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1 Introduction

Recently, a lot of interest in quantum information theoretic notions has surfaced in an effort
to characterize semiclassical gravitational observables. Particularly, holographic complexity
has been used to study bulk gravitational dynamics that can probe regions inaccessible to
entanglement entropy [1–3], and whose variation can also reproduce gravitational equations
of motion [4–9]. This notion is also expected to reproduce the properties for the compu-
tational complexity of a quantum circuit model1 of the conformal field theory (CFT) dual
to asymptotically Anti-de Sitter (AdS) spacetimes [2]. This translates to robust features
captured by a large family of proposals, starting with the Complexity=Volume (CV) [3],
Complexity=Action (CA) [11, 12], Complexity=Spacetime Volume (CV2.0) [13], and a recent
generalization known as the Complexity=Anything (CAny) proposal [14, 15]. There are two
defining features for the CAny observables in AdS black holes: (i) a late boundary time linear
growth, and (ii) the switchback effect. The latter is a characteristic decrease in the late-time
linear growth once perturbations in the geometry are introduced due to energy pulses.

Perhaps, one of the most exciting aspects about this family of spacetime probes is to
characterize the properties of cosmological backgrounds, and in particular for de Sitter (dS)
space. The nature of the microscopic degrees of freedom encoded inside the cosmological
horizon remains mysterious (see [16] for a recent review).

A recent proposal in dS holography, known as stretched horizon holography [17–27],
has sparked many developments in dS space complexity. The stretched horizon is a region
in the static patch of dS space where the dual theory is conjectured to be located [17].
One may therefore perform gravitational dressings with respect to the stretched horizon
to probe the dual degrees of freedom. Although the precise location is not explicit in this
approach, it is expected to be close to the cosmological horizon. This approach has been
explored to study holographic complexity proposals in asymptotically dS space [28–34]. One
of the striking features originally found in [28] for the CV, CA, and CV2.0 proposals was

1See [10] for a recent review.
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that the rate of growth of holographic complexity might diverge a finite times relative to
the stretched horizon, denoted by hyperfast growth. The result was associated with the
conjecture where the double-scaled Sachdev-Ye-Kitaev (SYK) model is identified as the
quantum mechanical dual to dS2 space [17]. One may introduce a cutoff surface to perform
an analytic continuation allowing for late-time evolution [28].

However, it was recently found that hyperfast growth is not a universal phenomenon in
the space of holographic complexity proposals [33]. Instead, a set of the CAny observables
may evolve to arbitrarily late (or early) static patch times without introducing regulator
surfaces. Notice, however, that it is still unclear what kind of interpretation the different types
of CAny observables might have for dS space. To properly define holographic complexity
proposals one needs a good understanding of the basic properties that complexity for the
dual field theory side should satisfy. Such understanding of the microscopics associated with
dS space is still lacking. It is important to learn about the different signals one should look
for in a candidate for the dS space holographic model.

Alternatively, one might find clearer interpretations of holographic complexity when dS
space is embedded in a higher dimensional bulk AdS spacetime. This perspective was recently
approached by [34]. They considered a particular type of CAny proposals in a braneworld
model consisting of a higher dimensional AdS bulk geometry capped off by a pair of dS
space end-of-the-world branes. In this setting, the resulting complexity is associated with
the field theory dual living on a brane near the asymptotic boundary of the AdS space. In
this case, the CAny proposals with the expected late time growth in the AdS bulk are those
that obey the late time growth in the dS braneworld.

On the other hand, one of the defining properties of holographic complexity proposals
in the AdS context, the switchback effect, has been recently explored in asymptotically dS
spacetime [31, 32] for the CV, CA, CV2.0 proposals. In this case, there are energy pulses
associated with perturbations in the evolution of the putative dual theory residing in the
stretched horizon. This can be an important diagnostic if the CAny observables can indeed
be associated with complexity consistent with Nielsen’s geometric approach in the dual
theory [33]. However, the switchback effect in the class of CAny observables where the
late-time growth in dS space is allowed has not been studied. This is the main goal of our
work, to learn new lessons for stretched horizon holography.

To study the switchback effect, we describe the shockwave geometry in asymptotically dS
spacetimes. We specialize in Schwazschild-de Sitter (SdS) space, which describes spherically
symmetric vacuum solutions to Einstein equations with a positive cosmological constant. We
work in the perturbative weak gravity regime to treat the shockwave geometry based on
previous findings in [35], and recently discussed in the context of SdS black holes by [36].
As for the observables, we will work with codimension-one CAny proposals evaluated in
constant mean curvature (CMC) slices, originally introduced in [15]. The mean curvature
is one of the main factors distinguishing the proposals that display late time growth from
those with hyperfast growth [33].

Our work is focused on alternating early and late-time perturbations in the geometry
and the resulting growth of the CAny observables. Our findings indicate that the set of
proposals with late-time growth will display the switchback effect. The rate of growth will be
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determined by the definition of the CAny proposal. In general, however, the manifestation
of the switchback effect in the CAny proposals only occurs once we perform a time-reversal
symmetric extension, originally hinted in [37]. We select CMC slices that minimize the CAny
proposal and find that the late-time and early-time contributions to complexity growth will
partially cancel out. Under these conditions, the analysis of the switchback effect shows great
similarity with respect to that of AdS black hole backgrounds.

Interestingly, the late time growth during the switchback phase is unaffected by the
particular location of the stretched horizon.

The structure of the manuscript goes as follows. In section 2 we review generalities about
the shockwave geometries in SdS spacetimes, as well as the CAny proposals that display
the early and late-time growth in SdS spacetime. We introduce some new results regarding
the generalizing the set of proposals that reproduce the late time growth of complexity in
SdS space of arbitrary mass (below the extremal one). In section 3, we present the results
on the switchback effect in SdS spacetime by performing a series of alternating shockwave
insertions in the background geometry in the weak gravity regime. Finally, section 4 includes
a summary of our findings in this setting and some interesting directions for future research.
For the convenience of the reader, we provide an appendix A containing some of the details
about the evaluation of the late-time growth of the CAny proposals.

2 C=Anything in SdS spacetimes

In this section, we briefly review basic notions about SdSd+1 black holes, the modification in
the geometry due to shockwave insertions, and the CAny proposals that we investigate in
this work. New results include extending the set of CAny proposals studied in [33] for SdS
space, to more general observables than volumes of CMC slices. This allows for different
types of late-time growth behaviors in d = 2, d = 3. We also show that late-time growth
persists for arbitrary mass black holes.

2.1 SdS spacetimes

The configuration of interest is SdSd+1 space, described by the line element

ds2 = −f(r)dt2
L/R + dr2

f(r) + r2dΩ2
d−1 , (2.1)

f(r) = 1− r2

ℓ2 − 2µ

rd−2 , µ ≡ 16πGN M

(d − 1)Ωd−1rd−2 , (2.2)

with ℓ2 = d(d − 1)/(2Λ);2 Λ > 0 is the cosmological constant; M parametrizes the mass
of the black hole; GN is Newton’s constant; Ωd−1 = 2πd/2/Γ(d/2) is the volume of a unit
(d − 1)-sphere; µ ∈ [0, µN ]. The case where µ = µN , with

µN = 1
d

(
d − 2

d

) d−2
2

, (2.3)

describes the most massive black hole supported in dS space, which we refer to as the extremal
SdS limit. Meanwhile, µ = 0, reproduces dSd+1 space.

2Through the rest of the work, we use rescaled coordinates where ℓ = 1.
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We will be interested in describing shockwaves in the geometry. It’s convenient to use
Kruskal coordinates, defined by

Ub,c = e
f ′(rb,c)

2 (r∗(r)−t) ,

Vb,c = −e
f ′(rb,c)

2 (r∗(r)+t) .

(2.4)

where the subindices “b, c” denote coordinates on the black hole and inflating patches. These
patches are centered at the horizons rb,c, and cover the range 0 ≤ r < rO and rO ≤ r < ∞
respectively, with rO a reference point, which we take as the location of the static patch
observer. In the present work, we will focus on the inflating region, as we aim to probe it with
CAny observables. We replace Uc, Vc → U , V in what follows. We can then express (2.1) as

ds2 = − 4f(r)
f ′(rc)

e−f ′(rc)r∗(r)dU dV + r2dΩ2
d−1 (2.5)

where rO ≤ r < ∞, and r∗ =
∫ dr

f(r) is the tortoise coordinate.
Once we add shockwave perturbations, the geometry becomes distorted, see figure 1.

Notice that as a result of the shockwave in the inflating region of SdS space, the previously
causally disconnected static patches become causally connected [38]. Moreover, the location
of the stretched horizon can be modified due to the shift displayed in the diagrams. Although
stretched horizon holography fixes the location of the dual theory to be located at a constant
r surface in the static patch, it remains unknown how the theory should behave under
shockwave perturbations. We will be considering the case where the shockwaves are sent
through U = 0 and the stretched horizon remains fixed at a constant r = rst coordinate,3 for
which time evolution along the stretched horizon is continuous. We are mainly interested
in the metric under shockwave perturbations in the weak gravitational coupling regime to
define the notions of energy below. We consider an SdS black hole with mass M absorbs
a shell of matter with mass E ≪ M along the surface

U = U0 = e
f ′(rc)

2 (r∗(rO)−t0) , (2.6)

with t0 the static time shockwave insertion with respect to rO.
The SdS black hole after the shockwave has mass M − E in (2.1) for matter obeying

the NEC [31, 36]. We glue the coordinates along a shell U, V to the past of the shell with
those to the future, denoted by Ũ , Ṽ . The resulting cosmological line element for SdS
black holes [35, 36]:

ds2 = − 4f̃(r)
f̃ ′(rc)

e−f̃ ′(r̃c)r̃∗(r)dŨdṼ + r2dΩ2
d−1 (2.7)

where tilded quantities are given by the replacement of M → M−E in the untilded ones. In the
inflating patch, the shift along the V coordinate can be described by a shift in the coordinate

Ṽ = V − α . (2.8)
3Similar considerations have been carried out in [30, 31], as well as alternative proposals.
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V̄Ū

rst rst

V̄ Ū

rst rst

V̄c Ūc

V

U

rst

rst

V U

Vc Uc

rst

rst

Figure 1. Shockwave geometry for an insertation along U = 0 (orange wavy line) in: Schwarzchild-
AdSd+1≥4 (SAdSd+1≥4) space (top, based on [35]), SdS3 space (middle); and SdSd+1≥4 space (bottom).
Left column: Penrose diagrams in the Ū , V̄ coordinates defined in (2.12). Right column: diagrams in
Kruskal coordinates (2.10) with the modification α → −α in SAdSd+1≥4 case. In the SdS geometries,
the stretched horizon (in green) is shown at a fixed location r = rst. The cosmological and black hole
horizons are shown with the dashed lines. In all cases, the U , V -axis are displayed with black arrows.

The NEC also imposes that α ≥ 0 [39]; while E ≪ M guarantees we work in the α ≪ 1
limit.4 Importantly, this allows for the static patches in figure 1 to become causally connected,
as it has been shown rigorously by Gao and Wald [38], in contrast to crunching geometries
where the shift in α takes the opposite sign for matter satisfying the NEC.

We will express the shift parameter as

α = 2e−
f ′(rc)

2 (t(∗)
c ±t0) . (2.9)

Here the ± sign depends on whether the shockwave is left or right moving, and the cosmological
scrambling time t

(∗)
c will be defined through this relation.

We will take the shockwave close to the cosmological horizon and set U0 = 0 in the

4See [36] for remarks on the approximation for the extremal SdS limit.
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following. (2.7) transforms into

ds2 = −2A(U [V − αΘ(U)])dUdV + B(U [V − αΘ(U)])dΩ2
d−1 , (2.10)

A(UV ) = − 2
UV

f(r)
f ′(rc)2 , B(UV ) = r2 . (2.11)

Moreover, one can consider the change of coordinates

Ū = arctanU, V̄ = arctan V , (2.12)

for the respective Penrose diagram (see figure 1).

2.2 C=Anything: CMC slices

We are mainly interested in codimension-one observables within the class of the C=Anything
proposal, introduced in [14, 15],

Cϵ ≡ 1
GN

∫
Σϵ

ddσ
√

h F [gµν , Rµνρσ, ∇µ] , (2.13)

where F [gµν , Rµνρσ, ∇µ] is an arbitrary scalar functional of d+1-dimensional bulk curvature
invariants, Σϵ is a d-dimensional spatial slice labeled by ϵ(= +, −), which is anchored on
the stretched horizon, h is the determinant of the induced metric, hµν , on Σϵ. We will let
F [. . . ] be a general functional throughout the work. The reader is referred to footnote 8
to verify that these proposals display a switchback effect in AdS planar black holes in the
time-reversal symmetrization in (3.19).

To define the region of evaluation, we employ a combination of codimension-one and
codimension-zero volumes with different weights, given by

CCMC = 1
GN

[
α+

∫
Σ+

ddσ
√

h + α−

∫
Σ−

ddσ
√

h + αB

∫
M

dd+1x
√
−g

]
(2.14)

where M is the bulk region; α±, αB are constants; and Σ+, Σ− are the future and past
boundary slices in ∂M = Σ+ ∪ Σ−, see figure 2. The extremization of CCMC reveals that
Σ± are CMC slices, whose mean curvature is given by:

Kϵ ≡ K

∣∣∣∣
Σϵ

= −ϵ
αB

αϵ
, (2.15)

where Kµν = hµα∇αnν is the extrinsic curvature, and we consider nµ to be a future pointing
normal vector for both Σϵ.

To simplify the evaluation of (2.13), we employ time-symmetric evolution on each of the
static patches, so that we set tL = tR in (2.1). Moreover, we introduce Eddington-Finkelstein
coordinates in (2.1),

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
d−1 , (2.16)

which are related to the Kruskal coordinates (2.4) by

U = e−
f ′(rc)

2 u , V = −e
f ′(rc)

2 v . (2.17)
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M

Σ+

Σ−
rst rst

M

Σ+

Σ−
rst rst

Figure 2. Implementation of the codimension-one CAny proposals with CMC slices, Σ+ (blue) and
Σ− (red) in the bulk region M (cyan), as evaluation regions in the unperturbed (S)dS space, following
the same notation as in figure 1.

Evaluating (2.13), (2.14) with (2.1), one finds

Cϵ = Ωd−1
GN

∫
Σϵ

dσ rd−1
√
−f(r)v̇2 + 2v̇ṙ a(r) , (2.18)

CCMC = Ωd−1
GN

∑
ϵ

αϵ

∫
Σϵ

dσ Lϵ , (2.19)

where a(r) is a scalar functional corresponding to the evaluation of F [gµν , Rµνρσ, ∇µ]; σ is
a general parametrization of the coordinates v(σ), r(σ) on the slice Σϵ; and

Lϵ ≡ rd−1
√
−f(r)v̇2 + 2v̇ṙ − ϵ

Kϵ

d
v̇rd . (2.20)

The details of the evaluation are shown in appendix A. The late-time evolution of complexity
results in:

lim
t→∞

d
dt

Cϵ ≃ Ωd−1
GN

√
−f(rf )r

2(d−1)
f a(rf ) with rf ≡ lim

t→∞
rt . (2.21)

Here rf is a local maximum of the effective potential at late times:

U
∣∣∣∣
rf

= 0, ∂rU
∣∣∣∣
rf

= 0, ∂2
rU
∣∣∣∣
rf

≤ 0 . (2.22)

These conditions lead to the following relation

W (rf , Kϵ) ≡ 4rf f (rf )
(
(d − 1)f ′ (rf ) + K2

ϵ rf

)
+ 4(d − 1)2f (rf ) 2 + r2

f f ′ (rf ) 2 = 0 . (2.23)

The roots rf of the function W (rf , Kϵ) can be found explicitly for pure dS and extremal
SdS black hole limits, as originally derived in [33],

(
r

(dS)
f

)2
=

Kϵ
2 − 2d(d − 1)± |Kϵ|

√
Kϵ

2 − 4(d − 1)
2(Kϵ

2 − d2)
, |Kϵ| ≥ 2

√
d − 1 ; (2.24)

r
(N)
f =

√
d − 2

d
, |Kϵ| ≥

√
d . (2.25)
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Let us now show that for a generic SdS black hole spacetimes (d ≥ 3), there will always be
a real root to (2.23). One can evaluate W (rf , Kϵ) in (2.23) with the roots in (2.24), (2.25)
while keeping the mass of the black hole arbitrary. We will denote m ≡ µ/µN ∈ [0, 1],
such that we may express:

W
(
r

(dS)
f , 2

√
d − 1

)
=

4m
(
(d − 2)dd2m − 4(d − 2)2((d − 1)d)d/2

)
(d − 2)4−d(d − 1)d−2dd

, (2.26)

W
(
r

(N)
f , Kϵ

)
= 4(1− m)

(
2K2

ϵ (d − 2) + d2(1− m)
)

d2 . (2.27)

Notice that (2.26) is clearly negative for all d ≥ 3 and m ∈ (0, 1), while (2.27) is positive.
Moreover, as we increase |Kϵ| > 2

√
d − 1, W

(
r

(dS)
f , Kϵ

)
becomes more negative in (2.23).

Then, according to the intermediate value theorem, there will exist at least a real root
rf ∈

[
r

(dS)
f , r

(N)
f

]
for general SdSd+1 space.

On the other hand, since we have allowed a(r) to be an arbitrary function in (2.21), we
see that when rf → ∞,5 there would be arbitrary types of late-time growth for Cϵ depending
on the particular choice of a(r). For instance, the case a(r) = 1 leads to late-time exponential
behavior when rf → ∞; meanwhile, having a different degree of divergence in (2.21) would
lead to enhancement or decrease in the late-time growth. However, for this to be a valid
CAny proposal, we require also a modification, as explained below.

When one evaluates the early time evolution in (2.21) t → −∞, there is a sign flip in
Kϵ → −Kϵ. As a result, the rate of growth of the CAny observables at early and late times
does not coincide for a given CMC slice. The future or past growth would be given by (2.21),
while the other generates hyperfast growth.6 Importantly for us, the switchback effect is not
respected in this case, as on requires a cancellation between early and late-time contributions
to the complexity growth. We will make this more explicit below.

3 The switchback effect

We will study the set of observables (2.13), (2.14) in the shockwave geometry (2.10). We
begin performing a sequence of an even number of shockwaves, n, in the inflating patch (i.e.
r ∈ [rO, ∞]). Let us denote t1, t2, . . . , tn as the insertion static patch times with respect
to the stretched horizon in alternating insertion order, i.e. t2k+1 > t2k, and t2k < t2k−1,
restricted to |ti+1 − ti| ≫ t∗. Figure 3 illustrates the multiple shockwave configuration in SdS
space. The reader is referred to [3, 35] for the asymptotic AdS black hole counterpart.

Accounting for the sign of the shift in the backreacted metric (2.10), the functional (2.13)
has an additive property under these insertions in the strong shockwave limit [14, 15],

Cϵ(tL, tR) = Cϵ(tR, V1) + Cϵ(V1 − α1, U2) + . . .

+ Cϵ(Un−1 + αn−1, Vn) + Cϵ(Vn − αn, tL)
(3.1)

where all the contributions Cϵ(·, ·) follow the same definition (2.13), but Σϵ is anchored between
endpoints that are located either on the left/right cosmological horizon, rc, or on the stretched
horizon rst. The different cases are illustrated in figure 4. We can perform the evaluation of

5This condition is satisfied in (2.24) when Kϵ = d in dS2 and (S)dS3 space.
6See [33] for comments about possible interpretations in terms of circuit complexity.
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Figure 3. Multiple shockwave geometry in SdS3 space (above) SdSd+1≥4 space (below). Left
column: (2.12) coordinates, and right column: (2.4) coordinates. The figure shows two forward-evolving
and one backward-evolving pulse, producing the corresponding shift (2.9).

Σ−

rst rst

Σ−

rst rst

Σ−

rst rst

Figure 4. Different configurations of the extremal complexity surface Σϵ appearing in (3.1) and
illustrated for ϵ = − in SdS3 space. Left: C−(tL, tR), center: C−(VR, tL), and right: C−(VR, UL).

Cϵ by searching the locations uR, L, vR, L where Σϵ intersect with the left/right horizon rc,

vR − vt =
∫ rt

rc

dr
v̇

ṙ
=
∫ rt

rc

dr

f(r)

(
1−

P ϵ
v + ϵKϵ

d rd√
−U(Pvϵ, r)

)
, (3.2)

and vt = vR(rt).
Next, we will use the boost symmetry in the static patch to set symmetric time evolution

(tL = tR = t/2, which also implies uL, R = vR, L). The different contributions in (3.1) can
be expressed with EF coordinates (2.16) as:

Cϵ(tR, UL) = Cϵ(VR, tL) = −Ωd−1
GN

a(rt)
√
−f(rt)r2(d−1)

t

(∫ rt

rst
+
∫ rt

rc

)(P ϵ
v + ϵKϵ

d rd
)
dr

f(r)
√
−U(P ϵ

v , r)
, (3.3)

Cϵ(VR, UL) = −2Ωd−1
GN

a(rt)
√
−f(rt)r2(d−1)

t

∫ rt

rc

(
P ϵ

v + ϵKϵ
d rd

)
dr

f(r)
√
−U(P ϵ

v , r)
. (3.4)
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As outlined in appendix A (see (A.7)), we can express (2.18) as:

Cϵ(VR, UL) = − 2Ωd−1
GN

a(rt)
√
−f(rt)r2(d−1)

t

∫ rt

rc

(
P ϵ

v + ϵKϵ
d rd

)
dr

f(r)
√
−U(P ϵ

v , r)
(3.5)

+ 2Ωd−1
GN

∫ rt

rc

a(r)f(r) r2(d−1) + a(rt)
√
−f(rt)r2(d−1)

t

(
P ϵ

v + ϵKϵ
d rd

)
f(r)

√
−U(P ϵ

v , r)
.

Moreover, one may Taylor expand the effective potential (2.22) around the final slice, rf , as

lim
r→rf

U(P ϵ
v , r) ≃ 1

2(r − rf )2U ′′(P ϵ
v , r) +O(|r − rf |3) . (3.6)

We can then evaluate (3.2), (3.5) with (3.6) to find

Cϵ(VR, UL) =
Ωd−1
GN

P ϵ
∞v , P ϵ

∞ = a(rf )
√
−f(rf )r

2(d−1)
f

(3.7)

where rf is determined with (2.23). The results above (3.7), (2.21) can be used to express
the contributions in (3.1) in Kruskal coordinates (2.17) as:

Cϵ(tR, VL) =
Ωd−1
GN

P ϵ
∞ log VLetR , (3.8)

Cϵ(VR, UL) =
Ωd−1
GN

P ϵ
∞ logULVR , (3.9)

Cϵ(VR, tL) =
Ωd−1
GN

P ϵ
∞ log etLVR . (3.10)

However, there is also an early time contribution in the shockwave geometry,7 given by the term

Cϵ(VL, UR) =
Ωd−1
GN

P ϵ
−∞ log VLUR , (3.11)

where
P ϵ
−∞ = a(rI)

√
−f(rI)r2(d−1)

I , with rI = lim
t→−∞

rt . (3.12)

As mentioned above in section 2.2, for t → −∞, there is a sign flip in Kϵ → −Kϵ. In that
case, rI is a solution to (2.22), (2.23) with the appropriate modification of Kϵ. However, as
we also pointed out, the CMC slices that display late time growth in the far past/future
display hyperfast growth in the future/past respectively. Instead, consider a protocol where
we evaluate (2.18) over different CMC slices in the past and future, such that there are always
solutions rf and rI with respect to the stretch horizon evolution. (3.1) then transforms into

Cϵ(tL, tR) ≃
Ωd−1
GN

[
P ϵ
∞ log

(
V1etR

)
+ P ϵ

−∞ log(V1 − α1)U2 + P ϵ
∞ log(U2 + α2)V3 + . . .

+ P ϵ
∞ log

(
(Vn − αn)etL

)]
.

(3.13)

We can then extremize (3.13) with respect to an arbitrary interception point (Vi, Ui) in
the multiple shockwave geometry,

dCϵ(tL, tR)
dVi

= 0 ,
dCϵ(tL, tR)

dUi
= 0 , (3.14)

7This was also noticed in [33, 40] for the AdS black hole background.
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which allows us to locate

V ϵ
i = P ϵ

∞αi

P ϵ
∞ + P ϵ

−∞
, U ϵ

i = −
P ϵ
−∞αi

P ϵ
∞ + P ϵ

−∞
. (3.15)

Replacing the interception points into (3.13) generates:

Cϵ(tL, tR) ≃
Ωd−1
GN

(
P ϵ
∞(tR + tL) + (P ϵ

∞ + P ϵ
−∞)

(
n∑

k=1
tk − nt

(c)
∗

))
, (3.16)

up to constant terms in terms of P ϵ
+∞, P ϵ

−∞.
Importantly, it was noticed in [33] that the CAny proposals with a generic functional

F [. . . ] in (2.19) for an AdS planar black hole background only satisfy the switchback effect
when the rate of growth in the past and future are the same. This means that for (2.19) to
obey the definition of holographic complexity in [14, 15], we require8

P ϵ
+∞ = P ϵ

−∞ . (3.17)

In that case, the evaluation of (3.16) reduces to

Cϵ(tL, tR) ∝ |tR + t1|+ |t2 − t1|+ · · ·+ |tn − tL| − 2nt
(c)
∗ , (3.18)

where the term −2nt
(c)
∗ appears due to cancellation in the complexity growth due to early

and late time perturbations.
Notice that a possible way to satisfy (3.17) in SdS space can be obtained by setting

K− = −K+ and selecting a complexity proposal C as9

C = min
t

(
C+(t), C−(t)

)
. (3.19)

See figure 5 for an illustration of the evolution of the CMC slices in the shockwave geometry.
We close the section with a few remarks. First, the result (3.18) reproduces the same

type of behavior as the switchback effect for AdS planar black holes, at least for the CAny
proposals with early and late-time linear growth in SdS space. Second, as we mentioned in
section 2.2 there are fine-tuned situations where Cϵ can have any type of early and late-time
growth behavior for SdS3. It might be interesting to study the modifications in the switchback
in those cases. Lastly, the switchback effect has also been recovered in a different and
more explicit analysis for particular asymptotically dS backgrounds [30, 31], hinting at the
possibility that this is a rather universal phenomenon in shockwave geometries.

8The derivation of this requirement for the AdS planar black hole case follows the same steps that we
have presented for the SdS case, although some replacements need to be made. This includes inverting the
integration limits in (3.2), (3.2); setting rc → rb; Kϵ → −Kϵ; and αi → −αi.

9However, instead of minimization, one might as well perform a maximization over the CMC slices, or an
averaging, as either of those would satisfy (3.17) in AdS planar black holes; although that would reproduce
the hyperfast growth in SdS space.
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Σ+

Σ−

Σ+

Σ−

Figure 5. Representative CMC slices anchored to the stretched horizon (green) in a single shockwave
geometry in SdS space. We employ the discontinuous Kruskal coordinates Ũ , Ṽ in (2.7) in the Penrose
diagram to facilitate the representation of the CMC slices.

4 Discussion and outlook

In summary, we studied the appearance of the switchback effect in asymptotically dS
spacetimes by studying the late (and early time) evolution of the codimension-one CAny
observables under shockwave insertions. We picked a set of observables that are evaluated
in CMC slices of different curvature in the past and future boundaries. We proved that
under a weakly gravitating regime, the CAny observables show a reduction in the complexity
growth due to cancellations of the energy perturbations. We also explicitly verified one of
the predictions in [33], namely that a time-reversal symmetric protocol would be necessary
for the switchback effect to occur.10 Moreover, our findings show a great similarity with
respect to the behavior of CAny proposals for AdS black holes under the switchback effect.
However, we reiterate that the CAny observables in our study do not necessarily represent
holographic complexity in asymptotically dS space. To have a clear notion of holographic
complexity, we might require a quantum circuit interpretation for the observables, which
would also require a reliable quantum circuit model for dS space. Some toy models allowing
much progress in this direction have been studied in [44–47].

We comment on some interesting future directions. Our work focused on the alternating
shockwave insertion on the inflating patch of the SdS spacetime. However, we can also extend
the analysis when the SdS spacetime has multiple patches, to enquire about the black hole
interior as well. These types of geometries have been used as toy models for multiverses
in [37]. One of the striking features previously found was that the information available to
the past light cone of an observer in one of the multiverses would encode the information of
the other universes, in the semiclassical regime. It would be very interesting to see whether
the notions of general codimension-zero CAny observables may also encode such information.
We might be able to learn if some of these observables might have an interpretation from the
point of view of quantum cosmology. It might be also fruitful to study how the introduction
of perturbations in the geometry affects the coarse-graining of information found in [37].

10On the field theory side, the notion of Nielsen geometric approach to complexity [41–43] suggests that
this must be indeed respected.
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An important aspect in the search for the holographic description of dS space would be
obtaining a dual interpretation of the observables that we studied in this work. It would
be interesting to analyze quantum circuit observables that display similar behaviors to the
ones studied within our work to study whether the effect of perturbations on the stretched
horizon might also have the interpretation of an epidemic type of growth given the insertion
of operators. Moreover, it would be interesting to see what type of signals can be found in a
UV complete description of the stretched horizon, motivated by the DSSYK model [17, 48].

Applications to of CAny to dS space braneworld models were recently carried out in [34]
to gain more information about dS holography. In these models [49, 50], one includes an
end-of-the-world brane, whose tension determines the cosmological constant in the effective
gravitational theory on the brane. It would be interesting to incorporate the switchback
effect to characterize perturbations in a double holographic setting, with a clearer field
theory dual. This effective theory might be further modified by adding intrinsic gravity
theories on the brane, leading to a more intricate holographic complexity evolution [51–53].
Moreover, the fluctuations associated with the brane location lead to an effective description
as dS JT gravity on one of the branes [34]. It would be interesting to study the switchback
effect of this effective theory.

On the other hand, as we found in figure 2, the CAny observables generically reach a
terminal turning rf (as well as a time-reversal version) determined by the choice of the CMC
slices through (2.23). This implies that the CAny proposals in the article do not prove the
whole cosmological patch of SdS spacetime. However, we would expect that any notion of
static patch holography should also encode the degrees of freedom of the inflating region,
similar to investigations in asymptotically AdS space [54].11 Nevertheless, one can probe more
of the geometry outside the cosmological horizon using the alternating shockwave geometry.
It seems that adding perturbations in the stretched horizon reveals more information, even
when its explicit localization is irrelevant.

Finally, much progress in the dS holography has been made possible through the study
of interpolating geometries in two-dimensional dilaton-gravity theories [55–60]. While the
CV proposal has been extensively studied in [61] for certain interpolating geometries; new
members in this set have recently appeared [58], and the CAny proposals have not been
treated yet. This might allow for a clearer interpretation of the properties studied in this
work in the context of dS2 space, appearing from near extremal limits near horizon limits
of black hole geometries [62, 63].
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A Details on the CAny evaluation

For the choice √
−f(r)v̇2 + 2v̇ṙ = rd−1 , (A.1)

the Euler-Lagrange equations corresponding to (2.19) can be expressed as

ṙ2 + U(P ϵ
v , r) = 0 , (A.2)

where

P ϵ
v ≡ ∂Lϵ

∂v̇
= ṙ − v̇ f(r)− ϵ

Kϵ

d
rd ; (A.3)

U(P ϵ
v , r) ≡ −f(r)r2(d−1) −

(
P ϵ

v + ϵ
Kϵ

d
rd
)2

. (A.4)

Then, we can express (2.18) as

Cϵ = 2Ωd−1
GN

∫ rt

rst

r2(d−1)a(r)√
−U(P ϵ

v , r)
dr . (A.5)

In a similar way, the parameter t can be expressed as

t =
∫

Σϵ

dr
ṫ

ṙ
=
∫

Σϵ

dr
v̇ − ṙ/f(r)√
−U(P ϵ

v , r)

= −2
∫ rt

rst

dr

f(r)
√
−U(P ϵ

v , r)

(
P ϵ

v + ϵKϵ

d
rd
)

.

(A.6)

We proceed to evaluate (A.5) with (A.6) carefully. Since U(P ϵ
v , rt) = 0 by definition, we

need to take care of the denominator in (A.5), (A.6) at each of the turning points. We
do so by adding a subtracting a term:

Cϵ = − 2Ωd−1
GN

a(rt)
√
−f(rt)r2(d−1)

t

∫ rt

rst

(
P ϵ

v + ϵKϵ
d rd

)
dr

f(r)
√
−U(P ϵ

v , r)
(A.7)

+ 2Ωd−1
GN

∫ rt

rst

a(r)f(r) r2(d−1) + a(rt)
√
−f(rt)r2(d−1)

t

(
P ϵ

v + ϵKϵ
d rd

)
f(r)

√
−U(P ϵ

v , r)
.

Then, we can identify the relationship between time in (A.6) and complexity in (A.7)

Cϵ = Ωd−1
GN

a(rt)
√
−f(rt)r2(d−1)

t t

+ 2Ωd−1
GN

∫ rt

rst

a(r)f(r) r2(d−1) + a(rt)
√
−f(rt)r2(d−1)

t

(
P ϵ

v + ϵKϵ
d rd

)
f(r)

√
−U(P ϵ

v , r)
.

(A.8)

We can then straightforwardly take the time derivative,
dCϵ

dt
= Ωd−1

GN
a(rt)

√
−f(rt)r2(d−1)

t (A.9)

+ 2Ωd−1
GN

dP ϵ
v

dt

∫ rt

rst
dr

r2(d−1)
(

a(rt)
√
−f(rt)r2(d−1)

t − a(r)
(
P ϵ

v + ϵKϵ
d rd

))
(−U(P ϵ

v , r))3/2 .

Thus, in the t → ∞ regime we then recover (2.21). Moreover, the dP ϵ
v

dt term vanishes (2.21)
provided that the effective potential reaches a maximum [54], shown in (2.22).
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