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1 Introduction and summary

Worldvolume theory on multiple M2-branes is an important object in studying M-theory, the
AdS/CFT correspondence [1] and various dynamics of three-dimensional supersymmetric
field theories. Since the worldvolume theory of arbitrary number N of M2-brane was
constructed explicitly as a U(N)k × U(N + M)−k N = 6 superconformal Chern-Simons
matter theory [2–4] (which we shall call ABJ theory in this paper), various features of this
model such as the reduction to D2-branes [5–7], supersymmetry enhancement to N = 8 [8–
11], dualities [12, 13] suggested from the IIB brane setup or M-theory picture and classical
solution describing M2-M5 bound states [14–20] have been investigated. The method of
supersymmetry localization [21–25] is also applicable in this model, which allows us to
compute various observable protected by the supersymmetry exactly. In particular, since the
free energy proportional to N3/2, which is characteristic of M2-branes through the AdS/CFT
correspondence [26], was reproduced by the supersymmetry localization of the sphere partition
function [27, 28], the large N expansion of the partition function of the ABJ theory was
studied extensively [29–33]. The large N asymptotics of the partition function was also
studied in different setups such as the theories with longer circular quivers [34–39], non-circular
quivers [40–42] or non-unitary gauge groups [43] which correspond to M2-branes probing
different orbifold backgrounds, as well as in the theories with continuous deformations [44, 45]
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or on different manifolds [46–49]. In some of these setups, the localization formula for the
partition function can be reorganized into the partition function of an ideal Fermi gas [50–
53]. This allows us to determine the all order perturbative corrections in 1/N ,1 as well as
some part of the non-perturbative corrections in 1/N in the ABJ theory [54–58] and its
generalizations [59–70]. The results of the exact large N expansion also stimulated various
researches on the gravity side in the direction of precision holography such as reproducing
the logarithmic correction in 1/N [71–73] and the other 1/N perturbative corrections [74]
which may correspond to the higher derivative correction in supergravity [75–82] as well
as the non-perturbative effects in 1/N [83, 84]. There are some attempts to derive the all
order 1/N perturbative corrections in the gravity side [85, 86] as well. Furthermore, the
exact caulculations also have various applications in the recent development in the bootstrap
analysis of three dimensional superconformal field theories [87–97].

In the exact large N expansion mentioned above, the partition function of the ABJ theory
and its generalizations was studied mainly without parameter deformation, or with small
deformation to extract refined information of the undeformed theory, where it is assumed
that the deformation parameter does not change the large N behavior drastically. However,
the model with finite deformation can also enjoy interesting phenomena in the large N

limit. In this paper we in particular consider the mass deformation of the ABJ theory which
preserves part of the N = 6 supersymmetry [98, 99]. When the theory is considered on the
flat space, the mass deformation changes the structure of the vacua drastically. In massless
case, the vacua is the 8N dimensional continuous moduli space corresponding to the position
of M2-branes in eleven dimensional spacetime. When mass parameter is turned on, this
is lifted to a discrete set of vacua each of which correspond to part of M2-branes sticking
to each other and expanding to fuzzy M5-branes due to the Myers’ effect [100]. When the
theory is considered on a compact space, the mass parmeter enters through a dimensionless
parameter mr (r: length scale of the compact manifold) and the drastic change in the case
of flat space may suggest that the theory shows qualitatively different behavior at small
mr and at large mr. In particular, we expect that the mass deformation gives a non-trivial
phase structure to this theory in the large N limit.

In this paper we consider the partition function of the mass deformed ABJ theory
compactified on S3 with rS3 set to 1. By using the supersymmetry localization method, we
can reduce the partition function to a 2N + M dimensional ordinary integration. Therefore
we can analyze the phase structure of the mass deformed ABJ theory by studying the large N

expansion of this integration in various parameter regime. Indeed the large N phase structure
was first investigated in the ’t Hooft limit N, M, k → ∞ with N

k and N+M
k kept finite by

applying the large N saddle point approximation to this integration [101, 102]. As a result
it was fonud that the partition function exhibits an infinite sequence of phase transitions
as the mass parameters and the ’t Hooft couplings are varied.

Besides the ’t Hooft limit we can also consider the M-theory limit N →∞ with k and
M kept finite. The partition function in this limit was studied in [44] by the large N saddle
point approximation [28]. Later it was found for m1 = m2 = m that the large N saddle

1For the ABJM theory [3] the all order perturbative correctons in 1/N was determined originally through
the ’t Hooft expansion [31].
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configuration in the small mass regime, which is a smooth deformation of the one for m = 0,
becomes inconsistent when m > π [103, 104]. This suggests that the model exhibits a large
N phase transition at m1 = m2 = π. Besides the large N saddle point approximation,
the partition function of the mass deformed ABJ theory can also be studied by the Fermi
gas formalism. The Fermi gas formalism allows us to determine the all order perturbative
expansion in 1/N [105], whose leading part precisely reproduces the result of the large N

saddle point approximation in the small mass regime. On the other hand, through the small
k expansion and the finite N exact values, the Fermi gas formalism also gives some access to
the 1/N non-perturbative effects. In particular, we find that the exponent of one of these
non-perturbative effects has negative real part when √m1m2 > π [105, 106]. This implies that
the 1/N expansion obtained in the small mass regime is not valid when √m1m2 > π, which is
another evidence for the large N phase transition. In these previous works, however, we were
not able to figure out the large N behavior of the partition function in the supercritical regime.
The only tool to study this regime was the exact/numerical values of the partition function
at finite N ≲ 10, which was not sufficient for making a plausible guess for the large N limit.

In this paper we find a new method to study the large N behavior of the prtition function
in the supercritical regime. The idea is based on the connection between the partition
function of the ABJ theory and q-discrete Painlevé III3 system (qPIII3) found [107]. This
connection can be understood from the following reasons. For the ABJ theory without
mass deformation, the large N expansion was completely solved including all order non-
perturbative corrections in 1/N by using the Fermi gas formalism [108–110]. As a result, it
was found that the coefficients of these non-perturbative effects are precisely given by the
Gopakumar-Vafa free energy of the refined topological string on local P1 × P1. Here the local
P1 × P1 arizes from the density matrix of the Fermi gas formalism ρ̂ through the prescription
to identify the classical limit of ρ̂−1 = const. as the mirror curve of the target CY3. This
correspondence, called topological string/spectral theory (TS/ST) correspondence [111, 112],
is believed to hold for more general local Calabi-Yau threefolds and matrix models of Fermi
gas form and has been tested through various non-trivial examples [113–136]. Under the
framework of the geometric enginerring [137] the partition function of the topological string
is identified with the Nekrasov partition function of the five-dimensional N = 1 Yang-Mills
theory realized in the M-theory compactified on the Calabi-Yau threefold [138–140]. These
Nekrasov partition functions are known to satisfy non-linear self-consistency equations called
blowup equations [141–148], which suggests that the partition function of the ABJ theory
also satisfy a corresponding relation.

More concretely, the correspondence between the partition function of the ABJ theory
and q-Painlevé systems is that the grand partition function of the ABJ theory with respect to
the overall rank N satisfies the q-Painlevé III3 eqaution in the Hirota bilinear form. Here the
rank difference M in the ABJ theory is identified with the discrete time of qPIII3. Therefore,
given the grand partition function at some two values of M , say M = 0, 1, the bilinear
relations allow us to determine the grand partition function for all the other values of M . On
the other hand, the fugacity dual to N corresponds to the initial condition which does not
appear explicitly in the bilinear equation. Hence by expanding qPIII3 in the fugacity and
looking at each order in the fugacity, we obtain an infinite set of bilinear relations among
the partition function at different N and M .
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In [149] it was found that the same bilinear relation also exists for the mass deformed
ABJ theory when the two mass parameters m1, m2 are equal to each other by consulting
the five-dimensional theory associated with the curve ρ̂−1 = const.. In this paper we further
generalize the relation to the case with non-equal mass parameters. Moreover, by combining
these relations with additional constraints on the partition function from the Seiberg-like
duality [150, 151] and duality cascade [152–154], we obtain the recursion relation for the
partition function with respect to N . The recursion relations are simple and purely algebraic,
which enables us to calculate the partition function for finite but very large N more efficiently
than the standard method of exact calculation based on the TBA-like structure of the
density matrix ρ̂ [54, 155, 156] employed in [149]. By using the exact (or numerical with
high precision) values of the partition function thus obtained, we find the following novel
properties of the partition function in the supercritical regime √m1m2 > π.

• First, we find that the partition function for generic values of N oscillates rapidly
around zero as a functions of the mass parameters in the supercritical regime. This
behavior was already observed in [106], for which it was not even obvious whether there
is a well defined large N expansion of the partition function or free energy − log Z in
the supercritical regime. However, in this paper we further find that for each k there is
an infinite series of special values of ranks N

(k)
n (n = 1, 2, · · · ) which grows N

(k)
n ∼ n2

at large n, for which the partition function is positive definite even in the supercritical
regime. This allows us to investigate a smooth large n expansion of the free energy on
these sequences.

• By focusing on the special ranks N
(k)
n we completely identify the large mass asymptotics

of the free energy for arbitrary value of n as listed in table 1, up to the corrections
of order O(e−

m1
2 , e−

m2
2 ). Curiously, in the large n limit of the formula we find the

same power of n as in the subcritical regime, namely − log Z(N (k)
n ) ∼ m(N (k)

n )3/2. Note
that our result is very different from a naive guess for a theory with massive matter
fields which is − log Z ∼ −m(#(matter fields)) ∼ N2 due to the decoupling. The same
discrepancy has been observed also in the three dimensional supersymmetric gauge
theories without Chern-Simons terms where a naive decoupling of the massive matter
fields results in a bad theory [157].2 In such setups it is possible to turn on a non-trival
Coulomb moduli depending on the mass parameters where the gauge symmetry is
partially broken and some of the matter fields remains light so that the theory left
after the large mass limit is a good theory. It would be interesting if we can provide
an analogous physical interpretation to the large mass asymptotics of the partition
function of the U(N (k)

n )k ×U(N (k)
n )−k ABJM theory we obtain. In section 6 we briefly

investigate this point, proposing a heuristic understanding of the asymptotics from the
shifted Coulomb moduli which works for some but not all k and n.

2Note that the large mass asymptotics of the ABJM theory was investigated briefly in appendix C.2 in [106]
when one of the two mass parameters is set to zero, which reduces to the U(N)k × U(N)−k linear quiver
Chern-Simons matter theory when we naively remove the massive bifundamental hypermultiplet from the
ABJM theory. Also in this case we observe the discrepancy between the actual mass dependence of the
partition function and the naive guess from the number of massive matter components when the linear quiver
Chern-Simons theory is a bad theory [158, 159].
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• Once we determine the simple formulas for the large mass asymptotics of the partition
function, we can further analyze the finite mass correction in the large n limit for
N = N

(k)
n . Interestingly, we observe that the deviation of the free energy from the

asymptotic formula in the regime √m1m2 > π is a superposition of linear growth and
a periodic oscillation with respect to n. Namely, we observe that the leading and
sub-leding terms in the large n limit, O(n3) and O(n2), do not receive the finite m

correction, and hence we propose (see (5.4) and (5.23))

lim
n→∞

− log Zk,0(N (k)
n ; m1, m2)

(N (k)
n )3/2

=


π
√

2k(1 + π−2m2
1)(1 + π−2m2

2)
3 (√m1m2 < π)

√
2k

3 (m1 + m2) (√m1m2 > π)

.

(1.1)

In particular, from this proposal it follows that the phase transition at √m1m2 = π

is of second order, regardless of in which direction in (m1, m2)-plane we cross the
phase boundary.

The rest of this paper is organized as follows. In section 2 we define the partition
function of the ABJ theory with two parameter mass deformation which are turned on as
the supersymmetric expectation values of the background vector multiplets of the SO(6)R

symmetry. In section 3 we recall the connection between the partition function with m1 =
m2 ∈ πiQ and q-deformed affine A-type Toda equation in the bilinear form found in [149] and
display its generalization to general m1, m2 which can be guessed from the exact values of the
partition function. In section 4 we show that the bilinear relations, conbined with additional
constraints from the Seiberg-like duality and duality cascade, give the recursion relation for
the partition function with respect to N , and organize the relations into the form which
is suitable for the subsequent analysis. By using the recursion relation we study the large
mass asymptotics as well as the large N expansion in the supercritical regime √m1m2 > π

in section 5. In section 6 we summarize the results and list possible future directions. In
appendix A we display the exact values of the partition function obtained by the method used
in [149], which can be used to test the bilinear relations (3.12), (4.8). In appendix B we explain
how we guess the bilinear relation for m1 ̸= m2 (3.12). In appendix C we compare the analytic
guess for the leading worldsheet instanton coefficient (5.12) with the numerical results.

2 The model

First let us explain our setup, which is the ABJ theory with two-parameter mass deformation.
The ABJ theory [3, 4] is an N = 6 superconformal Chern-Simons matter theory which
consists of two vectormultiplets with the gauge groups U(N) and U(N + M) and the Chern-
Simons levels k and −k, two chiral multiplets X1, X2 in the bifundamental representation
(□,□) under U(N)k × U(N + M)−k and two chiral multiplets Y1, Y2 in the bifundamental
representation (□,□). The theory has SO(6) R-symmetry, under which the four chiral
multiplets (X1, X2, Y †

1 , Y †
2 ) transform as a vector representation of SU(4) = SO(6)R. This

theory is realized by a brane setup in the type IIB superstring theory displayed in figure 1 [160].
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Figure 1. The type IIB brane construction of the U(N)k ×U(N)−k ABJ theory. Here (1, k)5-brane,
the bound state of an NS5-brane stretched in 012468-directions and k D5-branes stretched in 012579-
directions, is stretched in 012-directions and in the three directions on 45, 67, 89 planes with an angle
θk = arctan k from 4, 6, 8-axes [161, 162].

The brane construction is useful in understanding the dualities (3.16) and (4.2) used in
later analysis.

We can add a supersymmetric mass terms to this theory by introducing non-dynamical
background vectormultiplets for the R-symmetry which are frozen to the sypersymmetric
configuration V bgd = (Abgd

µ , σbgd, λbgd, Dbgd) = (0, δ, 0,−δ). We can turn on three mass
parameteres (δ1, δ2 + δ3, δ2 − δ3) corresponding to the Cartans of U(1)× SU(2)1 × SU(2)2 ⊂
SO(6)R under which the (X1, X2) and (Y1, Y2) transform respectively as (+1, 2, 1) and
(−1, 1, 2).3 This gives the following masses to the chiral multiplets:

X1 : δ1 + δ2 + δ3, X2 : δ1 − δ2 − δ3, Y1 : −δ1 + δ2 − δ3, Y2 : −δ1 − δ2 + δ3. (2.1)

In this paper we consider the two-parameter mass deformation with

δ1 = m1 −m2
2π

, δ2 = m1 + m2
2π

, δ3 = 0. (2.2)

The partition function of the mass deformed ABJM theory on the three sphere is given by
the supersymmetry localization formula [22], which simplifies for this choice as

Zk,M (N, m1, m2) = (−1)MN+ M(M−1)
2 e

NM(m1+m2)
2

N !(N + M)!

∫
dN x

(2π)N

dN+M y

(2π)N+M
e

ik
4π

(∑N

i=1 x2
i −
∑N+M

i=1 y2
i

)

×
∏N

i<j

(
2 sinh xi−xj

2

)2∏N+M
i<j

(
2 sinh yi−yj

2

)2

∏N
i=1

∏N+M
j=1

(
2 cosh xi−yj−m1

2

) (
2 cosh yi−xj−m2

2

) . (2.3)

Here we have chosen the overall factor (−1)MN+ M(M−1)
2 e

NM(m1+m2)
2 to be the same as in [149].

Note that the partition function at M = 0 obeys various symmetries

Zk,0(N, m1, m2) = Zk,0(N, m1,−m2), Zk,0(N, m1, m2) = Zk,0(N, m2, m1),
(Zk,0(N, m∗

1, m∗
2))∗ = Zk,0(N, m1, m2), (2.4)

which are obvious from (2.3).
3Here we have followed the convention of [81, 163], with m1, m2, m3 there denoted as δ1, δ2, δ3.

– 6 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
7

3 Bilinear relations of partition functions

In the following we review the result of [149] where it was found that the grand canonical
partition function of the mass deformed ABJM theory

Ξk,M (κ; m1, m2) =
∞∑

N=0
κN Zk,M (N, m1, m2) (3.1)

satisfies bilinear relations (3.11) for m1 = m2, and display their generalizations for m1 ̸=
m2 (3.12).

In [149] it was found that the partition function (2.3) can be rewritten in the Fermi
gas formalism

Zk,M (N, m1, m2) = Zk,M (0)
N !

∫
dN x

(2π)N
det⟨xi|ρ̂|xj⟩, (3.2)

where Zk,M (0) is the partition function of U(M)k pure Chern-Simons theory (A.1) and ρ̂

is the following operator of one-dimensional quantum mechanics

ρ̂ = (−1)M e
M(m1+m2)

2
e−

im2x̂

2π

2 cosh x̂+πiM
2

( M∏
r=1

2 sinh x̂−tM,r

2k

2 cosh x̂−tM,r−m1k
2k

)
e−

im1p̂

2π

2 cosh p̂
2

(3.3)

with tM,r = 2πi(M+1
2 − r). Here we have introduced position/momentum operator x̂, p̂

satisfying [x̂, p̂] = 2πik and the position eigenstate |·⟩. By using quantum dilogarithm
Φb(z) [121]

Φb(z) = (−e2πbz+πib2 ; e2πib2)∞
(−e2πib−1z−πib−2 ; e−2πib−2)∞

, (3.4)

with b =
√

k, which satisfy the following relations

Φb(z + ib)
Φb(z) = 1

1 + eπib2e2πbz
,

Φb(z + ib−1)
Φb(z) = 1

1 + e−πib−2e2πb−1z
, (3.5)

we can express ρ̂ as

ρ̂ = (−1)M e−
πiM

2 e
Mm2

2 e
(

1
2−

im2
2π

)
x̂

Φ
(

x̂
2πb + ib

2 −
iM
2b

)
Φ
(

x̂
2πb−

ib
2 + iM

2b

)e−
im1
2π

p̂
Φ
(

x̂
2πb + iM

2b

)
Φ
(

x̂
2πb−

iM
2b

) 1
2cosh p̂

2
. (3.6)

By using the first identity of quantum dilogarithm in (3.5), we find that the inverse of ρ̂ is
written, up to a similarity transformation which does not affect the partition functions (3.2),
as a Laurent polynomial of e

x̂
2 , e

p̂
2 , e

im2x̂

2π , e
im1p̂

2π , which reads

ρ̂−1 = Û−1(ρ̂′)−1Û , Û =
Φb

(
x̂

2πb −
ib
2 + iM

2b

)
Φb

(
x̂

2πb + ib
2 −

iM
2b

)e
(
− 1

2 + im2
2π

)
x̂, (3.7)

with

(ρ̂′)−1 = e−
πik

4 +( k
4 −M)(m1+m2)+ im1m2k

4π

(
e
(

1+ i(m1+m2)
2π

)
x̂′+ i(m1−m2)p̂′

2π +e
(

i(m1+m2)
2π

)
x̂′+
(
−1+ i(m1−m2)

2π

)
p̂′

+e
i(m1+m2)

2π x̂′+
(

1+ i(m1−m2)
2π

)
p̂′

+eπi(k−2M)e
(
−1+ i(m1+m2)

2π

)
x̂′+ i(m1−m2)p̂′

2π

)
. (3.8)
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Figure 2. Newton polygon I = {(m, n)} such that (ρ̂′)−1 + κ ∝
∑

(m,n)∈I cmnemx̂′′+np̂′′ for m1 =
m2 = πi(2a−ν)

ν with (ν, a) = (8, 3). We have also displayed the coefficient cmn associated with each
point, where κ′ = e

πik
4 −( k

4 −M)(m1+m2)− im1m2k
4π .

Here we have redefined the canonical position/momentum operators

x̂′ = x̂ + p̂

2 − 3πiM

2 + πik

2 − k(m1 + m2)
4 , p̂′ = −x̂ + p̂

2 − πiM

2 + k(m1 −m2)
4 ,

(3.9)

which now satisfy [x̂′, p̂′] = πik, to simplify the relative coefficients of the Laurent polynomial.
To guess the bilinear relation satisfied by Ξk,M (κ), in [149] we have consulted the ideas of

the topological string/spectral theory (TS/ST) correspondence and the geometric engineering,
where the classical curve ρ̂−1|x̂→x,p̂→p + κ = 0 is identified with the Seiberg-Witten curve of
the five-dimensional N = 1 Yang-Mills theory engineered by the Calabi-Yau threefold. In
particular, if we set m1 = m2 = πi(2a−ν)

ν with ν, a ∈ N, by further redefining the canonical
operators as

x̂′′ = 2x̂′

ν
, p̂′′ = p̂′ −

(
1− 2

ν

)
x̂′, (3.10)

we find that the curve ρ̂−1|x̂′′→x,p̂′′→p + κ = 0 coincides with the Seiberg-Witten curve of the
SU(ν) pure Yang-Mills theory with only the a-th Coulomb parameter is turned on, which
corresponds to κ. See figure 2. The TS/ST correspondence suggests that the grand partition
function Ξk,M (κ, m1, m1) is identified with the Nekrasov-Okounkov partition function of this
theory on the self-dual Ω background ϵ1 = −ϵ2, which is known to satisfy the q-discrete
SU(ν) Toda bilinear equations with respect to the instanton counting parameter z [164].
Since z is identified with the moduli of the curve as z = e−πiν(1− 2M

k
) [126], this fact implies

that Ξk,M (κ, m1, m2) also satisfies bilinear difference relations with respect to the shift of
M . Indeed, by using the exact expressions of Zk,M (N, m1, m2) for various k ∈ N, N ∈ Z≥0,
M ∈ {0, 1, · · · , k} as functions of m1, m2 obtained by the open string formalism [53] it was
found that Ξk,M (κ, m1, m1) satisfy the following relations [149]

Ξk,M+1(−e−m1κ; m1, m1)Ξk,M−1(−em1κ; m1, m1) + e−
2πiM

k Ξk,M (κ; m1, m1)2

− Ξk,M (−e−m1κ; m1, m1)Ξk,M (−em1κ; m1, m1) = 0. (3.11)

Note that although the above argument through the five-dimensional gauge theory is valid
only for m1 = m2 = πi(2a−ν)

ν , the exact expressions for Zk,M (N, m1, m2) tell us that (3.11) is
satisfied for any complex values of m1 = m2 with |Im[m1]| < π. Indeed, since the partition
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Figure 3. Hanany-Witten transition associated with the duality (3.13).

function Zk,M (N, m1, m2) is holomorphic functions of m1, m2 in |Im[m1]|, |Im[m2]| < π for
any finite k, M, N , if (3.11) is satisfied for any (ν, a) it follows that (3.11) is satisfied for any
complex value of m1 = m2 with |Im[m1]| < π. Furthermore, with the exact expressions for
Zk,M (N, m1, m2) at hand it is not difficult to find that Ξk,M (κ, m1, m2) satisfies the following
bilinear relations even for m1 ̸= m2:

Ξk,M+1(−e−
m1+m2

2 κ; m1, m2)Ξk,M−1(−e
m1+m2

2 κ; m1, m2)

+ e−
2πiM

k Ξk,M (e
m1−m2

2 κ; m1, m2)Ξk,M (e−
m1−m2

2 κ; m1, m2)

− Ξk,M (−e−
m1+m2

2 κ; m1, m2)Ξk,M (−e
m1+m2

2 κ; m1, m2) = 0. (3.12)

In appendix B we explain how we have guessed this relation by using the first a few exact
values of the partition function. We have checked against the exact values of Zk,M (N ; m1, m2)
that this equation is satisfied for 1 ≤M ≤ k − 1 for k = 2 to the order κ7, for k = 3 to the
order κ6, for k = 4 to the order κ6, for k = 5 to the order κ5 and for k = 6 to the order κ5.
In appendix A we list part of these exact values with which the reader can perform the same
test. See [149] for the detail of the method to generate these data.

Lastly let us comment on the compatibility of the bilinear relations (3.12) with the
Seiberg-like duality

U(N)k ×U(N + M)−k ←→ U(N)−k ×U(N + k −M)k (3.13)

which relates Zk,M (N, m1, m2) and Zk,k−M (N, m1, m2). When m1 = m2 = 0, the duality can
be understood as the Hanany-Witten effect in the type IIB brane construction [160] displayed
in figure 3. The relation between the partition function with relative ranks M and k −M

can be proved explicitly by using the following integration identity [151, 154]
1

N !

∫
dN z

(2π)N
Z0,ξ(NL,N ;x,z)Zk,η(N,NR;z,y)

=


e

πi

(
− 1

6−
k2
12 + k(N+Ñ)

4 + (N−Ñ)2
4 −(ξ−ζ)2

)
1

Ñ !

∫
dÑ z

(2π)Ñ
Zk,η(NL, Ñ ;x, z̃)Zk,ξ(Ñ ,NR; z̃,y) (Ñ ≥ 0)

0 (Ñ < 0)
,

(3.14)

where Ñ = NL + NR − N + k and

Zk,ζ(N1,N2;x,y) = e
ik
4π

(∑N1
i=1

x2
i −
∑N2

i=1
y2

i

)
e
−iζ
(∑N1

i=1
xi−
∑N2

i=1
yi

)∏N1
i<j 2sinh xi−xj

2
∏N2

i<j 2sinh yi−yj

2∏N1
i=1
∏N2

j=1 2cosh xi−yj

2
.

(3.15)
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By using this formula, we find the following relation for the partition function (2.3) with
m1, m2 ̸= 0

Zk,M (N, m1, m2) = e
πi

(
kN

2 + k2
12 −

k
2 + 1

6

)
e

N(2M−k)(m1+m2)
2 − ikNm1m2

2π (Zk,k−M (N, m∗
2, m∗

1))∗,
(3.16)

or

Ξk,M (κ; m1, m2) = e
πi

(
k2
12 −

k
2 + 1

6

)
(Ξk,k−M (e−

πik
2 e

(2M−k)(m∗
1+m∗

2)
2 +

ikm∗
1m∗

2
2π κ∗; m∗

2, m∗
1))∗

(3.17)

in terms of the grand partition function. Here the complex conjugation is necessary to take
care of the change of the Chern-Simons levels (k,−k)→ (−k, k). We see that the bilinear
relations (3.12) are manifestly compatible with the Seiberg-like duality (3.17).

4 Recursion equations in N

In the previous section we have found that the grand partition function Ξk,M (κ) with 0 ≤
M ≤ k satisfies k−1 bilinear relations (3.12) which are second-order difference relations (3.12)
with respect to M .4 Conversely, if we assume (3.12) to hold, it allows us to determine Ξk,M (κ)
for 2 ≤ M ≤ k completely algebraically once Ξk,0(κ) and Ξk,1(κ) are given as initial data.
Expanding (3.12) in κ, on the other hand, we can view them as an infinite set of relation
among {Zk,M (0)}kM=0, {Zk,M (1)}kM=0, {Zk,M (2)}kM=0 and so forth. However, these relations
alone cannot be solved recursively in N since the number of unknowns (which is k + 1) at
each step is larger than the number of equations at each order in κ (which is k − 1). In
the following we see that (3.12) combined with an additional constraint from the duality
cascade [154] is solvable in N recursively.

To explain the constraint, let us consider the Hanany-Witten brane exchange (see figure 3)
for the case with M ≥ k. Since k−M ≤ 0, the smallest rank also changes as N → N +k−M .
When N < M − k we encounter a negative rank, which is interpreted that the configuration
does not preserve the supersymmetry [160]. Hence the brane configurations suggest the
following relation among the partition functions

Zk,M (N) ∼

Zk,M−k(N + k −M) (N ≥M − k)
0 (N < M − k)

. (4.1)

These relations were proved explicitly in [154] for m1 = m2 = 0 together with the precise
overall factor for N ≥ M − k by using the identities (3.14), which can be generalized to

4As we have commented above, if we use the Seiberg-like duality, which gives Ξk,M (κ) with M > ⌊k/2⌋ as
the complex conjugates of those with M ≤ ⌊k/2⌋ (3.17), our problem can be reduced to the determination
of ⌊k/2⌋ + 1 grand partition functions against ⌊k/2⌋ equations. However, to simplify the explanation of
the recursion algorithm here we handle the bilinear relations completely algebraically rather than using the
Seiberg-like duality and taking complex conjugate.
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m1, m2 ̸= 0 straightforwardly. As a result we find

Zk,M (N,m1,m2)

=

e
πi
(

kN
2 + k2

12 − k
2 + 1

6

)
e

(Nk+(M−k)2)(m1+m2)
2 − ikNm1m2

2π Zk,M−k(N−(M−k),m1,m2) (N ≥M−k)
0 (N < M−k)

(4.2)

for M ≥ k. In particular, the grand partition functions at M = k and M = k + 1 are related
to Ξk,0(κ, m1, m2) and Ξk,1(κ, m1, m2) as

Ξk,k(κ, m1, m2) = e
πi

(
k2
12 −

k
2 + 1

6

)
Ξk,0

(
e

πik
2 e

k(m1+m2)
2 − ikm1m2

2π κ, m1, m2

)
, (4.3)

Ξk,k+1(κ, m1, m2) = e
πi

(
k2
12 + 1

6

)
e

(k+1)(m1+m2)
2 − ikm1m2

2π κΞk,1

(
e

πik
2 e

k(m1+m2)
2 − ikm1m2

2π κ, m1, m2

)
.

(4.4)

Note that the first relation is consistent with the Seiberg-like duality (3.17) with M = k,
taking into account the fact that the partition functions at M = 0 is real (2.4). Furthermore,
from the original definition (2.3) we have

Zk,−1(N + 1, m1, m2) =

e−
(2N+1)(m1+m2)

2 (Zk,1(N, m∗
2, m∗

1))∗ (N ≥ 0)
0 (N = −1)

. (4.5)

Combining this with the Seiberg-like duality (3.17) we find

Zk,−1(N +1,m1,m2)

=

e
−πi
(

kN
2 + k2

12 − k
2 + 1

6

)
e

(−kN−1)(m1+m2)
2 + ikNm1m2

2π Zk,k−1(N,m1,m2) (N ≥ 0)
0 (N =−1)

, (4.6)

or

Ξk,−1(κ; m1, m2) = e
−πi

(
k2
12 −

k
2 + 1

6

)
e−

m1+m2
2 κΞk,k−1(e−

πik
2 e−

k(m1+m2)
2 + ikm1m2

2π κ; m1, m2)
(4.7)

in terms of the grand partition function. Interestingly, we find by using the exact values of
Zk,M (N, m1, m2) that the bilinear relation (3.12) at M = 0 with Ξk,−1(κ; m1, m2) substituted
with (4.7),

−e
−πi
(

k2
12 − k

2 + 1
6

)
κΞk,1(−e−

m1+m2
2 κ;m1,m2)Ξk,k−1(−e−

πik
2 e−

(k−1)(m1+m2)
2 + ikm1m2

2π κ;m1,m2)

+Ξk,0(e
m1−m2

2 κ;m1,m2)Ξk,0(e−
m1−m2

2 κ;m1,m2)

−Ξk,0(−e−
m1+m2

2 κ;m1,m2)Ξk,0(−e
m1+m2

2 κ;m1,m2) = 0, (4.8)

is also satisfied. We can also consider the bilinear relation at M = k with Ξk,k(κ; m1, m2) and
Ξk,k+1(κ; m1, m2) substituted with (4.3) and (4.4), which turns out to be identical to (4.8).
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Combining this new relation with (3.12), now we have k − 1 equations at each order
in κ against k − 1 independent partition functions Zk,M (N) with M = 0, 1, · · · , k − 1.
Hence we have a sufficient number of equations to solve them with respect to N recursively.
In particular, due to the additional κ in the first term, (4.8) at the order κN gives an
expression of Zk,0(N, m1, m2) which consists only of Zk,M (N ′, m1, m2) with N ′ < N . Once
we determine Zk,0(N), the other bilinear relations (3.12) at order κN are linear equations
for (Zk,1(N), · · · , Zk,k−1(N)) which can be inverted straightforwardly. Hence the recursive
procedure schematically goes as follows(

input:
{Zk,M (0)}k−1

M=0

)

→

 Zk,0(1) from (4.8)
↓

{Zk,M (1)}k−1
M=1 from (3.12)

→

 Zk,0(2) from (4.8)
↓

{Zk,M (2)}k−1
M=1 from (3.12)

→

 Zk,0(3) from (4.8)
↓

{Zk,M (3)}k−1
M=1 from (3.12)

→·· · .

(4.9)

In the following subsections we display the recursive relations more explicitly for k = 1
and k ≥ 2.

4.1 k = 1

For k = 1 we have only one independent grand partition function Ξk,0(κ; m1, m2), with which
Ξk,1(κ; m1, m2) and Ξk,2(κ; m1, m2) are written as

Ξ1,1(κ; m1, m2) = e−
πi
4 Ξ1,0(ie

m1+m2
2 − im1m2

2π κ; m1, m2),

Ξ1,2(κ; m1, m2) = em1+m2−
im1m2

2π κΞ1,0(−em1+m2−
im1m2

π κ; m1, m2). (4.10)

Here we have used the symmetry properties (2.4) of Zk,0(N, m1, m2) to simpilfy the right-hand
sides. The bilinear relation used for the recursive approach (4.9) consist only of (4.8):

Ξ1,0(e
m1−m2

2 κ; m1, m2)Ξ1,0(e−
m1−m2

2 κ; m1, m2)

− Ξ1,0(−e
m1+m2

2 κ; m1, m2)Ξ1,0(−e−
m1+m2

2 κ; m1, m2)

− κΞ1,0(−ie−
im1m2

2π κ; m1, m2)Ξ1,0(ie
im1m2

2π κ; m1, m2) = 0. (4.11)

By solving the bilinear relation at order κN for Z1,0(N ; m1, m2), we find

Z0(N ; m1, m2) = 1
H1,0,N

[
N−1∑
n=0

R2n−N+1Z1,0(n; m1, m2)Z1,0(N − 1− n; m1, m2)

−
N−1∑
n=1

I1,0,2n−N Z1,0(n; m1, m2)Z1,0(N − n; m1, m2)
]
, (4.12)

where

Hk,ℓ,n = 2 cosh (m1 −m2)n
2 − e

2πiℓ
k (−1)n2 cosh (m1 + m2)n

2 ,

Ik,ℓ,n = e
(m1−m2)n

2 − e
2πiℓ

k (−1)ne
(m1+m2)n

2 ,

R = ie
im1m2

2π . (4.13)
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We will use the same symbols Hk,ℓ,n, Ik,ℓ,n, R also for k ≥ 2. Note that to obtain (4.12) we
have used the fact that Z1,0(0; m1, m2) = 1.

From (4.12) we find that the partition functions are expanded as

Z1,0(N ; m1, m2) =
LN∑

a=−LN

Rafa(N), LN = N(N − 1)
2 . (4.14)

Here fa(N) are some rational functions of e
m1

2 and e
m2

2 which are determined by the recursion
relation (4.12) with the initial condition f0(0) = 1. Note also that since Z1,0(N ; m1, m2)
are real functions of m1, m2 and fa(N) are realt functions of m1, m2 (which is obvious
from (4.12)), fa(N) satisfy the following relation

f−a(N) = fa(N). (4.15)

4.2 k ≥ 2

To write down the recursion relation for k ≥ 2, it is convenient to redefine the partition
function Zk,M (N) and the grand partition functions Ξk,M (κ) with M ≥ 1 as

Z ′
k,M (N) = e

πi

(
M3
3k

+ M2
2 +(− 11k

12 + 1
2−

1
6k )M

) (
−e−

(m1+m2)
2

)MN

Zk,M (N),

Ξ′
k,M (κ) =

∞∑
N=0

κN Z ′
k,M (N) = e

πi

(
M3
3k

+ M2
2 +(− 11k

12 + 1
2−

1
6k )M

)
Ξk,M

((
−e−

(m1+m2)
2

)M

κ

)
.

(4.16)

With this redefinition, the bilinear relations (3.12), (4.8) are written as (M = 1, · · · , k − 2)

κΞ′
k,1(κ; m1, m2)Ξ′

k,k−1(Rkκ; m1, m2)−
∏
±

Ξ′
k,0(e±

m1−m2
2 κ; m1, m2)

+
∏
±

Ξ′
k,0(−e∓

m1+m2
2 κ; m1, m2) = 0,

∏
±

Ξ′
k,M±1(κ; m1, m2)−

∏
±

Ξ′
k,M (e±

m1−m2
2 κ; m1, m2)

+ e
2πiM

k

∏
±

Ξ′
k,M (−e∓

m1+m2
2 κ; m1, m2) = 0,

Ξ′
k,0(R−kκ; m1, m2)Ξ′

k,k−2(κ)−
∏
±

Ξ′
k,k−1(e±

m1−m2
2 κ; m1, m2)

+ e
2πi(k−1)

k

∏
±

Ξ′
k,k−1(−e∓

m1+m2
2 κ; m1, m2) = 0. (4.17)

Looking at the coefficients of κN , we find

Zk,0(N) = 1
Hk,0,N

(
N−1∑
n=1

RknZ ′
k,1(N − 1− n)Z ′

k,k−1(n)−
N−1∑
n=1

Ik,0,2n−N Zk,0(n)Zk,0(N − n)
)

(4.18)

– 13 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
7

and

Z ′
2,1(N) =

N−1∑
n=1

I2,1,nZ ′
2,1(n)Z ′

2,1(N − n)−
N∑

n=0
Z2,0(n)Z2,0(N − n) (k = 2)

Z ′
k,1(N)

Z ′
k,2(N)

...

...
Z ′

k,k−1(N)


=



b1 c1 0 · · · · · · 0
a2 b2 c2 0 · · · · · · 0
0 a3 b3 c3 0 · · · · · · 0

. . .
0 · · · · · · 0 ak−3 bk−3 ck−3 0
0 · · · · · · 0 ak−2 bk−2 ck−2
0 · · · · · · 0 ak−1 bk−1



−1

d1
d2
...

...
dk−1


(k ≥ 3), (4.19)

where

aM = Z ′
k,M+1(0), bM = −Hk,M,N Z ′

M (0), cM = Z ′
k,M−1(0),

d1 =
N−1∑
n=1

Ik,1,nZ ′
k,1(n)Z ′

k,1(N − n)−
N−1∑
n=0

Z ′
k,2(n)Z ′

k,0(N − n),

dM =
N−1∑
n=1

Ik,M,nZ ′
k,M (n)Z ′

k,M (N − n)−
N−1∑
n=1

Z ′
k,2(n)Z ′

k,0(N − n) (M = 2, · · · , k − 2),

dk−1 =
N−1∑
n=1

Ik,k−1,nZ ′
k,k−1(n)Z ′

k,k−1(N − n)−
N∑

n=1
Z ′

k,0(n)Z ′
k,k−2(N − n), (4.20)

with Z ′
k,0(N) = Zk,0(N).

As is the case for k = 1, the recursion relations (4.18), (4.19) tell us that the partition
functions have the following structures for general M, N :

Zk,0(N) =
L

(0)
N∑

a=−K
(0)
N

Raf (0)
a (N),

Z ′
k,M (N) =

L
(1)
N∑

a=−K
(1)
N

Raf (M)
a (N) (1 ≤M ≤ k − 1), (4.21)

with f
(M)
a (N) some rational functions of e

m1
2 and e

m2
2 . The upper/lower bound of the

summation index a can be estimated from the recursion relation (4.18), (4.19) as

L
(0)
N = max

[
max

0≤n≤N−1
(kn+L

(1)
N−1−n+L(1)

n ), max
1≤n≤N−1

(L(0)
n +L

(0)
N−n)

]
,

K
(0)
N =−min

[
min

0≤n≤N−1
(kn−K

(1)
N−1−n−K(1)

n ), min
1≤n≤N−1

(−K(0)
n −K

(0)
N−n)

]
,

L
(1)
N =


max

[
max

1≤n≤N−1
(L(1)

n +L
(1)
N−n), max

1≤n≤N
(−2n+L(0)

n +L
(0)
N−n)

]
, (k = 2)

max
[

max
1≤n≤N−1

(L(1)
n +L

(1)
N−n), max

0≤n≤N−1
(L(1)

n +L
(0)
N−n), max

1≤n≤N
(−kn+L(0)

n +L
(1)
N−n)

]
, (k ≥ 3)

,

– 14 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
7

K
(1)
N =


−min

[
min

1≤n≤N−1
(−K(1)

n −K
(1)
N−n), min

1≤n≤N
(−2n−K(0)

n −K
(0)
N−n)

]
, (k = 2)

−min
[

min
1≤n≤N−1

(−K(1)
n −K

(1)
N−n), min

0≤n≤N−1
(−K(1)

n −K
(0)
N−n), min

1≤n≤N
(−kn−K(0)

n −K
(1)
N−n)

]
, (k ≥ 3)

,

(4.22)

which are solved explicitly as

L
(0)
N = K

(0)
N = L

(1)
N = k(N2 −N)

2 , K
(1)
N = k(N2 + N)

2 . (4.23)

5 Large N behavior of Zk,0(N ; m1, m2) with
√

|m1m2| ≥ π

The recursive approach (4.9) allows us to calculate exact values of Zk,M (N ; m1, m2) efficiently
for arbitrary values of m1, m2 with |Im[m1]| < π, |Im[m2]| < π and finite but large values
of N , which are reliable data for studying the large N expansion of the partition function.
By using these data, in this section we investigate the large N expansion of the partition
function in the supercritical regime √m1m2 > π [106].

First let us recall the large N expansion for m1, m2 ∈ iR with |m1|, |m2| < π where
there is no phase transition. By applying the standard WKB analysis for the Ferim gas
formalism, we find [105]

Zk,0(N ; m1, m2) ≈ Zpert
k,0 (N ; m1, m2) = eAC− 1

3 Ai[C− 1
3 (N −B)], (5.1)

where

C = 2
π2k(1+π−2m2

1)(1+π−2m2
2) , B = 2−π−2(m2

1+m2
2)

6k(1+π−2m2
1)(1+π−2m2

2)−
k

12 + k

2

(1
2−

M

k

)2
,

A = 1
4
∑
±

(AABJM((1±iπ−1m1)k)+AABJM((1±iπ−1m2)k)) (5.2)

with [165]v2

AABJM(k) = 2ζ(3)
π2k

(
1− k3

16

)
+ k2

π2

∫ ∞

0

x log(1− e−2x)
ekx − 1 . (5.3)

Here the cofficient B for M > 0 was guessed in [88, 94].5 The Airy function (5.1) gives the
leading behavior of the free energy in the large N limit

− log Zk,0(N) =
π
√

2k(1 + π−2m2
1)(1 + π−2m2

2)
3 N

3
2 +O(N

1
2 ) (5.4)

together with the all order 1/N perturbative corrections. In [105] we found that the free
energy agrees excellently with − log Zpert

k,0 (N) even for finite N , up to 1/N non-perturbative
corrections. The exponential behaviors of the non-perturbative effects are of the form

e−
∑

ω
nωω

√
N−B

C , (nω ∈ Z≥0,
∑
ω

nω ≥ 1). (5.5)

5We have confirmed that absolute values of the partition function for M > 0 and m1, m2 ∈ iR obtained by
the recursion relations show excellent agreements with the all order perturbative expansion (5.1) with this B,
although we could not identify the overall phase as a simple function of k, M, N, m1, m2.
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The list of ω’s was identified to consist (at least) of

{ω} ⊃ {ωMB
1,+ , ωMB

1,− , ωMB
2,+ , ωMB

2,− , 1, ωWS
+,+, ωWS

+,−, ωWS
−,+, ωWS

−,−, }, (5.6)

with

ωMB
i,± = 2

1± imi
π

, ωWS
±,±′ = 4

k
(
1± im1

π

) (
1±′ im2

π

) . (5.7)

To describe these results it is more convenient to consider the modified grand potential
J(µ) defined by

Ξk,M (κ) =
∞∑

N=0
κN Zk,M (N) =

∑
n∈Z

eJ(µ+2πin), (5.8)

rather than the partition function Zk,M (N) itself, which is related to Zk,M (N) by the
inversion formula

Zk,M (N) =
∫ ∞

−i∞

dµ

2πi
eJ(µ)−µN . (5.9)

The above-mentioned large N behaviors (5.1), (5.5) of the partition function Zk,M (N) originate
from the large µ expansion of J(µ)

J(µ) = Jpert(µ) + Jnp(µ), (5.10)

with

Jpert(µ) = C

3 µ3 + Bµ + A, Jnp(µ) =
∑
{nω}

γ({nω})e−(∑ω
nωω)µ. (5.11)

In the list of the exponents ω (5.6), the first five exponents ωMB
i,± and 1 correspond in the

massless limit to the D2-instantons in the ABJM theory [30]. These instanton exponents were
identified in [105] through the WKP expansion of J(µ) together with the small k expansion
of the instanton coefficients γ({nω}). On the other hand, the last four exponents ωWS

±,±′ are
the generalization of the F1-instantons in the ABJM theory [166], which were guessed by
analyzing the deviation of the exact values of the partition function at finite N (N ≲ 10) from
Zpert

k,M (N) (5.1). By using the numerical values of Zk,M (N) in high precision with N ≳ 100
obtained by the recursion relation we can confirm this guess for the worldsheet instanton
exponents, and further determine the coefficient γ({nω}) of the first worldsheet instantons as6

γ(nωWS
±,±′

= 1, other nω = 0) =
cos 2πM

k

4 sin 2π

k
(

1± im1
π

) sin 2π

k
(

1±′ im2
π

) . (5.12)

See appendix C for the comparison with the coefficient extracted from the numerical values
of Zk,M (N). Note that the coefficients γ(nWS

±,± = 1, other nω = 0) are consistent with
the coefficients recently obtained in the gravity side for m1 = m2 and at leading order

6We are grateful to Kazumi Okuyama for informing us the closed form expression (5.12) for M = 0 he
guessed at early stage of this project.
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in the ’t Hooft expansion [83], while for γ(nWS
±,∓ = 1, other nω = 0) our results (5.12) are

inconsistent with [83]. It would be interesting to extend the comparison for finite k as is
done in [84] for the massless case, and also to investigate the reasons for the disagreement
in γ(nWS

±,∓ = 1, other nω = 0).
The large N expansion explained so far agrees excellently with the actual values of the

partition function Zk,M (N) for m1, m2 ∈ iR. The two results show good agreement even
when m1, m2 are small real numbers. However, when we apply these results for real mass
parameters with

√
|m1m2| > π, the real parts of the instanton exponents ωWS

++ and ωWS
−−

become negative. Since the corresponding non-perturbative effects are exponentially large
in N , the 1/N expansion breaks down. As a result, the Airy function (5.1) may not be the
correct expansion ponit in this regime of the mass parameters, which suggests that Zk,M (N)
exhibits a large N phase transition at

√
|m1m2| = π.

The existence of the large N phase transition at
√
|m1m2| = π is also supported from

several different analyses. In [103, 104] the partition function was analyzed for M = 0
and m1 = m2 = m in the large N limit with k kept fixed by the large N saddle point
approximation. As a result, it was found that while the leading behavior of the large N

free energy − log Z ≈ π
√

2k
3 (1 + π−2m2)N 3

2 is reproduced by the solution of the saddle point
equations obtained by a continuous deformation of the solution at m = 0, the solution
becomes inconsistent for |m| ≥ π. In [106] the partition function with M = 0 and m1 ̸= m2
was studied numerically for finite N and found to deviate from the expected asymptotic
behavior − log Zk,0(N) ≈ π

√
2k(1+π−2m2

1)(1+π−2m2
2)

3 N
3
2 when

√
|m1m2| ≥ π. In all of these

analyses, however, the concrete large N behavior of the partition function in the supercritical
regime

√
|m1m2| ≥ π was elusive. In the rest of this section we try to address this problem by

using the exact expressions/numerical values of Zk,M (N ; m1, m2) obtained by the recursion
relations (4.9). For simplicity, in the following we consider only Zk,M (N) with M = 0.

5.1 Large mass asymptotics

Let us first recall the general structure of the partition function (4.14), (4.21) suggested by
the recursion relation. Due to the factors Ra = (ie

im1m2
2π )a, the partition function typically

oscillates rapidly with respect to m1, m2, and can even crosses zero as observed in [106]. As
N increases, however, we observe that the partition function does not show the oscillation
in m1, m2 for some special values of N , as displayed in figure 4. To figure out the pattern,
it is convenient to look at the large mass asymptotics of the partition function, which is
obtained by keeping only the most dominant (namely, least suppressed in m1, m2) fa(N)’s
in the summation (4.14), (4.21). For k = 1 we find

Z1,0(1)→ e−
m1+m2

2 , Z1,0(2)→ e−3·m1+m2
2 (−R−R−1), Z1,0(3)→ e−5·m1+m2

2 ,

Z1,0(4)→ e−8·m1+m2
2 (1+R2+R−2), Z1,0(5)→ e−11·m1+m2

2 (1+R2+R−2), Z1,0(6)→ e−14·m1+m2
2 ,

Z1,0(7)→ e−18·m1+m2
2 (−R−R−1−R3−R−3), Z1,0(8)→ e−22·m1+m2

2 (2+R2+R−2+R4+R−4),

Z1,0(9)→ e−26·m1+m2
2 (−R−R−1−R3−R−3), Z1,0(10)→ e−30·m1+m2

2 ,

Z1,0(11)→ e−35·m1+m2
2 (1+R2+R−2+R4+R−4),
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k = 1, M = 0, m1 = m2 = m
<latexit sha1_base64="eyRfCdhxXeuTaCvetJRexK+xNs4=">AAACBnicbZDLSgMxFIYzXmu9jboUIVgEF1JmqqCbQtGNG6GCvUA7DJlMpg1NMmOSEcrQlRtfxY0LRdz6DO58G9N2Ftr6w4GP/5xDcv4gYVRpx/m2FhaXlldWC2vF9Y3NrW17Z7ep4lRi0sAxi2U7QIowKkhDU81IO5EE8YCRVjC4GvdbD0QqGos7PUyIx1FP0IhipI3l2weDqnvSvU9RCG+qTk7cd6vcr5iyS07ZmQjOg5tDCeSq+/ZXN4xxyonQmCGlOq6TaC9DUlPMyKjYTRVJEB6gHukYFIgT5WWTM0bwyDghjGJpSmg4cX9vZIgrNeSBmeRI99Vsb2z+1+ukOrrwMiqSVBOBpw9FKYM6huNMYEglwZoNDSAsqfkrxH0kEdYmuaIJwZ09eR6albJ7Wq7cnpVql3kcBbAPDsExcME5qIFrUAcNgMEjeAav4M16sl6sd+tjOrpg5Tt74I+szx8Dp5bs</latexit>

Figure 4. Oscillation of the partition functions for k = 1, M = 0 around Z1,0(N) = 0. For
N = 1, 3, 6, 10 the partition function is positive definite.

Z1,0(12)→ e−40·m1+m2
2 (1+R2+R−2+R4+R−4+R6+R−6),

Z1,0(13)→ e−45·m1+m2
2 (2+2R2+2R−2+R4+R−4+R6+R−6),

Z1,0(14)→ e−50·m1+m2
2 (1+R2+R−2+R4+R−4), · · · . (5.13)

We find that the oscillation is absent when7

N = N (1)
n = n(n + 1)

2 (n = 1, 2, · · · ). (5.14)

We also find that the exponents of the overall asymptotic decay Z(N) ∼ e−
ν(1)(N)(m1+m2)

2 ,

ν(1)(1) = 1, ν(1)(2) = 3, ν(1)(3) = 5, ν(1)(4) = 8, ν(1)(5) = 11, ν(1)(6) = 14,

ν(1)(7) = 18, ν(1)(8) = 22, ν(1)(9) = 26, ν(1)(10) = 30, ν(1)(11) = 35, ν(1)(12) = 40,

ν(1)(13) = 45, ν(1)(14) = 50, · · · (5.15)

obeys the following general formula

ν(1)(N) =
N∑

n=1

⌊1
2 +
√

2n
⌋
, (5.16)

7The guesses of the general rules for N
(1)
n , N

(2)
n , ν(1)(N), ν(2)(N) (5.14), (5.16), (5.21), (5.20) as well as the

factor “2−n” in (5.22) may not appear obvious from the restricted number of analytic expressions (5.13), (5.19).
However, we can confirm that our guesses are indeed correct against numerical values of the partition function
with larger N obtained by solving the recursion relation numerically.
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where ⌊x⌋ is the largest integer which satisfy ⌊x⌋ ≤ x. In particular, for N = N
(1)
n (5.16)

simplifies and we find

Z1,0(N (1)
n )→ e−

n(n+1)(2n+1)
6 ·m1+m2

2 . (5.17)

For k = 2, we find

Z2,0(1)→ e−
m1+m2

2 · 12 , Z2,0(2)→ e−4·m1+m2
2

(
1+ R2+R−2

2

)
, (5.18)

Z2,0(3)→ e−7·m1+m2
2

(1
2 + R2+R−2

2

)
,

Z2,0(4)→ e−10·m1+m2
2 · 14 , Z2,0(5)→ e−15·m1+m2

2

(1
2 + R2+R−2

2 + R4+R−4

4

)
,

Z2,0(6)→ e−20·m1+m2
2

(5
4 +R2+R−2+ R4+R−4

2 + R6+R−6

4

)
,

Z2,0(7)→ e−25·m1+m2
2

(
1+ 3(R2+R−2)

4 + R4+R−4

2 + R6+R−6

4

)
,

Z2,0(8)→ e−30·m1+m2
2

(1
4 + R2+R−2

4 + R4+R−4

4

)
, Z2,0(9)→ e−35·m1+m2

2 · 18 , · · · . (5.19)

We observe Z2,0(N) ∼ e−ν(2)(N)·m1+m2
2 with

ν(2)(N) =
N∑

n=1
(1 + 2⌊

√
n− 1⌋). (5.20)

We also observe that the large mass asymptotics of the partition function does not oscillate
when N = N

(2)
n with

N (2)
n = n2. (5.21)

Again ν(2)(N) (5.20) simplifies for these special values of N . Taking into account also the
overall constant we find that Z2,0(N (2)

n ) has the following simple large mass asymptotics:

Z2,0(N (2)
n )→ 2−ne−

n(4n2−1)
3 ·m1+m2

2 . (5.22)

As k increases, the analytic expression for Zk,0(N) becomes more lengthy even at relatively
small N , for which it is difficult to continue the same analysis as k = 1, 2. Nevertheless,
we can study the behavior of the partition funtion at higher N by solving the recursion
relation (4.18), (4.19) numerically with high precision. For example, for m1 = m2 = 5 we can
reach the partition function for k = 3, M = 0 with N = 341 by choosing the initial precision
as 20000 digits. As a result we find that there is an infinite sequence of N ’s, which we shall
call N

(3)
n , for which the partition function Z3,0(N (3)

n ) does not oscillate around zero. Once
we identify N

(3)
n we can further study the large mass asymptotics of Z3,0(N (3)

n ), finding a
simple formula analogous to (5.17), (5.22) for k = 1, 2. The same analysis can be repeated
also for k = 4. In table 1 we summarize the list of N

(k)
n and the large mass asymptotics of

Zk,0(N (k)
n ). Note that the formulas in table 1 are exact even for finite n, up to the corrections

of O(e−
m1

2 , e−
m2

2 ) in the free energy − log Zk,0(N).
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k N
(k)
n Zasym

k,0 (N (k)
n )

1 n(n+1)
2 e−

n(n+1)(2n+1)
6 ·m1+m2

2

2 n2 2−ne−
n(4n2−1)

3 ·m1+m2
2

3−n+3
3 e−( n3

9 + n2
2 + 7n

6 +1)·m1+m2
2 (n ≡ 0 mod 3)

3
⌈

(n+1)(n+2)
6

⌉
3−n+2

3 e−( n3
9 + n2

2 + n
2 −

1
9 )·m1+m2

2 (n ≡ 1 mod 3)

3−n+1
3 e−( n3

9 + n2
2 + n

2 + 1
9 )·m1+m2

2 (n ≡ 2 mod 3)

4
⌈

n2

2

⌉
2− 3n

2 e−( 2n3
3 − 2n

3 )·m1+m2
2 (n: even)

2− 3n
2 − 1

2 e−( 2n3
3 + n

3 )·m1+m2
2 (n: odd)

Table 1. The list of N
(k)
n , the special N ’s where the partition function Zk,0(N) does not oscillate

around zero in m1, m2, and Zasym
k,0 (N (k)

n ), the large mass asymptotics of the partition function at
N = N

(k)
n . Here ⌈x⌉ is the smallest integer which satisfy ⌈x⌉ ≥ x.

5.2 Finite m1, m2-correction at large N

In the previous subsection we have found that there is an infinite set of N ’s for each k where
the partition function Zk,0(N, m1, m2) depends on the ranks N (or n through N

(k)
n ) and

the mass parameters m1, m2 in a very simple way in the limit of large mass parameters,
as summarized in table 1. In particular the results suggest the following large N behavior
of the free energy in the supercritical regime

− log Zk,0(N (k)
n , m1, m2) =

√
2k

3 (m1 + m2)(N (k)
n )

3
2 +O(N (k)

n ), (5.23)

which is universal in k. Here we have expressed n in Zasym
k,0 (N (k)

n ) in terms of N
(k)
n .

From the analysis in the previous section it is not clear whether (5.23) is valid even
at finite m1, m2 or not. To address this point, here we study the deviation of the free
energy at N = N

(k)
n

∆Fk,0(n) = − log Zk,0(N (k)
n )− (− log Zasym

k,0 (N (k)
n )). (5.24)

For simplicity we focus on the case with equal mass parameters m1 = m2 = m. As n

increases, we find that ∆Fk,0(n) depend on n through a superposition of linear function
and an oscillation with a constant amplitude. We have also found that the coefficient of
the linear growth in n decays exponentially with respect to the mass parameter m, which
is consistent with the fact that the formulas for the large mass asymptotics in table 1 are
correct up to O(e−

m1
2 , e−

m2
2 ) corrections. In figure 5 we display the n-dependence of ∆Fk,0(n)

for several values of m’s for each k.
From these results we propose that the coefficients of n3 and n2 in the free energy

− log Zk,0(N (k)
n ) in the large n limit are given by those in − log Zasym

k,0 (N (k)
n ) even when the

mass parameters m1, m2 are finite. In particular, this implies that (5.23) is the correct leading
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Figure 5. Deviation of the free energy at N = N
(k)
n from that obtained from the large mass

asymptotics in table 1, ∆Fk,0(n) = − log Zk,0(N (k)
n )− (− log Zasym

k,0 (N (k)
n )) for k = 1, 2, 3, 4.
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Figure 6. The first- and second derivative of the free energy for k = 1, M = 0, N = N
(k=1)
n and

m1 = m2 = m with respect to m, calculated by numerical derivatives with 25
10000 ≤ ∆m ≤ 100

10000 . The
dashed black line in the left plot is the expected large n asymptotics in m < π (5.4) and m > π (5.23).

behavior of the free energy. By comparing (5.23) with the leading behavior of the free energy
for √m1m2 < π (5.4) obtained from the Airy function (5.1), we find that the coefficient of
N3/2 as well as its derivative is continuous at √m1m2 = π while it is discontinuous at second-
or higher order derivatives. Namely, we conclude that the M2-instanton condensation is a
second order phase transition. Note that here we have parametrized the mass parameters
as (m1, m2) = (πab, πab−1) and taken the derivative with respect to a. In this way we
find the discontinuity at second derivative regardless of the value of b. Namely, the order
of the phase transition does not depend on how we cross the phase boundary. See also
figure 6 where we indeed observe an approximate discontinuity in the second order numerical
derivative of the free energy − log Z1,0(N (1)

n ; m, m) which becomes sharper and the location
approaches m = π as n increases.

6 Discussion

In this paper we have revisited the large N expansion of the partition function of the mass
deformed ABJ theory in the M-theory limit, N → ∞ with k kept finite. In the previous
analyses [103, 104, 106] it was suggested that the partition function exhibits a large N phase
transition at √m1m2 = π, above which the large N expansion in the small mass regime
given by the Airy function becomes invalid, while large N behavior of the partition function
in the supercritical regime was elusive due to the lack of the method of analysis. In this
paper we have found a new recursion relation for the partition function with respect to N ,
which enable us to generate exact (or numerical in arbitrarily high precision) values of the
partition function at finite but large N which we practically could not reach by the iterative
calculation using TBA-like structure of the density matrix [54, 149, 155, 156] (or its numerical
approximation) used in the previous analysis. Using these exact values we have revealed
various novel properties of the partition function in the supercritical regime. First, although
it was observed that the partition function in the supercritical regime oscillates around zero
as function of the mass parameters for generic values of N , we have found that for each k

there is an infinite series of special values N
(k)
n of the rank N for which the partition function
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is positive definite even in the supercritical regime. For these special ranks we have further
found simple formulas for the large mass asymptotics of the free energy − log Zk,0(N (k)

n ) for
finite n and various values of k, which scales as − log Zk,0(N (k)

n ) ∼ (N (k)
n )3/2 in the limit

n → ∞. Interestingly, we observe that the leading behavior (as well as the sub-leading
behavior) in the large n limit is valid even when the mass parameters are finite in the
supercricial regime. This allows us to make a quantitative proposal for the discontinuity
of the large N free energy at √m1m2 = π as (1.1).

There are various directions of research related to these results which we hope to address
in future.

In our analysis the connection between the matrix model for the partition function of
the mass deformed ABJ theory and a q-difference system (3.11), (3.12) has played a crucial
role. It is interesting to ask whether similar connection exists for other matrix models. As we
mentioned in section 1, when the matrix model is written in the Fermi gas formalism the
inverse of whose density matrix defines a five-dimensional N = 1 gauge theory, the connection
between the matrix model and a q-difference system is expected due to the conjecture of the
TS/ST correspondence and the Nakajima-Yoshioka blowup equations for the five-dimensional
Nekrasov partition function. Indeed it was checked that the grand partition function of a
four-node circular quiver Chern-Simons theory, which has the Fermi gas formalism related
to the five-dimensional N = 1 SU(2) Yang-Mills theory with Nf = 4 fundamental matter
fields, satisfies the q-Painlevé VI equation in τ -form [136, 167, 168]. It would be interesting
to investigate similar connection for other circular quiver super Chern-Simons theory whose
Fermi gas formalism is related to the five-dimensional linear quiver Yang-Mills theories (see
e.g. [169]) and also for the super Chern-Simons theory on affine D-type quiver [41] which has
the Fermi gas formalism but the corresponding five-dimensional theory is not clear [170, 171].

It would also be interesting to provide physical interpretations to the behavior of the
partition function in the supercritical regime from the viewpoint of three-dimensional field
theory. Among various properties of the partition function we have found, a simplest one
to investigate would be the large mass asymptotics. As listed in table 1 for special values
of N ’s for each k, N

(k)
n , and in (5.16), (5.20) for general N ’s for k = 1, 2, the partition

function of the mass deformed ABJM theory in the large mass limit depends on the mass
parameters m1, m2 as Zk,M (N) ∼ e−ν(k)(N) m1+m2

2 with ν(k)(N) some integer smaller than
the number of the components of the matter fields N2. As mentioned in section 1, the
same discrepancy of the exponent is known for the large mass asymptotics of the partition
function of three-dimensional supersymmetric gauge theories without Chern-Simons terms.
In these setups the discrepancy occurrs when the Coulomb moduli is chosen to non-zero
values depending on the mass parameters such that the masses of the matter fields effectively
and also new massive degrees of freedom appears as W -bosons. This picture is also visible in
the integrals in the localization formula for the partition function on S3 [172–175]. Namely,
the large mass asymptotics of the partition function can be obtained by assuming that the
integration over the Coulomb moduli is dominated by the contributions where the moduli
are shifted by the mass parameters in a certain way corresponding to the selected vacuum.
Also in the mass deformed ABJM theory we can study the behavior of the integrand in
the localization formula (2.3) in the large mass limit when the Coulomb moduli xi, yi are

– 23 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
7

shifted by the mass parameters m1, m2. For simplicity, here let us assume m1 = m2 = m

and consider only the shifts which are identical in xi and yi. The ways to shift the Coulomb
moduli can be characterized by an integer partition λ = (λ1, λ2, · · · , λL) of N together with
L distinctive real numbers {ca}La=1 as follows

xi = cam + δxi

(
a−1∑
b=1

λb + 1 ≤ i ≤
a∑

b=1
λb

)
, (6.1)

where δxi are of order O(m0) in the limit of m→∞. If we ignore the Chern-Simons factors
e

ik
4π

(x2
i −y2

i ) and focus only on the one-loop determinant factors

Z1-loop =
∏N

i<j

(
2 sinh xi−xj

2

)2∏N
i<j

(
2 sinh yi−yj

2

)2

∏
±
∏N

i,j 2 cosh xi−yj±m
2

, (6.2)

then we find the following large mass asymptotics for each λ and {ca}:

Z1-loop ∼ e−mωλ({ca}), (6.3)

with

ωλ({ca}) = −2
L∑

a<b

|ca − cb|λaλb + 1
2
∑
±

L∑
a,b=1

|ca − cb ± 1|λaλb. (6.4)

When ca’s are separated at least by 1, i.e. |ca − cb| ≥ 1, this ωλ({ca}) simply reduces to

ωλ({ca}) =
L∑

a=1
λ2

a. (6.5)

Therefore, the exponent listed in table 1 for each k and N = N
(k)
n is realized, for example, by

k N ν(k)(N) a λ s.t. ν(k)(N) = ωλ({ca})
1 N

(1)
n

n(n+1)(2n+1)
6 (n, n− 1, · · · , 2, 1)

2 N
(2)
n

n(4n2−1)
3 (2n− 1, 2n− 3, · · · , 3, 1)

3 N
(3)
n=3l−1

n3

9 + n2

2 + n
2 + 1

9 = 3l3 + 3l2

2 −
l
2 (3l − 1, 3l − 4, · · · , 5, 2)

N
(3)
n=3l−2

n3

9 + n2

2 + n
2 −

1
9 = 3l3 − 3l2

2 −
l
2 (3l − 2, 3l − 5, · · · , 4, 1)

4 N
(4)
n=2l

2n3

3 −
2n
3 = 4l(4l2−1)

3 (4l − 2, 4l − 6, · · · , 6, 2)

, (6.6)

while for k = 3, N = N
(3)
n=3l and k = 4, N = N

(4)
n=4l we did not find such simple infinite

sequences. Note that in all cases the chioces of λ to realize ωλ = ν(k)(N) are not unique.
Note also that ν(k)(N) are not the smallest exponent realized by the shifts (6.4). For example,
for k = 1, N = 3 we have ωλ=(1,1,1) = 3, which is smaller than ν(1)(3) = 5. Nevertheless,
it would be interesting to figure out the choices of λ for more general m1, m2 and k, N, M ,
incorpolate the effect of the Chern-Simons terms and provide physical interpretation for
these choices which is possibly related to the fuzzy sphere vacua of the mass deformed ABJ
theory [99, 176–180]. It would also be interesting to obtain a shifted configuration in the
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large N limit as a solution to the saddle point equation for the partition function, as was done
for the theories without Chern-Simons terms in [174]. To find physical interpretation to the
supercritical regime it would also be useful to study not only the partition function but also
the other physical observables such as correlation functions of supersymmetric Wilson loops.8

It would also be interesting to understand the holographic interpretation of the phase
transition. In [182] the gravity dual of the mass deformed ABJM theory on S3 was constructed
in the four dimensional N = 8 gauged supergravity (see also [183–185]), where the solution is
smooth at √m1m2 = π. Note that this is not a contradiction to our result. Indeed, starting
from the subcritical regime, the expression for the all order 1/N perturbative corrections (5.1)
is smooth at any values of m1, m2,9 and the phase transition is visible only when we take
into account the 1/N non-perturbative effects. In the massless case these non-perturbative
effects correspond in the gravity side to the closed M2-branes wrapped on a three-cycle
in S7/Zk, which are not visible in the four-dimensional supergravity. The fact that the
real part of one of the exponents ωWS

±,±′ (5.7) of the non-perturbative effect vanihsies at the
phase transition point √m1m2 = π might suggest that the corresponding M2-instanton in
the gravity side becomes unstable at this point. It would be interesting to investigate such
instability in the eleven-dimensional uplift of the four-dimensional solution which was written
down recently [83]. Note, however, that in [83] the authors considered the deformation of
the partition function as the R-charge deformation, which corresponds to m1, m2 ∈ iR. If
we formally continue the solutions to m1, m2 ∈ R some components of the metric become
complex. Hence it is not clear whether it would be reasonable to analyze the gravity dual of
the real mass deformation m1, m2 ∈ R based on the solution in [83] even in the sub-critical
regime. We would like to postpone this problem for future research.

Lastly, besides the Fermi gas formalism and the recursion relation, there are different
methods proposed to analyze the partition function of the mass deformed ABJM theory such
as [187, 188]. It would be interesting to use these methods to understand or analytically
derive various properties of the partition function of the mass deformed ABJ theory in the
supercritical regime which we have found rather experimentally by using the recursion relation.
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A Exact values of Zk,M (N ; m1, m2)

In this appendix we display the exact values of the partition function for relatively small k

and N calculated by the method in [149],10 which are useful for guessing/checking the bilinear
relations (3.12), (4.8). Here we display only the results for M ≤ ⌊k

2⌋, since the partition
function for ⌊k

2⌋ < M ≤ k can be obtained by using the Seiberg-like duality (3.16) which
is proved rigorously by using the integration identity (3.14).

For N = 0 and N = 1, M = 0 we have

Zk,M (0) = Zk,M (0, m1, m2) = i
M2

2 −M e−
πiM(M2−1)

6k k−M
2

M∏
r>s

2 sin π(r − s)
k

,

Zk,0(1; m1, m2) = 1
4k cosh m1

2 cosh m2
2

. (A.1)

For k = 1, M = 0, N ≥ 2 we have

Z1,0(2;m1,m2) = sin m1m2
2π

8cosh m1
2 cosh m2

2 sinhm1 sinhm2
,

Z1,0(3;m1,m2) = 1
32cosh m1

2 cosh m2
2 cosh 3m1

2 cosh 3m2
2 sinhm1 sinhm2

(
2sinh m1

2 sinh m2

2 −sin 3m1m2

2π

)
,

Z1,0(4;m1,m2) = 1
128cosh m1

2 cosh m2
2 sinhm1 sinhm2 cosh 3m1

2 cosh 3m2
2 sinh2m1 sinh2m2

×
(

2coshm1 coshm2−
cosh 3m1

2 cosh 3m2
2

cosh m1
2 cosh m2

2
cos m1m2

π
−cos 3m1m2

π

)
, · · · . (A.2)

For k = 2, M = 0, N ≥ 2 we have

Z2,0(2;m1,m2) = 1
16sinh2 m1 sinh2 m2

(
1−cos m1m2

π

)
,

Z2,0(3;m1,m2) = 1
64sinhm1 sinhm2 cosh 3m1

2 cosh 3m2
2 sinh2m1 sinh2m2

×
(

2coshm1 coshm2−
cosh 3m1

2 cosh 3m2
2

2cosh m1
2 cosh m2

2
cos m1m2

π
−cos 3m1m2

π

)
,

Z2,0(4;m1,m2) = 1
256sinhm1 sinhm2 sinh2 2m1 sinh2 2m2 sinh3m1 sinh3m2

(
−2cosh2m1−2cosh2m2

−8cosh2m1 cosh2m2+8sinh3 m1

2 sinh3 m2

2 sinh 3m1

2 sinh 3m2

2

+ 3sinh3m1 sinh3m2

sinhm1 sinhm2
cos 2m1m2

π
−16cosh2 m1 cosh2 m2 cos 3m1m2

π
+cos 6m1m2

π

)
, · · · .

(A.3)
For k = 2, M = 1, N ≥ 1 we have

Z2,1(1;m1,m2) =
e

πi
4 + m1+m2

2 − im1m2
2π sin m1m2

2π

2
√

2sinhm1 sinhm2
,

Z2,1(2;m1,m2) = e
3πi

4 +m1+m2−
im1m2

π

8
√

2sinhm1 sinhm2 sinh2m1 sinh2m2

(
−coshm1−coshm2+coshm1 coshm2+cos 2m1m2

π

)
,

Z2,1(3;m1,m2) = e
5πi

4 + 3(m1+m2)
2 − 3im1m2

2π

32
√

2sinhm1 sinhm2 sinh2m1 sinh2m2 sinh3m1 sinh3m2

[
sinh3m1 sinh3m2

sinhm1 sinhm2
sin m1m2

2π

−2
(

coshm1 coshm2 cosh 3m1
2 cosh 3m2

2
cosh m1

2 cosh m2
2

+coshm1+coshm2

)
sin 3m1m2

2π
+sin 9m1m2

2π

]
, · · · .

(A.4)
10The exact values were also calculated in [187] for k = 1 and in [189] for M = 0, N ≤ 2.
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For k = 3, M = 0, N ≥ 2 we have

Z3,0(2;m1,m2) = 1
24sinhm1 sinhm2 cosh 3m1

2 cosh 3m2
2

(
2sinh m1

2 sinh m2

2 −sin 3m1m2

2π

)
,

Z3,0(3;m1,m2) = 1
96cosh2 3m1

2 cosh2 3m2
2 sinh3m1 sinh3m2

(
8sinh 3m1

2 sinh 3m2

2

− 32
√

3cosh2 m1
2 cosh2 m1

2 sinhm1 sinhm2

3 cos 3m1m2

2π

−2(cosh2m1−2coshm1)(cosh2m2−2coshm2)sin 3m1m2

2π
+sin 9m1m2

2π

)
, · · · .

(A.5)

For k = 3, M = 1, N ≥ 1 we have

Z3,1(1;m1,m2) = e
3πi

4 + m1+m2
2

4
√

3cosh 3m1
2 cosh 3m2

2

[
ie

−
3im1m2

2π −2sinh m1

2 sinh m2

2 −
2icosh m1

2 cosh m2
2√

3

]
,

Z3,1(2;m1,m2) = e
3πi

4 +m1+m2

16
√

3cosh 3m1
2 cosh 3m2

2 sinh3m1 sinh3m2

[
−ie

−
9im1m2

2π

+
(

4sinhm1 sinhm2(1+coshm1+coshm2)
√

3
+i

(
4sinh2 m1

2 sinh2 m2
2 (4coshm1+1)(4coshm2+1)

3

+coshm1+coshm2+coshm1 coshm2

))
e
−

3im1m2

2π

−4sinh 3m1

2 sinh 3m2

2 +
(2isinhm1 sinhm2√

3
−2icoshm1 coshm2

)
e

3im1m2

2π

]
, · · · .

(A.6)

B Guess of bilinear relation for m1 ̸= m2 (3.12) from exact values

In section 3 we have displayed the bilinear relation (3.12) for 1 ≤ M ≤ k − 1 and its
extension (4.8) to M = 0. As explained in section 3, (4.8) can be straightforwardly guessed
from (3.12) by applying the duality relations (4.7) to Ξk,−1(κ), while (3.12) for m1 = m2,
namely (3.11), was guessed from the topological string/spectral theory correspondence and
the blowup relation in the corresponding topological string (or five-dimensional super Yang-
Mills) side. On the other hand, so far there is no such justification for the bilinear relation
with m1 ̸= m2 (3.12).11 Instead we have found (3.12) by assuming that the bilinear relation
of the following form holds

L1∑
i=1

aiΞk,M+1(biκ;m1,m2)Ξk,M−1(ciκ;m1,m2)+
L2∑
i=1

diΞ1,M (eiκ;m1,m2)Ξ1,M (fiκ;m1,m2) = 0,

(B.1)

11Even when m1 ̸= m2, if m1, m2 ∈ πiQ the inverse dentity matrix ρ̂−1 is still characterized by a rectangular
Newton polygon, and hence the curve ρ−1 = const. is identified with the five-dimensional N = 1 Yang-Mills
theory on a linear quiver. Therefore it may be also possible to obtain the bilinear relation (3.12) for m1 ̸= m2

by from the blowup equations for this five-dimensional theory, although we do not pursue this approach in
this paper.
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for some L1, L2 ≥ 0 and some coefficients ai, bi, ci, di, ei, fi, and then fixing these parameters by
using the exact values of the partition function (A.1)–(A.6). In this appendix we demonstrate
how this guesswork goes.

For simplicity let us consider the case k = 1, where the bilinear relation should be written
only in terms of Z1,0(N ; m1, m2) after using the duality relations as

κ
L1∑
i=1

a′
iΞ1,0(b′iκ; m1, m2)Ξ1,0(c′iκ; m1, m2) +

L2∑
i=1

diΞ1,0(eiκ; m1, m2)Ξ1,0(fiκ; m1, m2) = 0.

(B.2)

Here a′
i, b′i, c′i are related to ai, bi, ci in (B.1) as

a′
i = e−

m1+m2
2 aici, b′i = ie

m1+m2
2 − im1m2

2π bi, c′i = −ie−
m1+m2

2 + im1m2
2π ci. (B.3)

We also require that for m1 = m2 = m the bilinear relation reduces to the following

κΞ1,0(−ie−
im2
2π κ; m, m)Ξ1,0(ie

im2
2π κ; m, m) + Ξ1,0(−emκ; m, m)Ξ1,0(−e−mκ; m, m)

− Ξ1,0(κ; m, m)Ξ1,0(κ; m, m) = 0, (B.4)

as obtained from (3.11) and (4.7). By expanding the left-hand side of (B.2) in κ, we obtain
the following constraints from the orders κ0, κ1, κ2

L2∑
i=1

di = 0, (B.5)

L1∑
i=1

a′
i +

L2∑
i=1

di(ei + fi)Z1,0(1) = 0, (B.6)

L1∑
i=1

a′
i(b′i + c′i)Z1,0(1) +

L2∑
i=1

[di(e2
i + f2

i )Z1,0(2) + eifiZ1,0(1)2] = 0, (B.7)

where we have used Z1,0(0) = 1. Let us first look at the second equation. By substituting
the exact value Z1,0(1) = 1

4 cosh m1
2 cosh m2

2
(A.2) we obtain

−
∑L2

i=1 di(ei + fi)∑L1
i=1 a′

i

= e
m1+m2

2 + e
m1−m2

2 + e
−m1+m2

2 + e
−m1−m2

2 . (B.8)

Taking also into account the equation for M = 0 (B.4), it is not difficult to guess L2, ei, fi as

L2 = 2, e1 = −e
m1+m2

2 , f1 = −e−
m1+m2

2 , e2 = e
m1−m2

2 , f2 = e−
m1−m2

2 , (B.9)

with which we are left with the following condition on d1, d2

d1 = −d2 =
L1∑
i=1

a′
i. (B.10)

Note that the constraint from the order κ0 (B.5) is also granted under this condition. Next
look at the constraint from the order κ2 (B.7)

Z1,0(2) = −
∑L1

i=1 a′
i(b′i + c′i)Z1,0(1) +∑L2

i=1 dieifiZ1,0(1)2∑L2
i=1 di(e2

i + f2
i )

. (B.11)
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After the substition L2, di, ei, fi fixed above and the exact values of Z1,0(1) and Z1,0(2) (A.2),
this reduces to ∑L1

i=1 a′
i(b′i + c′i)∑L1

i=1 a′
i

= ie
im1m2

2π − ie−
im1m2

2π , (B.12)

from which it is not difficult to guess L1, a′
i, b′i, c′i as

L1 = 1, a′
1 = 1, b′1 = −ie−

im1m2
2π , c′1 = ie

im1m2
2π , (B.13)

which also fixes d1, d2 as d1 = 1, d2 = −1. Once we have guessed the coefficients completely,
we can further check that (B.2) is satisfied also for N ≥ 3 by using the exact values of
the partition function.

Plugging these results back to (B.1), now we have the following guess for the bilinear
relation at k = 1, M = 0

− Ξ1,1(−e−
m1+m2

2 ; m1, m2)Ξ1,−1(−e
m1+m2

2 ; m1, m2)

+ Ξ1,0(−e
m1+m2

2 ; m1, m2)Ξ1,0(−e−
m1+m2

2 ; m1, m2)

− Ξ1,0(e
m1−m2

2 ; m1, m2)Ξ1,0(e−
m1−m2

2 ; m1, m2) = 0. (B.14)

By choosing the k, M -dependent coefficients same as those in the bilinear relation for m1 =
m2 (3.11), we end up with the bilinear relation (3.12) for m1 ̸= m2.

C Instanton coefficients of ωWS
±,±′

In this appendix we compare our guess for the instanton coefficient for ω = ωWS
±,±′ (5.12)

with the non-perturbative effect lead off from the numerical values of Zk,M (N). Since the
partition function is symmetric under Z2×Z2 transformation m1 → −m1 and m2 → −m2, it
is sufficient to look at one of the four species, say ωWS

−− which is the most dominant one when
0 < −im1 < π and 0 < −im2 < π among the four. Note that in order to make this instanton
the most dominant one among all species (5.6), we have to choose m1, m2 such that ωWS

−− < 1
(we do not have to examine ωWS

−− < ωMB
i,± since ωMB

i,± is always larger than 1), namely

4
k
(
1− im1

π

) (
1− im2

π

) < 1. (C.1)

Let us choose a point (m1, m2) which satisfy the condition (C.1). To extract the
instanton coefficient γ(nωWS

−−
= 1, other nω = 0), let us truncate the modified grand potential

J(µ) (5.10) as

J(µ) = C

3 µ3 + Bµ + A + γ(nωWS
−−

= 1, other nω = 0)e−ωWS
−−µ + · · · . (C.2)

Substituting this into the inversion formula (5.9) we obtain

Zk,M (N) =
∫

dµ

2π
e

C
3 µ3+Bµ+A−µN (1 + γ(nωWS

−−
= 1, other nω = 0)e−ωWS

−−µ + · · · )

= Zpert
k,M (N) + Zpert

k,M (N + ωWS
−−)γ(nωWS

−−
= 1, other nω = 0) + · · · . (C.3)

– 29 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
7

k M m1 m2 (C.5) (5.12)
2 0 38703i

25000
91199i
50000 0.31757724067372809500 0.31757724067286396948

1 38703i
25000

91199i
50000 −0.31757724067201452421 −0.31757724067286396948

3 0 30509i
50000

10977i
12500 0.25479966165669975897 0.25479965063727587352

1 30509i
50000

10977i
12500 −0.12739983071109485153 −0.12739982531863793676
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Figure 7. Comparison between γ(nωWS
−−

= 1, other nω = 0) obtained by a numerical extraction (C.5)
and the analytic guess (5.12) for m1 ̸= m2 (top table) and m1 = m2 = m (bottom plots). In the
top table we have chosen N = 188 for k = 2 and N = 138 for k = 3, as also displayed in the plots.
We have chosen N0 in (C.5) as N0 = N + 1 for all cases. As Zk,M (N), Zk,M (N0) we have used the
numerical values obtained by the recursion relations (4.12), (4.18), (4.19) with initial conditions set
with the precision of 2000 digits.

This implies that we can estimate γ(nωWS
−−

= 1, other nω = 0) by comparing the exact (or
numerical with high precision) values of Zk,M (N) with Zpert

k,M (N) as

γ(nωWS
−−

= 1, other nω = 0) ≈
Zk,M (N)− Zpert

k,M (N)
Zpert

k,M (N + ωWS
−−)

. (C.4)

Note however that in some parameter regime it is difficult to evaluate Zpert
k,M (N) at high preci-

sion due to the constant A (5.2) which is given only through the integral representation (5.3)
for generic m1, m2. For this reason it is more useful to extract the instanton coefficient from
the ratio of the partition functions at two different N ’s as

γ(nωWS
−−

= 1, other nω = 0) ≈

Zk,M (N)
Zk,M (N0) −

Zpert
k,M

(N)
Zpert

k,M
(N0)

Zpert
k,M

(N+ωWS
−−)

Zpert
k,M

(N0) − Zk,M (N)
Zk,M (N0)

Zpert
k,M

(N0+ωWS
−−)

Zpert
k,M

(N0)

. (C.5)

By comparing the right-hand side calculated for sufficiently large N, N0 with (5.12) we indeed
find a good agreement. See figure 7.
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