operators on the same odd- or even-spin Regge trajectories. The string
mass level & and spin £ of states on the same even- or odd-spin Regge trajectory are related as

t=2(6—-n), or £=2(6—-n)—1, (2.13)

where n is a positive integer called the even- or odd-spin Regge trajectory number respectively.

Our aim is to extract the strong coupling expansion coefficients of OPE coefficients (2.8) of
particular states. On the first even-spin Regge trajectory, i.e., the trajectory with £ =2 (6 —1),
the degeneracy of states is unity [35]. Therefore, the average formulas directly give us the
required information about the strong coupling expansion coefficients. However, on higher
even- and odd-spin Regge trajectories, this is not the case. Thus, we need to “unmix” the
average formulas, i.e. extract the CFT-data of individual states that enter the average formulas.
In the next section, we achieve precisely this, by injecting the spectral information extracted
from [22] into the average formulas, thereby unmixing them, and extracting predictions for
strong coupling expansion coefficients of the OPE coefficients.

3 Results

In this section, we present our main results. Firstly, for states with labels (§ ¢ p), we
obtain average formulas of the type (fo 71) and {fo j?), where j; is the sub-leading Casimir,
and fy is the leading order reduced OPE coefficient. Then, injecting information on ji,
extracted from [22] into these formulas, we extract predictions for fy that hold for entire
KK-towers of states.

Our focus will be the leading order reduced OPE coefficients fy. Therefore, only even-spin
Regge trajectories are relevant, as fp vanishes on odd-spin Regge trajectories [26]. As the



OPE coefficients on the leading even-spin Regge trajectory, i.e. with £ =2 (§ — 1), are directly
known from the average formulas of [23-26], our focus will be on states in the second and
third even-spin Regge trajectories, i.e. those with £ =2 (§ — 2) and ¢ = 2 (§ — 3) respectively.

3.1 Average formulas involving the sub-leading Casimir

Consider a formula for (fod;) for states with labels (§ £ p), on the n'® even-spin Regge
trajectory. In general we have

(fodi)e=a5-n) = Z 3 dl = gn(8,p), (3.1)

where f{ and d! are the respective values of fo and d; for the I'® state in the sum over N,

degenerate states, and gy, is a function of 4 and p. Expressions for g,(d,0) are known on the

first seven even-spin Regge trajectories [24], and those for g,(d,p) are known on the first

even-spin Regge trajectory [26]. It was shown in [26, 35], that the individual f{ cannot depend

on p. The p-dependence of df is fixed by the conjecture of [22], given in equation (2.12) as
2 T
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Notice in particular that the p-dependence is the same for all states with a given § and n.

dl = (3.2)

Plugging this into equation (3.1), we get

(fodr)e=2(5-n) =29n(0,0) =2 (fo)r=2(s5— n)|: +p—02+8 (2n—1)—n’+n+1]. (3.3)

Since both fy and j1, and therefore the L.h.s. is p-independent, the r.h.s. must be p-independent
too. This means that the p-dependence of g,(d,n,p) should be

2
0n(6:0) = 9a(0.0) + (fo) | 5 + )] (3.4

so as to cancel the p-dependence of the other terms in the r.h.s.! Therefore, we get

(fod1)e=2(5-n) = 29n(9,0) + 2 (fo)e=2 (5-n) [52 —6@2n—-1)+n*—n—1[. (3.5

Thus, starting from expressions (fp di), for states with p = 0, given in [24], one can extract
a formula for (fy 71), valid for all states that share the same value of j;. In particular such
a formula will be valid, even for states with p # 0. For the first three even-spin Regge
trajectories, we display the explicit expressions for (fjj1) in equations (B.1)—(B.3).

We can reverse the logic now, to obtain expressions for (fydy), for states with p # 0.
Starting with equation (3.5), we can plug in j; in terms of d; from (3.2), assuming this
time, that p # 0, to get

2

(fod1)e=2(5-n) = 9n(0,0) + (fo)e=2 (5-n) {p + P] (3.6)

For the first even-spin Regge trajectory, it can be checked that this formula gives us exactly
what was obtained in [26].

'"Equation (3.4) can equivalently be seen to be a direct consequence of equation (4.15) in [26].



One can make the same arguments as above to the formulas for (fod?) for states with
p = 0 that can be extracted from [25]. First, one can extract p-independent expressions
for (foj?). Such formulas, for the first three even-spin Regge trajectories are provided in
equations (B.4)-(B.6). Then one can reverse the logic to extract formulas of the type {fo d?),
for states with p # 0. We provide such formulas for the first three even-spin Regge trajectories
in equations (C.1)-(C.3). These formulas are a prediction which, in principle, could be
checked by extending the methods of [26] to the next order.

Let us explore the consequences of the above exposition. We have at our disposal,
p-independent average formulas involving sums of combinations of fy and j; over degenerate
states. Consider such an average formula of the form (fy jf*), where « is a integer > 0. For
every choice of labels (9,4, p), the Lh.s. of this formula involves the sum over N,, degenerate
states. Due to p-independence, the r.h.s. of this formula remains the same for all choices
of p. We have

N, N
(foit) =3 (i) = eald). (3.7)
I=1

Here ¢, (9) is a constant, depending on spin ¢ through the Regge trajectory number n and
the string mass level §. The average formula (3.7), involves j;, which has the same value for
all states in a KK-tower [22]. This suggests to consider KK-towers of states that share the
same ¢ and ¢, rather than the individual states that live in these KK-towers. As elucidated
in section 2.2, for every choice of § and ¢, there exists a non-negative integer M, so that
the degeneracy of KK-towers is a constant Nj; for all p > M. Thus, for all p > M, the
L.h.s. of this average formula involves a sum over M degenerate KK-towers. Therefore, for
all p > M, the formula (3.7) becomes

Ny

(foity = > £ ()" = enl0). (3:8)
I=1

Suppose we have a system of Njs such equations, with a = 0,..., Ny — 1. The values
of fo that solve this system will hold for all states in the corresponding KK-towers, with
R-charge p > M. For each value of the R-charge p < M, since the number of KK-towers
is N, < Ny, we would need a smaller system of at least N, equations of the form (3.7).
Therefore, for KK-towers that contain states with p < M, it is not guaranteed that fy has
the same value as those states with R-charge p > M.

3.2 Predictions on KK-towers and vanishing OPE coefficients

Armed with the average formulas obtained using the methods of the previous section, we
now proceed to extract predictions for the leading order reduced OPE coefficients fj.

The relevant KK-towers on the first three even-spin Regge trajectories, are summaried
in table 1 below, we have In the sequel, we will consider three cases: § = 2, ¢ = 0 and
0 = 3, ¢ = 2 on the second even-spin Regge trajectory, and § = 3, £ = 0 on the third
even-spin Regge trajectory.



J4
0 2 4
)
KK[O 0]
2 KK[O 0] + KK[2 0] KK[O 0]
6 KK[O 0] +2 KK[l 0] + 4KK[2 0] + KK[4 0] 4KK[0 0] +3 KK[Q 0] KK[O 0]

Table 1. Number of KK-towers of the type KK, o for different values of § and ¢ obtained by
evaluating count(d,¢) of [35].

KK-towers with d = 2 and £ = 0. From the counting function count(d,¢) of [35], we
get the following relevant KK-towers:

CO'llIl't(27 0) = 2 KK[O 0] + KK[2 0] 4+ (39)

Here the ellipsis denotes KK-towers not of the form KK, o}, i.e. those which do not contain
states with R-symmetry labels of the form [0 p 0]. Thus, for p > 2, there are 3 states which
enter the average formulas for (fo) (A.3) of [23], for (fo j1) (B.2) and for (fyj?) (B.5). The
values of j; for these three towers of states can be extracted from [22]. They are given in
table 2, and are repeated below:

=2, %=, % =2 (3.10)

In the above expression, we denote the particular KK-tower corresponding to the value of
71 in the superscript. Where there is a multiplicity, we have included an extra multiplicity
label. Plugging the expressions from (3.10) into the average formulas for (fy) and (fo j1),
we get the solution

1
f([)o 0 _ —f(? 0] , f$° 02 _ 3 (3.11)
Requiring that the leading order OPE coefficients are > 0 immediately sets
1
O =% =0, %=1, (3.12)

This result is consistent with our formula (B.5) for (fo j2), and thus serves as a check for it. To

]

not the other KK-towers that are obtained when evaluating KK{,, g using (2.10). The value

of jgm 0 however, is valid for all KK-towers obtained when evaluating KK{,, o using (2.10),

clarify the notation, when we use f(gm % we are only referring to the KK-tower 3°7° [0 p 0], and

and therefore, this notation may be used for all of them.

Strictly speaking, the above solution is valid only when p > 2, as explained in the
previous section. For the case 0 < p < 2, one has only 2 states coming from the 2 KK,
and therefore should repeat the above procedure with only 2 variables fy. Doing so gives
the same result, and therefore (3.12) gives leading order predictions for OPE coefficients
on 3 entire KK-towers. For the p = 0 case, predictions for fy were obtained in [22, 25],
and our results are consistent with them.

Notice that 2 out of 3 entire KK-towers of leading order OPE coefficients vanish. It
would be interesting to note whether they vanish to higher orders as well.



KK-towers with § = 3 and £ = 2. From the counting function of [35], we get
Count(3, 2) = 4KK[0 0] =+ 3KK[2 0] 4+ ee (313)

Thus, generically, we have 7 KK-towers of states. The values of j;, extracted from [22], given
in table 2, are displayed below. We have

GO0 = RO 20k SI20s g 500 g 00 _ 5I00l4 _ 9g (3.14)

Notice furthermore, that corresponding states in the KK-towers [0 0] and [0 0]4, with
the same R-charge, are exactly degenerate, i.e their scaling dimensions are the same, non-
perturbatively, and in particular to all orders in perturbation theory. The corresponding
states in the KK-towers [2 0]y and [2 0]3 are also exactly degenerate. The exact degeneracy is
due to a symmetry of the underlying integrability structure [38, 39] (see also [22]).

The OPE coefficients of exactly degenerate states will also be the same. Thus, fo0 Ols _
f(go O+ and f(EZ Ol _ f(gz Ols Plugging the values of j; from above into equations (A.3), (B.2)
and (B.5), we get

243 135

01 _ (201 o202 00 _ 00)s _ (00l _
Next, imposing positivity of the OPE coefficient, immediately gives
f(go Oh _ f(? 01 _ f(EQ 02 _ f([)Q s _q. (3.16)

Again, strictly speaking the above result holds only when p > 2. However, it turns out
that the same holds when 0 < p < 2 as well, when there are a lesser number of KK-towers
entering the average formulas. Furthermore, 4 out of 7 entire KK-towers of leading order
OPE coefficients vanish. For the states with p = 0, our results are consistent with, and
interestingly, they saturate the bounds on the leading order OPE coefficients obtained in [22].

KK-towers with 6 = 3 and £ = 0. Again here, we start with the counting function
of [35, 40], which gives

CO'I.lIl't(37 0) = GKK[O 0} + 2 KK[l 0] + 4KK[2 0] + KK[4 0} 4+ .. (317)

Thus, in general, there can be up to 13 KK-towers of states. We display the values of j;
for these states, extracted from [22], given in table 2, below:

ooy _ .ools 27 00 10}y 20y _ .40

- — 5 - - - - 07
J1 J1 9 1 1 J1 J1 (3.18)
00 = 00k _ 202 yg o 5000 o o SI00s g6 5200 _ 5RO g

In this case as well, there are some exactly degenerate KK-towers, namely [0 0]; and [0 O]g
are exactly degenerate, and so are [2 0]3 and [2 0]4. Consequently, we get f(go Oh f([)0 06 and
f(? Ols _ f(? Ol Since, we are on the third even-spin Regge trajectory, in addition to (A.4),
of [23], we also need equations (B.3) and (B.6). Solving, we get

f100s _ —%féo O _ g pl002 _gqt0h _ pl10k _gq 20l _ gl20l2 _ %j}? O _ g plt0),
o _ 405 ooy | 81 ;o0 , 8L iop | 81 .20 20 , 81 40 25

Jo 6470 +4f0 +4f0 +4f0 +13/o +4f0 *l021°
o) _ 13 00 D002 D10 D ,20n O 205 D40 81

fO - 64f0 4 0 4f0 4 0 9f0 4 0 + 1024 (319>



Requiring that all leading order OPE coefficients are > 0 immediately gives

f(go 0 _ (go 0z _ f(go s _ f(go s _ f(g1 o _ fél 0z _ féQ o _ f(gz 0z _ f(gz 0]3
. f([)Q s _ f([)4 o _, 00, 29 oo 81

— = = . 2
» 70 10247 70 1024 (3.20)

In this case, 11 out of 13 KK-towers of leading order OPE coefficients vanish. Again, strictly
speaking the above expression holds only when p > 4; in the case of p = 2, there will be 12
KK-towers, for p = 1, there will be 8 KK-towers, and for p = 0, there will be 6 KK-towers.
However, it can be checked that the same results hold for all values of the R-charge p. For
states with p = 0, our results are consistent with, and saturate the bounds obtained in [22].

In conclusion, we see that in all the three cases considered, our predictions for the leading
order reduced OPE coefficients are a constant on an entire KK-tower. Furthermore, many
entire KK-towers leading order OPE coefficients vanish: for 6 = 2, £ = 0, 2 out 3 towers
vanish (3.12), for § = 3, £ = 2, 4 out 7 towers vanish (3.16), and for § = 3, £ = 0, 11 out
13 towers vanish (3.20). It is also noteworthy that the degeneracy of KK-towers with the
same value of j; associated with vanishing OPE coefficients changes as we go from p = 0 to
higher values of the R-charge. This ensures that the leading order reduced OPE coefficient
remains constant on the entire KK-tower.

4 Discussion

In this paper, we have performed a careful analysis of the CFT-data of planar 4D N = 4
SYM at strong coupling, which revealed the following salient points.

Firstly, for all the examples that we studied, the leading order reduced OPE coefficients
of all states in a KK-tower is the same. The degeneracy of KK-towers for a given value of
0 and £, in general, changes with the R-charge p, up to a certain value p = M. Above this
value, the number of degenerate KK-towers is a constant. That the leading order reduced
OPE coefficient fj is a constant on a KK-tower, for all states with R-charge p > M is a
consequence of our results. However, in all the 23 KK-towers that we studied, we observed
that the leading order reduced OPE coefficient fj, remains the same on a KK-tower, for
all values of p < M as well. This result may be expected from a flat-space limit point of
view, since the dual string amplitude, in this limit, should not be able to see the effects of
compactification, and thus, sees the entire KK-tower, as one state, with one OPE coefficient.

Secondly, we observed that the leading order reduced OPE coefficients fy of 17 out
of 23 entire KK-towers vanish. From a technical point of view, the positivity of fy was a
very powerful in obtaining this conclusion, as in all three cases that we considered, it was
responsible for causing many coefficients fy to vanish.

Whilst the vanishing of a significant proportion of the leading order reduced OPE
coefficients fj signals a simplification of the CFT-data of planar 4D N =4 SYM at strong
coupling, one should be careful while interpreting it this way. This is because the reduced
OPE coefficients fs; and f; need to be multiplied by appropriate normalisation factors in
order to get the full OPE coefficient C; and C; respectively. These normalisation factors
are complicated functions of A. To illustrate, consider the p = 0 case. In this case, let
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C? = Cs = Cy. At large A, we see, from equation (2.7), that [23]
9—4VEA/413/2
sin? <7T \/5)\1/4) .

2

(4.1)

There are two things to notice here. Firstly, we see that C? is exponentially damped and, at
large enough A, the damping factor is the same for all states with the same string mass level
8. Secondly, C? contains double poles whenever V& A/4 = n, where n is an integer. This can
be interpreted as being due to the mixing of stringy operators and double trace operators
with n > 1 [23]. Again, at large enough A, the location of the double poles is the same for all
states with the same string mass level 0. In general, as we can see from equation (2.7), the
normalisation factors are completely determined by the twists T', which is only one half of the
CFT-data. Important dynamical information unique to the OPE coeflicients is contained in
the strong coupling expansion coefficients of the reduced OPE coefficient f = f; = fs, which
multiplies the normalisation factor of C? from equation (4.1). When X is in the neighbourhood
of the double pole of the sine squared function, the exponential damping competes with the
singularity, and thus the strong coupling expansion coefficients of f become visible, giving
access to the fine structure of the OPE coefficients.? In these regions it is possible to see that
a significant proportion of OPE coefficients are subleading with respect to a minority of them.
It would be very interesting to understand what is the physics behind this.

The leading reduced OPE coefficients fj are related to the strong coupling expansion
of the flat-space Virasoro-Shapiro amplitude in Mellin space [23, 26, 41, 42]. An example
of such a relation for the p = 0 case is [23]

T(6+42q) %=
o= 020 S 5 L (12)
6=10=0,2

Here oy is the coefficient of (5% 42 +u?)7/X3/2%4 in the expansion of the flat-space Virasoro-
Shapiro amplitude, where s, ¢t and u are Mellin-Mandelstam variables. Why many fy in
the above sum vanish could be explained by, for instance, some emergent symmetry at
strong coupling, due to the flat-space limit of the dual string amplitude. If so, can this
symmetry be used to predict/count the number of vanishing leading order reduced OPE
coefficients? It appears that the number of vanishing KK-towers is increasing drastically
with §. It would be instructive to compare this rate of growth with the rate of growth of
degeneracies of states obtained in [35].

Another important question this raises is whether these reduced OPE coefficients vanish
at higher orders in perturbation theory as well. In particular, it was shown in [25], in the
case that (6 £ p) = (2 00), that the reduced OPE coefficient that vanishes at leading order,
also vanishes at the fo order. It would be very interesting to carry out similar calculations
for the other (KK-towers of) states studied in this paper. However, in the case of the 2 states
with (0 £ p) = (200), it is known [19], that both the leading order OPE coefficients at weak
coupling are of the same order, i.e. one is not subleading to the other. It would also be
interesting to see at which order, the vanishing reduced OPE coefficients begin to “reappear”.

Finally, the sub-leading Casimir j; has played an important role in our analysis. In
general, the quadratic Casimir has proved to be a useful tool in CFT-data analysis. In [22],

2We thank Dileep Jatkar for discussions related to the above passage.
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it was used to argue that all states in planar 4D A/ =4 SYM have the same constant integer
shift in their dimension. Furthermore, it was conjectured that the sub-leading Casimir is
constant on a KK-tower, and this was used to obtain a prediction of dy for all states in a
given KK-tower. Our main results rely on this conjecture. In the present paper, we showed
that j; can be used as an elegant way to package constraints on the CFT-data of an entire
KK-tower of states, in a p-independent way. An important future direction is to prove the
conjecture (2.12) of [22]. It would also be enlightening to see if further sub-leading orders of
the Casimir are also able to repackage the CFT-data of planar 4D A = 4 SYM at higher
strong coupling orders, and whether this could be used to extract new predictions in the
same spirit as this paper.

Acknowledgments

We are grateful to Luis Fernando Alday, Benjamin Basso, Nikolay Gromov, Dileep Jatkar, Alok
Laddha, Jeremy Mann and Joao Silva for valuable discussions. The work of NS is supported
by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 865075) EXACTC. JJ expresses gratitude
to the people of India for their continuing support towards the study of basic sciences.

A Relevant expressions

The quadratic Casimir of PSU(2,2|4) is
, 1 ) 1 1 1 1
Jo=5(A+2)7 =24 L(G+2)+ 66 +2) — Jala +2) - Jele+2)
1
- §(2p +a+@)’—Cr+a+ae). (A.1)

The average of the leading order OPE coefficient (fp), depends only on § and ¢ as shown
in [26]. For the first three even-spin Regge trajectories, it is given by [23, 26]

5
(fo)e=2(5-1) = TO((S ) , (A.2)
(fo)i=2(5-2) = rléé) (252 +36 — 8) , (A.3)
{fodea(s_3) = Ti(g) (108" + 435° + 857 — 3525 — 192) . (A.4)

Here 7, is defined as [23]

B 42—25525—271,—1(25 ) 1)

A O CRE) )
B Explicit average formulas involving the sub-leading Casimir
For (foj1), on the first three even-spin Regge trajectories, we have
(fodt)e=a@5-1) = 10(0) (5 —3), (B.1)
(foir)i=a(s-2) = Tléé) (3004 + 7% — 1476% + 2126 — 120), (B.2)
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(fodr)e=a(s—3) = rgé? (750 65 4 1775 65 — 3667 6* — 18092 5% + 45688 67

(B.3)
— 597128 — 40320)

where 7,(9) is defined in equation (A.5). Similarly, on the first three even-spin Regge
trajectories, the explicit expressions for {fjj?) are

(foi?)ema(—1) =70(0)6 (56-3)°, (B.4)
§
(foid)ema(s-2) = ”2(7) (4506° —4656° — 18885% +-66635° — 924852 +-61806 — 1800),  (B.5)
r2(0)

(562500°% +2437567 —3848005° —3103976° + 58677085

(foit)e—a(s—3) = 10125

— 1846961253 42140288852 — 110534408 —8467200) .

C Predicted average formulas for (f, d?) with non-zero R-charge

Combining the equations (B.4)—(B.6) with the conjecture (2.12), we can extract an average
formula for (fod?) when the R-charge p > 0. For the first three Regge trajectories, we have

~—

ro(0
(fod?)i=a(s-1) = 106(6 [p? + 4p + 66% — 26 + 4]° (C.1)

T1(5
432
1275 — 72) + p (14452 12160 — 576) + p? (21654 130003 — 39652

~—

(fod3)e—z(5-2) = [6486° + 82805 — 1504* 4 490863 — 862462 + 46086 + p* (1852

+ 10326 — 2016) + p (86454 + 12008 — 273662 4 24008 — 3456)
— 2592] (C.2)
Tz(d)

162000
— 180215688 + 86963526% — 180633605 + p* (225054 + 96756% + 180043

(fod?)e=a(s—3) = [810006% + 3663008" + 3116805° — 13671085° + 13445124*

— 792006 — 43200) + p° (1800054 + 774006%144006% — 6336008 — 345600)
+ p? (2700066 +11910068° + 985808* — 6121205312432052 — 34099205

— 1382400) + p (10800056 + 4764005° + 2503206 — 306768053

— 61248062 — 85708808 — 2764800) — 2764800] . (C.3)

These formulas are a prediction, which should be checked by a first-principles’ derivation
generalising the methods of [26] to the next order.

D Summary of perturbative OPE coefficient-data at strong coupling

In the tables below, we collect all the perturbative OPE coefficient-data at strong coupling
available in the literature, to the best of our knowledge, and include our results where
applicable. One should keep in mind that spectral results are obtained by high-precision
numerical fits of QSC-data, while drawing any conclusions from the data presented.
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St.No.|  state > | 4§ | ¢|Tvaj |p|di| g | KK | 5o | fie2 | fus | Degs.
500111100, (10| 1 [0 2]| 2|00 | 1[41] 203 + 45 [24] see [25]
2 300221100, (10| 1 |[1|¥] 2] 00 1 [26] 203 + 82 [26]
400331100, |10 1 2|5 | 2] [00] 1 [26] 2(3 + 1233 [26]
23 500441100, |10 1 [3[2Z] 2] [00] 1 [26] 203 + 387 [26]
118 | 00551100, 10| 1 |[4|10| 2| [00] 1 [26] 2(3 + 8357 [26]
12 4[02111120], |[2|2] 1 |0|6 |14 [00] 3 [23] 6C3 -+ 5208 [24] | see [25]
39 502221120] |22 1 |[1[Z]14] [00] 3 126] 6¢s3 + 15122 [26]
206 | 6[02331120]; 22| 1 |2|9 [14][00] | 2[20] 6¢3 + 29343 [26]
219 | 04111140, [3[4] 1 [0]13|36] [00] | {95 [28] | 28¢5 + 36595 [24] | see [25] |
3 400222200, [2]|0| 2 |0] 2] 2[00 |0][22 2] 0 [25]
4 400222200], [2|0] 2 |0| 8 |14 [00) | 7 [22, 25] 2(3 — 382 [25]
17 500332200, [2/0| 2 [1]8B]2]o0, 0
18 500332200], |2/0| 2 |1]3|14][00) i
6 400331100, |2]0| 2 |[2|5 | 2] [20] 0
107 | 6[00442200]; |20 2 |2|11|14|[00] i
109 | 6[00442200)5 20| 2 |25 ]2/ 00 0
24 500441100, [2/0| 2 [3[2] 2] [20] 0
119 | 600551100, |2|0] 2 |4]10]| 2 | [20] 0
196 | 602222220, |3|2] 2 |0| 8 [18|[00) 0
197 | (02222220, |3|2] 2 |0]17|36]|[00] 243
198 | g[02222220], |3|2| 2 |0]|13|28|[00]; S 199
199 | 602222220 |32 2 |0|13|28|[00] 35 198
205 | (02331120, [3]2| 2 |2[11|18|[00] 0
207 | ¢[02331120], [3|2| 2 |2|11]18|[20) 0 208
208 | 6023311205 [3|2| 2 |2]11|18][20] 0 207
76 600222211]; [3|0| 3 |o0|3]|2 |00} 0 85
78 600333300, [3[0| 3 |0l 1|0][00] 0
81 600333300], |[3/0| 3 [0]10|18]|[00]3 0
83 611222211]; 30| 3 |0/|11|20][00]4 2
84 6[11222211), |30 3 |0|19]36|[00]5 o
85 611333300, [3|0[ 3 |0]3 |2 |00 0 76
19 500332200]; (3]0 3 |1 [00] 0 20
20 500332200, [3]0| 3 |1 [0 0]s 0 19
105 | 6[00442200], |3|0] 3 |2 [0 0], 0 106
106 | ¢[00442200, |3|0] 3 |2 [0 0] 0 105
108 | 6[00442200], |3|0] 3 |2]13]18|[20); 0
112 | 6004422005 |[3[0] 3 |2] 4|0 ][20] 0
113 | ¢[00442200], |3]|0] 3 |2]9 |10][20]3 0 114
114 | 00442200],, |30 3 |2|9 |10|[20]4 0 113
120 | 600551100, |3[0] 3 |49 ] 0] [40]

Table 2. Perturbative CFT-data for the 40 lowest lying states in planar 4D A = 4 SYM on even-spin
Regge trajectories: whose Lorentz spin labels are of the form [¢ ¢] and R-symmetry labels are like
[0 p 0]. For every state, we display its State Number (St. No.) and State ID, both of which are
unique identifiers of a given state, introduced in [22]. We also display the string mass level 4, spin ,
Regge trajectory number, R-charge p, sub-sub-leading dimension d; from [22], sub-leading Casimir j;
from [22], the KK-tower assigned in [22], and exact degeneracies (see [22]) of the state. Finally we
present the strong coupling expansion coefficients of the OPE coefficient of a state. We have added
references to the available results in the literature. New results obtained by us are coloured blue.
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St. No. ‘ State ID ‘ 1) ‘ y4 ‘ Traj ‘ P ‘ dy ‘ J1 ‘ KK ‘ fr:2 ‘ Degs.
9 Jo1221110) |21 1 |18 ][0 | 3 [22 26 10
10 401221110, |21 1 |1 [ ] 8 [[10]]| 3 [22 26] 9
34 501331110 [2(1] 1 |2[2] 8 |[10]]| 3[22,26] 35
35 501331110, (21| 1 |2[2] 8 |[10]]| 3[22,26] 34
173 | 6014411105 2|1 1 [3[2] 8 |[10]| 2 [22,26] | 174
174 | 601441110, |21 | 1 [3|2] 8 |[10]| 2 [2226] | 173
214 | 403221130}, |33 1|12 |27 | [10]y | 132 [22,26] | 215
215 | [03221130),|3|3| 1 |1]12[27|[102| 12 [22,26] | 214

Table 3. Perturbative CFT-data for the 8 lowest lying states in planar 4D N = 4 SYM on odd-spin
Regge trajectories: whose Lorentz spin labels are of the form [¢ ¢] and R-symmetry labels are like [0 p 0].
For every state, we display its St. No. and State ID, string mass level J, spin £ , Regge trajectory
number, R-charge p, sub-sub-leading dimension d; from [22], sub-leading Casimir j; from [22], the
KK-tower assigned in [22], and exact degeneracies (see [22]) of the state. All the states are on the
leading odd-spin Regge trajectory, i.e., for these states £ = 2(6 — 1) — 1 = 26 — 3. The degeneracy
of all states on this Regge trajectory is 2 [35]. Furthermore, in all the states considered in [22], it
was observed that the degeneracy is exact, i.e. that the scaling dimensions of the 2 degenerate states
are indistinguishable. In particular, this is true to all orders in perturbation theory. Therefore, the
average formula for (f:.2) obtained by [26] is actually a prediction for the precise OPE coefficient. We
also display this prediction.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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