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1 Introduction

If spacetime is holographically built up from the quantum entanglement of microscopic
degrees of freedom [1–3], it should also be possible to split it apart by disentangling these
same degrees of freedom. However, studying this phenomenon with holographic methods
reveals a puzzle: the disentangled state appears to keep a large entanglement entropy [4, 5].
We review this problem below and then proceed to resolve it in the rest of the article.
Interestingly, the solution involves bulk quantum effects of a kind brought to bear on another
long-standing enigma in black hole thermodynamics, namely, the entropy of near-extremal
Reissner-Nordstrom black holes [6].

Entangled wedges. A fundamental property of the Minkowski vacuum of a quantum
field is that it can be described as an entangled state of the field theories on complementary
Rindler wedges [7],

|0⟩M = 1√
Z

∑
i

e−πEi |Ei⟩L|Ei⟩R . (1.1)

Here |Ei⟩L,R are eigenstates of the left and right Rindler (modular) Hamiltonians conjugate
to the dimensionless time t in the Rindler spacetime

ds2 = −ζ2dt2 + dζ2 + dx2 . (1.2)
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The state (1.1) can be viewed as a thermofield-double state built out of excitations at
temperature T = 1/2π above the Boulware vacuum |0⟩L|0⟩R.1 The entanglement entropy of
this state is infinite for two reasons. The first is simply the infinite extent of the plane {x},
but we can compactify it to finite size and factor out its area An−2. The resulting entropy
density is still infinite for a more important reason: modes of arbitrarily short wavelength
are entangled across the divide ζ = 0. If we introduce a small length cutoff ε, then the
leading divergent term takes the form [10, 11]

S = An−2
εn−2 s . (1.3)

The dimensionless finite quantity s can be regarded as a local measure of entanglement.
Since its precise value varies with the choice of cutoff, it is often disregarded as lacking
universality. However, if we introduce a physical cutoff, the mere fact that s is not zero
is physically significant: there is a large entanglement between L and R. The problem we
will describe is, in this sense, universal. It is also present, although less dramatically, for
the smaller contributions to the entanglement entropy that diverge logarithmically with a
coefficient that is cutoff-independent. We briefly discuss these different quantities for free
theories in appendix A.

One can also construct entangled states at different temperatures T = 1/β,

|Ψβ⟩ = 1√
Z

∑
i

e−βEi/2|Ei⟩L|Ei⟩R . (1.4)

We are interested in lowering the entanglement temperature, taking β > 2π. Unlike the
inertial vacuum (1.1), these states are singular on the Rindler horizon ζ = 0: the stress tensor
diverges due to the infinite forces required to prevent the field from freely falling across the
horizon. The entanglement entropy still diverges like (1.3),

S(β) = An−2
εn−2 s(β) , (1.5)

but we expect that s(β) will decrease as we lower T (keeping the cutoff fixed in the manner
explained below), and approach zero as T → 0. In this limit, the states approach the Boulware
vacuum, |Ψβ→∞⟩ → |0⟩L|0⟩R, which is an unentangled product state. That is, as long as
the vacuum of the modular Hamiltonian is non-degenerate (and without (super)symmetry
protection, large degeneracies are not expected), the limit T → 0 will erase the entanglement
between the two sides.

Entangling spacetime. The previous considerations apply to any local quantum field
theory, even interacting ones. Strongly coupled holographic CFTs in Rindler space are
interesting since one can argue that large regions of the dual AdS geometry emerge as a
consequence of the entanglement between the CFTL and CFTR [3, 5]. To see how this
happens, we need the bulk dual of the CFT state (1.1) with the boundary geometry (1.2).

1The most appropriate language here is that of algebraic quantum field theory, since the Hilbert space
does not factorize into left and right in the continuum limit. Factorized “split states” exist (from the split
property [8, 9]) when we allow a regularizing space between the left and right sides. But we may just imagine
discretizing the geometry, and the puzzles that we describe below will still appear.
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It is easy to see that this is simply the empty AdSn+1 spacetime written in accelerated
coordinates (see appendix B),

ds2 = −
(
r2 − ℓ2

)
dt2 + ℓ2dr2

r2 − ℓ2 + r2 dζ2 + dx2

ζ2

= r2

ζ2

[
−
(

1 − ℓ2

r2

)
ζ2dt2 + dζ2 + dx2

]
+ ℓ2

r2
dr2

1 − ℓ2

r2

. (1.6)

In the first line we present it in a form resembling a black hole with a horizon at r = ℓ

that spans the hyperboloid Hn−1 with coordinates (ζ, x). In the second line we have pulled
out a factor r2/ζ2 multiplying the square brackets, so that the appearance of the Rindler
spacetime (1.2) at the conformal asymptotic boundary r → ∞ becomes manifest. With the
above normalization for the timelike Killing vector ∂t, the temperature of the horizon is 1/2π.
Then the spacetime (1.6) describes the CFT state (1.1), which is globally regular [4, 12].
Ref. [5] argued that the regions of the bulk AdS spacetime beyond the acceleration horizons,
which cannot be reconstructed from the states in CFTL and CFTR separately, must be
thought of as emerging from the entanglement between them.

The entanglement entropy density s of this state can be obtained using the holographic
RT prescription [2]: on a constant t section in the bulk, we seek a minimal surface that is
anchored on the plane ζ = 0 at the boundary. This surface is the horizon at r = ℓ. The
ultraviolet divergence of the entropy near the Rindler horizon at ζ = 0 corresponds to the
infinite volume of the hyperboloid Hn−1. We regularize this volume by compactifying {x}
and restricting to ζ ≥ ε. We find an entropy of the form of (1.3), with

s = ℓn−1

(n − 2)4G
. (1.7)

The interpretation is that this entropy, which measures the left-right entanglement in the
state (1.1), is manifested geometrically in the ‘emergent’ bridge in the bulk between the
two sides.

This calculation is the holographic realization of the fact that the entanglement entropy of
a CFT in Rindler space is the same as its thermal entropy in the hyperboloid. Two comments
are in order: (i) The regularization of Rindler divergences through a map to a hyperbolic
volume works in exactly the same way for any conformal field theory, holographic or not. (ii)
The holographic entropy in n = 4 exactly reproduces the weak coupling result for the large
N limit of N = 4 SYM theory, with proper care for spin-one fields [13].

Disentangling spacetime. We now want to see how the geometric connection between
the left and right sides diminishes as we disentangle the quantum state. For this purpose,
we examine the bulk duals of the states (1.4) as we lower the temperature. These duals
are not obtained by choosing an imaginary time period β > 2π in (1.6), since this would
create a Euclidean conical singularity in the bulk. Instead, the required solutions are the
hyperbolic (a.k.a. ‘topological’) AdS black holes that were given an AdS/CFT interpretation
in [4, 5]. In n + 1 dimensions their geometry can be written as

ds2 = r2

ζ2

(
−f(r)ζ2dt2 + dζ2 + dx2

)
+ ℓ2

r2
dr2

f(r) , (1.8)
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with

f(r) = 1 − µ

rn
− ℓ2

r2 . (1.9)

When µ = 0 this is the same metric as (1.6), i.e., locally the same as AdS spacetime. When
µ ̸= 0 the curvature is not constant and we have actual black holes with singularities in
their interiors. We see again the Rindler geometry (1.2) at the conformal boundary, but
now the temperature of the state, i.e., the temperature of the horizon, is not T = 1/2π

(the details will be given later). These are the bulk duals of the CFT states |Ψβ⟩. We are
interested in those with µ < 0, whose horizons have T < 1/2π and thus are less entangled
than (1.1).2 An interesting feature is that, even though these CFT states are singular, and
indeed their stress tensor diverges at ζ = 0 [4, 5], the bulk geometries are regular everywhere
on and outside the black hole horizon.

Despite being neutral, the hyperbolic black holes with µ < 0 resemble in many respects
Reissner-Nordstrom black holes. They exist with regular horizons (inner and outer) down to
a minimum µ = µ0 < 0, where the black hole becomes extremal with T = 0. Ref. [5] found
that they reproduce several of the expected properties of the states |Ψβ⟩. For instance, the
geodesic distance between the two asymptotic regions increases as µ is lowered. This is a
signal that the correlations between the left and right CFTs become weaker as T decreases.
In the bulk, the Einstein-Rosen bridge between the two sides becomes a very long throat at
small T . Furthermore, the entanglement entropy density s, measured from the area of the
horizon, also becomes smaller as we lower T : the throat narrows down.

Although these features work as expected, on closer examination a sharp puzzle appears:
when T → 0 the entanglement entropy does not approach zero. Instead one finds

s(β → ∞) → s0 =
(

n − 2
n

)n−1
2 ℓn−1

(n − 2)4G
̸= 0 . (1.10)

This is indeed a smaller entropy than (1.7), but the fact that s has a lower non-zero bound is
wholly unexpected. It says that as we approach the state dual to this black hole, namely
the Boulware vacuum |0⟩L|0⟩R, we retain a large O(1/G) amount of entanglement — when
it should shrink towards zero.

Quantum disassembling. The way out of this contradiction becomes clear when we relate
it to a recently solved problem: the O(1/G) entropy of near-extremal non-supersymmetric
black holes [6]. The resolution of the latter lies in the existence of large quantum fluctuations
near the horizon at low temperatures, which are described by an effective one-dimensional
Schwarzian theory [18–23]. The quantum one-loop effects bring down the low-temperature
entropy, with the effect that the density of states vanishes as the energy above extremality
approaches zero. These quantum effects near extremality have been studied recently in
several scenarios [24–32].

In the remainder of this article we will explain how the hyperbolic black holes develop an
AdS2 throat close to extremality, with dynamics captured by an effective two-dimensional JT

2A different class of ‘partially entangled thermal states’ of the kind constructed in [14–17] can also be
studied in this setting.
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theory. Then, properly accounting for quantum effects will reduce the entanglement entropy
of the low-temperature thermofield Rindler states below the naive result (1.10). In particular,
we will show that the modular density of entangled states vanishes when the Rindler energy
goes to zero. A simple modification of the construction allows us to disentangle the state of
a CFT in de Sitter space and obtain the Boulware-de Sitter vacuum.

The entanglement of a two-dimensional holographic CFT, corresponding to n = 2, shows
qualitative differences compared to n > 2 and is discussed in appendix C.
Note on modular units. The interpretation in Rindler space makes it natural to define t , E

and T as the dimensionless modular time, energy and temperature. We will also keep them
dimensionless when we discuss black holes in AdS as in (1.8). Conventional units are restored
by substituting t → t/ℓ, E → ℓE, T → ℓT , where ℓ is the AdS radius.

2 Hyperbolic black holes near extremality

The hyperbolic black holes (1.8) have an event horizon at the largest real root r+ of f(r),
which solves the equation

µ = rn
+

(
1 − ℓ2

r2
+

)
. (2.1)

It is often convenient to regard this expression as giving µ in terms of the parameter r+,
rather than the other way around. We see that µ is negative when r+ < ℓ. There exists
a range of parameters where such solutions are black holes with regular horizons. To see
this, observe that the temperature

T =
nr2

+ − (n − 2)ℓ2

4πℓr+
, (2.2)

is non-negative as long as

r+ ≥ r0 ≡
√

n − 2
n

ℓ , i.e., µ ≥ µ0 ≡ − 2
n

(
n − 2

n

)(n−2)/2
ℓn . (2.3)

For the metrics (1.8), this guarantees that the horizon at r = r+ is smooth. The temperature
decreases monotonically from T = 1/2π for µ = 0, down to the extremal limit T = 0 for
µ = µ0. Hyperbolic black holes in this range have the same causal structure as Reissner-
Nordstrom-AdS black holes [4]. The required repulsion is not provided by an electric field, but
rather by the hyperbolic negative curvature. This will become apparent in the next section.

Hyperbolic black holes are sometimes called ‘topological black holes’ because, by taking
discrete quotients of Hn−1, their horizon can be made into a compact space of non-trivial
topology. For instance, in n = 3 one can obtain surfaces of arbitrary genus g > 1. This
compactification renders finite the volume VH of Hn−1 and hence regularizes the entropy
of the black hole. However, in this article we will not do this since it is not well motivated
by the Rindler space interpretation. Instead, we take

VH =
∫

dn−2x dζ ζ1−n = An−2

∫ ∞

ε
dζ ζ1−n

= 1
n − 2

An−2
εn−2 . (2.4)
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The energy of these black holes is

E = (n − 1) VH

16πG

µ

ℓ
. (2.5)

We have ignored the Casimir energy of the CFT vacuum in Hn−1 when n is even [4], since it
has no relevance for us. More important is the extremal black hole energy for µ = µ0,

E0 = −n − 1
n

(
n − 2

n

)n−2
2 ℓn−1VH

8πG
. (2.6)

When interpreting the system as the dual of the CFT in Rindler space, we would normally
subtract this as a ground state energy, and thus set to zero the Boulware vacuum energy.
This could be done with an appropriate counterterm.

The energy and entropy diverge due to the factor VH , which we always consider regularized
as in (2.4). After factoring it out, the Bekenstein-Hawking entropy of the horizon is of the
form (1.5) with

s =
rn−1

+
(n − 2)4G

. (2.7)

This is interpreted as the entanglement entropy of the states |Ψβ⟩ in the boundary theory.
For the non-singular entangled state |Ψ2π⟩, eq. (1.1), with µ = 0, we recover the entanglement
entropy (1.7). For the unentangled Boulware vacuum |Ψ∞⟩ with µ = µ0, it implies the
troublesome non-zero result (1.10), that is,

S0 =
(

n − 2
n

)n−1
2 ℓn−1VH

4G
. (2.8)

To go near extremality and near the horizon, we take

r+ = r0 + ρ+ , r = r0 + ρ , (2.9)

and expand in small ρ+, ρ ≪ r0, both of the same order. The metric (1.8) becomes

ds2 = −n(ρ2 − ρ2
+)dt2 + ℓ2

n

dρ2

ρ2 − ρ2
+

+ (r0 + ρ)2 dζ2 + dx2

ζ2 . (2.10)

This is the product of thermal AdS2 with radius

L2 = ℓ√
n

= r0√
n − 2

, (2.11)

times a hyperboloid Hn−1 of almost constant radius r0. The fluctuations in the size of Hn−1
have been retained because they will dominate the dynamics at low temperatures. We can
eliminate ρ+ in favor of T using that in this limit

T = n

2πℓ
ρ+ . (2.12)

Observe that these are all large AdS black holes with r+ ≲ ℓ, and the radii of the AdS2 and
Hn−1 factors are always of the same parametric order ∼ ℓ. In contrast, the RN-AdS solutions
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have one more parameter, and this allows to separate the sizes of the two factors in the
geometry.3 Nevertheless, to smoothly connect the throat near the horizon (2.10) to the outer
zone it is enough to be in a low-temperature regime where T ≪ 1, i.e., ρ+ ≪ ℓ, r0. If we define
the outer zone as the region r − r0 ≫ r+ − r0 = ρ+, where the metric is well approximated by
the extremal solution, then it overlaps with the throat at radii r such that ρ+ ≪ r − r0 ≪ r0.

Close to extremality, the energy (2.5) and entropy (2.7) behave as

E(T ) = E0 + 2π2

Mb
T 2 + O

(
T 3
)

, (2.13)

S(T ) = S0 + 4π2

Mb
T + O

(
T 2
)

. (2.14)

Here

M−1
b = |E0| = n − 1

n

(
n − 2

n

)n−2
2 ℓn−1VH

8πG
, (2.15)

is the characteristic mass scale for excitations above extremality, which appears due to the
quadratic dependence on T [33]. It would vanish if we let VH → ∞, so we will keep the
regulator ε small but non-zero.

Conformal field theories in the hyperboloid have a well-known instability due to the
coupling of conformal scalars to the negative curvature, which gives them a tachyonic potential
unbounded below. In the holographic dual, the hyperbolic black hole is unstable to the
spontaneous nucleation of branes, at least if there exist BPS branes (see [34, 35]). It may then
happen that the dominant configuration has many branes and is a smaller, very non-classical
spacetime, and our analysis indicates that the latter is the case. The instability is suppressed
when T ≥ 1/2π, since the energy added to the black hole attracts the branes and opposes the
effective repulsion from the curvature. In dual terms, the thermal energy lifts the tachyon
(adding suitable mass terms can also stabilize the theory [35]). However, we are interested in
very low temperatures. The nucleation rate of the branes is exponentially suppressed when VH

is very large, but, as we have seen, in our analysis we keep the regulator small but non-zero,
so issues may remain. We will not dwell on this question any longer, since the large quantum
effects that we will find seem to require the revision of this instability. Other consequences of
the divergent volume of Hn−1 related to the points above will be discussed later.

3 Quantum throat dynamics

The value (2.14) accounts for the leading contribution to the entropy from the semiclassical
saddle points (1.8) of the gravitational path integral. It neglects the possibility of large
quantum effects at low T ≪ 1. We now show that these effects drastically modify the result.

Following [6, 36], we study the corrections in the throat (2.10) by dimensionally reducing
on the hyperboloid to obtain an effective two-dimensional theory. This is sensible, because
even though the hyperboloid volume is infinite (or arbitrarily large, when ζ is cut off), the
finite curvature radius introduces an O(1) gap in the spectrum of the Laplacian and therefore
at temperature T ≪ 1 the lowest modes dominate the dynamics.

3The scale separation RAdS2 ≪ RHn−1 can be obtained if n is regarded as a large parameter.
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To drive our main point home more clearly, we will begin by focusing on fluctuations that
are homogeneous in the hyperbolic space. Later we will include the zero-mode fluctuations
that break homogeneity, and see that they do not alter our conclusions.

3.1 Homogeneous zero modes

Starting from the Einstein-Anti de Sitter Euclidean action,

I = − 1
16πG

∫
M

dn+1x
√

gn+1

(
Rn+1 + n(n − 1)

ℓ2

)
− 1

8πG

∫
∂M

dnx
√

hn Kn , (3.1)

we consider geometries of the form

ds2 = Φ−n−2
n−1 gµνdxµdxν + r2

0 Φ
2

n−1 dHn−1 . (3.2)

The two-dimensional metric gµν and the dilaton Φ depend only on the coordinates xµ = (τ, r).
The Hn−1 factor is the unit-radius hyperboloid, and r0 is for now a fiducial length scale. It
will later correspond to the extremal horizon radius. With this ansatz, the action reduces
to a two-dimensional dilaton gravity theory

I = −VHrn−1
0

16πG

∫
d2x

√
g [ΦR − 2U(Φ)] − VHrn−1

0
8πG

∫
dx

√
h ΦK , (3.3)

with potential

U(Φ) = (n − 1)(n − 2)
2r2

0
Φ− 1

n−1 − n(n − 1)
2ℓ2 Φ

1
n−1 . (3.4)

The two terms in U(Φ) — the first from the reduction on the hyperboloid, the second from
the higher-dimensional cosmological constant — have opposite signs and thus can balance
each other. This balance permits the existence of a near-extremal regime without any charge.
Before examining this limit, let us note that Birkhoff’s theorem allows us to obtain the
complete solution to the classical theory, which is

ds2
2 = Φ

n−2
n−1

(
ℓ2F (r)dτ2 + dr2

F (r)

)
, Φ(r) =

(
r

r0

)n−1
, (3.5)

where (see [37])

F (Φ) = −Φ−n−2
n−1

(
k + 2r2

0
(n − 1)2

∫ Φ
dΦ̃ U(Φ̃)

)

= −1 − k Φ−n−2
n−1 + r2

0
ℓ2 Φ

2
n−1 , (3.6)

with integration constant k. Setting k = µ/(rn−2
0 ℓ2) reproduces the hyperbolic black hole (1.8).

Extremal solutions appear when F (Φ) and F ′(Φ) have simultaneous zeros. Therefore, to
go near extremality and close to the horizon, we zoom in near the zeroes of U(Φ). We can
normalize Φ so that U(Φ = 1) = 0 and r0 is the extremal horizon radius, which is then fixed to

r0 =
√

n − 2
n

ℓ , (3.7)

i.e., we recover (2.3).
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To separate the dynamics of the throat from the region outside it, we introduce a curve
at a fixed value of Φ, with fixed intrinsic metric and fixed proper length lc. We set it at
a radius r = rb = r0 + δrb, so the proper length of the boundary curve in the extremal
black hole geometry is

lc = βℓ
√

F (rb) = βℓ
δrb

L2
= β

√
n δrb , (3.8)

where L2 is the AdS2 radius that we found in (2.10). Near the horizon we set

Φ = 8πG

VHrn−1
0

(ϕ0 + ϕ(r)) , ϕ(r) ≪ ϕ0 ≡ VHrn−1
0

8πG
. (3.9)

It is customary to use, instead of δrb, a cutoff ϵ near the mouth of the throat, such that
ϵ = L2

2/(ℓδrb), and then the dilaton at the boundary curve is

ϕ(rb) = ϕb

ϵ
, ϕb = M−1

b . (3.10)

Here Mb is the mass scale that we identified from the thermodynamics in (2.15). It was
formerly referred to as the mass gap, but is more properly viewed as the scale of SL(2,R)
symmetry breaking in the AdS2 throat [6]. Observe that even if δrb/ℓ and ϵ are parametrically
O(1), the curve length lc/ℓ and ϕb are both very large for large black holes close to extremality.

Plugging (3.9) in (3.3), the action for the region near the horizon takes the JT form

Inear = −1
2

∫
Mnear

d2x
√

g

[
ϕ0R + ϕ

(
R + 2

L2
2

)
+ O

(
ϕ

ϕ0

)2]
. (3.11)

To this, we must add the action of the outer region. The geometry there is very approximately
the extremal black hole metric, and away from the throat the dilaton is large and quantum
fluctuations are comparatively small. This means that the contribution to the action from
the bulk of the outer region can be computed on-shell in the extremal geometry. Using
counterterm subtraction (and neglecting the Casimir energy, if present) this bulk action gives
βE0 from the mass of the extremal black hole. There only remains to include a boundary
term for the fluctuations of the surface ∂Mnear that separates this region from the throat.
A straightforward calculation then results in

I = βE0 −
1
2

∫
Mnear

d2x
√

g

[
ϕ0R + ϕ

(
R + 2

L2
2

)
+ O

(
ϕ

ϕ0

)2]

−
∫

∂Mnear
du

√
h

[
ϕ0K + ϕb

ϵ

(
K − 1

L2

)]
. (3.12)

The action of JT gravity is now supplemented with the correct boundary terms, and from this
point on the procedure is well known [18, 38]. The dilaton can be exactly integrated out en-
forcing R = −2/L2

2, the topological terms in (3.12) give the classical extremal entropy S0 (2.8),
and the only dynamics comes from the extrinsic curvature K, which yields the Schwarzian
theory of boundary reparametrizations τ(u) from the broken SL(2,R) symmetry, namely,

I = βE0 − S0 − ϕb

∫ β

0
du Sch(τ, u) . (3.13)
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If we evaluate it on the classical solution at temperature β−1 we obtain

ϕb

∫ β

0
du Sch

(
tan πu

β
, u

)
= 2π2ϕb

β
= 2π2T

Mb
, (3.14)

which reproduces the leading term in the free energy above extremality (2.13), (2.14). How-
ever, when βϕb > 1 the theory is strongly coupled and quantum effects become important.
Fortunately, this theory can be quantized in several ways [19–23] to give a one-loop-exact
partition function

Z = e
S0−βE0+ 2π2ϕb

β

(
ϕb

β

)3/2
. (3.15)

The negative energy E0 < 0 might look problematic, but for the purposes of Rindler
interpretation we can subtract it as the ground state energy. The prefactor ∝ β−3/2

accounts for the quantum fluctuations, which strongly suppress the partition function at low
temperatures β ≫ 1. They modify the energy and entropy (2.13), (2.14) as

E(T ) = E0 + 2π2

Mb
T 2 + 3

2T + O(T 3) ,

S(T ) = S0 + 4π2

Mb
T + 3

2

(
1 + log T

Mb

)
+ O(T 2) . (3.16)

We see that as T → 0 the quantum log term drastically reduces the entropy from its
semiclassical value S0. We have been motivated to interpret this entropy as a measure of
the entanglement between two Rindler wedges. We then obtain the result we sought: at
entangling temperatures T ≪ 1, the entanglement entropy between the left and right CFTs
decreases to values much smaller than the O(1/G) leading semiclassical result.

Crucially, this entanglement entropy does not arise from a semiclassical saddle point
with small quantum fluctuations, as would be captured by a quantum-corrected RT formula
still reliant on a classical notion of geometry [39, 40]. In the path integral approach to
the entanglement entropy [41], there are large quantum fluctuations around the saddle
point (1.8) at low T .

The result for the entropy is somewhat muddled by the logarithmic divergence as T → 0.
A better-behaved quantity is the modular density of entangled states with energy E. It
can be extracted from (3.15) to give

ρ(E) = eS0 sinh
(

2π
√

2ϕb(E − E0)
)

Θ(E − E0) , (3.17)

and we see that it vanishes as the Boulware vacuum at E → E0 is approached. This is
our main conclusion. It will remain qualitatively valid after we complete the analysis in
the next subsection.

3.2 Inhomogeneous zero modes

The result (3.15) includes the quantum fluctuations of the throat that preserve the homogeneity
of the hyperboloid. However, we must also account for zero modes of inhomogeneous
fluctuations. To this end, we generalize the ansatz (3.2) to

ds2 = Φ−n−2
n−1 gµνdxµdxν + r2

0 Φ
2

n−1 hmn(dym + Aaξm
a )(dyn + Abξn

b ) , (3.18)
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where Aa = Aa
µ(x)dxµ is a non-abelian gauge field in the adjoint representation of the group

SO(1, n − 1) of isometries of the hyperbolic space Hn−1, which are generated by the vector
fields ξa. In the dimensional reduction of the Einstein-AdSn+1 action, these fields add to
the dilaton gravity theory (3.3) a Yang-Mills action

IA = − 1
2g2

Y M

∫
d2x

√
g Φ

n+2
2 Tr (FµνF µν) , (3.19)

where F = dA − A ∧ A and we have defined the gauge coupling to be

g2
Y M ≡ n(n − 1)4πG

VHrn+1
0

= n(n − 1)
2r2

0ϕ0
. (3.20)

This coupling would vanish in the non-compact limit VH → ∞, which is, again, a reason
why we work with a small but finite cutoff ε.

Two-dimensional gauge theories of this type have been extensively studied in the lit-
erature [42–57], most often for compact gauge groups. The particularities associated with
compact groups include that the spectrum of irreducible representations (which becomes
the spectrum of the Hamiltonian) is discrete, the irreps have finite dimensions, and the
Casimirs are positive. Considerations of non-compact gauge groups, as we find here, have
also appeared [53–56].

The quantization of these theories has been solved in [55, 56] and we can directly borrow
from them to go to the main results. Fixing the holonomy c of the gauge field at the
boundary, the partition function of the theory in the disk can be expressed in terms of the
characters χR, quadratic Casimirs CR and dimensions dR of the irreducible representations
of the group, R, as

ZY M (κ, c) =
∑
R

dR χR(c) e−
g2

Y M
4 CR

∫
d2x

√
g Φ− n+2

2
. (3.21)

The full path integral is then

Z(c) =
∑
R

dR χR(c)
∫

DgDΦ e−IR , (3.22)

where the effective action IR takes the same form as (3.3) but now with U → UR such that

UR(Φ) = U(Φ) + n(n − 1)
8r2

0ϕ2
0

CR Φ−n+2
2 . (3.23)

The last term modifies the solution by adding a ‘Rotational’ energy. In the limit near
extremality the representation dependence only enters in a simple manner: as a small shift
of the extremal energy due to the SO(1, n − 1) motion,

E0(R) ≃ E0 + δE0(R) , δE0(R) = n − 1
4(n − 2)

CR
ϕb

, (3.24)

and in the coupling of the effective JT theory, namely the dilaton (or area), ϕ0 → ϕ0,R. The
latter is a subleading modification, so, to first order we can set ϕ0,R ≃ ϕ0 and the extremal
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entropy is not modified. We must nevertheless retain δE0(R) since it is necessary to suppress
the fluctuations of the motion in the group directions.

With these modifications, the sum over irreps in the partition function factorizes from
the JT integral, and we obtain

Z(c) = eS0−βE0

(
ϕb

β

)3/2
e

2π2ϕb
β

∑
R

dR χR(c) e−β δE0(R) . (3.25)

Our black holes are not rotating, so the characters are evaluated on the identity and
χR(c) = dR. The sum over R is a discrete one for compact groups. Instead, we have a
non-compact group, so we must integrate using the Plancherel measure ρ(R) for the irreps
of SO(1, n − 1).

For our purposes we do not require any details other than the temperature dependence,
and this is easy to extract at low temperatures (see appendix A). Since CR ∼ λ2 (with
eigenvalue λ), the integral in this regime is dominated by the behavior at small λ, and for
all Hn−1≥2 the Plancherel measures ρ(λ) have the same behavior [58]

ρ(λ) ∼ λ2 . (3.26)

The integral over the group then gives∫
dλ λ2e−#βλ2/ϕb ∼

(
ϕb

β

)3/2
, (3.27)

which further suppresses the partition function at low temperatures. Two comments are in
order: (i) We have subtracted the constant part of the quadratic Casimir (e.g., C(λ)−1/4 = λ2

for SO(1, 2), n = 3). This subtraction has been argued in [55] for the Schwarzian SO(2, 1)
modes, but we have not managed to justify it for the hyperboloid modes. If the constant
term should be kept, then the gap would inhibit these fluctuations when T ≪ Mb and,
simply, they would not contribute any additional factor like (3.27). (ii) The regularization
of the hyperbolic volume VH breaks some of the symmetries. This makes the question
of how they contribute to the partition function a subtle one. One might expect that a
consistent procedure exists in which the regularization is only effectively done at the end of
the computation and therefore (3.26) holds. We will not attempt to fully solve these problems
here, since the final result can only enhance (at least never reduce) the rate at which the
partition function near extremality decreases towards zero. That is, the conclusion that the
entanglement between the two sides vanishes as we approach the ground state is robust.

4 Disentangling de Sitter

Although we have focused on the entanglement of a CFT in Rindler space, it is known
that a suitable Weyl transformation maps it to the conformally equivalent problem of the
entanglement in Rt × Sn−1 across a partition into two hemispheres [5], or of a spherical
entangling surface in flat space [12]. In a similar way, we can decrease the entanglement
across the cosmological horizon of CFT states in de Sitter space.4 As in (1.4), this is done by

4This section was prompted by a discussion with Lenny Susskind.
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lowering the CFT temperature T below the value TdS = 1/2π of the unit-radius de Sitter
universe. The Boulware-de Sitter state of the CFT is reached when β → ∞.

To this purpose, we write the metric of the hyperboloid Hn−1 as [59]

ds2 (Hn−1) = 1
1 − σ2

(
dσ2

1 − σ2 + σ2dΩn−2

)
, (4.1)

with 0 ≤ σ < 1. The boundary, instead of the plane ζ = 0 of the Poincaré upper-half-space, is
now the sphere Sn−2 at σ → 1. With this expression the hyperbolic black hole solution (1.8)
can be recast in the form

ds2 = r2

1 − σ2

(
−f(r)(1 − σ2)dt2 + dσ2

1 − σ2 + σ2dΩn−2

)
+ ℓ2

r2
dr2

f(r) , (4.2)

with f(r) as in (1.9). The boundary geometry at r → ∞ is now in a conformal frame
where the metric is that of dSn,

ds2|∂M = −(1 − σ2)dt2 + dσ2

1 − σ2 + σ2dΩn−2 , (4.3)

with a cosmological horizon at σ = 1 such that TdS = 1/2π. When the bulk is a black hole
with µ0 ≤ µ < 0, the temperature of the dual CFT is T < TdS . Its entropy, regularized
with a cutoff at σ = 1 − ε, is interpreted as the entanglement entropy of the CFT across the
cosmological horizon. The analysis of the previous section implies that the Boulware-de Sitter
state in the limit β → ∞, dual to an extremal black hole, has large quantum fluctuations
that bring the density of entangled states to zero.

5 Outlook: extreme quantum bridge demolition

The apparent presence of a large entropy in non-supersymmetric extremal black holes has
long been regarded as a puzzle. It takes an even more disconcerting guise in our setup, where
it appears as a non-zero entanglement entropy of the Boulware product state |0⟩L|0⟩R. This
would be a manifest inconsistency in AdS/CFT holography, and it demands a solution.

There is a sense in which all the entropies of non-BPS extremal black holes (at least in
AdS) admit an interpretation of this kind. Whenever T ̸= 0, the dual states are thermofield
doubles of the theories on the disconnected asymptotic boundaries of the black hole. When
T → 0, one expects to recover the product state of the respective vacua, with vanishing
entanglement entropy. In this article, we have placed the two CFTs side by side in Rindler
space. Nevertheless, if T ̸= 2π they are actually disconnected: no CFT excitation can be
sent from one side to the other. In the bulk, this would require sending a signal across a
non-traversable Einstein-Rosen bridge.

The puzzle we have described, and then resolved, is that in the limit T → 0 this bridge,
which becomes infinitely long, retains a finite width, i.e., finite area. As in the case of
charged extremal black holes, what is missing here is the dominance of quantum effects
down the long throat. There, quantum fluctuations of gravitational zero modes become
strongly coupled and invalidate the semiclassical geometric description. The area of the
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bridge is no longer well-defined, so it is not a measure of the microscopic entanglement
between the two sides. The gravitational path integral can controllably account for these
quantum effects and yields a density of entangled states that vanishes when the energy above
the ground state approaches zero.

The analysis involves a few subtleties that may be worth recounting. One of them
concerns the instabilities of hyperbolic spaces to spontaneous nucleation of branes at low
temperatures [34]. These are similar to issues about spontaneous superradiant decay or
discharge in other non-BPS near-extremal black holes, which should be revisited taking
proper account of quantum effects. The Rindler space interpretation also raises the issue
of the need to keep the Rindler regulator ε finite. We can think of it as a simple proxy
for a physical cutoff that makes manifest the difficulties with the holographic entanglement
entropy. It is also needed to have a non-zero mass scale Mb at which quantum effects become
dominant, but it explicitly breaks symmetries of Hn−1. This may deserve closer attention,
but, as we have seen, it does not modify our main conclusion.

Usually, quantum corrections are incorporated in holographic entanglement entropy via
quantum extremal surfaces [40]. Here, instead, we have employed the map between Rindler
space and R×Hn−1 to compute, in the spirit of [12], the entanglement entropy as a quantum
thermal entropy. Then the Schwarzian theory gives the dominant quantum contribution to
the entanglement entropy. Near T = 0 its effect is to almost entirely cancel the classical area
term, so it seems that one can no longer talk about a quantum extremal surface, because this
requires a semiclassical geometry. It may be interesting to place the entanglement entropy at
very low entanglement temperatures within the framework of [39, 41].

Perhaps the most surprising consequence is that the semiclassical spacetime born out of
quantum entanglement can break down in situations where the geometry is weakly curved.
As we have seen, infrared quantum gravitational fluctuations can become strong enough to
bring about the demolition of geometric bridges. Reverting the process, can we see how
a large spacetime gradually assembles from random matrices at the edge of the spectrum
of extremal black holes?
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A Rindler entanglement for free conformal fields

The states |Ψβ⟩ for free conformal field theories can be obtained by first solving for the
thermal state of the field in R× Hn−1, which can be done with spectral methods, and then
Weyl-transforming to Rindler space [4, 60]. We are interested in the behavior of the entropy
for β ≫ 1. For gauge fields, contact terms at the Rindler horizon can modify the numerical
value of the entropy [13], but what will matter here is not its precise value, but only the
generic behavior at low temperatures.

A.1 Leading divergent terms

The energy of a free field of a given spin in R× Hn−1 at inverse (dimensionless) temperature
β takes, up to numerical factors, the form

E(β) ∼ VH

∫ ∞

0
dλ

λ ρ(λ)
eβλ ∓ 1 . (A.1)

The Plancherel measure ρ(λ) is obtained from the spectrum of the corresponding wave operator
of the field in Hn−1 [58]. The ∓ sign in the denominator is for boson/fermion statistics.

The low-temperature behavior, β → ∞, is controlled by the range of small λ in the
integrand, so that

E(β) ∼ VH
ρ(λ ∼ β−1 → 0)

β2 . (A.2)

For conformal scalars in any dimension, ρ(λ → 0) ∼ λ2. For spinors in any dimension, and for
p-form gauge fields in n = 2p + 2 (such as four-dimensional Maxwell fields), ρ(λ → 0) ∼ λ0.
Therefore, whenever spinors or these p-form fields are present, they dominate the low-
temperature behavior on the hyperboloid, with the energy vanishing as

E(β) ∼ VH

β2 , (A.3)

and then the entropy

S(β) =
∫

β dE ∼ VH

β
. (A.4)

If only conformal scalars are present, then the vanishing as β → ∞ is faster, E ∼ β−4 and
S ∼ β−3. Note that [61] has argued that the low-temperature behavior in (A.3) and (A.4)
is generically expected.

The entanglement entropy in Rindler space (1.2) is the same as the thermal entropy
in the hyperboloid (A.4), only that the volume factor is reinterpreted: the large hyperbolic
volume divergence becomes a short distance divergence near the Rindler horizon. Integrating
over {ζ, x} as in (2.4) gives

S(T ≪ 1) ∼ An−2
εn−2 T . (A.5)
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A.2 Universal terms

The leading divergent term of the entanglement entropy, although dependent on the cutoff, is
enough to raise the puzzle that we address in this article, since it is present with any physical
regularization. Nevertheless, it is interesting to also consider the better-defined ‘universal’
terms in the entanglement entropy — universal because they are independent of the cutoff,
although their values depend on the specific field content of the theory. Following [62], here
we will give results for massless scalar fields in even dimensions.

We start from the Renyi entropies defined as

Sα = log(Trρα)
1 − α

. (A.6)

The conformal mapping to the hyperboloid allows us to compute these traces as thermal
partition functions, so they can be written as

Sα = 1
1 − α

(log(Z(αβ)) − α log(Z(β))) . (A.7)

Ref. [62] used this expression to compute the Renyi entropies for a sphere of radius R in
even dimension n. The coefficients of the logarithmic divergence

Sα = g
(α)
0 log(ε/R) + non-universal terms (A.8)

are cutoff-independent, i.e., universal. In the lowest three dimensions, they are

g
(α)
0 = −α + 1

6α
, n = 2 ,

g
(α)
0 = (α + 1)(α2 + 1)

360 α3 , n = 4 ,

g
(α)
0 = −(α + 1)(3α2 + 1)(3α2 + 2)

30240 α5 , n = 6 . (A.9)

Since the index α can be understood as an effective modular inverse temperature, the Renyi
entropies (functionals of an unnormalized density matrix ρα) can be related to the entropy
of the thermal density matrix that we are interested in.5 Defining

ρ̃ = ρα

Tr(ρα) , (A.10)

the relation is

Sα(ρ̃) = α2∂α

(
α − 1

α
Sα

)
. (A.11)

The large α limit is equivalent to the large β limit for the Rindler thermofield double.
Using (A.9) we readily verify that

Sα→∞(ρ̃) = 0 , (A.12)

as expected for the Boulware vacuum.
5The holographic Renyi entropies for large Renyi index α were also studied in [64], who considered a

holographic theory with a low dimension scalar operator, leading to a different dominant phase at low energy.
It would be interesting to analyze how the quantum effects we study affect the results of [64].
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This limit is not trivial. It requires that

g
(α)
0 ∝ 1 + 1

α
+ O(1/α2) , (A.13)

otherwise one finds non-zero answers in the limit. Notice also that the Renyi entropies do
not vanish at large α, where they are controlled by the smallest eigenvalue of the modular
Hamiltonian (the modular vacuum). On the other hand, the entropy we are computing
measures the entanglement degeneracy of this vacuum, which is expected to be zero on
general grounds.

The vanishing of the universal term is at odds with the holographic calculation from
the RT formula. This can be written as

SRT = s(β)VH , (A.14)

with s(β) given in (2.7). The divergences come from VH which, for comparison with the
results above (see [62]), we expand in powers of ε = Rs − r, where r is an infrared cutoff
in the hyperboloid and Rs is the radius of the boundary sphere. The expansion yields the
holographic universal term as

SRT = s(β) Ωn−2
(2π)n q

(n−1)
0 log (ε/Rs) + non-universal terms , (A.15)

with

q
(n−1)
0 ≡

n−2∑
j=0

(−1)n−1+j (n + j − 2)!
(2j)!!(n − j − 2)!j! . (A.16)

Since s(β) remains non-zero as β → ∞, the universal entanglement entropy term from the
RT formula fails to vanish as it should in the Boulware vacuum.

Large entangled degeneracies in the modular vacuum may exist only in supersymmetric
quantum field theories. In the holographic context, supersymmetric black holes in AdS4 with
hyperbolic horizons and non-zero entropy have been studied in [63, 65–70].

B Coordinates

In Minkowski spacetime

ds2 = −du dv + dx2 , (B.1)

the left and right Rindler wedges are, respectively,

(u, v) = (ζ et,−ζ e−t) and (u, v) = (−ζ e−t, ζ et) , (B.2)

with ζ > 0, −∞ < t < ∞. The transformation makes clear that, when t is continued
to imaginary time, regularity demands that it be identified with period 2π, hence the
temperature T = 1/2π.

The Rindler-AdS metric (1.6) with the Rindler space (1.2) at the boundary is obtained
from the Poincaré-AdS metric

ds2 = ℓ2

z2

(
dz2 − du dv + dx2

)
(B.3)
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by changing (u, v, z) → (t, ζ, r) as

u = −ζ e−t

√
1 − ℓ2

r2 , v = ζ et

√
1 − ℓ2

r2 , z = ℓ
ζ

r
. (B.4)

The transformation appropriate for the opposite wedge of Rindler-AdS is apparent from (B.2).

C Holographic entanglement in two-dimensional Rindler space

Rindler-AdS3 spacetime can be written as

ds2 = −(r2 − µ̄)dt2 + ℓ2dr2

r2 − µ̄
+ r2 dζ2

ζ2

= r2

ζ2

[
−
(

1 − µ̄

r2

)
ζ2dt2 + dζ2

]
+ ℓ2

r2
dr2

1 − µ̄
r2

. (C.1)

This is the same as (1.8) with n = 2, differing only by an inessential shift µ̄ = µ + ℓ2. At
the boundary, we find two-dimensional Rindler space, so these are the correct geometries to
describe the Rindler entanglement of holographic CFTs in two dimensions.

If log ζ were identified periodically, this would be a spinless BTZ black hole. Nevertheless,
for the holographic Rindler interpretation we take ζ ∈ (0,∞), resulting in AdS3 in accelerated
coordinates for all µ̄ > 0 (and not BTZ). The different values of µ̄ are merely due to a
different normalization of the time coordinate t in the metrics (C.1). This implies that the
temperature of the horizon scales with µ̄ as

T =
√

µ̄

2πℓ
. (C.2)

The solution with µ̄ = 0 is the analog of the extremal black holes that we studied above. This
solution is the Poincaré-AdS3 metric (the ‘unwrapped massless BTZ’).6 We expect that it
describes the dual of the Boulware vacuum in two dimensions.

Instead of the power-law divergence (2.4) of VH we have a logarithmic one,

VH =
∫ L

ε

dζ

ζ
= log L

ε
, (C.3)

where in addition to ε we have introduced an infrared cutoff L. The energy and entropy
of the solution are

E = VH

16πG

µ̄

ℓ
= 2π2

Mb
T 2 , S = VH

4G

√
µ̄ = 4π2

Mb
T , (C.4)

with

M−1
b = VHℓ

8πG
. (C.5)

6The solutions with −ℓ2 ≤ µ̄ < 0 are not valid for our purposes (in the notation of (1.8) they have
−2ℓ2 ≤ µ < −ℓ2). If log ζ were periodically identified, they would correspond to conical singularities or to
global AdS3. Without this identification, they have infinite conical excess angles.
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These features are easy to understand. What we have described is nothing but the
analysis in [2] of the holographic entanglement entropy of a two-dimensional CFT, only
presented in the modular Rindler frame and using the modular temperature T . In contrast
with n > 2, here all the cases with µ̄ > 0 are equivalent.

Notice that, even if there is a mass scale Mb, there is no zero-temperature entropy
S0. So there is no entanglement entropy puzzle. This does not mean that quantum effects
are not important at low temperatures. For BTZ or whenever Mb is non-zero, they must
be, but they are not universally captured by the Schwarzian theory. To be clear, one can
perform a dimensional reduction of three-dimensional gravity in the spinless sector, with an
ansatz like (3.2) with n = 2, and find a two-dimensional JT theory with ϕ0 = 0. Its only
dynamics is captured by a one-dimensional Schwarzian theory. This is valid even though
we are not near extremality. The classical solution of the Schwarzian (3.14) reproduces the
properties (C.4) for all values of µ̄.

While the Schwarzian theory is thus a consistent truncation of the classical three-
dimensional gravitational theory, its quantum fluctuations do not dominate the low-
temperature regime (unlike in the extremal solutions with n > 2 discussed in the main
text). In contrast to the universal Schwarzian sector of CFTs and BTZ black holes near
extremality [24], there is no such universality in the low-energy spectrum of three-dimensional
quantum gravity or CFT with zero spin.
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