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1 Introduction

We have entered the era of precision cosmology and the observational data indicate that
our Universe is currently expanding in an accelerated way [1, 2]. The standard cosmological
model assumes that this acceleration is due to a cosmological constant. However, other
possible explanation for this acceleration within the framework of General Relativity (GR) is
based on a dynamical component referred to as dark energy [3, 4]. A simple way of modeling
dynamical dark energy is using a scalar field with a canonical or non-canonical kinetic term,
such as quintessence, k-essence or kinetic gravity braiding [5–7]. On the other hand, although
up to the date GR remains our best description of gravity, it is also possible that the current
accelerated expansion of the Universe indicates a breakdown of GR at cosmological scales.
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Therefore, in the last years there has been an increased interest in alternative theories of
gravity (see, for example, [8] for a review). For example, Horndeski theory [9–11], based
on introducing a scalar field non-minimally coupled with gravity, has provided us with the
perfect framework for investigating the implications of having an additional gravitational
degree of freedom [12, 13].

Following this spirit one can also reconsider the symmetries playing a fundamental role
in a gravitational context. In particular, in recent years, interest has grown in theories which
present a broken Diffeomorphism (Diff) invariance [14–16]. The most popular alternative is the
so-called Unimodular Gravity (UG) [17, 18] (see, for instance, [19] for a review), first proposed
by Einstein in 1919. In UG, the metric determinant is taken to be a constant, non-dynamical
field, and in this manner the invariance of GR under the full group of diffeomorphisms
is broken down to only invariance under the more restrictive Transverse Diffeomorphisms
(TDiffs) and, in addition, Weyl rescalings. Nevertheless, the focus in this work is placed on
TDiffs, which are coordinate transformations with the determinant of the Jacobian matrix
equal to unity, without assuming Weyl invariance. Infinitesimally, if we consider a coordinate
transformation xµ → x̂µ = xµ + ξµ(x), then what we do is require that ∂µξµ = 0 (hence the
name “transverse”). An immediate and important consequence of TDiff invariance is that
we can no longer distinguish between tensors and tensor densities, since the Jacobian must
equal 1. In particular, the metric determinant is a true scalar and, therefore, the function of
the metric determinant appearing in the Lagrangian is no longer fixed to be √

g [20]. Notice
that is always possible to reformulate Unimodular Gravity in a generally covariant fashion
by introducing additional fields [17, 21]. Gravitational theories invariant under TDiffs but
involving a dynamical metric determinant have also been considered in [22, 23] and their
potential connections with the cosmological dark sector have been explored in [24, 25].

In this work we do not consider the breaking of Diff invariance in the gravitational action,
which shall remain the unchanged Einstein-Hilbert action. Rather, the symmetry breaking
from Diff to TDiff shall be taken to occur explicitly in the matter action (consequently,
however, affecting the full theory). In particular, we take a scalar field with a Lagrangian
density containing different functions of the metric determinant in the kinetic and in the
potential parts [16, 20], in such a way that the field can still be considered minimally coupled
to gravity. In this framework, it is of course possible to consider TDiff invariant visible
matter. In that case, the phenomenological viability of the models implies a particular relation
between the coupling functions (in particular, they must be the same) [16, 20]. Nevertheless,
it is worthy to note that if the breaking from Diff to TDiff takes place only in the dark sector,
there is no reason to assume any relation between those functions.

The main aim of the present work is to perform a general study which allows us to gain
some intuition on the new phenomenology that can be described within this framework. The
only assumption we shall make is that the field derivative is a time-like vector. As we will
explicitly show, in this case the energy-momentum tensor (EMT) of the scalar field takes
the form of a perfect fluid (see, for example, [26], for an interesting field theory in which
this is not the case). This will allow us to extend some of the results obtained in [16] in the
cosmological context to general geometries. On the other hand, it should be noted that the
full Diff invariance of GR implies that the EMT is automatically conserved on the solutions
to the equations of motion of the theory (this is shown in any GR textbook, see [27] for a
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review). However, when Diff symmetry is broken down to TDiff only on the matter sector, this
conservation is no longer an automatic consequence of the field equation, but it is still implied
by the Bianchi identities. This imposes an additional constraint on the metric that shall be
considered in detail. As we will conclude, this new constraint allows us to fix the physical
component of the metric that one could no longer choose arbitrarily due to the symmetry lost.

The work is organized as follows. In section 2 we review some definitions and techniques,
and present the TDiff scalar field model under consideration (together with two limiting cases
that shall be studied throughout). In section 3 we describe the scalar field as a perfect fluid.
Its energy conditions are considered in section 4. Section 5 presents a detailed analysis of
the EMT conservation in the potential and kinetic regimes, together with its consequences
on the metric and on the properties of the fluid. In section 6 we present some TDiff models
of particular interest, analyzing their gravitational consequences through the application of
the energy conditions. Section 7 is devoted to the main conclusions of the work. Finally, in
appendices A and B we include some additional information and calculations, which may
be skipped without losing the thread of the discussion.

2 Preliminary concepts

We present in this section a short review of the definitions and techniques employed throughout
the work, and introduce the model we shall study. Our conventions include units in which
ℏ = c = 1, the usage of metric signature (+,−,−,−), and the notation g = |det(gµν)|.

2.1 Presenting the model

The total action we shall consider in this work is

S = SEH + Sm , (2.1)

the gravitational action being the Einstein-Hilbert action

SEH = − 1
16πG

∫
d4x

√
g R (2.2)

(R = gµνRµν the Ricci scalar), and the matter action taken to be of the form

Sm =
∫
d4x L̃m . (2.3)

In the above expression we find the so-called Lagrangian density L̃m = L̃m(Ψ, ∂µΨ, gµν),
which depends on the matter fields Ψ, their first derivatives ∂µΨ, and the metric gµν . We
remark that L̃m must be a TDiff scalar since the volume element d4x is invariant under TDiffs.

Applying to the total action (2.1) the stationary action principle with respect to variations
in the spacetime metric yields the Einstein field equations

Gµν = Rµν −
1
2Rgµν = 8πGTµν . (2.4)

We find in these equations the Energy-Momentum Tensor (EMT), whose definition is the
usual one in GR

Tµν = 2
√
g

δSm
δgµν

. (2.5)
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One may worry about whether this definition extends to a situation in which we are explicitly
changing the matter action with respect to that in GR, as we shall see in this work, but
in fact it makes sense since we will not be altering the gravitational sector (indeed, we use
SEH). In other words, we are not altering the left hand side of Einstein’s equations, so
we want whatever comes out on the other side to be associated to the EMT in the usual
manner. As a final note regarding EMTs, since it will be useful throughout the work, we
also recall here that for a perfect fluid

Tµν = (ρ+ p)uµuν − pgµν , (2.6)

with ρ the energy density of the fluid, p its pressure, and uµ represents a time-like unit vector
field (u2 ≡ uµu

µ = 1) which we interpret as the velocity field of the fluid. Before presenting
the model, let us recall the following relation for a given vector field V µ:

∇µV
µ = 1

√
g
∂µ (√g V µ) , (2.7)

which shall be of use later on. We also remark here that throughout the work the action of
the covariant derivative on (TDiff) tensors maintains the usual definitions.

The model we shall study in this work is that of a scalar field ψ(x) in which the kinetic
and potential terms are coupled not only differently than in GR, but also differently from
each other. The matter action reads [20]

Sm =
∫
d4x

{
fk(g)

2 gµν∂µψ∂νψ − fv(g)V (ψ)
}
. (2.8)

Here, fk(g) and fv(g) are arbitrary functions of (the absolute value of) the metric determi-
nant g = |det(gµν)|, and the subscripts make reference to the kinetic and potential terms,
respectively. The GR limit, in particular, would correspond to fk, fv ∝

√
g. It is interesting

to note that even though the couplings are not the usual they are still minimal, meaning
that there is no coupling of the field to the curvature (second derivatives of the metric). We
also remark that the matter action (2.8) is in general not invariant under the full group of
diffeomorphisms (Diff invariance is only restored in the GR limit we mentioned above, as it is
easy to verify). Nevertheless, a moment’s reflection reveals that our model will be invariant
under the reduced group of TDiff symmetries, since in that case the Jacobian is unity and the
metric determinant is a scalar, together with functions of it. The Euler-Lagrange equation
of motion (EoM) for the scalar field reads

∂µ
(
fk(g)∂µψ

)
+ fv(g)V ′(ψ) = 0 , (2.9)

where ∂µψ = gµν∂νψ and V ′(ψ) = dV/dψ (in general, a prime on a function will denote
differentiation with respect to its argument). Also, using definition (2.5), the associated
EMT turns out to be

Tµν = 2
√
g

{1
2fk(g)∂µψ∂νψ + g

[
f ′v(g)V (ψ) − 1

2f
′
k(g)∂αψ∂αψ

]
gµν

}
, (2.10)

which is equivalent to the one presented in reference [16].
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Before proceeding any further, it is interesting to note that it is possible to rewrite the
model action with broken Diff invariance in a Diff invariant way via the introduction of
additional fields [16]. The interested reader is directed to appendix A for a short discussion
on this regard.

We shall now present a couple of simple limiting regimes of our model which will be
studied throughout the work: potential domination and kinetic domination. These are
interesting not only because they greatly simplify the treatment, but also because they help
us in gaining intuition about the underlying physics, which we may then use. On the one
hand, possible applications of a dominant kinetic term include shift-symmetric models for
dark energy [28] (which are actually purely kinetic), as well as cases in which the field is
rapidly changing and the kinetic term dominates over the potential (e.g. in fast-roll scenarios
at the end of inflation). On the other hand, the dominant potential behavior may be found
in cases where the field is slowly varying (e.g. slow-roll inflation) or, with a dark sector
application in mind, it also allows us to study dark energy models.

2.1.1 Potential domination

In the potential domination limit we effectively neglect the kinetic term, so that

Sm ≃
∫
d4x [−fv(g)V (ψ)] (2.11)

and the EoM simplify to

fvV
′ = 0 =⇒ V ′ = 0 , (2.12)

wherever fv ̸= 0. The fact that V ′ = 0 implies in turn that the field takes on the constant
value ψ = ψ0 which is the extremum of the potential, i.e. V ′(ψ0) = 0, and as a result

V (ψ) = V (ψ0) ≡ V0 = const. (2.13)

Finally, we see that within this dominant potential approximation the EMT is written as

Tµν = 2√g f ′vV gµν , (2.14)

so it is proportional to the metric.

2.1.2 Kinetic domination

In the dominant kinetic limit, we effectively neglect the potential term. Thus,

Sm ≃
∫
d4x

fk(g)
2 gµν∂µψ∂νψ (2.15)

and the EoM become

∂µ (fk∂µψ) = 0 . (2.16)

Let us note that, in this limit, the EoM essentially reveals the existence of a conserved current
Jµ = fk√

g ∂
µψ such that ∇µJ

µ = 0 according to relation (2.7). This is not surprising since
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the kinetic limit, in the way in which we are treating it, presents shift symmetry, and this
is the corresponding conserved current [11]. Note also that for GR we recover Jµ = ∂µψ,
as we should since for a massless scalar field one has □ψ = 0. Finally, within the kinetic
approximation the EMT reads

Tµν = 1
√
g

[
fk∂µψ∂νψ − gf ′k(∂ψ)2gµν

]
, (2.17)

where (∂ψ)2 = ∂αψ∂
αψ.

2.2 Review of Energy Conditions

The so-called Energy Conditions (ECs) are a set of requirements that one imposes on the
EMT upon arguing that they are “physically reasonable” [29–31]. The most widely used are
the Null, the Weak, the Strong, and the Dominant Energy Conditions (NEC, WEC, SEC,
and DEC, respectively). Given any time-like and null vectors vµ and kµ, respectively, these
energy conditions can be formulated in the following way [29–32]:

• DEC: the energy density measured by any observer is non-negative and propagates in a
causal way. That is

Tµνv
µvν ≥ 0 , and Fµ ≡ −Tµνvν is causal. (2.18)

• WEC: the energy density measured by any observer has to be non-negative. So

Tµνv
µvν ≥ 0 . (2.19)

• SEC: gravity is always attractive in GR. Taking into account the Raychaudhuri
equation [33], this implies (

Tµν −
1
2T

α
α gµν

)
vµvν ≥ 0 . (2.20)

• NEC: the SEC and the WEC are satisfied in the limit of null observers. Both conditions
in that limit imply

Tµνk
µkν ≥ 0 . (2.21)

Therefore, the fulfillment of the SEC implies that the NEC is satisfied. On the other hand,
the DEC implies the WEC that leads to the fulfillment of the NEC. Thus, violations of
the NEC imply that all the other ECs are violated.

It should be noted that the only EC in which a theory of gravity is specified is in the SEC.
Indeed, the SEC is just the Time-like Convergence Condition (TCC) taking into account
GR. The TCC states that gravity is always attractive, which is based on requiring that
Rµνv

µvν ≥ 0. This conditions comes from demanding the convergence of (vorticity-free)
time-like geodesics in the Raychaudhuri equation [30]. Nowadays, it is well-known that
the TCC (and, therefore, the SEC in GR) should be violated during the cosmic phases of
accelerated expansion. Therefore, in the present work we should consider that the WEC and
DEC should be satisfied by physically reasonable classical matter, whereas we would consider
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the possible violation of the TCC as a potential signal of the dark sector. On the other hand,
since in the gravitational framework under investigation in the present paper the Einstein
equations are satisfied, we will directly consider the SEC for that purpose.

If the EMT takes the form of a perfect fluid (2.6), the ECs can be written in terms of
the fluid energy density ρ and pressure p as [30, 31]

(i) DEC: ρ ≥ |p| ≥ 0 ,
(ii) WEC: ρ+ p ≥ 0 , ρ ≥ 0 ,
(iii) SEC: ρ+ p ≥ 0 , ρ+ 3p ≥ 0 ,
(iv) NEC: ρ+ p ≥ 0 .

(2.22)

As we will see in the next section, this case simplifies the treatment of the theories investigated
in the present work.

2.3 Review of EMT conservation

The EMT conservation equations are written as

∇αT
αν = 0 . (2.23)

When working with a perfect fluid, it is common practice to project them onto the directions
longitudinal and transverse to the fluid’s velocity. For the former, one must simply contract
with the velocity uν , while for the latter one must act with the orthogonal projector hµν =
δµν − uµuν . As a result, we respectively have [29]

ρ̇+ (ρ+ p)∇µu
µ = 0 , (2.24a)

(ρ+ p)u̇µ − (gµν − uµuν)∇νp = 0 , (2.24b)

where we use the notation ˙ ≡ uµ∇µ. For a scalar function ϕ, it is also the case that
ϕ̇ = uµ∂µϕ = dϕ/dτ , with τ the parameter of the curve.

Since later on it will be of interest to study purely transverse equations, we shall
here introduce a triplet of linearly independent transverse vectors (wµ1 , w

µ
2 , w

µ
3 ), which we

collectively denote as w⃗µ. They satisfy

uµw⃗
µ = 0 , (2.25)

and we understand that it holds for all three of them. We shall also denote the projection
of the derivatives on the transverse directions as

∇⃗ ≡ w⃗µ∇µ ≡ (wµ1∇µ , w
µ
2∇µ , w

µ
3∇µ) . (2.26)

3 The perfect fluid approach

We shall in this section show that, under the assumption of the field having a time-like
derivative ∂µψ, our model is equivalent to considering a perfect fluid. If we wish to write

– 7 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
4

the EMT (2.10) in the perfect fluid form (2.6), we must find appropriate correspondences
between quantities, and a natural one to begin with seems to be

uα ≡ ∂αψ√
(∂ψ)2 (3.1)

for the velocity. Note that this correspondence only makes sense if the derivative of the field
is a time-like vector, and this shall be our assumption throughout the work. Of course, it is a
rather strong assumption that does not hold in many interesting situations (such as a static
field). Nevertheless, it is a reasonable assumption in cosmological scenarios.

In order to find the energy density, it is useful to recall that Tµνuµuν = ρ for a perfect
fluid, and so from our EMT (2.10) and definition (3.1) we obtain

ρ = 2
√
g

{1
2fk(∂ψ)2 + g

[
f ′vV − 1

2f
′
k(∂ψ)2

]}
. (3.2)

Using all of the above in order to find our last unknown, it follows that

p = − 2g
√
g

[
f ′vV − 1

2f
′
k(∂ψ)2

]
. (3.3)

With these correspondences, we may translate our EMT (2.10) into that of a perfect fluid as
we intended, and study its behavior. Let us note here that ρ and p are both TDiff scalars.
We shall now study our two limiting regimes of potential and kinetic domination in the
context of the perfect fluid approach.

3.1 Potential domination in the perfect fluid

In the potential domination regime of our perfect fluid, we find that ρ and p are related
by a characteristic equation of state (EoS):

p = −ρ = −2√g f ′vV , (3.4)

that is, we have a barotropic fluid p = p(ρ) with the simple EoS p = wρ, where w = −1
for any function fv.

3.2 Kinetic domination in the perfect fluid

The kinetic domination regime of our perfect fluid leads to ρ and p taking the simplified form

ρ = (∂ψ)2
√
g

(
fk − gf ′k

)
, p = (∂ψ)2

√
g

gf ′k . (3.5)

It thus follows that we again have a barotropic fluid, whose EoS parameter may now be
expressed as

w = p

ρ
= gf ′k
fk − gf ′k

, (3.6)

and it is interesting to note that the only dependence is in the metric determinant, w = w(g).
Finally, let us also introduce for future reference the variable

F ≡ gf ′k
fk

, (3.7)
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in terms of which the EoS parameter in the kinetic regime is written

w = F

1 − F
. (3.8)

We remark that this expression is the generalization of the one obtained in reference [16] for
the cosmological case. Note that the GR limit (i.e. Diff invariance) implies that fk ∝

√
g ⇔

F = 1/2 ⇔ w = 1. In other words, in the GR limit of the kinetic domination regime we
have stiff matter (p = ρ). However, in a TDiff theory the coupling function may take on
a different form, so one will have a different equation of state for the scalar field. In our
study we keep this function arbitrary to show the possible equation of state parameters that
one can describe depending on what fk is chosen. This, in turn, gives rise to a wide range
of possibilities, for example, for dark sector models.

4 Energy conditions

In this section we focus on the ECs of our model from the perfect fluid description. Before doing
so, however, we remark that with the EMT written in the completely general form (2.10),
the NEC is translated into

fk ≥ 0 . (4.1)

We thus find that the NEC is satisfied whenever the kinetic term is non-negative or, in other
words, whenever it is not a ghost field [34]. On another note, as we saw, the network of
implications among the ECs (DEC ⇒ WEC ⇒ NEC ⇐ SEC) means that if the NEC is
violated then so are all the others, and so the minimum requirement if we wish to satisfy
some of the ECs is simply that fk ≥ 0.

Let us now see what the perfect fluid ECs (2.22) translate into. The WEC may be
written as

fk ≥ 0 & (∂ψ)2

2
(
fk − gf ′k

)
+ gf ′vV ≥ 0 , (4.2)

while the SEC becomes

fk ≥ 0 & (∂ψ)2

2
(
fk + 2gf ′k

)
− 2gf ′vV ≥ 0 . (4.3)

Regarding the DEC, the absolute value of the pressure we find in (2.22) implies that this
condition splits into two possible cases as follows:

p ≤ 0 : f ′vV − (∂ψ)2

2 f ′k ≥ 0 & fk ≥ 0 ,

p > 0 : f ′vV − (∂ψ)2

2 f ′k < 0 & (∂ψ)2

2
(
fk − 2gf ′k

)
+ 2gf ′vV ≥ 0 .

(4.4)

With the ECs written as above, we have full generality. Nevertheless, in order to simplify
their treatment and gain some further insight on their physical implications, we shall now
study our two limiting cases of potential and kinetic domination.
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4.1 ECs in potential domination

We previously found that in the potential domination regime of our perfect fluid the EoS
was simply w = −1. It is easy to see that for such an EoS the NEC is trivially satisfied
(the inequality saturates), while the others translate to:

WEC: f ′vV ≥ 0 , SEC: f ′vV ≤ 0 ,

DEC:
{
p ≤ 0 : f ′vV ≥ 0 ,
p > 0 : f ′vV < 0 & f ′vV ≥ 0 (contradiction)

(4.5)

We note first of all that if the pressure is negative or zero then the DEC is equivalent to
the WEC (since the second inequality trivially saturates), whereas if it is positive then the
DEC can never be satisfied. Therefore, one can conclude that physically reasonable matter
should have non-positive pressure in this case. On the other hand, we also find that the
only case where the ECs could be simultaneously satisfied is when they saturate, that is
f ′vV = 0. This either means that V = V0 = 0 (which cannot happen if we want potential
domination) or fv(g) = const. It is interesting to note that in the latter case the vanishing of
the EMT (2.14) means that a scalar field with only a potential term that couples through
a constant function does not gravitate (in the sense that it does not affect the geometry of
spacetime). Thus, even though it satisfies all ECs, such a matter field would be impossible
to be detected through gravitational observations.

The discussion above implies that, in the potential domination regime, reasonable matter
which has nontrivial gravitational effects necessarily violates the SEC. This is not surprising
since it is what happens with a vacuum energy, whose EMT takes the form Tµν ∝ gµν as in
the present case. Indeed, as we will see in section 5, the field equation and the conservation
equation imply that the energy density is constant in the potential domination regime.
Therefore, TDiff scalar fields in the potential limit will behave as a cosmological constant.

4.2 ECs in kinetic domination

As we have demonstrated for the general case, the NEC implies fk ≥ 0. Nevertheless, fk ̸= 0
in kinetic domination, and hence we must consider fk > 0. The rest of the ECs translate as:

WEC: fk ≥ 0 , fk − gf ′k ≥ 0 ,

SEC: fk ≥ 0 , fk + 2gf ′k ≥ 0 ,

DEC:
{
p ≤ 0 : f ′k ≤ 0 & fk ≥ 0 ,
p > 0 : f ′k > 0 & fk − 2gf ′k ≥ 0 .

(4.6)

It is straightforward to check that all ECs considered in this work are indeed satisfied in
this regime for the GR case fk(g) ∝ √

g. This is not surprising since, as we have already
mentioned, this case corresponds to stiff matter. (Note, however, that stiff matter violates
the abandoned Trace Energy Condition [35].) On the other hand, as it is not possible to
discuss the potential fulfillment of the ECs for general kinetic coupling functions, we will
postpone such discussion until section 6, where we consider some particular cases of interest
with a more immediate interpretation.
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5 Conservation of the EMT

In GR the conservation of the EMT on the solutions to the EoM is an immediate consequence
of the full Diff invariance of the theory, and hence provides no additional information. In a
TDiff theory, where the symmetry is broken, it is therefore a legitimate question to ask what
happens to such a conservation: it is not fulfilled automatically, but can it be recovered?
And, if so, does it provide any valuable information?

In this work, the gravitational action is unchanged and we consider a single TDiff scalar
field as our matter content. As we saw,

S = SEH + Sm =⇒ Gµν = 8πGTµν . (5.1)

The equations of motion for the gravitational field are the Einstein equations, and since
the Bianchi identities establish the divergenceless character of the Einstein tensor, then
so must be the field EMT:

∇µG
µν = 0 =⇒ ∇µT

µν = 0 . (5.2)

The field EMT conservation equation on the solutions to the EoM of the theory thus arises
as a consistency requirement. It will not be trivially satisfied (we do not have the symmetry
to obtain it automatically), but rather it will impose some constraints on the metric tensor.

The conclusion seems reasonable. Note that in a Diff invariant theory we have 4
gauge degrees of freedom, which allow us to fix 4 components of the metric via coordinate
transformations. On the other hand, in a TDiff theory, the constraint ∂µξµ = 0 on the
allowed transformations implies that we only have 3 gauge degrees of freedom, and hence
only 3 components of the metric may be fixed (see references [16, 36] for a discussion in a
cosmological context). The additional metric component is actually physical, so we need
an extra equation to find it: this is the constraint we obtain from the fact that the EMT
conservation equation of our TDiff scalar field is not trivially satisfied. We shall consider in this
section our limiting cases of potential and kinetic domination and obtain the corresponding
constraints on the metric.

5.1 EMT conservation in potential domination

The conservation of the EMT in potential domination is quite straightforward as a consequence
of the simple EoS w = −1. Indeed, in this case the longitudinal projection (2.24a) is simply
ρ̇ = 0, which in turn also means that ṗ = −ρ̇ = 0. Taking this into account, the transverse
projection (2.24b) simplifies down to ∂µp = 0. Now substituting equation (3.4) in ∂µp = 0,
and recalling that V = V0 = const. on the solutions to the EoM, we obtain(1

2f
′
v + gf ′′v

)
∂µg = 0 . (5.3)

In this way, if the coupling function fv is left arbitrary, we obtain the sought-for constraint
on the metric: we must have a constant determinant,

∂µg = 0 =⇒ g = const. (5.4)

– 11 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
4

Another possibility is to allow the metric determinant to change, but then we must require

fv(g) = A
√
g +B , (5.5)

with A and B constants of integration. Thus, only particular theories (with this fv) do not
restrict the form of g due to the conservation of the EMT. Expression (5.5) is the most general
solution for this situation, and different limiting cases may be explored. On the one hand, if we
set B = 0, we recover GR as a particular solution (fv ∝

√
g) as it should be expected. On the

other hand, setting A = 0 means that the coupling is done via a constant function which, as
we previously discussed, leads to a vanishing EMT and therefore the field does not gravitate.

As a final comment, we note that no further information may be gained from the
longitudinal projection of the EMT conservation, since substituting (3.4) in ρ̇ = 0 yields(1

2f
′
v + gf ′′v

)
dg

dτ
= 0 , (5.6)

which is trivially satisfied using equation (5.3).

5.2 EMT conservation in kinetic domination

The study of the EMT conservation in the kinetic domination regime turns out to be rather
more involved, and for this reason we have divided the analysis into smaller, more accessible
parts. Firstly, we will rewrite the kinetic EoM in terms of perfect fluid quantities, and also
find what its solution must satisfy. We will also consider the longitudinal and transverse
projections of the EMT conservation equation for our particular case, and separately study
them in order to see what constraints the EMT conservation imposes on the theory. In
passing, we will obtain a very simple expression for the energy density and the speed of
sound of the perturbations.

5.2.1 EoM and conservation equations

In this introductory section we present some results regarding the EoM, as well as the
longitudinal and transverse projections of the EMT conservation equation. The subsequent
sections shall be devoted to a more thorough study of the results we find here, this one
simply serves as their presentation.

We shall begin by expanding the kinetic EoM (2.16) as

0 = ∂µψ∂µfk + fk∂µ∂
µψ . (5.7)

We shall denote the normalization constant of the velocity by N =
√

(∂ψ)2, so that ∂αψ =
Nuα, and divide the above equation by fk. For now, we shall assume fk ̸= 0 everywhere
until the end of the section, where we will discuss the possibility of the function vanishing
at some point. So, we obtain

0 = Nuµ∂µ (ln |fk|) + ∂µ (Nuµ) . (5.8)

Using equation (2.7), we can write the second term as

∂µ

(
Nuµ

√
g

√
g

)
= N

(
uµ∂µ ln N

√
g

+ ∇µu
µ

)
. (5.9)
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In this expression we recognize the expansion scalar of the congruence, θ = ∇µu
µ. This

quantity may be directly related to the fractional rate of change of the congruence’s cross-
sectional volume δV as [32]

θ = 1
δV

d

dτ
(δV ) = uµ∂µ ln δV . (5.10)

Taking everything into account, we may rewrite equation (5.8) (after simplifying a common
factor of N) as

d

dτ
ln
∣∣∣∣∣ fk√gNδV

∣∣∣∣∣ = 0 , (5.11)

where we have used uµ∂µ = d
dτ . Recalling N =

√
(∂ψ)2, it finally follows that the solutions

to the EoM satisfy

(∂ψ)2 = Cψ(x)
( √

g

δV fk

)2
, (5.12)

with Cψ(x) a function subject to the constraint

Ċψ(x) = uµ∂µCψ(x) = 0 . (5.13)

It will also be useful to rewrite the EoM in terms of perfect fluid quantities, and combine
it with the longitudinal projection of the EMT conservation equation. Taking into account
equations (3.5), we may express N in terms of ρ and p as

N2 =
(ρ+ p)√g

fk
, (5.14)

and so the EoM (5.11) takes the form

d

dτ
ln
√
fk√
g

(ρ+ p)δV 2 = 0 . (5.15)

From this expression we find that

ρ̇+ ṗ = −(ρ+ p) d

dτ
ln
∣∣∣∣∣δV 2fk√

g

∣∣∣∣∣ . (5.16)

But we also know, from equation (2.24a), that

ρ̇ = −(ρ+ p) d

dτ
ln δV , (5.17)

and so from equations (5.16) and (5.17), it follows:

ṗ = −(ρ+ p) d

dτ
ln
∣∣∣∣∣δV fk√

g

∣∣∣∣∣ . (5.18)

Up to this point, we have been dealing with longitudinal results, in the sense that they
hold along the integral curves of the tangent vector field uµ. So far, however, we have no
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information as to what happens in directions transverse to the fluid’s velocity, so let us
consider precisely that.

We begin with equation (2.24b), the projection of the EMT conservation equation onto
directions transverse to the fluid’s velocity. In that expression, we recognize terms with u̇µ,
uµ, and ∂µp, but it turns out that these three quantities are related. It follows from the
definition of the pressure in equation (3.5) that

p = N2 gf
′
k√
g

= N2Ffk√
g

, (5.19)

where F was defined in equation (3.7). Since we wish to take its derivative, let us begin
by computing the following:

∂µ(N2) = ∇µ(N2) = ∇µ(∇αψ∇αψ) = 2∇αψ∇µ∇αψ =

= 2Nuα∇α(Nuµ) = 2N(Ṅuµ +Nu̇µ) =

= 2N2
(
uµ

d

dτ
lnN + u̇µ

)
,

(5.20)

where we have recalled that for a torsionless connection ∇µ∇αψ = ∇α∇µψ when acting on
scalar functions. Using this result when differentiating equation (5.19), we find

∂µp = 2p
(
uµ

d

dτ
lnN + u̇µ + 1

2∂
µ ln

∣∣∣∣∣Ffk√
g

∣∣∣∣∣
)
. (5.21)

From this expression we may solve for u̇µ,

u̇µ = 1
2∂

µ ln
∣∣∣∣p√gFfk

∣∣∣∣− uµ
1
2
d

dτ
lnN2 . (5.22)

Now, using equations (5.14) and (5.19) we can write

N2 =
p
√
g

Ffk
=

(ρ+ p)√g
fk

, (5.23)

and inserting the resulting u̇µ in (2.24b), we obtain the transverse equation

0 = uµṗ− ∂µp+ ρ+ p

2

(
∂µ ln

(ρ+ p)√g
fk

− uµ
d

dτ
ln

(ρ+ p)√g
fk

)
. (5.24)

It is immediate to see that the equation is trivially satisfied if we contract with uµ, as we
should expect from transversality.

Let us now assume that fk vanishes at some point P in spacetime, fk|P = 0. Assuming
a regular f ′k, the EoS (3.6) read at that point implies w|P = −1. The field EoM (5.7) at
that point is written

0 = ∂µψ∂µfk = f ′k∂
µψ∂µg =⇒ ġ|P = 0 . (5.25)

On the other hand, the conservation of the energy (2.24a) reads ρ̇|P = 0 due to the simple
EoS at that point. Taking now into account the definition of the energy density in the kinetic
regime (3.5), and evaluating its variation along the curve at that point, it follows that

d

dτ
(∂ψ)2

∣∣∣∣
P

= 0 , (5.26)
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which in turn means ṗ|P = 0 due to the definition (3.5). Therefore, most importantly, we
end up having ẇ|P = 0. This means that, at a neighborhood along the curve, w = −1 as
well. As for the transverse condition, equation (2.24b) gives ∂µp|P = 0.

On the other hand, let us finally consider the case fk ∝ g, so that we have ρ = 0. Taking
into account the conservation equation (2.24a), it follows that the pressure also vanishes. In
what follows, we shall not consider further this trivial case.

5.2.2 Longitudinal results

It is possible to find a longitudinal constraint on the metric by considering our longitudinal
equations (5.17) and (5.18), together with the EoS in the kinetic limit (3.8). Using the EoS
and equation (5.17), the derivative of the pressure is

ṗ = ẇρ+ wρ̇ = ẇρ− wρ(1 + w) d

dτ
ln δV . (5.27)

Equating this expression with equation (5.18), dividing through by ρ, and reorganizing
terms we find

ẇ = (1 + w)
[
(w − 1) d

dτ
ln δV − d

dτ
ln
∣∣∣∣∣ fk√g

∣∣∣∣∣
]
. (5.28)

Recalling what quantities are functions of only the determinant, it is possible to write

ẇ = w′ ġ = (1 + w) F ′

1 − F
ġ , (5.29)

d

dτ

(
fk√
g

)
= fk√

g

(
F − 1

2

)
ġ

g
, (5.30)

where we have used equation (3.8). Substitution gives

(1 + w) F ′

1 − F
ġ = (1 + w)

[
(w − 1) d

dτ
ln δV −

(
F − 1

2

)
ġ

g

]
. (5.31)

Dividing through by (1 + w) and rearranging, we obtain{
F ′

1 − F
+ F − 1/2

g

}
ġ = (w − 1) d

dτ
ln δV . (5.32)

After dividing this equation by (w− 1) (w = 1 would correspond to considering the GR limit)
and taking into account that from equation (3.8) we have

w − 1 = 2F − 1
1 − F

, (5.33)

it turns out that everything simplifies neatly, since

1
w − 1

{
F ′

1 − F
+ F − 1/2

g

}
= 1

2

{ 2F ′

2F − 1 + 1
g
− f ′k
fk

}
= 1

2
d

dg
ln
∣∣∣∣(2F − 1) g

fk

∣∣∣∣ . (5.34)

In this way, we have from (5.32) that

ġ

2
d

dg
ln
∣∣∣∣(2F − 1) g

fk

∣∣∣∣ = d

dτ
ln δV . (5.35)
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Recognizing a total derivative in the l.h.s. and multiplying the whole equation by 2 it
follows that

d

dτ
ln
∣∣∣∣(2F − 1) g

fk

∣∣∣∣ = d

dτ
ln δV 2 . (5.36)

Finally, then, we obtain the following longitudinal constraint:

(2F − 1) g
fk

= Cg(x)δV 2 , (5.37)

with Cg(x) a function which must satisfy

Ċg(x) = uµ∂µCg(x) = 0 . (5.38)

We emphasize that equation (5.37) imposes a constraint on the metric once a coupling
function fk is specified. Note that the expression obtained generalizes for an arbitrary metric
the result obtained in reference [16] for Robertson-Walker, where δV = a3 and Cg = const.

5.2.3 Transverse results

We now focus on the transverse part of the EMT conservation, and in order to do so we
contract the transverse equation (5.24) with the previously introduced triplet of transverse
vectors w⃗µ presented in (2.25), obtaining

0 = ρ+ p

2 ∇⃗ ln
∣∣∣∣∣(ρ+ p)√g

fk

∣∣∣∣∣− ∇⃗p (5.39)

(we remark that throughout this section ∇⃗ = w⃗µ∂µ). Simple algebraic manipulations
now lead to

∇⃗(ρ− p) = (ρ+ p) ∇⃗ ln
∣∣∣∣∣ fk√g

∣∣∣∣∣ , (5.40)

which using the EoS may as well be written as

(1 − w)∇⃗ρ− ρ∇⃗w = ρ(1 + w) ∇⃗ ln
∣∣∣∣∣ fk√g

∣∣∣∣∣ . (5.41)

Recalling once again that the only dependence of the EoS parameter w and the ratio fk/
√
g

is on the metric determinant, we have

∇⃗w = w′ ∇⃗g = (1 + w) F ′

1 − F
∇⃗g , (5.42)

∇⃗
(
fk√
g

)
= fk√

g

(
F − 1

2

) ∇⃗g
g
, (5.43)

where we have again used equation (3.8). Substituting back in equation (5.41) and rearranging,
it follows that

(1 − w)∇⃗ρ = ρ(1 + w)
{

F ′

1 − F
+ F − 1/2

g

}
∇⃗g . (5.44)
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We may now safely divide both sides of the equation by ρ(1 − w), finally arriving at

∇⃗ ln |ρ| = −1 + w

2 ∇⃗ ln
∣∣∣∣(2F − 1) g

fk

∣∣∣∣ , (5.45)

where we have also used equation (5.34).
Now, we have already obtained a (longitudinal) constraint in equation (5.37), and

we wonder if the transverse projection of the EMT conservation equations might provide
us with any additional information. To this end, we shall substitute the longitudinal
constraint (5.37) in the r.h.s. of equation (5.45). Recalling also that 1 + w = 1

1−F and that
on the solutions (5.12) to the EoM

ρ = (∂ψ)2
√
g
fk(1 − F ) =

Cψ
√
g(1 − F )
fkδV 2 , (5.46)

it follows that

∇⃗ ln
∣∣∣∣∣Cψ

√
g(1 − F )
fkδV 2

∣∣∣∣∣ = −1
2(1 − F )∇⃗ ln

∣∣∣CgδV 2
∣∣∣ . (5.47)

Working from this expression, a straightforward calculation (see appendix B) finally yields
the transverse constraint

∇⃗ (CgCψ) = w⃗µ∂µ (CgCψ) = 0 . (5.48)

This is a condition which relates the function Cg from the longitudinal constraint (5.37) to the
solutions of the EoM (5.12), which depend on Cψ. Indeed, we find in (5.48) that the derivative
of the product CgCψ vanishes when projected onto the transverse directions. However, we
know that the derivative of the product also vanishes when projected along the longitudinal
direction, since Ċψ = Ċg = 0 and hence uµ∂µ (CgCψ) = 0. Consequently, we find that

CgCψ = const. ≡ cρ , (5.49)

i.e. the product is actually a constant (which we have denoted as cρ for later convenience)
and the two functions are inversely proportional to each other.

As a final note, let us remark for clarity that even though we employ the terms “longitu-
dinal constraint” and “transverse constraint” in order to more easily refer to said expressions,
only one actual condition on the metric has been obtained (as it should) which is equa-
tion (5.37). Equation (5.48) simply relates the (in principle rather general) functions which
come from integration.

5.2.4 The adiabatic TDiff fluid

We will now derive a simple expression for the energy density ρ in the kinetic domination
regime. In order to do so, we begin with its definition in equation (3.5), substitute the
solutions to the EoM (5.12), recall (5.33), and use the longitudinal constraint (5.37):

ρ = (∂ψ)2
√
g
fk(1 − F ) = Cψ√

g

g

fkδV 2 (1 − F ) = Cψ√
g

g

fkδV 2
2F − 1
w − 1 = CgCψ

(w − 1)√g . (5.50)
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Thus, recalling the consequence (5.49) of the transverse constraint, we finally obtain the
following simple relation:

ρ = cρ
(w − 1)√g . (5.51)

We remark that this expression is well-defined as long as we are not in the GR limit, but other
than that it is completely general and valid for all geometries. Moreover, since w = w(g), it
also shows that the only dependence of both the energy density and the pressure is in the metric
determinant, and this means that the possible perturbations of this fluid shall be adiabatic.

Furthermore, for an adiabatic fluid, the speed of sound of the perturbations cs is
defined through

δp = c2
s δρ , (5.52)

where it is possible to find that

c2
s = w + w′ ρ

ρ′
. (5.53)

Substituting, it finally follows that for our case:

c2
s = − gfk(f ′k + 2gf ′′k )

f2
k + (2gf ′k)2 − gfk(5f ′k + 2gf ′′k ) . (5.54)

Let us emphasize that the above relation for the speed of sound of the perturbations is valid
for any scalar field model in the kinetic regime, as well as for any spacetime. In particular, it
is useful in the study of cosmological perturbations in TDiff scenarios, and it simplifies the
treatment that was made in reference [16]. We remind the reader that the only underlying
assumption is that the field derivative is a time-like vector.

6 Shift-symmetric TDiff dark sector

In this section we focus our attention on a particular subclass of models in which the kinetic
domination is not an approximate regime but rather an exact behavior. These models are
invariant under shift redefinitions of the field

ψ → ψ + c, (6.1)

where c is an arbitrary constant. Assuming this symmetry is maintained in the quantum
regime, the absence of a potential term is protected against radiative corrections. Moreover,
these models are of particular interest in different physical situations. In a cosmological
context they produce kinetically driven cosmic dynamics [28, 37], thus avoiding self-tuning
problems coming from relying in a particular form of a potential. Furthermore, shift-symmetric
scalar-field theories have also been investigated in detail in black hole scenarios [38, 39]. We
shall in what follows consider some particular cases of physical interest.
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6.1 Constant equation of state models

We begin by considering that the coupling function has the form of a power-law, i.e.

fk(g) = Cgα , (6.2)

with C and α some constant parameters. Note that, in such a case, F = gf ′k/fk = α and
so it follows that the EoS parameter is also constant:

w = α

1 − α
. (6.3)

The case α = 1 (which corresponds to fk ∝ g) implies ρ = 0 and was previously discussed.
Away from the GR limit, we find from equation (5.51) that the energy density in power-law
couplings satisfies

ρ ∝ 1
√
g
, (6.4)

while the longitudinal constraint (5.37) gives

g ∝ (CgδV 2)
1

1−α = (CgδV 2)(1+w) . (6.5)

We note that if Cg(x) = const. the situation simplifies:

g ∝ δV 2(1+w) =⇒ ρ ∝ δV −(1+w) , (6.6)

and this may be of use in cosmological settings.
Next we focus on the ECs (4.6). Noting that we need C ̸= 0 in order to have a

non-vanishing fk, the ECs translate to

NEC: C > 0 ,
WEC: C > 0 , α ≤ 1 ,
SEC: C > 0 , α ≥ −1/2 ,
DEC: C > 0 , α ≤ 1/2 .

(6.7)

They are graphically represented in figure 1. For C > 0 and α < −1/2 all the ECs are
satisfied except for the SEC. So, we will have non-negative energy densities propagating in a
causal way (as seen by any observer), but not necessarily leading to the focusing of time-like
geodesics. The corresponding couplings, therefore, could appear interesting for describing dark
energy models when applied to a cosmic background. However, when reflecting about this
possibility one may quickly note that, since w is constant, one obtains that the propagation
speed of the field perturbations is

c2
s = w , (6.8)

as it could be obtained from the general relation (5.54). So, stressing that the field perturba-
tions are adiabatic, one can conclude that these dark energy models will be unstable. On
the other hand, for C > 0 and α ∈ [−1/2, 1/2] all of the ECs are satisfied. The particular
case of α = 1/4 may be of interest for the dark sector, as being able describe dark radiation
(w = 1/3) [40]. Finally, we note that a similar analysis as that followed for the power-law model
could also apply to a more general coupling function which may be expressed as a power series.
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Figure 1. Regions of validity of the ECs for the two couplings (the axes extend infinitely). The same
diagram is valid for both, understanding the horizontal axis as α when considering the power-law and
as −βg when considering the exponential.

6.2 Dark matter

Let us now take a constant coupling function, that is

fk = C. (6.9)

This corresponds to the case α = 0 of the previous section. For this model equations (3.5)
reduce to

ρ = C
(∂ψ)2
√
g

, p = 0 , (6.10)

while we also have w = 0. Therefore, in any situation that the scalar field behaves as a
perfect fluid (that is, whenever ∂µψ is time-like) this theory describes dust matter, and as
such it is a very simple model for dark matter which does not add new parameters to a
cosmological model with respect to ΛCDM. Moreover, since this is an adiabatic fluid with
constant equation of state parameter w = 0, then the speed of sound vanishes not only in
cosmological backgrounds [16] but in general, this is,

c2
s = 0 . (6.11)

Finally, the simple equation for the energy density (5.51) in this case takes the form

ρ = − cρ√
g
. (6.12)

The compatibility between these equations requires

(∂ψ)2 = −cρ
C
. (6.13)

Since we are assuming the field derivative to be a time-like vector, i.e. (∂ψ)2 > 0, this means
that the constants cρ and C have opposite signs.
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6.3 Models with different gravitational domains

We now consider that the coupling function is an exponential. This is

fk(g) = Ce−βg , (6.14)

with C and β some constant parameters. In this case, the variable F = −βg is not a constant,
and so neither is the EoS parameter w, which from equation (3.8) reads

w = − βg

1 + βg
. (6.15)

Taking into account the general expression for the speed of sound (5.54), we also find that

c2
s = βg(1 − 2βg)

1 + 5βg + 2β2g2 . (6.16)

The study of the evolution of the energy density and the metric determinant is not particularly
simple or illuminating (except perhaps for the case β = 0, which gives a constant fk and
non-relativistic matter, as was discussed in the previous section), so we focus on the ECs (4.6).
These take the form:

NEC: C > 0 ,
WEC: C > 0 , −βg ≤ 1 ,
SEC: C > 0 , −βg ≥ −1/2 ,
DEC: C > 0 , −βg ≤ 1/2 ,

(6.17)

where, as in previous cases, we have taken C ̸= 0 to avoid fk = 0. We may graphically
represent them in the same way as we did the power-law, see figure 1. Nevertheless, the fact
that the metric determinant explicitly appears in these ECs means that the fulfillment of
the ECs will depend on the value of g, as opposed to the previous case. Since the metric
determinant is allowed to vary, it may happen that in some regions of the spacetime a given
EC is satisfied but at others it is not.

As a physically interesting example, let us suppose that β > 0, so that the product −βg
is always negative. In this case, the WEC and the DEC are always satisfied; so, we have some
physically reasonable kind of perfect fluid. However, there may be some regions in spacetime
where the SEC holds, whereas in other regions the SEC would be violated. Noting that
the fulfillment of the SEC implies focusing of time-like geodesics through the Raychaudhuri
equation [33], one could find different gravitational domains in spacetime, characterized by
focusing or possible defocusing of time-like geodesics. In a cosmological context the transition
between those regions would take place at a particular cosmic time; therefore, one may
be able to describe cosmological models evolving from a phase of decelerated expansion to
other of accelerated expansion [16]. This is of particular interest for the construction of
unified dark matter-energy models [41].

6.4 Beyond the shift-symmetric case

Let us now go beyond the shift-symmetric case previously discussed. Throughout the paper
we have presented different interesting results for general models in the potential domination
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regime. In the first place, in section 2 we have discussed that the field equation implies
V = V0. In the second place, the conservation of the EMT on the solutions to the field
equation implies a constant determinant for generic fv functions. Summarizing, for generic
TDiff scalar theories the fluid is such that

p = −ρ = −2g
√
g
f ′vV = constant , in the potential regime. (6.18)

In this way, one can conclude that these models behave as a cosmological constant in the
potential domination regime.

On the other hand, it is difficult to extract conclusions regarding the gravitational
properties of general models in the kinetic regime. Nevertheless, the exact results presented
in the previous sections for shift-symmetric models can be regarded as the approximate
behavior of general models when approaching the kinetic domination regime. Therefore, one
could in principle think that general models may be able to interpolate between the kinetic
and the potential limits. In a cosmological context, the presented study can allow one to
investigate the possible construction of unified dark matter-energy models when considering
fv ̸= 0 and fk = C, for example.

7 Discussion and conclusions

In this work, we have explored the consequences of breaking the Diff invariance of the matter
sector down to TDiff in general contexts (i.e. the analysis has been purely geometrical, without
assuming a spacetime metric). We have considered a scalar field model which couples to
gravity via arbitrary functions of the metric determinant, and studied its limiting cases
of potential and kinetic domination. Under the assumption of the field derivative being a
time-like vector, we have also shown that it is possible to carry out an equivalent description
of the model in terms of a perfect fluid. The ECs have also been analyzed in each of the two
regimes, and we have obtained expressions involving derivatives of the coupling functions
and their relations to quantities such as the metric determinant (in the case of fk) or the
potential (in the case of fv).

An important focus of the work has been the study of the EMT conservation, which is
not automatically satisfied in a TDiff theory, and we have found that it implies a constraint
on the metric. For the potential domination regime we have obtained that either the metric
determinant has to be constant, or the coupling function has a particular form (which
contains GR as a particular limit) to allow the metric determinant to vary. The study of EMT
conservation in the kinetic domination regime resulted in not only the sought-for constraint
on the metric tensor (which in this regime turns out to depend on the coupling function
chosen), but it also provided us with a particularly simple expression for the energy density
(which is not valid in GR) in terms of the metric determinant, which could be very useful
in perturbative analysis. Indeed, one of the main results of the work is the fact that in the
kinetic regime the energy density and pressure depend only on the metric determinant and,
therefore, possible perturbations of the fluid will be adiabatic as a result of this dependence
on a single variable. In fact, we have also found a general expression for the speed of sound
in terms of the coupling function valid for any geometry.
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Let us remark again the fact that the couplings to gravity which we have considered
are minimal. Furthermore, the kinetic term is a canonical one, but in situations in which it
dominates we have a rather flexible EoS thanks to the variety of coupling functions fk. In
GR the only possibility for a shift-symmetric scalar field with a canonical kinetic term is
w = 1, which means that one must include non-canonical kinetic terms in order to allow for
interesting phenomenology (this, is for instance, the case of k-inflation [42] or k-essence [5, 6],
and kinetic gravity braiding [7, 43]).

We have shown that shift-symmetric TDiff scalar models with a power-law coupling
function are of special interest, since the equation of state parameter is constant in this
scenario. For these models, the energy density is simply inversely proportional to the square
root of the metric determinant. Regarding the dark sector, this kind of coupling can be applied
to describe dark radiation. Furthermore, in the particular case that the coupling function is
simply a constant, the model could describe dark matter in generic backgrounds. On the
other hand, we have also considered an exponential coupling function for shift-symmetric
TDiff scalar models. In this case the study of the ECs reveals that the evolution of the
metric determinant gives rise to particular models that can cross from regions where some
EC is satisfied to other where it can be violated. In particular, we conclude that exponential
models with a negative exponent satisfy all energy conditions except for the SEC, which will
be violated or satisfied in different regions depending on the value of the metric determinant.
Therefore, the spacetime could be divided in gravitational domains, depending on the focusing
or possible defocusing of time-like geodesics. This is particularly interesting in cosmological
contexts, where one could describe the transition from a non-accelerated expansion to an
accelerated one. So, these models may be able to provide us with a fundamental description
for unified dark matter-energy models [41].

It is difficult to extract general consequences beyond the shift-symmetric case. For this
purpose it is particularly interesting to reflect about the results we have obtained in the
potential domination regime and in the kinetic domination regime (which correspond to
those obtained for the shift-symmetric models). Therefore, for example, general models with
a power-law kinetic coupling may be able to interpolate between a cosmological constant
behavior and that of a component with a constant equation of state parameter, being of
particular interest the case of dark matter.

Before concluding, let us shortly perform some further comments on the model and future
outlook. We begin by noting that, for simplicity, we have only considered a single TDiff
scalar field as our matter content, since our study in this work centers around the possibility
of describing the dark sector from a novel point of view (in particular, modeling it via a
scalar field with symmetry-breaking couplings). Of course, one could well argue that we are
missing all the visible matter from the Standard Model in our treatment, and that we should
include SSM in the total action. Nevertheless, if we perform this inclusion in the standard way,
then the newly included piece SSM would be Diff invariant all on its own, meaning that the
associated EMT is conserved all on its own. This fact tells us that the consistency requirement
of the TDiff scalar field ψ’s EMT conservation would still follow from the Einstein equations
together with the Bianchi identities, and that we did not lose generality in our discussion.
How about the inclusion of other TDiff fields of arbitrary character (other scalar fields, spinor
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fields, vector fields. . . ) in the matter action? In this case, the Einstein equations together
with the Bianchi identities would imply the conservation of the complete TDiff matter EMT,
although not necessarily that of each TDiff field separately. Nevertheless, we would still
obtain a consistency condition on the metric (note also that at no point along the reasoning
had we the need to specify any coupling function fk nor fv for any of the fields: they have
remained arbitrary all throughout and do not affect that conclusion). There is currently
work being done in this direction in cosmological contexts, see for instance reference [44]
for the study of two TDiff scalar fields and reference [45] for the study of a TDiff coupled
vector field interacting with a Diff coupled spinor field.

Finally, a word on coupling functions. The TDiff scalar field model we consider in this
work is also studied in references [16, 20]. In those references it is argued that if one wishes
the scalar field to preserve the Weak Equivalence Principle (WEP) then both functions
should coincide, i.e. fk = fv ≡ f . Although this condition makes the scalar field model
phenomenologically viable for matter in the visible sector, it may not be necessary in the
dark sector. With this possible application in mind, then, we have in this work allowed both
functions to differ from each other. But, in general, for any type of field in the geometric optics
approximation, one recovers the standard Diff-invariant predictions when all the couplings are
the same. It is therefore natural to expect that the WEP is satisfied when the new coupling
functions coincide. Currently, there is work being done [45] in the direction of revising the
hypotheses for the WEP when the model is not a scalar field but fields of other spins.

To conclude, the present work considers a TDiff scalar field as a particular case of study.
We have maintained the situation as general as possible with the idea of gaining some intuition
on the gravitational implications of TDiff invariant fields. Therefore, we hope that the results
presented in this work could suggest interesting particular models to investigate in further
detail as promising candidates for describing the dark sector.

A Covariantized action

Although a general action of the form

STDiff[gµν ,Ψ] =
∫
d4x

∑
i

fi(g)Li (gµν ,Ψ, ∂µΨ) (A.1)

(with each Li a Diff scalar and fi(g) arbitrary coupling functions) breaks Diff invariance down
to TDiff, it is possible to rewrite it in a generally covariant way by introducing a Diff scalar
density µ̄ which transforms as √

g under general coordinate transformations. For instance,
following [16, 17], let us define the density to be

µ̄ = ∂µ (√g Tµ) , (A.2)

with Tµ a Diff vector field. The quantity µ̄ indeed transforms as √
g, since

µ̄
√
g

= 1
√
g
∂µ (√g Tµ) = ∇µT

µ ≡ Y (A.3)

(where we have introduced the Diff scalar field Y ≡ ∇µT
µ) so that, rearranging,

µ̄ = Y
√
g . (A.4)
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Consider now the following Diff invariant action

SDiff[gµν ,Ψ, Tµ] =
∫
d4x

∑
i

√
g Hi (Y )Li (gµν ,Ψ, ∂µΨ) , (A.5)

which, at face value, seems to be describing a similar theory to that of action (A.1), but with an
additional vector field Tµ field coming into play via the arbitrary functions Hi(Y ) = Hi(∇µT

µ).
For convenience, let us rewrite the arbitrary functions Hi(Y ) as

Hi(Y ) ≡ Y fi(Y −2) , (A.6)

with arbitrary fi, so that the action is rewritten as

SDiff[gµν ,Ψ, Tµ] =
∫
d4x

∑
i

√
g Y fi(Y −2)Li (gµν ,Ψ, ∂µΨ) . (A.7)

Interestingly, it is in fact possible to make this Diff action completely equivalent to the
TDiff action (A.1) above by going to a coordinate system where µ̄ = 1. Indeed, in such
a coordinate system we have that

√
g Y fi(Y −2)

∣∣∣∣
µ̄=1

= µ̄ fi
(
g/µ̄2

) ∣∣∣∣
µ̄=1

= fi(g) , (A.8)

and so we immediately see that

SDiff[gµν ,Ψ, Tµ]
∣∣∣∣
µ̄=1

=
∫
d4x

∑
i

fi(g)Li (gµν ,Ψ, ∂µΨ) = STDiff[gµν ,Ψ] . (A.9)

As a concrete example, and one of particular interest for us, let us take the Diff invariant action

SDiff[gµν , ψ, T µ] =
∫
d4x

√
g

[
Hk(Y )1

2g
µν∂µψ∂νψ −Hv(Y )V (ψ)

]
. (A.10)

If we set µ̄ = 1 and recognize the functions fk(g) and fv(g), we immediately realize that
it has become precisely the TDiff action (2.8). In this manner, we may alternatively work
within the TDiff approach or the covariantized approach.

B Calculation of the transverse constraint

In this appendix we derive the transverse constraint (5.48). Our starting point is equa-
tion (5.47), which we rewrite here for convenience:

∇⃗ ln
∣∣∣∣∣Cψ

√
g(1 − F )
fkδV 2

∣∣∣∣∣ = −1
2(1 − F )∇⃗ ln

∣∣∣CgδV 2
∣∣∣ . (B.1)

In what follows, we shall abbreviate notation and assume that all logarithms have an absolute
value sign included, i.e. ln x ≡ ln |x| for the following calculations. Expanding the above
expression and rearranging some multiplicative factors, we obtain

−2(1 − F )
[
∇⃗ lnCψ + ∇⃗ ln(1 − F ) − ∇⃗ ln

(
fk√
g

)
− ∇⃗ ln δV 2

]
= ∇⃗ lnCg + ∇⃗ ln δV 2 , (B.2)
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and grouping like terms in the r.h.s. it follows that

−2(1 − F )
[
∇⃗ lnCψ + ∇⃗ ln(1 − F ) − ∇⃗ ln

(
fk√
g

)]
= ∇⃗ lnCg + (2F − 1)∇⃗ ln δV 2 . (B.3)

Let us now focus on the l.h.s. of the above equation, which we may write as

−2(1 − F )∇⃗ lnCψ − 2∇⃗(1 − F ) + (1 − F )(2F − 1)∇⃗g
g

= −2(1 − F )∇⃗ lnCψ + (2F − 1)
[
∇⃗ ln(2F − 1) + (1 − F )∇⃗g

g

]
,

(B.4)

where we have made use of the fact that differentiating a constant yields zero, so that we
could very well write

−2∇⃗(1 − F ) = 2∇⃗F = ∇⃗(2F ) = ∇⃗(2F − 1) = (2F − 1)∇⃗(2F − 1)
(2F − 1) = (2F − 1)∇⃗ ln(2F − 1) .

(B.5)
Having rewritten the l.h.s., we may straightforwardly rearrange the result so that we obtain

−2(1 − F )∇⃗ lnCψ = ∇⃗ lnCg + (2F − 1)
[
∇⃗ ln δV 2 − ∇⃗ ln(2F − 1) − (1 − F )∇⃗g

g

]
. (B.6)

Next we focus on the square bracket on the r.h.s. of the above expression, which using our
longitudinal constraint will actually simplify greatly:

∇⃗ ln δV 2 − ∇⃗ ln(2F − 1) − ∇⃗g
g

+ F
∇⃗g
g

= ∇⃗ ln
(

δV 2

g(2F − 1)

)
+ g

f ′k
fk

∇⃗g
g

= ∇⃗ ln
(

1
Cgfk

)
+ ∇⃗ ln fk = −∇⃗ lnCg .

(B.7)

Substituting this result back, we obtain

−2(1 − F )∇⃗ lnCψ = 2(1 − F )∇⃗ lnCg , (B.8)

which after simplification finally yields the transverse constraint

∇⃗ (CgCψ) = 0 . (B.9)
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