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1 Introduction

The integrable system underlying string theory in AdS3 × S3 ×M4 [1], the manifold M4

either being T 4 or S3 × S1 [2] — see the reviews [3, 4] — is similar but arguably richer
than the AdS5 counterpart [5, 6]. An incomplete list of references is given by [7–19]. In
AdS3 massless modes are present [20–24] and the machinery of massless integrability is
called into play [25–29]. The possibility of having a mixture of RR and NS-NS flux is also
there — in [1] the case of equal radius for the S3 × S3 × S1 is discussed and in the generic
radius case is found in [7], with the mixed flux case featured in [30–56]. The paper [56] in
particular describes the full moduli space, and explains the h parameter which connects
with the complete moduli dependence. Recently, the Quantum Spectral Curve (QSC) has
been written down for purely RR background AdS3 × S3 × T 4 in [57, 58], see also [59–61].
A new series of articles [62–64], see also [65], has revisited the integrability programme in
AdS3 × S3 × T 4, has proposed new dressing phases and has formulated the Thermodynamic
Bethe Ansatz (TBA). Further recent work can be found in [66–69].

In [70, 71] a change of variables was exhibited which shows the complete difference form of
the S-matrix of massless AdS3 particles. This form coincides with the BMN limit for particles
with equal worldsheet chirality [29]. These new (‘pseudo-relativistic’) massless variables
prefigured in [72] then led to the massive counterpart being introduced in [62–64], by virtue
of which a part of the massive S-matrix (not the whole of it) also acquires a difference form.

The single-particle mixed-flux dispersion relation is [73, 74] given by

E =

√(
m+ k

2πp
)2

+ 4h2 sin2 p

2 , (1.1)

k ∈ N being the WZW level, m the mass and h the coupling constant. In [71] the massive
mixed-flux S-matrix was subjected to a particular construction leading to a particular massless
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relativistic S-matrix, for a critical theory whose spectrum is encoded in a massless TBA
a la Zamolodchikov. The paper [75] then obtained the same S-matrix from a different
limit performed in a way to retain massive excitations, and extended the study to all the
different possible masses and bound states. The paper [76] provides an in-depth study of the
kinematical and analytic structure underlying the theory and its S-matrices, and a proposal
for the complete mixed-flux dressing factor. More very recent work can be found in [77–82],
as this area is shown to be extremely vibrant.

In this paper we wish to initiate the study of relativistic form factors for this massive
theory. The form factor programme is very much at the core of AdS5/CFT4 in the shape
of the hexagon approach [83–87]. This approach has been generalised to AdS3 [88]. The
traditional relativistic form factor programme was initially pursued in [89, 90], where it was
extended to non-difference form. In [91] the standard (pre-hexagon) approach was applied to
massless AdS3 in the BMN-limit, which is a genuinely relativistic model [29] — see also [62–
64, 71, 92] — by following the off-shell Bethe Ansatz technique of [93]. We now intend to
do the same for the simplest form factors of this deformed system at hand.

2 Form factors

The study of form factors is essential to bring to completion the bootstrap programme and
reach a complete solution of an integrable quantum field theory [94–115]. After having
established the exact S-matrix and the spectrum of (bound) states, one proceeds with the
form factor analysis [116]. Using the information contained in the form factors of the theory,
one can then compute the n-point correlation functions. This effectively defines the theory,
even in those situation where one does not have access to a Lagrangian. We refer the reader
to [94, 95] for a very thorough review of the form factor programme.

In a relativistic theory the n-particle form factor associated with a operator O sitting
at the spatial origin is defined as the quantity

FO
α1...αn

(θ1, . . . , θn) = ⟨0|O(0)|θ1, . . . , θn⟩α1...αn , (2.1)

θi being the rapidity and αi collectively labelling the quantum numbers of the i-th magnon.
The form factors are constrained by a list of axioms — we refer to [94, 95] and [93]

for a complete description. We shall only confine ourselves here to those axioms which will
be important in our calculation. We have

• Permutation

FO
α1...αj−1 βj βj+1 αj+2...αn

(θ1, . . . , θj−1, θj , θj+1, θj+2, . . . θn) = (2.2)

FO
α1...αj−1 αj αj+1 αj+2...αn

(θ1, . . . , θj−1, θj+1, θj , θj+2, . . . θn)S
αjαj+1
βjβj+1

(θj − θj+1),

where we adopt the conventions of [93].

• Periodicity

FO
α1 α2...αn−1 αn

(θ1 + 2iπ, θ2, . . . θn−1, θn) = (−)σ FO
α2 α3...αn α1(θ2, θ3, . . . θn, θ1), (2.3)

where σ is an appropriate statistical factor.
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• Lorentz boost

FO
α1 α2...αn−1 αn

(θ1+Λ, θ2+Λ, . . . θn−1+Λ, θn+Λ) = esΛFO
α1 α2...αn−1 αn

(θ1, θ2, . . . θn−1, θn),
(2.4)

where s denotes the spin of O.

We will comment later on the kinematical singularity and bound state singularity axioms.
The method which we will follow in this paper to obtain the two-particle form factor is

the off-shell Bethe ansatz [93]. We will describe in detail how this works. Here we provide a
short summary of the building blocks which will enter the off-shell Bethe ansatz, and how we
will assemble them, to guide with the organisation of the material. This structure follows
the decomposition of the S-matrix as [75]

S(m1,m2; θ) = Φ(m1,m2; θ)σ−2(m1,m2; θ)SBB(m1,m2; θ)⊗̂SBB(m1,m2; θ), (2.5)

where Φ and σ−2 are scalar factors, and SBB is the S-matrix whose associated R-matrix
will be R(θ) (4.1) — with ⊗̂ being the tensor product of two copies of the fundamental
representation to be discussed around (4.23), the hat just helping to keep it separated from
⊗ which denotes the tensor product of the scattering particles. The integers m1 and m2
associated with the two particles are quantum numbers which enter all the scattering data,
the particle mass being given by

mass = 2
∣∣∣ sin πm

k

∣∣∣. (2.6)

Accordingly, the two-particle form factor is build out of:

• a block associated with Φ, which will be called F totalpre (m1,m2; θ) as in “pre-factor”;

• a block associated with σ−2, which will be called F dressing(m1,m2; θ) as in “dressing
factor” to adopt the nomenclature of [75];

• a block associated with SBB⊗̂SBB , made out of two copies of the sub-block to be called
Gab(θ1, θ2) — this sub-block will have two indices (each index carrying the fundamental
representation) and it will depend specifically on the two scattering rapidities θ1 and θ2
to incorporate operators with spin.

To construct these blocks we shall need first to build the minimal solutions and study
their singularities. We then present the core of the off-shell Bethe ansatz and proceed to
reconstitute the complete list of blocks. The blocks will eventually be combined as

F totalpre (m1,m2; θ)F dressing(m1,m2; θ)Gac(θ1, θ2)Gbd(θ1, θ2) (2.7)

to form the complete two-particle form factor.
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3 Minimal two-particle form factor

We can calculate the minimal two-particle form factor by using a classic result by Karowski and
Weisz [116]. We start from the explicit meromorphic expression for the dressing factor [75]1

σ−2(m1,m2; θ) =
R2

0(θ − im+)R2
0(θ + im+)

R2
0(θ − im−)R2

0(θ + im−)
, m± = π

k
(m1 ±m2), (3.1)

where
R0(θ) =

(
e

2π

)τ ∞∏
ℓ=1

Γ(ℓ+ τ)
Γ(ℓ− τ)e

−2τψ(ℓ), τ = θ

2πi, (3.2)

ψ being the Digamma function ψ(z) = d
dz log Γ(z). In the ratio (3.1) only the Gamma

functions, of all the parts of (3.2), do not cancel out, and one gets as a net result

σ−2(m1,m2; θ) =
∞∏
ℓ=1

Γ2(ℓ+ τ − iµ+)Γ2(ℓ+ τ + iµ+)Γ2(ℓ− τ + iµ−)Γ2(ℓ− τ − iµ−)
Γ2(ℓ− τ + iµ+)Γ2(ℓ− τ − iµ+)Γ2(ℓ+ τ − iµ−)Γ2(ℓ+ τ + iµ−)

,

(3.3)
where

µ± = m±
2πi . (3.4)

The infinite product (3.3) converges to a meromorphic function in the whole complex plane
of θ, thanks to the subtle balance of the arguments of the Gamma functions in the numerator
and denominator [117]. The dressing factor satisfies

σ−2(m1,m2; θ)σ−2(m2,m1;−θ) = 1, (3.5)

since µ± → ±µ± if we exchange m1 ↔ m2.
We now adopt the standard technique of resorting to the Malmstén representation of

the Gamma function:

Γ(z) = exp
∫ ∞

0

dx

x
e−x

[
z − 1− 1− e−x(z−1)

1− e−x

]
. (3.6)

Thanks to the fact that the sum of the arguments of all the Gamma functions at the numerator
of (3.3) equals the sum of the arguments at the denominator, we see that most of (3.6) cancels
out in the ratio, and only the term containing e−x(z−1) contributes. At this point, the
product over ℓ becomes a simple geometric sum. Collecting all such terms, and rescaling
the integration variable as x → 2x, we obtain

σ−2(m1,m2;θ)= exp
∫ ∞

0

dx

x

8e2x(
e2x−1

)2

[
coshxM−−coshxM+

]
sinh xθ

iπ
, M±= m1±m2

k
.

(3.7)
We can clearly see the interesting property of the dressing factor to go into its inverse as we
exchange M+ ↔ M−. The expression (3.7) is exactly of the Karowski-Weisz form

σ−2(m1,m2; θ) = exp
∫ ∞

0
dx f(x) sin xθ

iπ
, (3.8)

1An alternative formula for this dressing function, numerically coincident with (3.1) in a restricted domain,
has been constructed in [71] for the special case of what would be here m1 = m2 = 1.
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and therefore we can immediately find the minimal two-particle form factor:

F−2(m1,m2; θ) = exp
∫ ∞

0
dx f(x)

sin2 x(iπ−θ)
2π

sinh x , (3.9)

where
f(x) = 8 e2x

x
(
e2x − 1

)2

[
cosh xM− − cosh xM+

]
. (3.10)

By carefully reconstructing backwards a process similar to the one which we followed
when going from (3.3) to (3.7), it is possible to find the analytic continuation of (3.9) to
the entire complex plane of θ. We summarise the main steps here, while we refer to [91] —
section 3.2 in that paper — for a more detailed procedure applied to the case of a completely
analogous calculation. It is sufficient to i) rescale the variable x → x

2 ; ii) use two of the
three factors (ex − 1) at the denominator (one coming from the sinh x) to reconstruct two
geometric sums, the third factor eventually reconstructing the denominator of (3.6); iii)
expand the numerator into exponentials and check that the sum of arguments balance
between exponentials with the plus (which will end up in the Gamma functions at the
numerator) and exponentials with the minus (which will end up in the Gamma functions at
the denominator). In this way we have reconstructed the Malmstén representation proceeding
backwards, and we find the following result:

F−2(m1,m2; θ) =
∞∏

m,ℓ=1

Γ2
(
m+ ℓ− τ − M+

2

)
Γ2

(
m+ ℓ− τ + M+

2

)
Γ2

(
m+ ℓ− τ − M−

2

)
Γ2

(
m+ ℓ− τ + M−

2

)×
×

Γ2
(
m+ ℓ+ τ − M+

2 − 1
)
Γ2

(
m+ ℓ+ τ + M+

2 − 1
)

Γ2
(
m+ ℓ+ τ − M−

2 − 1
)
Γ2

(
m+ ℓ+ τ + M−

2 − 1
)×

×
Γ4

(
m+ ℓ− M−

2 − 1
2

)
Γ4

(
m+ ℓ+ M−

2 − 1
2

)
Γ4

(
m+ ℓ− M+

2 − 1
2

)
Γ4

(
m+ ℓ+ M+

2 − 1
2

) . (3.11)

This product converges for the already mentioned delicate balance of arguments of the Gamma
functions [117]. We can still see the interesting property of F (m1,m2; θ) to go into its inverse
as we exchange M+ ↔ M−. The formula (3.11) is valid for sufficiently generic values of
M± = m1±m2

k . For specific values of m1,m2 and k there may be accidental singularities in
the third line of (3.11), which does not contain the variable τ = θ

2πi : these cases require to be
dealt with separately and may potentially be subject to drastic simplifications.

By the Karowski-Weisz result, combined with the fact that both σ and F are symmetric
under the exchange m1 ↔ m2, we conclude that

F−2(m1,m2;θ)=F−2(m2,m1;−θ)σ−2(m1,m2;θ), F−2(m1,m2; iπ−θ)=F−2(m1,m2; iπ+θ).

3.1 Singularities of σ−2(m1, m2; θ) and F −2(m1, m2; θ)

For future purposes, let us list the poles and zeros of σ−2(m1,m2; θ), as can be evinced
from (3.3). We list the labels first in a rather pleonastic way — one can in fact streamline
the counting.
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• Poles: if ℓ = 1, 2, 3, . . . and n = 0, 1, 2, 3, . . ., we have

τ = iµ+ − (n+ ℓ) = iµ+ − q, q = 1, 2, 3, . . . , pole of order 2q,
τ = −iµ+ − (n+ ℓ) = −iµ+ − q, q = 1, 2, 3, . . . , pole of order 2q,
τ = iµ− + (n+ ℓ) = iµ− + q, q = 1, 2, 3, . . . , pole of order 2q,
τ = −iµ− + (n+ ℓ) = −iµ− + q, q = 1, 2, 3, . . . , pole of order 2q. (3.12)

• Zeros: if ℓ = 1, 2, 3, . . . and n = 0, 1, 2, 3, . . ., we have

τ = iµ+ + (n+ ℓ) = iµ+ + q, q = 1, 2, 3, . . . , zero of order 2q,
τ = −iµ+ + (n+ ℓ) = −iµ+ + q, q = 1, 2, 3, . . . , zero of order 2q,
τ = iµ− − (n+ ℓ) = iµ− − q, q = 1, 2, 3, . . . , zero of order 2q,
τ = −iµ− − (n+ ℓ) = −iµ− − q, q = 1, 2, 3, . . . , zero of order 2q. (3.13)

We recall that

iµ± = m1 ±m2
2k . (3.14)

All these values are therefore located on the imaginary θ axis. Generically there is no
cancellation between poles and zeros, although there may be cancellations for special values
of m1 and m2.

Likewise, the singularities of F−2(m1,m2; θ) can be evinced from (3.11).

• Poles: for m, ℓ = 1, 2, 3, . . . and n = 0, 1, 2, 3, . . ., we have

τ = m+ ℓ+ n− M+
2 = −M+

2 + q, q = 2, 3, . . . , pole of order two, six,. . .

τ = m+ ℓ+ n+ M+
2 = M+

2 + q, q = 2, 3, . . . , pole of order two, six,. . .

τ = −m− ℓ− n+ M+
2 = +M+

2 − q, q = 1, 2, . . . , pole of order two, six,. . .

τ = −m− ℓ− n− M+
2 = −M+

2 − q, q = 1, 2, . . . , pole of order two, six,. . . .
(3.15)

• Zeros: for m, ℓ = 1, 2, 3, . . . and n = 0, 1, 2, 3, . . ., we have

τ = m+ ℓ+ n− M−
2 = −M−

2 + q, q = 2, 3, . . . , zero of order two, six,. . .

τ = m+ ℓ+ n+ M−
2 = M−

2 + q, q = 2, 3, . . . , zero of order two, six,. . .

τ = −m− ℓ− n+ M−
2 = +M−

2 − q, q = 1, 2, . . . , zero of order two, six,. . .

τ = −m− ℓ− n− M−
2 = −M−

2 − q, q = 1, 2, . . . , zero of order two, six,. . . .
(3.16)

Let us notice for futures scopes that F−1 and σ−1 are also well-defined and meromorphic,
with poles and zeros starting from a minimum order one instead of a minimum order two.
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4 Tools from the algebraic Bethe ansatz

The minimal form factor is just a building block on the way towards the complete form factor
formula. The method of the off-shell Bethe ansatz [93] requires the use of the Ĉ operator
borrowed from the algebraic Bethe ansatz. We do this for two physical spaces (and one
auxiliary space). It is important to remark that the integral formulas constructed in [93] for
the Sine-Gordon model assume an odd number of particles. We will find here that we can
solve the axioms using integral expressions based on the off-shell Bethe ansatz for an even
particle number (specifically equal to two) as well. We decided to build integral expressions
in this case both i) to prove that they are actually solutions, and ii) to setup the type of
building blocks which will be useful in the future in an all-particle generalisation.

The R-matrix associated with the massive-massive scattering is given by [75]2

R(θ) = A(θ)E11 ⊗ E11 +B(θ)E11 ⊗ E22 + C(θ)E21 ⊗ E12 − E(θ)E12 ⊗ E21

+D(θ)E22 ⊗ E11 −G(θ)E22 ⊗ E22, (4.1)

the matrices Eij having all zeros except a 1 in row i, column j. For our purposes the state
|1⟩ = |ϕ⟩ is a boson and the state |2⟩ = |ψ⟩ is a fermion. We will confine ourselves to massive
excitations in this paper. The entries are spelt out in (C.4) of [75], and they read

A(θ) = 1, B(θ) = S1e
im2π

k
+θ − S2e

im1π

k

S1e
i(m1+m2)π

k
+θ − S2

,

C(θ) = ie
im1π

k
+ θ

2
√
σ(m1)σ(m2)

S1e
i(m1+m2)π

k
+θ − S2

, D(θ) = S1e
im1π

k
+θ − S2e

im2π

k

S1e
i(m1+m2)π

k
+θ − S2

,

E(θ) = ie
im2π

k
+ θ

2
√
σ(m1)σ(m2)

S1e
i(m1+m2)π

k
+θ − S2

, G(θ) = −S1e
θ + S2e

i(m1+m2)π

k

S1e
i(m1+m2)π

k
+θ − S2

, (4.2)

where
Si = sgn

[
sin πmi

k

]
, mi ̸= 0 mod k, (4.3)

and
σ(m) = 2

∣∣∣ sin πm
k

∣∣∣. (4.4)

Our conventions are such that, if we do not write it explicitly, we always intend

A(θ) = A(m1,m2; θ), etc., θ = θ1 − θ2, (4.5)

while we shall explicitly indicate any other assignment — for instance A(m2,m1; θ). We
shall also need the S-matrix, which is obtained as

S = Π ◦R, (4.6)
2This R-matrix generalises the formula which was used in [71] for m1 = m2 = 1, where it also coincides

with [118, 119], resp. [30, 31], for q-deformed, resp. Pohlmeyer-reduced relativistic theories. We refer to
section 3.1 of [71] for a more detailed discussion of these relations.
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where Π is the graded permutation acting on two states:

Π |v⟩ ⊗ |w⟩ = (−)deg(v)deg(w)|w⟩ ⊗ |v⟩, (4.7)

and deg(ϕ) = 0, deg(ψ) = .. Even if the Yang-Baxter equation is solved in the general
case, will always assume in this paper that Si = 1, for all i = 0, 1, 2 (with the auxiliary
space 0 to appear later on). This is achieved (for the case of non-zero mass which we are
concerned with here) by assuming that m ∈ {1, 2, . . . , k − 1}, which is sufficient to cover
the range of the physical massive spectrum [75].

We construct the monodromy matrix as

M = R10(θ1 − θ0)R20(θ2 − θ0), (4.8)

where the indices denote the space the R-matrix is acting on. The Ĉ operator is obtained by
extracting the terms with an E21 in the auxiliary space. We find

Ĉ = −E10A20 E12⊗E11−E10D20 E12⊗E22−B10E20 E11⊗E12+F10E20 E22⊗E12, (4.9)

having indicated

Ai0 ≡ A(mi,m0; θi − θ0), i = 1, 2, etc. (4.10)

We shall need the action on the pseudovacuum covector:

⟨ϕϕ|Ĉ = −E10A20⟨ψϕ| −B10E20⟨ϕψ|. (4.11)

We shall also need

⟨ϕϕ|ĈĈ = −(B10E20E10D20 + E10A20F10E20)⟨ψψ|. (4.12)

4.1 The off-shell Bethe ansatz

The off-shell Bethe ansatz is designed to provide a solution to the permutation axiom of form
factors. We follow closely the conventions of [93] throughout the paper.

The S-matrix of the theory is given as a product of various pieces — each piece will
provide a certain contribution to the actual form factor. All these contributions will have
to be multiplied together at the end.

4.1.1 Prefactor

There is a contribution from a specific prefactor [75]

Φ(m1,m2; θ) =
∏N
n=1

([
|m1 −m2|+ 2n]θ

)2[
|m1 −m2|

]
θ

[
m1 +m2

]
θ

, (4.13)

with N = m1 if m1 ≤ m2 and N = m2 if m2 < m1, and where

[m]θ ≡
sinh

(
θ
2 + iπm

2k

)
sinh

(
θ
2 − iπm

2k

) . (4.14)
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The contribution to the complete form factor from each of the individual factors [m]θ can be
found using the formulas in appendix C of [93]. Namely, every factor

−[m]θ =
sin π

2

(
a+ θ

iπ

)
sin π

2

(
a− θ

iπ

) = exp 2
∫ ∞

0

dt

t

sinh t(1− a)
sinh t sinh tθ

iπ
, (4.15)

where we have set

a = m

k
, (4.16)

contributes a corresponding term

fpre(θ,m)= exp2
∫ ∞

0

dt

t

sinh t(1−a)
sinh t

1−cosh t
(
1− θ

iπ

)
sinh t =

∞∏
n=0

Γ
(
n+1− a

2 +τ
)
Γ
(
n+2− a

2 −τ
)
Γ
(
n+ 1

2+
a
2

)2

Γ
(
n+ a

2 +τ
)
Γ
(
n+1+ a

2 −τ
)
Γ
(
n+ 3

2−
a
2

)2 , a= m

k
, (4.17)

to the complete form factor. The total number of factors [m]θ is always even so the minus
sign does not matter, therefore the total contribution from this part is

F totalpre (m1,m2; θ) =
∏N
n=1 f

2
pre(θ, |m1 −m2|+ 2n)

fpre(θ, |m1 −m2|)fpre(θ,m1 +m2)
, (4.18)

with N = m1 if m1 ≤ m2 and N = m2 if m2 < m1. By the usual Karowski-Weisz theorem,
combined with the fact that both Φ and F totalpre are symmetric under the exchange m1 ↔ m2,
we conclude that

F totalpre (m1,m2; θ) = Φ(m1,m2; θ)F totalpre (m2,m1;−θ)

F totalpre (m1,m2; iπ − θ) = F totalpre (m1,m2; iπ + θ). (4.19)

4.1.2 Dressing factor

There is then a contribution from the dressing factor σ−2(m1,m2; θ). This will contribute
a term F dressing such that

F dressing(m1,m2; θ1, θ2) = σ−2(m1,m2; θ1 − θ2)F dressing(m2,m1; θ2, θ1). (4.20)

It is clear that we can simply set

F dressing(m1,m2; θ1, θ2) ≡ F dressing(m1,m2; θ1 − θ2) = F−2(m1,m2; θ1 − θ2), (4.21)

where F−2(m1,m2; θ1, θ2) is our minimal form-factor solution (3.11). We then also have
therefore

F dressing(m1,m2; iπ − θ) = F dressing(m1,m2; iπ + θ). (4.22)
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4.1.3 Matrix part

The matrix part of the complete massive R-matrix is composed of two copies of the psu(1|1)2

R-matrix (4.1). It is not difficult to convince oneself that this implies a factorised structure:
we can solve the permutation axiom for each individual copy of psu(1|1)2, and multiply the
components to obtain the total contribution. More precisely, if we denote a state in the
fundamental four-dimensional representation of psu(1|1)4 by

|a⊗̂b⟩, (4.23)

with a and b in the fundamental two-dimensional representation of psu(1|1)2, the complete
R-matrix Rtot will act on two such states as

Rtot(|a⊗̂b⟩)θ1 ⊗ (|c⊗̂d⟩)θ2 = RACac (θ1, θ2)RBDbd (θ1, θ2) (|A⊗̂B⟩)θ1 ⊗ (|C⊗̂D⟩)θ2 , (4.24)

where R is the 4× 4 R-matrix (4.1). If we split the total contribution of the matrix part as

Fmatrix(a⊗̂b)(c⊗̂d)(θ1, θ2) = Gac(θ1, θ2)Gbd(θ1, θ2), (4.25)

then the individual functions Gac(θ1, θ2) and Gbd(θ1, θ2) satisfy the permutation axiom with
respect to the individual R-matrix R. These functions will now be built as

Gab(θ1, θ2) = I0.Fab(m0,m1,m2; θ0, θ1, θ2), (4.26)

where I0 is an integral operator with respect to an auxiliary integration variable θ0 which
we will define later on, while the Fab(m0,m1,m2; θ0, θ1, θ2) block will come from the off-shell
Bethe ansatz.

Let us therefore focus on the individual combinations of states.
• Two bosons
We start with the pseudovacuum ⟨ϕϕ|. Given that the matrix part of the R-matrix satisfies

A(θ1 − θ2) = 1 for the boson-boson entry, the individual function Fϕϕ(m0,m1,m2; θ0, θ1, θ2)
can be set equal to 1. This is reproduced by the off-shell Bethe ansatz, because the pseudovac-
uum simply comes with a coefficient 1 in the construction. In the case of the pseudovacuum,
moreover, I0 is the identity operator, hence we set Gϕϕ(θ1, θ2) = 1. In this case the operator
could naturally be a boson, and in particular the boost axiom will work for a scalar function
and it will certainly be satisfied by our choice.

• Two fermions
Let us continue with the state ⟨ψψ|. The R-matrix entry for two fermions is G(θ1 − θ2),

and the off-shell Bethe ansatz provides us with the appropriate function. Let us set

f(θ0, θ1, θ2)m0,m1,m2 = −(B10E20E10D20 + E10A20F10E20) (4.27)

from (4.12) — mindful that the state ⟨ψψ| in the algebraic Bethe ansatz contributes to the
form factor of two fermions. This evaluates explicitly to

f(θ0,θ1,θ2)m0,m1,m2 =
2ie

iπm0
k

+ 4θ0+θ1+θ2
2

(
e

2im0π

k −1
)2(

eθ1−e
i(m1+m2)π

k
+θ2

)√
sin m1π

k sin m2π
k(

e
i(m0+m1)π

k
+θ1−eθ0

)2(
e

i(m0+m2)π

k
+θ2−eθ0

)2 .

(4.28)

– 10 –



J
H
E
P
0
3
(
2
0
2
4
)
0
8
2

It can be checked that this function satisfies

f(θ0, θ1, θ2)m0,m1,m2 = G(m1,m2; θ1 − θ2)f(θ0, θ2, θ1)m0,m2,m1 . (4.29)

Therefore, if we bear in mind that the S-matrix entry for two fermions is +G(θ1 −θ2) whereas
the R-matrix entry is −G(θ1 − θ2), we could set

Fψψ(m0,m1,m2; θ0, θ1, θ2) = f(θ0, θ1, θ2)m0,m1,m2 , (4.30)

which by virtue of (4.29) would satisfy the permutation axiom for all values of θ0 ∈ C (in this
sense one says that the Bethe ansatz is off-shell). In reality, we will not use this expression
for the two-fermion form factor, since it turns out not to have good periodicity properties.

Instead, to respect periodicity, it is be better to use the Karowski-Weisz theorem again.
We notice that the fermion-fermion entry of the S-matrix is

G(θ) = [m1 +m2]−1
θ , (4.31)

therefore we satisfy the axioms by setting the fermion-fermion contribution to

Gψψ(θ1, θ2) = f−1
pre(θ1 − θ2,m1 +m2), (4.32)

where the operator could naturally be taken to be bosonic.
• One boson, one fermion
We can now deal with the form factors that do mix. As commented above (4.8), we

can restrict to m ∈ {1, 2, . . . , k − 1} so that all the signs are positive. We also call m0 the
mass of the auxiliary particle θ0 in the algebraic Bethe ansatz. From the action of one single
Ĉ operator given in (4.11) we define

f1(θ0, θ1, θ2)m0,m1,m2 = −E10A20 = 2i
e

im0π

k
+ θ0+θ1

2
√
sin πm0

k sin πm1
k

eθ0 − e
iπ(m0+m1)

k
+θ1

, (4.33)

and

f2(θ0, θ1, θ2)m0,m1,m2 = −B10E20 = −2i
e

im0π

k
+ θ0+θ2

2
(
e

im0π

k
+θ1 − e

im1π

k
+θ0

)√
sin πm0

k sin πm2
k(

e
iπ(m0+m1)

k
+θ1 − eθ0

)(
e

iπ(m0+m2)
k

+θ2 − eθ0
) .

(4.34)
It is then possible to prove by brute force that

f2(θ0,θ1,θ2)m0,m1,m2 =C(m1,m2;θ12)f2(θ0,θ2,θ1)m0,m2,m1+B(m1,m2;θ12)f1(θ0,θ2,θ1)m0,m2,m1

(4.35)
and

f1(θ0,θ1,θ2)m0,m1,m2 =E(m1,m2;θ12)f1(θ0,θ2,θ1)m0,m2,m1+D(m1,m2;θ12)f2(θ0,θ2,θ1)m0,m2,m1 ,

(4.36)
where we will often use the notation

θij = θi − θj (4.37)

throughout, where i ̸= j could be any of 0, 1 or 2.
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These two conditions reconstruct the permutation axiom applied to the two individual
functions that mix: Fϕψ and Fψϕ. Specifically we can set

Fϕψ(m0,m1,m2; θ0, θ1, θ2) = f2(θ0, θ1, θ2)m0,m1,m2 (4.38)

and

Fψϕ(m0,m1,m2; θ0, θ1, θ2) = f1(θ0, θ1, θ2)m0,m1,m2 , (4.39)

again for any θ0 ∈ C (off -shell). This shows that (4.35) and (4.36) perfectly reproduce the
permutation axiom, since C is the S-matrix entry for ϕψ → ϕψ, D is the S-matrix entry for
ψϕ→ ϕψ, +E is the S-matrix entry for ψϕ→ ψϕ and B is the S-matrix entry for ϕψ → ψϕ.

In order to reproduce the method devised in [93], we now need to assemble a few
components. First, let us define

Φ̃m0,mi(θi0) ≡
1

F−1(m0,mi; θi0)F−1(k −m0,mi; θi0 + iπ) , θi0 = θi − θ0. (4.40)

The advantage of this definition resides in its transformation properties under periodicity:
let us start with i = 1 and shift θ1 by +2iπ. To begin with, we have checked that braiding
unitarity, crossing symmetry and analiticity also hold for σ−1, and not only for σ−2, if one
halves the powers everywhere accordingly. Likewise we have checked that the relations satisfied
by F−1(m1,m2; θ) can be obtained from those satisfied by F−2(m1,m2; θ) by halving the
powers everywhere — analyticity also being preserved (no square roots appearing anywhere).
We therefore have

Φ̃m0,m1(θ1 + 2iπ − θ0)

= 1
F−1(m0,m1; θ1 + 2iπ − θ0)F−1(k −m0,m1; θ1 + 3iπ − θ0)

= 1
F−1(m0,m1;−θ1 + θ0)F−1(k −m0,m1;−θ1 + θ0 − iπ)

= σ−1(m0,m1; θ1 − θ0)σ−1(k −m0,m1; θ1 − θ0 + iπ)
F−1(m0,m1; θ1 − θ0)F−1(k −m0,m1; θ1 − θ0 + iπ)

= Φ̃m0,m1(θ1 − θ0)× fm0,m1(θ1 − θ0), (4.41)

having in addition used the crossing properties of the dressing factor. We have also used
the symmetry under exchange of m1 and m2 of σ−1(m1,m2; θ) and F−1(m1,m2; θ). The
function fm1,m2(θ) is given by [75]

fm1,m2(θ) =
sinh

(
θ
2 − iπ

2k (m1 −m2)
)

sinh
(
θ
2 − iπ

2k (m1 +m2)
) . (4.42)

Likewise, if we focus on i = 2 and shift θ2 by −2iπ (the reason for which will shortly become
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apparent), we have

Φ̃m0,m2(θ2−2iπ−θ0)

= 1
F−1(m0,m2;θ2−2iπ−θ0)F−1(k−m0,m2;θ2−iπ−θ0)

= 1
σ−1(m0,m2;θ20−2iπ)F−1(m0,m2;2iπ−θ20)σ−1(k−m0,m2;θ20−iπ)F−1(k−m0,m2; iπ−θ20)

1
fm0,m2(θ20−2iπ)F−1(m0,m2;θ20)F−1(k−m0,m2; iπ+θ20)

= f−1
m0,m2

(θ20)Φ̃m0,m2(θ2−θ0), (4.43)

having used at the very end the properties of the function fm1,m2(θ) in (4.42).
By brute force computation one can also check that

Fψϕ(m0,m1,m2; θ0, θ1, θ2 − 2iπ) = f−1
m0,m2(θ02)Fϕψ(m0,m2,m1; θ0, θ2, θ1) (4.44)

and

Fϕψ(m0,m1,m2; θ0, θ1 + 2iπ, θ2) = fm0,m1(θ01)Fψϕ(m0,m2,m1; θ0, θ2, θ1). (4.45)

Finally, we have

σ−1(m0,m1; θ10 + 2iπ) = fk−m0,m1(θ10 + iπ)
σ−1(k −m0,m1; θ10 + iπ)

= fk−m0,m1(θ10 + iπ)
fm0,m1(θ10)

σ−1(m0,m1; θ10) =
σ−1(m0,m1; θ10)

fm0,m1(θ10)fm0,m1(θ01)
, (4.46)

and also (using the symmetry of σ(m1,m2; θ) under m1 ↔ m2 and its braiding-unitarity
property)

σ−1(m0,m2; θ20 − 2iπ) = 1
σ−1(m0,m2; 2iπ + θ02)

= σ−1(k −m0,m2; iπ + θ02)
fk−m0,m2(iπ + θ02)

=

fm0,m2(θ02)
fk−m0,m2(iπ + θ02)

1
σ−1(m0,m2; θ02)

= fm0,m2(θ02)fm0,m2(θ20)σ−1(m0,m2; θ20). (4.47)

We can now assemble all the components and obtain the form factors satisfying the
axioms. We define the fermion-boson individual function as

Gψϕ(θ1,θ2)=∫
C12

dθ0 e
H12∏2

i=1F
−1(m0,mi;θi0)F−1(k−m0,mi;θi0+iπ)

Fψϕ(m0,m1,m2;θ0,θ1,θ2)
2∏
i=1

σ−1(m0,mi;θi0),

(4.48)

and the boson-fermion one as

Gϕψ(θ1,θ2)=∫
C12

dθ0 e
H12∏2

i=1F
−1(m0,mi;θi0)F−1(k−m0,mi;θi0+iπ)

Fϕψ(m0,m1,m2;θ0,θ1,θ2)
2∏
i=1

σ−1(m0,mi;θi0).

(4.49)
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Figure 1. The locations of the poles of the fermion-boson integrand are denoted with little circular
dots with their respective order, in a portion of the complex plane of θ0. We have assumed 0 < m0 <

min[m1,m2] and k sufficiently large. In red we have indicated the integration countour.

If the operator, of which we are computing the form factor, has spin s, we define

H12 = (θ1 + θ2) + (s− 2)θ0, (4.50)

to satisfy the boost axiom. This turns out to produce the naively expected sign under
periodicity for an operator with half-integer spin s.

To prove periodicity, we shift θ1 + 2iπ in the boson-fermion formula. In the fermion-
boson formula instead, we shift θ1 + 2iπ but simultaneously shift the integration variable
θ0 + 2πi, so as a net effect this is equivalent to shift θ2 − 2iπ in the integrand. H12 is a
symmetric function under the exchange of 1 and 2, so that permutation is not spoilt. The
integration contour will also be chosen to be symmetric under the exchange of 1 and 2, so
that permutation is not spoilt.

If we focus on the strip Im(θ0) ∈ [−2π, 2π], a careful analysis of poles and zeros of the
integrand of (4.48) and (4.49) reveals the picture in figure 1 and figure 2.

We will chose the contour to run through the points θ1 − iπ − iϵ and θ2 − iπ − iϵ as
shown in the figures.

Periodicity works this way:

• for the boson-fermion form-factor, we shift θ1 +2iπ. By virtue of the formulas obtained
above, the integrand becomes identical to the integrand of the fermion-boson form-factor.

• for the fermion-boson form-factor, we shift θ1 +2iπ and change integration θ0 +2iπ. By
virtue of the formulas obtained above, the integrand becomes identical to the integrand
of the fermion-boson form-factor. The contour shifts but it encounters no poles as it
settles back into its original shape.

To complete all cases, we can go back to the two-fermion form factor.
• Recombining the two copies
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Figure 2. The locations of the poles of the boson-fermion integrand are denoted with little circular
dots with their respective order, in a portion of the complex plane of θ0. We have assumed 0 < m0 <

min[m1,m2] and k sufficiently large. In red we have indicated the integration countour.

One ought to tensor together two copies of the integral according to the pattern of states,
and the total should then be supplemented by a factor

F−2(m1,m2; θ12)F totalpre (m1,m2; θ12), (4.51)

so that the complete form factor will be

F−2(m1,m2; θ12)F totalpre (m1,m2; θ12)Gac(θ1, θ2)Gbd(θ1, θ2). (4.52)

We notice that we seem to find the axioms to be satisfied for any value of m0 (not
necessarily integer). We have not explored whether this is a genuine degree of freedom in
our solution, or whether it will be fixed in some way by the theory.

Let us remark that the kinematical singularity axiom degenerates for the case of two
particles, as there are no strict sub-channels.3

The issue related to the bound state axiom is something which will require a more
detailed knowledge of the operator. A naive reading of the bound state form factor axiom
implies that the residue at the bound state pole must be proportional to the one point form
factor of the operator O with the bound state creation operator. It may be necessary to
suitably modify our expressions to account for the bound state singularities [96–106] — in
fact we cannot make any claim about the uniqueness of the formulas which we have so far
constructed. We reserve the investigation of bound states for future work.

3We can notice in passing that our integrals display no singularity when θ1 = θ2 + iπ (no poles of the
integrands pinching the contour), therefore we technically fulfil a degenerate version of the kinematical
singularity axiom with 0 on the right hand side.
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5 Convergence

We can compute the asymptotics of the components of our integrals (for generic value of
the parameters): if we rescale

x ≡ y

|Re θ| , (5.1)

and subsequently send |Re θ| → ∞, we can expand the integrand first and then perform
the integrals. We obtain

σ−2(m1,m2,θ)∼ exp(±1)
∫ ∞

0

dy

y

(
−4m1m2

k2

)
sinh y

iπ
=exp

(
±2iπm1m2

k2

)
, Reθ−→±∞,

F−2(m1,m2,θ)∼ exp
∫ ∞

0

dy

y

(2m1m2|Reθ|
k2y

)(
cos y

π
−1

)
=exp

(−m1m2|Reθ|
k2

)
, Reθ−→±∞.

However we should point out that this expansion is somewhat dangerous, since the subleading
order in |Re θ|−1 of the second line turns out to be multiplied by a divergent integral. The
conclusions which we draw are therefore only naive and a more thorough analysis might
be required. Numerical experimentation reveals that within the error bars a very good
approximation is obtained by the following formula:

F−2(m1,m2, θ) ∼ exp
(∓m1m2(θ − iπ)

k2

)
, Re θ → ±∞, (5.2)

while numerically the asymptotics of σ−2 are quite well reproduced by the formula we
gave above.

By inspecting the integrals we see that the naive asymptotic behaviour is therefore

Gϕψ ∼ Gψϕ ∼
∫ +∞

d(Re θ0) eRe θ0×
(
s− 5

2 + m1+m2
2k

)
, Re θ0 → +∞,

Gϕψ ∼ Gψϕ ∼
∫
−∞

d(Re θ0) eRe θ0×
(
s− 3

2 + m1+m2
2k

)
, Re θ0 → −∞, (5.3)

hence we get convergence in the region

s ∈
(3
2 + m1 +m2

2k ,
5
2 − m1 +m2

2k

)
. (5.4)

If we wish to set the spin to s = 1
2 or s = 3

2 for instance, we might consider analytically
continue the integrals either in m1,m2 or k to a region of convergence (for instance negative
values of m1+m2

k ) — see for instance the discussions in [120, 121]. Another option would be
to modify the contour — our choice in figures 1 and 2 was the simplest choice compatible
with the axioms, but there could be more elaborated choices (see for example [93]) which
may produce a final result in a wider region of the parameters. We have not explored these
possibilities, and we plan to come back to this issue in future work.

Another worthwhile consideration is that our H12 function (4.50) is tuned to a standard
assignement of statistics — equivalently, to the statistics of the bare states. As shown
in [71, 75], the coproduct acquires a deformation. This alters the basic statistics [75], and
therefore one might need to revisit our assignment of H12 depending on the operators
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considered. This in turn might change the convergence properties of the integral, which is
extremely sensitive to the exponential eH12 .

The occurrence of divergences in the integrals, both in the off-shell Bethe ansatz method
and in the Lukyanov method, are in fact contemplated and seem to be difficult to avoid. It
appears that the systematic analytic continuations of the integral representations has to be
implemented. In the case of the pure RR massless theory an additional source of divergence
is due to the infrared limit entangled with the poor convergence of the series expansion, as
discussed in [91] — section 8.1 and particularly section 8.1.2. in that paper.

6 Perturbation theory

There is limit where formulas simplify — in particular the dressing factor becomes the identity
— which is the k → ∞ limit. It turns out that we can expand our formulas in orders 1

k by
relying on the integral representations, expanding the integrand first, and then performing
the integral. We assemble here the various pieces:

log σ−1(m1,m2, θ) = 1 + im1m2 π(sinh θ − θ)
k2(cosh θ − 1) + . . . ,

logF−1(m1,m2, θ) = 1 + 1
8k2m1m2

θ(θ − 2iπ) + 2i sinh θ (π + iθ)
sinh2 θ

+ π2m1m2
8k2 + . . . ,

logF−1(k −m1,m2, θ) = 1 +
m2

(
2 + i(π + iθ) tanh θ

2

)
2k +

+
m1m2

(
−4 + (θ−iπ)(−iπ+θ+2 sinh θ)

cosh2 θ
2

)
8k2 . . . (6.1)

We can also expand Fψϕ and Fϕψ up to order 1
k2 (their expansion not being very illuminating),

and finally the CDD-like pre-factor (in the case of m1 > m2)

Φ(m1,m2, θ) = 1 +
2i
(
m1(m2 − 1) +m2

)
π coth θ

2
k

+ . . . ,

F totalpre (m1,m2, θ) = 1 +
2i
(
m1(m2 − 1) +m2

)
(π + iθ) coth θ

2
k

+ . . . (6.2)

Let us focus for instance on the fermion-boson and boson-fermion form factors. Assembling
all the pieces we find that at the first non-trivial order we can naively perform the final
contour integration of figures 1 and 2 if we analytically continue in the spin s to the region
3
2 < s < 5

2 , with the spin acting as a regulator. We then obtain

Gϕψ(θ1,θ2)= (6.3)

−
4π√m0m2e

−iπs+θ1+ θ2
2

k

[
eθ2

2F1
(
1, 5

2−s,
7
2−s,−e

θ2
)

5−2s +
2F1

(
1,−3

2−s,−
1
2−s,−e

−θ2
)

−3+2s

]
+. . . ,

Gψϕ(θ1,θ2)= (6.4)

−
4π√m0m1e

−iπs+θ2+ θ1
2

k

[
eθ1

2F1
(
1, 5

2−s,
7
2−s,−e

θ1
)

5−2s +
2F1

(
1,−3

2−s,−
1
2−s,−e

−θ1
)

−3+2s

]
+. . . .
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We also have

Gψψ(θ1, θ2) = 1−
i(m1 +m2)(π + iθ12) coth θ

2
k

+ . . . , Gϕ,ϕ = 1 + . . . (6.5)

The expressions (6.3) and (6.4) have poles at the values of the spin s = 1
2 ,

3
2 , . . . (recalling

that the operator is necessarily fermionic):

Gψϕ = −
2iπ√m0m2 e

θ1−
θ2
2

k
(
s− 1

2

) + . . . , Gϕψ = −
2iπ√m0m1 e

θ2−
θ1
2

k
(
s− 1

2

) + . . . , s ∼ 1
2 ,

Gψϕ = −
2iπ√m0m2 e

θ1+ θ2
2

k
(
s− 3

2

) + . . . , Gϕψ = −
2iπ√m0m1 e

θ2+ θ1
2

k
(
s− 3

2

) + . . . , s ∼ 3
2 .

It is amusing to observe that we could tune the — so far unspecified — parameter m0 to
neutralise the divergence. We could for instance choose to send m0 ∼ (s− 1

2)2 as long with
s → 1

2 , and we would probably be safe in the limit (the same with 3
2).

We can observe that, if we have anywhere a Gϕψ or a Gψϕ, such as in the form factor of
the states (ϕ⊗̂ϕ)⊗ (ψ⊗̂ϕ) for instance, then the leading order of the form factor is dictated
by (6.3) or (6.4), for instance

⟨0|O|(ϕ⊗̂ϕ)θ1 ⊗ (ψ⊗̂ϕ)θ2⟩ = “ΦF−2GϕψGϕϕ" = (6.3) + . . . (6.6)

(with O being fermionic). Similarly for other combinations involving Gϕψ or Gψϕ.

7 Conclusions

In this paper we have studied the form factors of the mixed flux AdS3 × S3 × T 4 scattering
theory in the relativistic limit, using the formulation of [75], which uses a distinct limit from
the one studied in [71]. Here we have focused on the massive sector and derived the minimal
solutions to the form factor axioms corresponding to two-particles. We have then constructed
the complete set of two particle form factors using the off-shell Bethe ansatz method of [93].

The highlight of our construction is that we can solve the axioms of two-particle form
factors, although the integrals for the fermion-boson and boson-fermion case appears to be
divergent for certain value of the spin s. We have discussed possibilities for regularising the
integral, for instance analytically continuing in the parameter 1

k which appears to behave like a
small coupling in perturbation theory. It is also possible that the contour used for the integrals
could be modified. Finally, the deformed statistics of the dressed particles might force one to
change the exponential function H12, upon which the convergence of the integrals depends
quite strongly. This will have to be done in accordance with which operator one is considering.

There are a number of directions which one should explore, most importantly whether
one can properly cure the divergence. As always, it would be extremely useful to obtain per-
turbative checks with Feynman diagrams to show that we are on the right track. Generalising
to more particles appears in principle standardised by the off-shell Bethe ansatz method, but
not too easily implementable practically, as it appears to depend quite significantly on the
precise distribution of singularities of the integrand. In particular the bound state axiom and
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the kinematical singularities would have to be carefully analysed. It would also be interesting
to approach the problem using Lukyanov’s method [107–115, 122–124] and see whether we
obtain a different result. We plan to come back to these issues in future work.
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