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Abstract: Topological entanglement entropy (TEE), the sub-leading term in the entangle-
ment entropy of topological order, is the direct evidence of the long-range entanglement. While
effective in characterizing topological orders on closed manifolds, TEE is model-dependent
when entanglement cuts intersect with physical gapped boundaries. In this paper, we study the
origin of this model-dependence by introducing a model-independent picture of partitioning
the topological orders with gapped boundaries. In our picture, the entanglement boundaries
(EBs), i.e. the virtual boundaries of each subsystem induced by the entanglement cuts, are
assumed to be gapped boundaries with boundary defects. At this model-independent stage,
there are two choices one has to make manually in defining the bi-partition: the boundary
condition on the EBs, and the coherence between certain boundary states. We show that
TEE appears because of a constraint on the defect configurations on the EBs, which is choice-
dependent in the cases where the EBs touch gapped boundaries. This choice-dependence is
known as the ambiguity in entanglement entropy. Different models intrinsically employ differ-
ent choices, rendering TEE model-dependent. For D(Z2) topological order, the ambiguity
can be fully characterized by two parameters that respectively quantifies the EB condition
and the coherence. In particular, calculations compatible with the folding trick naturally
choose EB conditions that respect electric-magnetic duality and set specific parameter values.
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1 Introduction

Topologically ordered phases of matter, or topological orders for short, are exotic gapped
phases in two spatial dimension that exhibit long-range entanglement [1]. This property
of entanglement can be captured by the entanglement entropy of the system. For gapped
matter phases in two dimension, their ground states usually have entanglement entropy
that yields the area-law, i.e. the entanglement entropy is proportional to the length of the
entanglement cut; but for the ground state of a topological order on a sphere, there is an
extra sub-leading term that survive at arbitrary long range. This sub-leading term is called
the Topological Entanglement Entropy[2] (TEE).

Topological entanglement entropy can be systematically and analytically studied using
the effective theories of topological orders, which are generally classified into two different
kinds: the Chern-Simons (CS) theory [3], including the K-matrix theory [4, 5], and the
lattice models such as the Levin-Wen (LW) model [6–10] and the quantum double (QD)
model [11–15]. In the lattice models, the overall Hilbert space is inherently structured as
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Figure 1. Topological order on a disk with a gapped boundary. (a) The disk is divided into two
subsystems, and the entanglement cut intersects with the physical boundary. One calculates the
entanglement by partially tracing out either of the two subsystems and calculating the von Neumann
entropy of the reduced density matrix. (b) Each subsystem is a disk with two boundary segments: a
segment of physical boundary and a segment of the virtual entanglement boundary (thick blue line).
In our picture, the entanglement boundaries are gapped boundaries with boundary defects (dark
blue dots).

a tensor product of the Hilbert spaces of local degrees of freedom (d.o.f.), and hence it is
straightforward to bi-partition the lattice models and calculate entanglement entropy [16–20].
In the CS theory, however, one requires certain methods such as the edge theory approach [21–
23] to derive entanglement entropy. For topological orders on closed manifolds, calculating
TEE using different models gives same results. Nevertheless, for topological orders on open
manifolds with gapped boundaries, different theories may produce different TEE when the
entanglement cuts touch gapped boundaries. For example, consider the Z2 toric code on a
disk with a gapped boundary and bi-partition the disk in the way shown in figure 1. The
calculation in the QD model shows that TEE varies with the boundary condition of the
physical boundary [19], while the calculation in the K-matrix theory shows that TEE is
independent of the boundary condition [23]. It requires clarification what information is
encoded in TEE and what leads to the model-dependence in these open-cut cases.

In this paper, we focus on the topological orders that allow gapped boundaries and study
the origin of this model-dependence in Abelian topological orders via a model-independent
picture of bi-partitioning the topological order. Suppose we have a topological order on a
two-dimensional manifold, and divide the manifold into two subsystems P and Q. For each
subsystem, the entanglement cuts serve as virtual entanglement boundaries (EBs), and the
Hilbert space of each subsystem is spanned by the boundary states describing EBs. In our
picture, the EBs are assumed to be gapped boundaries, and the EB states describe different
configurations of boundary defects on the EBs. These boundary defects are anyonic objects
that can be model-independently characterized by the bulk topological order and the gapped
boundary condition (GBC) [24–26], rendering the EB states and the corresponding subsystem
Hilbert spaces model-independent. The TEE, as we will see in our picture, results from a
constraint on each EB that only captures the universal properties of the boundary states.

Given the subsystem Hilbert spaces, the global state can be decomposed into a summation
of tensor product states of the two subsystem Hilbert spaces. At the model-independent level,
there are two choices one has to make manually in defining the decomposition: the boundary
conditions on the EBs, and the quantum coherence between the boundary states. The former
specifies the explicit form of the EB states, while the latter determines the eigenstates and

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
0
7
4

the eigenvalues of the reduced density matrix. This dependence on the manual choices
is the ambiguity in entanglement entropy [27]. The question is whether different choices
change the universal properties of the boundary states. We answer this question in Abelian
topological orders by introducing an operator version of the EB constraint and using this
operator constraint to pick out the universal properties. It turns out that when the EBs
touch gapped boundaries, the TEE will explicitly depend on the EB conditions and the
coherence between the two junctions connecting the EB and physical boundaries. Different
effective theories have different intrinsic choices of the EB condition and the coherence,
rendering TEE model-dependent. Particularly, the lattice models choose the EB conditions
that condense specific anyons, while the K-matrix theory, which employs the folding trick,
naturally chooses EB conditions that respect electric-magnetic (EM) duality[28] and set
a specific coherence pattern between certain boundary states. For the Z2 toric code, we
introduce a general definition of the decomposition with two parameters that respectively
characterize the EB condition and the coherence. These two parameters fully quantifies
the ambiguity of TEE in the Z2 toric code.

Once the ambiguity is characterized, the universal properties encoded in TEE is then
transparent. For each EB, there are two individual facts that contribute to TEE: the total
topological charge that goes through the EB and the defect species that are allowed on
the EB. While the latter exhibits choice-dependence, the former is choice-independent and
contributes a lndx term to TEE, where dx is the quantum dimension of a bulk anyon or a
boundary defect in different cases. For a generic state, there will also be a classical term
encoding the probability of finding certain basis states, as already recognized in ref. [21].

This paper is organized as follows. In section 2, we review some useful facts about gapped
boundaries and boundary defects of topological orders. We will see the constraint on the
boundary defect configurations in a general picture. In section 3, we focus on the closed EB
cases and introduce the model-independent picture. We will first demonstrate the procedure
of calculating TEE, and then discuss the operator version of the constraint. In section 4, we
use our picture to investigate the open EB cases with the simplest choice of EB conditions.
In section 5, we will show the general definition of the state decomposition for Z2 toric code.
We will reproduce the result calculated in the CS theory by employing choices that respect
EM duality. We comment on some important points and conclude in section 6.

2 Review of gapped boundaries and boundary defects

In this section, we review some facts about the gapped boundaries of topological orders and
clarify the notations that we will use later. A review about the basic properties of anyons can
be found in appendix A. For a topological order, we use Greek alphabets α, β, γ, · · · to label
the species of bulk anyons. The defects on a specific gapped boundary, also called boundary
anyons, are labeled by lower Latin alphabets a, b, c, · · · . The trivial anyon is denoted as 1.
The set of bulk anyons is denoted as C, and the set of boundary anyons is denoted as D.

A gapped boundary is characterized by a Lagrangian subset L of C, i.e. a maximal set
of anyons that are self-bosons and have mutually trivial braiding statistics. All the anyons
in L can freely annihilate or create at the boundary. This mechanism is called the anyon
condensation[24]. Other anyons in C are confined at the boundary, and will decompose into
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boundary anyons if moved onto the boundary. The relation between the bulk anyons α ∈ C
and the boundary anyons a ∈ D can be expressed by a matrix W ,

α =
⊕
a∈D

Wα,aa, (2.1)

where the matrix elements Wα,a are non-negative integers. If α ∈ L, then Wα,1 ̸= 0. This
decomposition process commutes with fusion, i.e.,∑

γ

Nγ
αβ =

∑
a,b

N c
abWα,aWβ,b. (2.2)

For a certain bulk anyon β, there can be more than one b satisfying Wβ,b ̸= 0. We say that
the anyon β splits at the boundary. We also have the following two relations for quantum
dimensions of the bulk anyons and the boundary anyons,

D =
√∑

α

d2
α =

∑
a

d2
a (2.3)

dα =
∑

a

Wα,ada. (2.4)

There is a constraint on the configurations of boundary defects on a boundary. To see
it, we consider a simple case of a disk with no anyons in the bulk but some anyons on the
boundary. We can measure the total topological charge of the boundary by creating a pair of
‘test anyons’, let one of them travel through a trajectory that is very close to the boundary
and then annihilate with its partner, as shown in the figure 2a. This closed anyon loop,
as one find immediately, is contractible and detects nothing. Hence, the gapped boundary
should have total charge 1, and consequently all the boundary anyons should fuse to 1. A
general case is depicted in figure 2b. Suppose the boundary anyons fuse to a non-trivial
anyon a, then the test anyon loop should recognize the boundary as a bulk anyon α that
satisfies Wα,a ̸= 0. In this sense, the gapped boundaries are treated on the same footing as
bulk anyons [29]. Conversely, if the bulk anyons on a disk fuse to α, the boundary total
charge should be a that satisfies Wα,a ̸= 0. If α splits on the boundary, the boundary anyons
can fuse to any of the a’s decomposed from α.

A topological order can have multiple Lagrangian subsets. Each Lagrangian subset
corresponds to a certain gapped boundary condition (GBCs). We use upper Latin alphabets
A,B,C, · · · to denote the GBCs of a topological order. The junctions between the boundaries
with different GBCs also host anyonic defects. We will call them junction anyons hereinafter.
We denote the set of allowed junction anyons between two boundaries with GBC A and B

as DA|B = {aA|B, bA|B, . . .}. The number of elements in DA|B equals ∑αW
A
α,1AW

B
α,1B , where

WA (WB) is the W matrix on the boundary A (B) and 1A (1B) is the trivial anyon on the
boundary A (B). The junction anyons also subject to fusion rules,

aA|B × bB|C =
⊕
cA|C

N cA|C

aA|BbB|C cA|C (2.5)

where N cA|C

aA|BbB|C ’s are non-negative integers. If A = B, i.e. the junction connects two
boundaries with same GBC, the set of allowed junction anyons then equals the set of
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Figure 2. A topological order with a gapped boundary. The blue dots on the boundary represent
for boundary anyons. (a) A test anyon loop near the boundary. The anyon loop will find that the
boundary has total topological charge 1. (b) The test anyon loop detect a non-trivial bulk anyon α.
One can shrink the gapped boundary into a point, during which the boundary anyons are fused to a
single anyon a. This single anyon a reside at the point should satisfy Wα,a ̸= 0.

boundary anyons DA|A = DA. We use the term ‘boundary defects’ to refer to both boundary
anyons and junction anyons.

Like a bulk anyon can be detected by a bulk anyon loop, a boundary defect can be
detected by a half loop. Suppose an anyon γ condenses at both A and B, and a generic defect
cA|B reside on the junction. One can create an γ at boundary A, let it go around the junction
through the bulk, and then annihilate at boundary B, as shown in figure 3a. The trajectory
of γ forms a half loop, which generates a unitary transformation Uγ,cA|B on the defect states.
This unitary transformation Uγ,cA|B is like the ‘braiding’ of a condensed anyon and a boundary
defect, and is analogous to the braiding of bulk anyons. If we further annihilate the defect
with its conjugate counterpart, we will result in the half-linking introduced in ref. [26] and [30].

There is also a constraint on the configurations of boundary defects on an open boundary
segment. Suppose we have a disk with two boundary segments with GBCs A and B, and
there is no anyon in the bulk or on the boundary B. Only boundary A and the two junctions
bear anyons. We can then detect the total topological charge of the boundary segment A
via the half-loop detection: we create an anyon γ ∈ LB on the boundary B near one of the
junctions, let γ travel very close to boundary A though the bulk and annihilate near the
other junction on boundary B, as shown in figure 3b. Again, one finds immediately that
this half loop is contractible and detects nothing. Therefore, all the defects, including the
anyons on boundary A and the two junction anyons, should fuse to

z
B|A
1 × xA

1 × xA
2 · · · × z

A|B
2 = 1B, (2.6)

where zB|A
i denotes the anyons reside on the two junctions and xA

i denotes the anyons on
boundary A.

More general cases involve multiple boundary segments, where the boundary anyons and
the junction anyons may fuse to a generic boundary defect, as illustrated in figure 3c. We
will see that the constraint on the configurations of boundary defects plays a crucial role
in deriving the entanglement entropy and eventually leads to TEE.

Before we proceed, we would like to collect some useful facts about the Z2 toric code,
which we would heavily use in the rest of this paper. There are 4 kinds of anyons in the Z2
toric code, which are labelled as {1, e,m, ϵ}. The anyon ϵ can be viewed as a composition
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Figure 3. A topological order with multiple boundary segments. The orange dots represent for
junctions between boundaries. (a) The half loop that detects the boundary defect. The orange dot
represents for a generic boundary defect. (b) A test half loop near the boundary. The half loop will
find that the boundary has total topological charge 1. (c) The half loop may detect a non-trivial
boundary defect aA|B. If we shrink the blue boundary segment into a point, through which the
boundary defects fuse to a single defect, we get the same picture as (a).

of anyon e and m. All the four anyons are self-conjugate and have quantum dimension 1.
The remaining non-trivial fusion rules are given by

e×m = ϵ; m× ϵ = e; e× ϵ = m. (2.7)

The toric code has two Lagrangian subsets A = {1,m} and B = {1, e}. The bulk anyons {e, ϵ}
({m, ϵ}) are identified on the boundary with GBC A (B) and become the same boundary
anyon eA (mB). The junction between two boundaries with different GBC can only bear
one kind of anyon σA|B. The fusion rules are

σA|B ×mB = σA|B; σB|A × eA = σB|A;

σA|B × σB|A = 1A + eA; σB|A × σA|B = 1B +mB.

We have deA = dmB = 1 and dσA|B =
√

2.

3 The boundary defect picture: closed EBs

In this section, we introduce the boundary defect picture in the cases where the EBs are
closed loops. In our picture, the EBs are assumed to be gapped boundaries, and the Hilbert
space of each subsystem is spanned by the states of different configurations of boundary
anyons. We will focus on two cases: the unique ground state of a topological order on
a sphere, and the ground states on a torus. The result we will derive in this section is
consistent with that in ref. [21], where the authors used the CS theory to calculate the TEE
and discussed general cases. Then, we will discuss the operators of the subsystem for Abelian
topological orders. Some contractible anyon loops in the perspective of a global observer
are cut by the EBs and become half loops in each subsystem, as shown in figure 4. These
half loops will create or annihilate boundary defects on the EBs. There is a constraint on
these bi-partitioned operators, which will help us to distinguish the TEE from the local
contributions of sub-leading terms.
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Figure 4. The topological order on a sphere is divided into two subsystems P and Q. We suppose
there are n = L/δ discrete points homogeneously distributed on the EB that can host boundary anyons.
A contractible anyon loop (dark blue line) is also divided into two half loops; in the perspective of a
subsystem observer, such half loops will create or annihilate boundary anyons on the EB.

3.1 Case: ground state on a sphere

We start from the simplest case: the ground state of a topological order on a sphere, as shown
in figure 4. We assume that the EB have a fixed GBC and omit the superscript that labels the
GBC for the moment. Suppose the length of the EB is L, and for simplicity we suppose the
points that can host boundary anyons on the EB are discrete and homogeneously distributed
on the EB. The spacing between two adjacent such points is fixed to be δ, and hence there
are totally nL/δ such points on the EB.1 For subsystem P, the EB anyon states are written as

|x1, x2, · · · , xn⟩P, (3.1)

where xi ∈ D denotes the boundary anyon on the i-th point.
These states are not norm-1; instead, we have

⟨x1, x2, · · · , xn|x1, x2, · · · , xn⟩ =
√
dx1dx2 · · · dxn . (3.2)

See appendix B for details. The local Hilbert space of the subsystem P is

HP = span{|x1, x2, · · · , xn⟩P}, (3.3)

and also the local Hilbert space for subsystem Q is

HQ = span{|x̄1, x̄2, · · · , x̄n⟩Q}, (3.4)

where x̄i is the conjugate anyon of xi. Given the local Hilbert spaces, the ground state of the
sphere can then be expressed in terms of the tensor product of the states in HP and HQ,

|ψ⟩ =
∑
{xi}

1√
Ψ
|x1, x2, · · · , xn⟩P|x̄1, x̄2, · · · , x̄n⟩Q, (3.5)

1For lattice models, the spacing δ is naturally fixed, and therefore n is finite; for continuous theories, δ is
in principle zero, and n goes to infinity. Technically, when calculating entanglement entropy in continuous
theories, one may choose a cutoff and also fix δ to be finite. We assume δ is fixed and finite hereinafter.
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where the summation runs over all allowed configurations of the boundary anyons {xi} and Ψ
is a normalization factor to be determined. This definition of tensor product decomposition is
artificial and not unique at the model-independent level. In section 3.4, we will see that the
TEE in this case does not depend on the choice of this definition. As discussed in section 2,
all the boundary anyons should fuse to 1 due to the constraint on the configurations of the
boundary anyons. Therefore, the summation runs over all configurations where the boundary
anyons fuse to 1.2 As such, we can fix the normalization factor to be

Ψ =
∑∏
xi=1

|⟨x1, x2, · · · , xn|x1, x2, · · · , xn⟩|2 =
∑∏
xi=1

dx1dx2 · · · dxn = Dn−1, (3.6)

where D = ∑
a∈D da. See appendix C for a detailed verification of the last equality. We can

now partial-trace the subsystem Q and acquire the reduced density matrix of the subsystem P,

ρP =
∑∏
xi=1

1
Dn−1 ⟨x1, x2, · · · , xn|x1, x2, · · · , xn⟩|x1, x2, · · · , xn⟩⟨x1, x2, · · · , xn|. (3.7)

For an observer in the subsystem P, the classical probability of finding a state |x1, x2, · · · , xn⟩P
is 1

Dn−1dx1dx2 · · · dxn . The two Hilbert spaces are isomorphic to each other, and verifying the
entanglement entropy using either of the reduced density matrix gives equal results. We will
omit the subscript P and simply call the Hilbert spaces subsystem Hilbert spaces hereinafter.
The entanglement entropy is verified to be

SEE = −
∑∏
xi=1

dx1dx2 . . . dxn

Dn−1 lndx1dx2 . . . dxn

Dn−1 = −n
∑
a∈D

d2
a

D
lnda

D
− lnD. (3.8)

See appendix C for a detailed verification of the last equality. The term proportional to
n = L/δ is the area-law contribution, and the −lnD is the TEE, which is a direct consequence
of the constraint on the boundary anyons. To see this, one can assume that the constraint
is absent and repeat the calculation above; the result of entanglement entropy would be
the area-law term alone. The constraint rules out some boundary anyon configurations and
consequently makes all the points on the EB correlated with each other no matter how
far away they are from each other. This correlation is a straightforward demonstration of
the long-range entanglement.

One more comment here is that we did not specify any GBC during the analysis. In this
case, different GBCs give same TEE, because eq. (2.3) holds for every GBC. We will see that
in the cases where the entanglement cuts are open segments, the choice of GBC matters.

3.2 Case: ground states on a torus

We now consider a specific ground state of a topological order on a torus where an anyon
α threads through the torus, as shown in figure 5.

If subsystem P is still a disk (as shown in figure 5b), the entanglement entropy is the
same as that in the case of a sphere. If the subsystem is a cylinder with two EBs (as shown in

2For boundary anyons whose quantum dimension is greater than 1, there might be multiple fusion channels
for these anyons to fuse to 1. The states of these different fusion channels are orthogonal to each other and
hence should be summed individually.
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Figure 5. (a) Bi-partitioning a torus. The torus is in the ground state where a bulk anyon α threads
through the torus. (b) The subsystem is still a disk. (c) The subsystem is a cylinder. A bulk anyon α

threads through the cylinder.

figure 5c), both EBs will have non-trivial total topological charge. According to the discussion
in section 2, one of the EBs has total charge α and the other has ᾱ. There is no further
correlation between the two EBs. Suppose the two EBs have length L1 = n1δ and L2 = n2δ,
and for simplicity, we assume the two EBs have the same GBC. The subsystem Hilbert space
is spanned by all the states of boundary anyon configurations that survive the constraint,

Hα,ᾱ =
⊕
a,b

Ha,b, (3.9)

where Ha,b is spanned by the states where the anyons on the two EBs respectively fuse to
a and b, and a (b) runs over all allowed boundary anyons satisfying Wα,a ̸= 0 (Wᾱ,b ̸= 0).3
The reduced density matrix is then

ρα = 1
Ψα

∑
a,b

∑∏
xi=a,

∏
yi=b

|x1, x2, · · · , xn1 ; y1, y2, · · · , yn2⟩⟨x1, x2, · · · , xn1 ; y1, y2, · · · , yn2 |,

(3.10)
where xi and yi denotes the anyons respectively on the two EBs, and the first summation
runs over all a, b satisfying Wαa ̸= 0 and Wᾱb ̸= 0. We can then fix the normalization factor,

Ψα =
∑

a

Wα,a

∑
b

Wᾱ,b

∑∏
xi=a

∑∏
yi=b

|⟨x1, x2, · · · , xn1 |x1, x2, · · · , xn1⟩|2|⟨y1, y2, · · · , yn2 |y1, y2, · · · , yn2⟩|2 (3.11)

=
∑

a

Wα,a

∑
b

Wᾱ,b

∑∏
xi=a

∑∏
yi=b

dx1dx2 · · · dxn1
dy1dy2 · · · dyn1

(3.12)

=
∑

a

Wα,a

∑
b

Wᾱ,bdadbD
n1+n2−2 = dαdᾱD

n1+n2−2 = d2
αD

n1+n2−2, (3.13)

3If Wαa > 1, we should also count the multiplicity of a.
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where the third equality uses the formula introduced in appendix C and the fourth equality
uses eq. (2.4). The entanglement entropy follows to be,

SEE = −
∑

a

Wα,a

∑
b

Wᾱ,b

∑∏
xi=a

∑∏
yi=b

dx1dx2 . . . dxn1
dy1dy2 . . . dyn1

d2
αD

n1+n2−2 ln
dx1dx2 . . . dxn1

dy1dy2 . . . dyn1

d2
αD

n1+n2−2 (3.14)

= −
∑

a

Wα,a

∑
b

Wᾱ,b
dadb

d2
α

(
n1
∑
x∈D

d2
x

D
lndx

D
+ n2

∑
a∈D

d2
x

D
lndi

D
− 2lnD

dα

)
(3.15)

= −(n1 + n2)
∑
x∈D

d2
x

D
lndx

D
− 2lnD

dα
. (3.16)

Again, the term proportional to n1 + n2 is the area-law contribution, and the −2ln D
dα

is TEE.
The factor 2 is due to the two EBs. Each EB contribute to −ln D

dα
due to the constraint on

this EB, and the lndα term is due to the anyon α that threads through the torus.
For a generic ground state |ψ⟩ = ∑

α ψα|ψα⟩ (we abuse the notation of ψk to be both the
label of the ground state |ψk⟩ with an anyon k threads through the torus and its probability
amplitude in the generic ground state |ψ⟩.), the entanglement entropy will have an extra
term due to the superposition of |ψ⟩. Now, since it is possible to find the total charge of the
EBs to be any of the anyons with ψα ̸= 0, the subsystem Hilbert space is then

H =
⊕

α

Hα,ᾱ, (3.17)

where Hα,ᾱ is the space defined in eq. (3.9) and α ∈ C runs over all bulk anyon species with
ψα ̸= 0. The two states that respectively belong to Hα and Hβ are orthogonal to each other
because the EB total charge is different. The reduced density matrix is then

ρ =
⊕

α

|ψα|2ρα, (3.18)

where ρα is the density matrix derived in eq. (3.10). The TEE follows to be

STEE = −2
∑

α

|ψα|2lnD
dα

+
∑

α

|ψα|2ln|ψα|2. (3.19)

The ∑α |ψα|2ln|ψα|2 is the classical von Neumann entropy due to the superposition of the
ground basis |ψα⟩ and enhances the mixture of the mixed state as expected. For the TEE of a
generic state on an arbitrary closed manifold, one can expand the state in terms of the states
where each EB have a single total charge. Then, it is straightforward to write down the TEE
which composes of three parts: the −lnD term multiplies the number of disconnected EBs,
the lndα terms of each EB, and the classical term due to the superposition.

3.3 The operators of the subsystem

As mentioned before, some anyon loops seen by a global observer are cut by the EBs, becoming
operators that transform the states in the subsystem Hilbert space. These operators can
be classified into two types: the ones with both end points on the same EB, and the ones
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whose end points are on different EBs. For the second type, the collective behavior of these
operators are already captured by the test anyon loops and contribute to the total topological
charge of the boundary; for the first type, they create or annihilate boundary defects on the
EBs and hence transforms a boundary anyon configuration into another. In fact, for Abelian
topological orders, the first type of operators yield to a constraint.4 Let us focus on the D(Z2)
topological order on a sphere, where we only have the first type of operators. There are four
kinds of anyon loops respectively correspond to the four kinds of anyons {1, e,m, ϵ}. Suppose
the EB condenses e. Any two points x1 and x2 on the EB are connected by a half loop; each
half loop induces two operators: the operator Ox1,x2

0 induced by the half loop of anyons {1, e},
and a nontrivial operator Ox1,x2

1 induced by the half loop of anyons {m, ϵ}. Since the anyons
{1, e} condense on the EB, the operators O0 do not change the boundary defect configuration
and hence are identities in the subsystem Hilbert space. The anyons {m, ϵ} are confined at
the EB, and hence the operators O1 creates or annihilates defects on the EB,

Ox1,x2
1 |x1, · · · , x2⟩ = |x̃1, · · · , x̃2⟩, (3.20)

where x̃i = m{1,e} × xi, namely the anyon type on the point xi is flipped. Since, according
to the fusion rule,

Ox1,x2
1 Ox2,x3

1 = Ox1,x3
1 , (3.21)

the O1 operators are not independent from each other. We can pick up a generating set
by employing the following choice. We arrange the EB into a circle and use an angle θ to
label each point on the cut, as illustrated in figure 6c. A generating set K consists of the
O1 operators that connects two points with fixed angle difference 2πθ,

Kθ = {Ox1,x2
1 |x1 − x2 = 2πθ}, (3.22)

where θ ∈ (0, 1) is a fixed irrational number. For each boundary point, there are exactly two
operators in the set K that can create or annihilate an anyon on the point. We fix the θ to
be irrational because otherwise the set cannot generate all the operators.5

All the operators in K are mutually commute, and hence a state of certain boundary
defect configuration can be expressed as

all points on EB∏
xi

(Oxi,xi+θ
1 )kxi |0⟩, (3.23)

where kxi = 0 or 1 for all xi and |0⟩ is the boundary state with no defect. If, for applicability,
we stick to the assumption that there are n points on the EB hosting boundary anyons, then

4The non-Abelian cases involve non-invertible operators and hence are completely different. We will report
the story elsewhere.

5In discrete lattice models, it is more convenient to define the generating set as the operators connecting
the two adjacent boundary points. In the continuum limit, however, the ‘adjacent’ point of a certain point is
not well defined. This is the reason why we need the irrational number θ here, which makes our choice of the
generating set also works in the continuum limit.
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Figure 6. (a) The first type of operators, where each operator has both its endpoints on the same
EB. (b) The second type operators, where each operator has only one endpoint on an EB. (c) Choice
of the generating set. We choose a reference point on the EB to have x0 = 0. Other points are labeled
by the central angles with respect to the reference point.

there are n operators in the set K, and the expression (3.23) has 2n different combinations of
operators. But this is not the end, the operators in K yield an extra constraint,

all points on EB∏
xi

Oxi,xi+θ
1 = 1. (3.24)

This constraint is the operator version of the constraint on the EB. The number of independent
expressions generated by K is halved, leaving 2n−1 independent configurations. The 2−1

factor finally becomes STEE = −ln2. The construction above is easily generalized to all
Abelian topological orders, where we have k − 1 constraints for a topological order with
k species of boundary anyons.

The operator constraint implies that the boundary anyon fluctuation due to the first type
anyon loops should all fuse to 1, leaving the total charge of the boundary fully determined
by the second type anyon loops. In this sense, we can separately take the −lnD term
and the lndα term as the contribution of the first type anyon loops and the second type
anyon loops respectively.

3.4 Local vs. topological

The operator constraint serves as a good criterion to distinguish TEE from locally originated
contributions. In particular, the tensor product decomposition in eq. (3.5) is not unique at
the model-independent level. One can use other definition of the decomposition, which will
lead to off-diagonal terms in the reduced density matrix eq. (3.7). Such off-diagonal terms
make some points on the EB coherent with each other and will contribute to the entanglement
entropy. If the quantum coherence violates the homogeneity of the EB, the contribution will
be a sub-leading term. For example, for the ground state of a D(Z2) on a sphere, we can pick
up two points xp and xq on the EB and make them coherent manually. The reduced density
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matrix will have extra off-diagonal terms between the states |x1, · · · , xp, · · · , xq, · · · , xn⟩
and |x1, · · · , x̃p, · · · , x̃q, · · · , xn⟩. Then, there will be a 1+λ

2 ln1+λ
2 + 1−λ

2 ln1−λ
2 term in the

entanglement entropy, with λ quantifying the strength of the coherence (See appendix D
for a detailed derivation of this term.). This kind of terms due to inhomogeneity of the EB
is neither related to the EB constraint nor topologically invariant. In the effective theories,
such terms are naturally circumvented because the EBs are chosen to be homogeneous. At
model-independent level, there is a more fundamental way to distinguish these terms from
TEE: by checking the operator constraint. We add or remove coherence in the density matrix
while keeping the operator constraint unchanged, until we reach a homogeneous EB. Then,
the sub-leading term derived from the homogeneous EB is TEE. For the construction we
introduced in this section, namely the EBs are closed loops and have fixed GBCs, the operator
constraint is always independent of the coherence.

We require the EBs to be homogeneous in the rest of this paper, such that the locally
originated sub-leading terms are avoided.

4 The boundary defect picture: open EBs

In this section, we investigate the cases where the EBs touches gapped boundaries. Here, we
adopt the simplest EB condition where each EB have a fixed GBC. Unlike the cases of closed
entanglement cuts, different GBCs on the EB will give different TEE. This ambiguity happens
because the anyon species that can be hosted at the junction varies when changing the GBC.

4.1 Case: ground state on a disk

We first consider the simplest case: the ground state of a topological order on a disk. Each
subsystem is a disk with two boundary segments, as shown in figure 7. We suppose that
the GBCs of the physical boundary and the EB are A and B. While there is no anyon on
the physical boundary segment, there can be anyons on the EB and the two junctions. The
subsystem Hilbert space HA|B is then spanned by

|x1, x2, · · · , xn; z1, z2⟩, (4.1)

where xi ∈ DB represents for the anyon on the i-th point on the EB, and zi ∈ DA|B labels
the anyon on the i-th junction. According to the discussions in section 2, one can measure
the total charge of the EB by a half loop near the EB, and the result in this case would be a
trivial total charge 1A. Therefore, the constraint on the boundary defects is

z1 × x1 × · · · × xn × z2 = 1A. (4.2)

The reduced density matrix follows to be

ρB={1,m} = 1
Ψ

∑
z1(
∏

xi)z2=1A

dz1dx1 · · · dxndz2 |x1, x2, · · · , xn; z1, z2⟩⟨x1, x2, · · · , xn; z1, z2|.

(4.3)

The TEE depend on the choice of the GBC of the EB. To be concrete, we focus on
the D(Z2) topological order. Suppose both the physical boundary and the EB have GBC
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Figure 7. Bi-partitioning a disk. We suppose there are n discrete points on the EB segment (excluding
the two junctions) that can host boundary anyons.

A = B = {1,m}. Then, HA|B is 2n+1 dimensional, and it is straightforward to find that
Ψ = 2n+1. The entanglement entropy follows to be

S
B={1,m}
EE = −

∑
z1(
∏

xi)z2=1A

dz1dx1 . . . dxndz2

2n+1 lndz1dx1 . . . dxndz2

2n+1 = −(n+ 1)ln1
2 . (4.4)

On the other hand, if the EB have GBC B = {1, e}, then HA|B =span{|x1, · · · , xn;σ, σ⟩}
is 2n dimensional. The reduced density matrix is then

ρB={1,e} = 1
Ψ
∑
{xi}

dσdx1 · · · dxndσ|x1, x2, · · · , xn;σ, σ⟩⟨x1, x2, · · · , xn;σ, σ|. (4.5)

The summation runs over all configurations of {xi} because σ × (∏xi) × σ = 1A + eA

automatically satisfies the constraint. Again, Ψ = 2n+1, and the entanglement entropy is

S
B={1,e}
EE = −

∑
{xi}

√
2dx1 . . . dxn

√
2

2n+1 ln
√

2dx1 . . . dxn

√
2

2n+1 = −nln1
2 . (4.6)

Immediately, one wonders which term is the area-law contribution, and which term is TEE.
Note that we assumed there are n points on the boundary that can host boundary anyons,
and the spacing between two adjacent points is δ. When the EB is open, we have L = (n+1)δ,
and hence the area-law term should be proportional to (n+ 1). We therefore recognize that
S

B={1,m}
TEE = 0 and S

B={1,e}
TEE = −ln2.

It is worth mentioning that in ref. [19], the authors used the QD model to calculate
the TEE of this case, and the an area-law term is taken to be (n + 2)ln2. In the QD
model, the entanglement cut can be viewed as a gapped boundary with ‘charge’ excitations
(excitations reside on vertices) on it, which is the e anyon in D(Z2). Therefore, calculating
the entanglement entropy using the QD models is equivalent to employing the EB condition
B = {1,m} in our picture. The (n + 2) factor takes the two junction points on an equal
footing with other points on the EB. Nevertheless, the two junctions are naturally different
from other points; choosing the (n+ 2)ln2 term to be area-law is not proper. We will see in
section 5 that a homogeneous open EB should have area-law term proportional to (n+ 1).

Obviously, the TEE depends on the choice of EB condition because the junction anyon
species varies when employing different GBCs. This dependence is also shown in the operator
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Figure 8. The convention of labelling the points on the EB. The generating set consists of all
operators with fixed xj − xi.

constraint. For the open cut cases, we choose the generating set by employing the following
convention. The EB is an open segment with length L; a point on the EB can be represented
by a number xi ∈ [0, 1], such that the distance between the point and z1 is xiL, as shown in
figure 8. We choose the generating set of the operators to be all the operators that connect
two points between which the distance is θ

{Oxi,xj |xj =

 (xi + θ)L if (xi + θ)L < L

(xi + θ − 1)L if (xi + θ)L > L
}, (4.7)

where θ is again an irrational number. As such, the number of the operators in the generating
set equals the number of boundary points as before. Multiplying these operators together
results in, instead of the identity in the cases of closed cuts, the operator that connects
the two junctions, ∏

xi

Oxi,xi+θ = Oz1,z2 . (4.8)

The dependence on the EB condition is encoded in Oz1,z2 , which transforms a junction anyon
configuration into another. If the subsystem Hilbert space is H{1,e}|{1,m}, the operator Oz1,z2

is again an identity matrix, because there is only one type of junction anyon allowed; for
H{1,m}|{1,m}, however, Oz1,z2 is no longer an identity,

Oz1,z2 : |x1, · · · , xn; z1, z2⟩ ↔ |x1, · · · , xn; z̃1, z̃2⟩. (4.9)

The operator constraint also varies when changing the EB condition. A direct observation
is that adding coherence between the two junction points will modify the explicit form of
the operator Oz1,z2 and accordingly the value of TEE.

It is similar to derive the TEE for the case where A = {1, e}. We summarize the
results in table 1.

For a fixed EB condition, different GBCs on the physical boundary also gives different TEE.
In contrast, the TEE is −1

2 ln2 regardless of the physical GBC according to the calculation in
the K-matrix theory. This mismatch indicates that neither of the EB conditions we used in
this section is compatible with the EB condition in the K-matrix theory. We will treat this
mismatch in section 5 by introducing a general construction of the subsystem density matrix.
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STEE A={1, e} A={1,m}
B={1, e} 0 −ln2
B={1,m} −ln2 0

Table 1. Summary of TEE derived with different boundary conditions.

Figure 9. (a) A cylinder is in the ground state labeled by a confined anyon aA|A′ . (b) Bi-partitioning
a cylinder.

4.2 Case: ground states on a cylinder

Before introducing the general construction, we would like to first consider the ground states
on a cylinder. The cylinder cases are analogous to the torus cases, in the sense that the total
charge of an EB can be a non-trivial anyon. Suppose the cylinder has GBCs A and A′. We
focus on the specific ground state that correspond to a confined anyon |ψaA|A′ ⟩, such that the
total charge of both EBs is aA|A′ ∈ DA|A′ . We further suppose the EBs has GBC B and B′,
and there are n (m) anyon points on the boundary B (B′), as shown in figure 9.

The subsystem Hilbert space is then

HA,A′|B,B′ = span{|x1, · · · , xn; z1, z2; y1, · · · , ym; z3, z4⟩}, (4.10)

with the constraints

z
A|B
1 × (

∏
i

xB
i ) × z

B|A′

2 = aA|A′ ; z
A|B′

3 × (
∏

i

yB′
i ) × z

B′|A′

4 = aA|A′
, (4.11)

where xi’s denote the anyons on the EB B, yi’s denote the anyons on the EB B′, and zi’s
respectively denote the anyons on the four junction points. The reduced density matrix is then

ρaA|A′ =
∑

{xi,yi,zi}

∏
dzi

∏
dxi

∏
dyi |x1, · · · ;z1,z2;y1, · · · ;z3,z4⟩⟨x1, · · · ;z1,z2;y1, · · · ;z3,z4|,

(4.12)
where the summation runs over all boundary anyon configurations satisfying the constraint
eq. (4.11). The resultant TEE is −lnDB − lnDB′ + 2lndaA|A′ . The lnDB and lnDB′ terms
are analogous to the lnD term in the closed EB cases, but now they depend on the choice
of EB conditions. The lndaA|A′ term is analogous to the lndα term in the closed EB cases
because they both attribute to the total charge of the EBs. A generic cylinder ground
state can be expanded in terms of the basis states |ψaA|A′ ⟩, and the probability amplitude
of each basis state will again result in a classical part ∑aA|A′ |ψaA|A′ |2ln|ψaA|A′ |2, analogous
to the classical part in eq. (3.19).
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Figure 10. (a) A chiral Z2 topological order on a sphere (left) is squeezed into a D(Z2) topological
order on a disk. The equator on the sphere becomes the gapped boundary of the disk. The large blue
circle is the entanglement cut, which is also folded into an open line segment on the disk. (b) The
special points on the EB of the sphere are paired and identified on the EB of the disk, except that the
two orange points that become the junctions on the disk.

5 A general state decomposition for D(Z2)

As mentioned in before, TEE calculated in the K-matrix theory and the lattice models
does not match. In this section, we focus on the D(Z2) topological order and introduce a
general construction of the state decomposition that addresses the ambiguity. As mentioned
in section 3.4, defining the decomposition amounts to constructing subsystem density matrix.
We construct a general form of the reduced density matrix that can fully characterize
the ambiguity.

5.1 The EM duality in the folding trick

The key idea of calculating TEE in the K-matrix theory is the folding trick. In ref. [23], the
authors constructed the boundary state that describes the entanglement cut via unfolding the
non-chiral topological order. For example, for the D(Z2) on a disk, one can unfold the disk
into chiral Z2 topological order on a sphere6, as shown in the figure 10. The chiral Z2 anyon
on the upper and the lower layer of the suppressed sphere can be respectively thought as the
e and m anyons of the D(Z2) in the bulk, and the ϵ anyon is the composition of the e and m.

Given the picture of the folding trick, we can understand why the area-law term should be
proportional to n+1. Suppose there are n points that can host boundary anyons on the EB of
the disk, if we unfold the half disk into a semi-sphere, the anyon points will split into 2n special
points.7 Taking the two junctions into consideration, there are in all (2n+ 2) = 2L

δ special
points on the unfolded EB. The homogeneity of the EB then means that these 2n+ 2 special
points are on an equal footing, and hence the area-law term should be proportional to 2n+ 2.

6This unfolding process is usually dangerous in understanding the bulk topological phases and requires
further elaboration. Here, we only discuss the properties of unfolded EBs and omit the subtleties.

7The unfolded EB is usually a gapless boundary described by a conformal field theory (CFT) state. We
simply call these unfolded points ‘special points’.
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One may find the TEE of the folded system from that of the unfolded system via the
folding trick. For example, since we already know that the TEE of chiral Z2 topological
order on a sphere is ln

√
2, one may think the TEE of D(Z2) on a disk is also ln

√
2. This

folding process indicates that the EB condition in the K-matrix theory respects EM duality:
the EB treats equally the upper layer and the lower layer, which are respectively the e

sector and the m sector in D(Z2).

5.2 The general EB condition

The EM duality in the folding trick hints us to extend the EB condition to include both
GBCs of the D(Z2) topological order. For an EB have a single GBC {1, e} ({1,m}) as its EB
condition, we use an extra superscript e (m) to label the defect configuration states |{xi}⟩e

(|{xi}⟩m) on this EB. The Hilbert space spanned by |{xi}⟩e (|{xi}⟩m) is denoted as He (Hm).
The general EB condition for a certain EB induces a composite subsystem Hilbert space,

HEM = He ⊕Hm. (5.1)

Namely, the general Hilbert space collects the states with different GBCs on the EB. Let us
focus on the D(Z2) on a disk with the physical boundary having GBC A = {1, e}. We have
He = H{1,e}|{1,e} and Hm = H{1,e}|{1,m}, where H{1,e}|{1,e} is spanned by |{xi}; z1, z2⟩e, and
H{1,e}|{1,m} is spanned by |{xi};σ, σ⟩m, with the superscript denoting which Hilbert space
the states belong to. A naive choice of the reduced density matrices is a direct sum of the
two reduced density matrix in eq. (4.5) and eq. (4.5),

ρp = pρe ⊗ (1 − p)ρm (5.2)

= p
∑

z1(
∏

xi)z2=1

dz1dx1 . . . dxndz2

2n+1 |x1, · · · , xn; z1, z2⟩⟨x1, · · · , xn; z1, z2|+ (5.3)

(1 − p)
∑
{xi}

dσdx1 . . . dxndσ

2n+1 |x1, · · · , xn;σ, σ⟩⟨x1, · · · , xn;σ, σ|, (5.4)

where p ∈ [0, 1] is a parameter that cannot be model-independently determined. The
parameter p is the classical probability of finding the EB state in He. For the lattice models,
we have p = 0 (1), such that the electric (magnetic) charges are confined and fluctuate on the
EB. For the folding trick, we should have p = 1

2 , such that the probability of finding the EB
states in He and Hm are equal. This equality is the basic requirement of EM duality: the
EB has 50% chance condensing e and 50% chance condensing m. This basic requirement is a
necessary condition for the e anyons and the m anyons being treated equally on the EB.

Nevertheless, this naive choice of the reduced density matrix ρp cannot reproduce the
result calculated in the K-matrix theory. The entanglement entropy is verified to be

SEE =
∑

z1(
∏

xi)z2=1

pdz1dx1 . . . dxndz2

2n+1 lnpdz1dx1 . . . dxndz2

2n+1 (5.5)

−
∑
{xi}

(1 − p)dσdx1 . . . dxndσ

2n+1 ln(1 − p)dσdx1 . . . dxndσ

2n+1 (5.6)

= (n+ 1)ln2 − plnp− (1 − p)ln(2 − 2p). (5.7)
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For p = 1
2 , the sub-leading term is positive! If we look at the operators of this subsystem,

we will find two independent sets of operators Oe and Om that respectively transform the
states within He or Hm; each set has its own operator constraint, and no operator can
transform states between He and Hm. This doubled operator algebra tell us that the whole
Hilbert space HEM is too large, in the sense that the corresponding operator algebra is
‘reducible’. Such a ‘reducible’ EB is not a valid boundary of topological order because it
violates the bulk-edge correspondence[31, 32]. To construct a valid EB, the density matrix
ρp= 1

2 should have some zero eigenvalues, such that not all the states in HEM are physically
observed by an subsystem observer. As such, the number of operators that transform the
physical states (eigenstates of ρp with non-zero eigenvalues) is reduced. We now construct
such a density matrix.

5.3 The general density matrix

Technically, we can still work in the basis of |x1, · · · , xn; z1, z2⟩ and |x1, · · · , xn;σ, σ⟩. Vanish-
ing some eigenvalues while keeping the diagonal entries intact requires adding extra coherence
terms to the off-diagonal entries in the density matrix ρp. As mentioned in section 3.4,
off-diagonal terms are in principle not excluded; adding off-diagonal terms amounts to choose
a different definition of bi-partition. Nonetheless, these off-diagonal terms may result in
local contributions to TEE. How to add coherence term while preventing from the local
contributions?

The answer lies in the exact EM duality of the topological orders with gapped bound-
aries [28]. Mathematically, there is a map between the allowed set of anyons on boundaries
with different GBCs induced by the EM duality. For the D(Z2) topological order, this
map is an isomorphism, namely D{1,e} ∼= D{1,m}. This isomorphism induces a natural map
between the two Hilbert spaces He and Hm. The strategy is that we use coherence terms
to entangle each state in He with its corresponding state in Hm. Let us first see how this
strategy works in the case of closed EB.

5.3.1 Closed EB

Let us go back to the case of D(Z2) on a sphere, where He and Hm are isomorphic to each
other. It is simple to establish the map

|x1, x2, · · · , xn⟩e ↔ |x1, x2, · · · , xn⟩m. (5.8)

With this map, the basis states of the Hilbert space HEM can be decomposed into 2n−1 pairs,
and the reduced density matrix can be rearranged as

ρp = 1
Ψ

( |{xi}⟩e |{xi}⟩m

p 0
0 1 − p

)
⊕ · · ·︸ ︷︷ ︸

2n−1 blocks

(5.9)

A |{xi}⟩ stands for a certain defect configuration on the EB. According to the discussions
above, there are 2n−1 different configurations; each of the 2n−1 blocks corresponds to one
configuration. Adding coherence terms within each block in eq. (5.9) but not between the
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blocks prevents us from the local contributions. For the EB being homogeneous, each block
should receive the same coherence term. Therefore, the general form of the reduced density
matrix for Z2 topological order in closed EB cases is

ρp = 1
Ψ

( |{xi}⟩e |{xi}⟩m

p c

c∗ 1 − p

)
⊕ · · ·︸ ︷︷ ︸

2n−1 blocks

, (5.10)

where c is the coherence term to be added. To reproduce the results compatible with the
folding trick, at least one of the eigenvalues of the block should become zero, such that
the dimension of the physical space is reduced. As such, the only possible coherence term,
in this simple case, is then

c =
√
p(1 − p)eiϕ, (5.11)

where ϕ is a parameter that cannot be determined model-independently. Diagonalizing
this new density matrix gives

ρ = 1
Ψ

( |ϕ+, {xi}⟩ |ϕ−, {xi}⟩
1 0
0 0

)
⊕ · · ·︸ ︷︷ ︸

2n−1 blocks

(5.12)

and the STEE = −ln2 is independent of p. The eigenvectors of this density matrix are
|ϕ±, {xi}⟩ =

√
(1 − p)|{xi}⟩e ± √

peiϕ/2|{xi}⟩m, where the vectors with plus (minus) sign
have eigenvalue 1 (0). In the perspective of a local observer in the subsystem, what she sees
is a classical ensemble of these |ϕ+, {xi}⟩ states. If the EM duality is required, namely p = 1

2 ,
each |ϕ+, {xi}⟩ is a superposition of a He state and a Hm state with equal probability. As
promised, the number of subsystem physical states is reduced by adding the coherence term,
resolving the problem of the subsystem Hilbert space being too large. The EB with the
general EB condition and the coherence term now has a valid boundary condition.

What happens to the operator constraint? In fact, the choice of the map is not unique.
Imposing any fixed combinations of Oe (Om) operators on the left (right) hand side in
expression (5.8) also gives valid maps. Using different maps merely changes the explicit
expressions of |ϕ±⟩ but results in no physical consequence. Hence, the operators Oe and
Om serve as ‘gauge’ transformations; only the combinations of the two OeOm transform a
physical state, i.e. a |ϕ+, {xi}⟩ state seen by the subsystem observer, to another. As such,
the operator constraint of the physical states, now composed of only OeOm operators, no
longer consists of two distinct subsets and is the same as that in section 3.4. So does TEE.
The choice of the parameter ϕ here does not change the operator constraint and lead to
no physical consequence, either.

5.3.2 Open EB

Now we are ready to deal with the case of D(Z2) on a disk. Note that He = H{1,e}|{1,e}

has 2n+1 norm-1 vectors and Hm = H{1,e}|{1,m} has 2n norm-
√

2 vectors. The mapping
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between the two Hilbert spaces is two-to-one,

{|{xi}; z1, z2⟩e, |{xi}; z̃1, z̃2⟩e} ↔ |{xi};σ, σ⟩m; (5.13)

With this map, the Hilbert space He ⊕ Hm can be decomposed into 2N−1 triplets. The
general form of the reduced density matrix in this case is then

ρ = 1
Ψ


|{xi}; z1, z2⟩e |{xi}; z̃1, z̃2⟩e |{xi};σ, σ⟩m

p c d

c∗ p f

d∗ f∗ 2 − 2p

⊕ · · ·

︸ ︷︷ ︸
2n blocks

, (5.14)

where c, d, e are coherence terms to be added. To fulfil the EM duality and vanish at least
one eigenvalue for each block, it turns out that

p = 1
2; c = eiϕ

2 ; d = λeiϕ′

2
√

2
; f = λeiϕ−iϕ′

2
√

2
, (5.15)

where λ, ϕ, and ϕ′ are some parameters that cannot be determined model-independently.
The eigenvalues of each block are 1±λ

2 and 0. The eigenvectors for 1±λ
2 are

|ϕ±; {xi, z1, z2}⟩ ≡
1
2(|{xi}; z1, z2⟩e + eiϕ|{xi}, z̃1, z̃2⟩e ± 2

1
4 eiϕ′ |{xi}, σ, σ⟩m). (5.16)

Verifying TEE gives STEE = −1+λ
2 ln(1 + λ) − 1−λ

2 ln(1 − λ). For TEE to be −1
2 ln2, the

parameter λ is ±0.779944. The parameters p and λ completely characterize the ambiguity in
the open EB cases for Z2 topological order. These parameters suggest that there are extra
degrees of freedom in factorizing the extended topological quantum field theory (TQFT)
that underlies beneath the topological order with gapped boundaries, and the folding trick
naturally chooses a specific value for p and λ. The parameter p quantifies the probability of
finding the states in a certain GBC, and the parameter λ quantifies the quantum coherence
between the two junctions. The exact physical meaning of λ in terms of the models remains
to be clarified in the future. At this moment, we know that λ is intimately related to the
mutual information of the two junction points, which depends on the microscopic details of
the junctions. In the lattice models, the mutual information between any two local degrees of
freedom is zero, rendering the coherence between two junctions zero. This is the reason why we
can reproduce the TEE calculated in lattice models without considering coherence in section 4.
In continuous field theories, however, the junctions are described by defects in conformal field
theory. The mutual information between the two defects is verified in the twisted Hilbert
space and is intrinsically non-zero because of the topological nature of the defects. Therefore,
we need a non-zero coherence term to reproduce the TEE calculated in Chern-Simons theory.

We end our analysis by commenting on the operator constraint of the physical states.
As in the case of closed EB, the choice of the map is also not unique, and therefore some
of the operators are ‘gauged’, leaving only one constraint on physical operators. According
to eq. (4.8), the generating operator multiplies to Oz1,z2 , whose explicit form will depend
on λ if restricted to the transformation between the physical states.
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Figure 11. A composite system with topological orders (the blue region and the orange region) on a
torus separated by a gapped domain wall. If an entanglement cut intersect with the domain wall, the
intersection points will also exhibit non-trivial behavior.

6 Conclusion and outlook

In this paper, we introduced a model-independent picture to understand the TEE. The TEE
in general has three parts: a lndx part due to the total charges of the EBs, where x can be a
bulk anyon or a boundary defect; a −lnD part that characterized by the operator constraint;
and a classical part due to the superposition of basis states. It turns out that in closed EB
cases, the TEE is unambiguous and hence is good enough to characterize topological orders.
The TEE of open EB cases, on the other hand, depends on the choice of the EB condition
and the quantum coherence between the junctions. We introduced a general construction of
the reduced density matrix for the D(Z2) topological order in both closed EB cases and open
EB cases. There are two key parameters in the construction: the probability p of finding the
EB in a certain GBC, and the quantum coherence λ between the two junction points. To
reproduce the compatibility with the folding trick, one should adopt EM dual EB condition
and set a certain value for λ. Though we have focused on the D(Z2) topological order for
simplicity, our analysis generalize easily to all Abelian topological orders.

Our picture is model-independent, and hence it is possible to generalize our analysis
to non-Abelian topological orders with gapped boundaries. Studying non-Abelian cases
will lead to several interesting implications. Some non-Abelian topological orders can be
unfolded into chiral topological orders via the folding trick, such as the doubled Fibonacci
topological order, the doubled Ising topological order, and doubled SU(2)k topological orders
described by SU(2) Chern-Simons theory. The TEE of these topological orders also exhibit
ambiguity and model-dependence. Studying TEE of these topological orders using our method
would provide a novel perspective in understanding these topological orders. In particular,
these topological orders do not have exact electric-magnetic (EM) duality, and hence we
cannot directly use the method developed in this paper. Instead, they possesses partial
electric-magnetic (PEM) duality[33]. The way the PEM duality participates in the ambiguity
explains how the non-Abelian topological orders emerge from Abelian-group-valued physical
degrees of freedom. Once this emergence process is clear, we can proceed to investigate how
to systematically realize these non-Abelian topological orders in physical systems. Moreover,
the subsystem operators of these topological orders are non-invertible. Studying the operator
constraint of these topological orders reveals the connection between the topological orders
and the non-invertible symmetry[34]. Additionally, there are some non-Abelian topological
orders that cannot (or we do not know whether they can) be unfolded into chiral topological
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orders via the folding trick, such as the D(G) topological orders with non-Abelian group G.
The D(G) topological orders have exact EM duality as the Abelian cases we discussed in
this paper, and therefore the method we developed in this paper also applies to these cases.
Nonetheless, in these topological orders, the electric part (the group representations) and
the magnetic part (the conjugate classes of the group) are no longer isomorphic. Studying
the ‘ambiguity’, or more precisely, studying the extra d.o.f. emerges in bi-partitioning these
topological orders helps us to understand whether these topological orders can be unfolded
into simpler systems and how these topological orders can be realized in continuous field
theory. For instance, we may be able to construct a generalized K-matrix theory that can
describe D(S3) topological orders after studying the TEE of these cases. Moreover, the
discussion in this paper hints us that the gapped boundary and the gapless boundary of
a topological order may be related in some way; it is likely that they differ by how the
boundary points are coherent with each other. Furthermore, the gapless CFT boundaries are
gappable[35], studying the compatibility of gapped GBC and the folding trick will help us to
further understand how CFT states are folded into gapped boundary states. These future
discussions may lead to further understanding of bulk-edge correspondence and anomaly
inflow [36]. Finally, more general cases, such as cases involve gapped domain walls [37] and
higher dimensional generalizations [38], are also worth investigating. For cases involve gapped
domain walls, if the entanglement cut goes through the domain wall, as shown in figure 11,
the intersection points of EBs and domain walls will also have interesting behaviors.
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A Review of properties of anyons

We review the necessary fact about anyons that we will use in this paper. Interested readers
are invited to read the review by Nayak [39] for a comprehensive introduction.

Anyons are fundamental excitations in topological orders. For a certain topological order,
we label the anyon species as C = {α, β, γ, · · · }. The anyons subject to fusion rules,

α× β =
∑

γ

Nγ
αβγ, (A.1)

where Nγ
αβ are non-negative integers. Physically, fusing two anyons means if the two anyons α

and β are close enough to each other, they will behave like a superposition of γ anyons. If we
are in a state where a set of anyons fuse to γ, then we say that the total topological charge of
this set of anyons is γ. The trivial anyon 1, also called the vacuum, is the identity of the fusion

1 × α = α× 1 = α. (A.2)
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The conjugate anyon ᾱ of an anyon α is defined as N1
ᾱα ̸= 0. For an anyon α, if for each

γ there is only one β that satisfies Nγ
αβ = 1 and all other Nγ

αβ′ = 0, the anyon α is called
Abelian. If all anyons in a topological order are Abelian, then the topological order is called
an Abelian topological order.

The Hilbert space of multiple anyons on a sphere is spanned by the possible fusion
channels of these anyons. We can denote the basis states of the n-anyon Hilbert space
using the following diagram,

Hn anyons = span{
∣∣∣∣∣

α1 α2 αn

· · ·

β1 β2 βn−1

1 1

〉
, for all allowed {βi}} (A.3)

where βi ∈ C are internal degrees of freedom, and we impose fusion rules on each vertex. One
finds that the dimension of the Hilbert space for Abelian anyons is always 1.

The quantum dimension dα of the anyon α can is the effective dimension of the single
anyon Hilbert space in the thermodynamic limit. The quantum dimensions can be derived
from the fusion rule,

dαdβ =
∑

γ

Nγ
αβdγ . (A.4)

One immediately finds that dᾱ = dα and d1 = 1, and all Abelian anyons have quantum
dimension 1.

The most prominent property of the anyons is their non-trivial braiding statistics.
Exchanging the position of two anyons will give one a unitary transformation on the internal
Hilbert space of the anyons,

∣∣∣∣∣
βi

αi+1αi 〉
=
∑
β′

i

B
αiαi+1
βiβ′

i

∣∣∣∣∣ β
′
i

αi+1αi 〉
, (A.5)

where B stands for the transformation. For Abelian anyons, this unitary transformation is
merely a phase factor. A crucial point is that we can detect anyons based on the non-trivial
braiding statistics. Suppose we create two pairs of anyons α, ᾱ, β, and β̄ on a sphere. If
we let the anyon β wind around the anyon α, and then annihilate the two pairs α and ᾱ,
β and β̄, we will result into a matrix entry Sαβ.

Sαβ =

α β

.
(A.6)

This matrix Sαβ is an important observable that characterizes the topological order and is
called the topological S-matrix. Physically, one can use this AB phase to distinguish anyons:
one can create an anyon pair, let them wind around the anyon to be recognized, and then
annihilate the test anyons to acquire the amplitude of this process. Repeat this process for
all α ∈ C gives one a column in the S-matrix, which is enough to recognize the anyon.
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Figure 12. The graphical representations for the basis states of multiple anyons. (a) The anyons are
connected by corresponding Wilson lines. (b) Taking the state norm amounts to connecting the two
diagrams and verify the amplitude.

B Norm of the boundary anyon states

To understand the norm of the boundary anyon state, we consider the whole space-time
picture as shown in figure 12.

Suppose we have n anyons on the boundary. They were created at the time before the
time slice we are focusing on. The worldline of these n boundary anyons can be arranged
as shown in the figure (12a). The basis of the n-anyon Hilbert space is also represented by
these worldline diagrams, which is exactly the basis vectors we introduced in eq. (A.3). The
Hermitian conjugate of a n-anyon state is conversely represented by the worldline of the n
anyons that annihilate with each other in the future, as shown in figure (12b). Taking the
norm amounts to connecting the two diagrams and finding the amplitude of the diagram

x1 x2 xn

· · ·
, (B.1)

which is
√
dx1dx2 · · · dxn for all states in this four-anyon Hilbert space.(See ref. [39] for details).

C Verifying the normalization factor and the entanglement entropy

We stick to the notation where D is the total quantum dimension of the bulk topological order,
and the lower latin alphabets a, b, x represent for boundary anyons. We have D = ∑

a∈D d
2
a,

where D is the set of boundary anyons.

•
∑∏
xi=a

dx1dx2 · · · dxn = daD
n−1 (C.1)

Proof. We prove this equation by induction. For n = 1 this equation holds trivially.
Suppose the equation holds for a generic n; then, for the n+ 1 case,∑∏

xi
=a

dx1 · · · dxndxn+1

=
∑

xn+1

dxn+1

∑∏i≤n

xi
=x̄n+1a

dx1 · · · dxn ,

where the second summation in the second line runs over all possible combinations of
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x1 · · ·xn that fuses to any of the c’s in x̄n+1 × a = N c
x̄n+1ac. Then,∑∏

xi
=a

dx1 · · · dxndxn+1

=
∑

xn+1

dxn+1N
c
x̄n+1a

∑∏i≤n

xi
=c

dx1 · · · dxn

=
∑

xn+1

dxn+1N
c
x̄n+1adcD

n−1

=
∑

xn+1

dxn+1dxn+1daD
n−1

= daD
n,

where in the third equality we used eq. (A.4).

•
∑∏
xi=a

dx1 · · · dxn

daDn−1 lndx1 · · · dxn

daDn−1 = n
∑
x∈D

d2
x

D
lndx

D
+ lnD

da
(C.2)

Proof.∑∏
xi=a

dx1 · · ·dxn

daDn−1 lndx1 · · ·dxn

daDn−1

=
∑
xn

d2
xn

 ∑∏n−1
i=1

xi=x̄na

dx1 · · ·dxn−1

dadxn Dn−1 lndx1 · · ·dxn

+ln 1
daDn−1

=
∑
xn

d2
xn

 ∑∏n−1
i=1

xi=x̄na

dx1 · · ·dxn−1

dadxn Dn−1 lndx1 · · ·dxn−1 + 1
D

lndxn

+ln 1
daDn−1

=
∑
xn

d2
xn

 ∑∏n−1
i=1

xi=x̄na

dx1 · · ·dxn−1

dadxn Dn−1 lndx1 · · ·dxn−1

+
∑

x

d2
x

D
lndx+ln 1

daDn−1

=
∑
xn

d2
xn

∑
xn−1

d2
xn−1

 ∑∏n−2
i=1

xi=x̄nx̄n−1a

dx1 · · ·dxn−2

dadxn dxn−2 Dn−1 lndx1 · · ·dxn−2

+ 1
D2 lndxn−1


+
∑

x

d2
x

D
lndx+ln 1

daDn−1

=
∑

xn,xn−1

d2
xn
d2

xn−1

 ∑∏n−2
i=1

xi=x̄nx̄n−1a

dx1 · · ·dxn−2

dadxn dxn−1 Dn−1 lndx1 · · ·dxn−2

+2
∑

x

d2
x

D
lndx+ln 1

daDn−1

...
repeat n times
...

=n
∑

x

d2
x

D
lndx+ln 1

daDn−1 =n
∑

x

d2
x

D
lndx

D
+ln D

da
.
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D The local term due to inhomogeneous EB

We focus on the D(Z2) toric code on a sphere. The eq. (3.5) is not the unique choice of how
the global state is constructed by the states in the subsystem Hilbert spaces. The ground
state of the topological order on a sphere can be instead decomposed as, for example,

|ψ⟩ = 1√
Ψ

∑∏
xi=1

√
λ(|xpq⟩ + eiϕ/2|x̃pq⟩)A(|x̃pq⟩ + eiϕ/2|xpq⟩)B

+
√

(1 − λ)(|xpq⟩ − eiϕ/2|x̃pq⟩)A(|x̃pq⟩ − eiϕ/2|xpq⟩)B,

where |xpq⟩ ≡ |x1, · · · , xp, · · · , xq, · · · , xn⟩ and |x̃pq⟩ ≡ |x1, · · · , x̃p, · · · , x̃q, · · · , xn⟩ and λ is
a real number λ ∈ [0, 1]. This decomposition assumes extra coherence between the two points
xp and xq. The reduced density matrix then becomes

ρ = 1
Ψ

( |{xpq}⟩ |{x̃pq}⟩
1 λeiϕ

λe−iϕ 1

)
⊕ · · ·︸ ︷︷ ︸

2n−1 blocks

. (D.1)

Verifying the TEE of this reduced density matrix gives

S = (n− 1)ln2 − 1 + λ

2 ln1 + λ

2 − 1 − λ

2 ln1 − λ

2 . (D.2)

There is an extra sub-leading term in the entanglement entropy, as we mentioned in the
main text.
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