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1 Introduction

The study of scattering amplitudes in the limit where external states become soft is of crucial
importance both from a theoretical point of view and for precision phenomenology. As a
source of infrared (IR) divergences, soft emissions complicate the calculation of cross sections
and give rise to potentially large logarithms that spoil the convergence of the perturbative
expansion. On the other hand, scattering amplitudes simplify drastically in the soft limit
and universal factorised structures emerge. These factorisation theorems form the basis of
IR subtraction schemes and the resummation of soft logarithms.

The soft structure of QED amplitudes is particularly simple and has long been fully
understood at leading power (LP). The corresponding expansion is performed in terms
of a power-counting parameter λ after the common rescaling of the soft-photon momenta
ka → λka. For an amplitude (squared) with n soft photons, the LP term in this expansion
is given by the contributions that scale as λ−n (λ−2n). In their seminal work [1], Yennie,
Frautschi, and Suura (YFS) showed that this LP term reduces to universal tree-level exact
eikonal factors times the corresponding non-radiative amplitude to all orders and for an
arbitrary number of soft-photon emissions. This is different in QCD where genuine loop
corrections to the soft current exist [2]. Together with the KLN theorem [3–5], the YFS limit
implies that soft virtual singularities in QED exponentiate. This simple structure significantly
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facilitates the construction of IR subtraction schemes. Moreover, it allows for the computation
of an arbitrary number of soft-photon emissions and thereby for the resummation of the
corresponding large logarithms.

Until recently, much less has been known about the all-order structure of single soft-photon
emission at next-to-leading power (NLP). For an amplitude (squared) with n soft photons this
corresponds to the term that scales as λ−n+1 (λ−2n+1) in the power counting. At tree level, it
was proven a long time ago by Low, Burnett, and Kroll (LBK) [6, 7] that not only the LP but
also the NLP term in the soft expansion is fully determined by the non-radiative amplitude
by means of a differential operator. This tree-level relation was later extended to polarised
fermions [8–10]. Beyond tree level, additional contributions arise due to soft and collinear
virtual corrections, depending on whether massive or massless fermions are considered.

In the case of massless fermions, virtual corrections were studied already some time ago
in [11], where radiative jet functions are introduced to take into account collinear effects. In
recent years, there has been significant efforts to extend this massless version of the LBK
theorem to QCD both in the framework of diagrammatic factorisation [12–18] as well as in
soft-collinear effective theory [19–21]. Very recently, a complete generalisation to one-loop
QCD amplitudes for arbitary processes was achieved in [22]. Analogous soft theorems have
also been studied in gravity where even at next-to-next-to-leading power a relationship to
the non-radiative process exists [23–25].

For massive fermions, the LBK theorem in QED was only recently generalised to one
loop in [26] and to all orders in [27]. Since the leptons are taken to be heavy in this case,
no collinear scale exists and radiative jet functions do not enter the theorem. Nevertheless,
there are non-trivial corrections to the tree-level formula through soft virtual corrections,
which were shown to be one-loop exact in [27]. This generalisation is particularly relevant
in the context of fully-differential higher-order QED computations, where the NLP soft
approximation is used to stabilise the numerical evaluation of real-emission amplitudes
(next-to-soft stabilisation) [28].

This article presents the extension of the all-order LBK theorem for massive fermions to
an arbitrary number of soft-photon emissions. As in [27] this is done in the framework of the
Abelian (QED) version of heavy-quark effective theory (HQET) [29–33], called heavy-lepton
effective theory (HLET) in the following. To NLP, multi-radiation amplitudes are shown to be
completely reducible to single- and double-emission contributions. While the single-emission
term was already considered in [27], the same approach is used here to show that the genuine
double-emission contribution is tree-level exact. This generalises the YFS soft limit to NLP
and opens the door for many applications, such as next-to-soft stabilisation of multi-radiation
amplitudes and the extension of YFS resummation to NLP.

The paper is structured as follows. Section 2 provides an overview on the NLP soft
theorems for massive QED amplitudes. This includes the single-photon LBK theorem as
well as the main result of this article given in (2.17) for multiple emissions. The original
tree-level proof of the LBK theorem is summarised at the beginning of section 3 and extended
to double- and triple-photon radiation in the following. By working in HLET, section 4
generalises these results to an arbitrary number of soft photons and to all orders. This follows
closely the all-order single-emission proof of [27], to which we refer for further details. A
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first, non-trivial application and validation of the derived NLP soft theorem is presented in
section 5 for muon-electron scattering. Finally, a conclusion and outlook is given in section 6.

2 The LBK theorem and its generalisations

The LBK theorem applies to the generic QED process

m∑
i=1

fi(pi) → γ(k) , (2.1)

with m fermions fi conventionally defined as incoming and a single emitted soft photon
γ as outgoing. The corresponding momenta are denoted by pi and k, respectively. Hard
photons do not participate in soft interactions and only enter the hard matching coefficients.
Hence, they do not have to be considered explicitly. The photon momentum k is taken
to be much smaller than all other scales in the process including all fermion masses mi.
The scale hierarchy thus reads

λ ∼ k

pi
∼ k

mi
≪ 1 , (2.2)

where the book-keeping parameter λ is introduced to facilitate the power counting. The
original version of the LBK theorem, proven in [6, 7], holds at tree level and states that the
NLP soft expansion of the radiative amplitude is completely determined by the non-radiative
process. The corresponding relation for the unpolarised squared amplitude is given by1

M(0)
m+1({p}, k) =

(
E(k) +D(k)

)
M(0)

m ({p}) +O(λ0) , (2.3)

with the eikonal factor

E(k) = −
∑
i,l

QiQl
pi · pl

k · pik · pl
(2.4)

and the LBK differential operator

D(k) =
∑
i,l

QiQl
pl ·Di

k · pl
, Dµ

i (k) =
pµ

i

k · pi
k · ∂

∂pi
− ∂

∂pi,µ
. (2.5)

The fermion charge is denoted by Qi with Qi = e < 0 for an incoming particle or an outgoing
antiparticle and Qi = +e otherwise. The form (2.3) of the LBK theorem is not well suited
for explicit calculations since the non-radiative amplitude is evaluated with momenta that
violate momentum conservation

∑
i pi = O(λ). It is more convenient to rewrite (2.3) in terms

of kinematic invariants sL of the non-radiative process, collectively denoted by {s} in the
following.2 According to [26], the LBK theorem then takes the form

M(0)
m+1({p}, k) =

(
E(k) + D̃(k)

)
M(0)

m ({s}, {m2}) +O(λ0) , (2.6)

1The symbol M denotes squared amplitudes in this article, while A is used for the amplitude itself.
2An alternative approach well suited for numerical calculations is based on momentum shifts [34–36].
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with the modified LBK operator

D̃(k) =
∑
i,l

QiQl
pl · D̃i

k · pl
, D̃µ

i (k) =
∑
L

(
pµ

i

k · pi
k · ∂sL

∂pi
− ∂sL

∂pi,µ

)
∂

∂sL
. (2.7)

As emphasized in [26], different parametrisations of the invariants {s} = {s({p}, {m2})} differ
at the level of O(λ) as a consequence of the aforementioned momentum conservation violation.
It is therefore crucial to use the same definition both in the evaluation of the non-radiative
contribution as well as in the calculation of the derivatives ∂sL/∂p

µ
i .

The tree-level LBK theorem (2.6) was first extended to one loop in [26] with the method
of regions [37] and later to all orders in [27] with HLET. It was proven that beyond tree
level the NLP contribution is still completely determined by the non-radiative process for
unpolarised scattering. In the case of polarised fermions, this property is broken by factorisable
QED corrections of the emitting leg or, equivalently, by spin-flipping magnetic contributions
in HLET. These problematic contributions cancel at the level of the unpolarised squared
amplitude and the all-order LBK theorem takes the form

Mm+1({p}, k) =
(
E(k) + D̃(k) + S(1)(k)

)
Mm({s}, {m2}) +O(λ0) . (2.8)

Compared to the tree-level theorem (2.6), the additional contribution S(1) takes into account
soft virtual corrections. It is the main result of the all-order proof [27] that this soft
contribution is one-loop exact. It is given by

S(1)(k) =
∑

l,i,j ̸=i

Q2
iQjQl

(
pi · pl

k · pik · pl
− pj · pl

k · pjk · pl

)
2S(1)(pi, pj , k) , (2.9)

with the one-loop exact function

S(1)(pi, pj , k) =
m2

i k · pj(
(pi · pj)2 −m2

im
2
j

)
k · pi

(
pi · pjI1(pi, k) +m2

jk · piI2(pi, pj , k)
)

(2.10)

defined in terms of the two simple integrals

I1(pi, k) = iµ2ϵ
∫ ddℓ

(2π)d

1
[ℓ2 + i0][ℓ · pi − k · pi + i0] , (2.11)

I2(pi, pj , k) = iµ2ϵ
∫ ddℓ

(2π)d

1
[ℓ2 + i0][−ℓ · pj + i0][ℓ · pi − k · pi + i0] . (2.12)

The analytic results for I1 and I2 with exact ϵ dependence can be found in appendix A of [26].
In the following, the all-order proof of the LBK theorem of [27] is extended to processes

with an arbitrary number of soft-photon emissions
m∑

i=1
fi(pi) →

n∑
a=1

γa(ka) . (2.13)

One possibility to define the scale hierarchy for this more general setup is to have an ordered
set of soft-photon momenta

λ1 ∼ k1
pi

∼ k1
mi

≪ . . .≪ λn ∼ kn

pi
∼ kn

mi
≪ 1 . (2.14)
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In this case, the LBK theorem (2.8) can be applied iteratively. Starting with the smallest
scale λ1, its NLP expansion can be written in terms of the squared amplitude without the
photon with momentum k1. The smallest scale in this amplitude is now λ2 and the procedure
can be repeated until the reduction to the non-radiative process

Mm+n =
n∏

a=1

(
Ea(ka) + D̃a(ka) + S(1)

a (ka)
)
Mm({s}, {m2}) +O(λ0

1 . . . λ
0
n) (2.15)

is reached. There are two subtleties in interpreting (2.15). First, different sets of invariants
have to be used for the different LBK formulas as they originate from processes with a different
number of external states. This is emphasized with an additional subscript a. Second, the
LBK differential operators D̃a(ka) do not commute. The order of the product in (2.15) is
fixed with the left-most term corresponding to the smallest scale k1. The soft theorem (2.15)
can thus be evaluated via an iterative application of the LBK theorem starting with the
formula for the largest scale applied to the non-radiative squared amplitude.

A more interesting situation arises for the unordered hierarchy

λ ∼ ka

pi
∼ ka

mi
≪ 1 , (2.16)

where the single-emission theorem cannot be straightforwardly applied and needs to be
extended accordingly. The corresponding NLP soft theorem is the main result of this paper
and reads

Mm+n({p}, {k}) =
[

n∏
a=1

E(ka) +
n∑

a=1

∏
c ̸=a

E(kc)
(
D̃(ka) + S(1)(ka)

)
+

n∑
a,b=1

∏
c ̸=a,b

E(kc)G(0)(ka, kb)
]
Mm({s}, {m2}) +O(λ−2n+2) , (2.17)

with the tree-level exact universal function

G(0)(ka, kb) =
∑
i,k,l

Q2
iQkQl

ka · pi kb · pi(ka · pi + kb · pi)ka · pk kb · pl

(
pk · pi pl · pi ka · kb

+ pk · pl ka · pi kb · pi − pk · pi ka · pl kb · pi − pl · pi kb · pk ka · pi
)
. (2.18)

Amplitudes with multiple soft-photon emissions thus reduce at NLP to single- and double-
radiation contributions only. At tree level, this was already proven in [38, 39], where
the more general case of soft-gluon emission in QCD was studied. In fact, the tree-level
expression (2.18) agrees with (6.34) of [39] after interference with the eikonal approximation.
The soft theorem (2.17) can thus be viewed as the all-order generalisation of this result in
the Abelian case. The corresponding all-order derivation builds upon the methodology of
the single-emission proof of [27] and is structured in the following way. Section 3 studies
soft-photon emission in QED and proves (2.17) at tree level for up to n = 3 emissions. These
results are first reproduced in section 4 in HLET and then generalised to n emissions. The
purpose of rederiving these known tree-level results is to provide a pedagocical introduction
to the methodology that forms the basis for the all-order proof in section 4.7.
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3 Multiple soft-photon emission in QED at tree level

This section studies the tree-level emission of up to three soft photons in QED and derives
the soft theorem (2.17) for these cases. Section 3.1 considers single-photon emission and
provides a concise summary of the tree-level proof of the LBK theorem. Section 3.2 and
section 3.3 extend this derivation to double- and triple-photon emission, respectively.

3.1 Single-photon emission

In the following, a brief summary of the original tree-level proof of the LBK theorem from [6, 7]
is presented. A more detailed exposition of the proof can be found in section 3.1 of [26].

The single-emission amplitude receives contributions both from diagrams where the
photon is emitted from an external leg as well as from an internal line. As will become
clear in the following, it is useful to split the amplitude into these two diagram types even
though (or precisely because) they are not separately gauge invariant. In terms of external
and internal emissions the amplitude reads

A(0)
m+1 =

(∑
i

Ai,(0)
k1;

)
+A(0)

;k1
=
( ∑

i

k1

pi

)
+

k1

. (3.1)

The semicolon in the external- and internal-emission amplitudes, Ai,(0)
k1; and A(0)

;k1
, distinguishes

between external and internal emission, respectively. The photon momentum on the l.h.s. of
the semicolon corresponds to a photon that is emitted from an external leg, while a r.h.s.
momentum denotes internal emission. In the subsequent sections, this notation naturally
generalises to mixed multi-emission diagrams where some photons are emitted externally and
others internally. For simplicity, the semicolon is omitted in the following if all momenta are
emitted externally, i.e. for single emission from the i-th external leg Ai,(0)

k1
= Ai,(0)

k1; .
Stripping the i-th external spinor from the non-radiative amplitude

A(0)
m ({p}) = Γ(0)

i ({p})u(pi) , (3.2)

the external emission amplitude can be written as

Ai,(0)
k1

=
QiΓ(0)

i ({p}i)( /pi − /k1 +m) /ϵ1u(pi)
−2k1 · pi

, (3.3)

with {p}i = {p1, . . . , pi − k1, . . . , pm} and the shorthand notation for the photon polarisation
vector ϵµ1 = ϵµ(k1). The expression (3.3) can be expanded as

Ai,(0)
k1

= Ei(k1)A(0)
m ({p}) +Ai,(0)

k1,NLP +O(λ) , (3.4)

with the amplitude-level (in contrast to (2.4)) eikonal factor

Ei(k1) =
Qiϵ1 · pi

−k1 · pi
(3.5)

– 6 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
4

and the NLP contribution

Ai,(0)
k1,NLP = −Ei(k1)

(
k1 ·

∂

∂pi
Γ(0)

i ({p})
)
u(pi) +

QiΓ(0)
i ({p}) /k1 /ϵ1u(pi)

2k1 · pi
. (3.6)

The explicit dependence of Γ(0)
i on the fermion momenta {p} is dropped in the following

for the sake of simplicity.
The crucial insight of the original LBK proof [6, 7] — which was inspired by [40] — is

that to NLP the internal emission contribution can be determined by gauge invariance in
the following way. The Ward identity for the radiative amplitude

A(0)
m+1 = ϵ1,µA(0),µ

m+1 =
(∑

i

ϵ1,µAi,(0),µ
k1

)
+ ϵ1,µA(0),µ

;k1
(3.7)

implies

k1 · A(0)
;k1

= −
∑

i

Qi

(
k1 ·

∂

∂pi
Γ(0)

i

)
u(pi) +O(λ2) . (3.8)

The LP contribution separately satisfies the Ward identity due to charge conservation∑
iQi = 0 and the second term on the r.h.s. of (3.6) vanishes because of /k1 /k1 = k2

1 = 0.
Since internal emission at tree level cannot give rise to the propagator structure 1/k1, A(0)

;k1

is local in k1 and

A(0),µ
;k1

= A(0),µ
;k1

∣∣∣
k1=0

+O(λ) . (3.9)

Hence, the relation (3.8) also holds at the uncontracted level, which yields for the internal
emission amplitude

A(0)
;k1

= −
∑

i

Qi

(
ϵ1 ·

∂

∂pi
Γ(0)

i

)
u(pi) +O(λ) . (3.10)

It is important to emphasize that, contrary to statements made in earlier literature (see
e.g. [24]), locality of the internal emission contribution is not preserved beyond tree level. It
is broken by factorisable corrections of the emitting leg as well as the soft momentum region
of loop integrals. The original proof of the LBK theorem is therefore only valid at tree level.

The internal emission result (3.10) combines with the first term of (3.6) to ϵ1 · Di(k1)
with the LBK differential operator Di defined in (2.5). Squaring the amplitude, summing
over spins and polarisations, and using

( /pi +m) /ϵ1 /k1 + /k1 /ϵ1( /pi +m)
2k1 · pi

= ϵ1 · pi

k1 · pi
/k1 − /ϵ1 = ϵ1 · Di( /pi +m) (3.11)

yields the tree-level LBK theorem (2.3).

3.2 Double-photon emission

This section extends the tree-level LBK theorem to processes with two emitted soft photons.
Following the proof of the previous section, the amplitude can again be split according to the
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number of external and internal emissions. In this case, however, purely internal emission only
contributes at next-to-next-to-leading power, i.e at O(λ0), and the NLP split simplifies to

A(0)
m+2 =

(∑
i,j

Aij,(0)
k1k2

)
+
(∑

i

Ai,(0)
k1;k2

+ (k1 ↔ k2)
)
+O(λ0)

=
( ∑

i,j

k1 k2

pi

pj )
+
( ∑

i

k1 k2

pi
+ (k1 ↔ k2)

)
+O(λ0) . (3.12)

As already mentioned in the previous section, mixed amplitudes with one external and one
internal photon are denoted by Ai,(0)

ka;kb
, where the momentum on the r.h.s. of the semicolon

refers to the photon that is emitted from an internal line. For simplicity, the semicolon is
omitted in the purely external emission amplitude Aij,(0)

k1k2
= Aij,(0)

k1k2;. The mixed diagrams
scale as ∼ λ−1 and do not contribute at LP. Hence, to NLP it is sufficient to use the
eikonal approximation for the externally emitted photon and the mixed amplitudes reduce
to single-emission terms as

Ai,(0)
k1;k2

= Ei(k1)A(0)
;k2

+O(λ0) . (3.13)

This also holds for the purely external emission amplitudes Aij,(0)
k1k2

if the two photons are
emitted from different legs, i.e. for i ̸= j. In this case, a NLP contribution of one leg always
combines with a LP eikonal term of the other one, which yields

Ai ̸=j,(0)
k1k2

= Ei(k1)Ej(k2)A(0)
m + Ei(k1)Aj,(0)

k2,NLP + Ej(k2)Ai,(0)
k1,NLP +O(λ0) . (3.14)

The only non-trivial amplitude to be calculated is the one for double emission from
the same external leg given by

Aii,(0)
k1k2

=

k1 k2

pi
+ (k1 ↔ k2)

=
Q2

iΓ
(0)
i ({p}i)( /pi − /k1 − /k2 +m) /ϵ2( /pi − /k1 +m) /ϵ1u(pi)

4k1 · pi(k1 · pi + k2 · pi − k1 · k2)
+ (k1 ↔ k2) , (3.15)

with {p}i = {p1, . . . , pi − k1 − k2, . . . , pm}. This expands to

Aii,(0)
k1k2

= Q2
i ϵ1 · piϵ2 · pi

k1 · pi(k1 · pi + k2 · pi)

(
Γ(0)

i −
(
(k1 + k2) ·

∂

∂pi
Γ(0)

i

))
u(pi)

+ Q2
i ϵ1 · piϵ2 · pik1 · k2

k1 · pi(k1 · pi + k2 · pi)2A
(0)
m

−
Q2

iΓ
(0)
i ( /k1 + /k2) /ϵ2u(pi)ϵ1 · pi

2k1 · pi(k1 · pi + k2 · pi)
−
Q2

iΓ
(0)
i ( /pi +m) /ϵ2 /k1 /ϵ1u(pi)

4k1 · pi(k1 · pi + k2 · pi)
+ (k1 ↔ k2) +O(λ0) . (3.16)
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The first line of (3.16) takes into account the expansion of the non-radiative sub-amplitude
Γi({p}i). As in the previous section, the functional dependence on the external fermion
momenta {p} after the expansion is not explicitly displayed. The second and third line
of (3.16) correspond to the NLP contributions of the denominator and numerator in (3.15),
respectively. After writing the Dirac string of the second term in the third line of (3.16) as

( /pi +m) /ϵ2 /k1 /ϵ1u(pi) =
(
/k1 /ϵ12ϵ2 · pi − /ϵ2 /ϵ12k1 · pi − /k1 /ϵ22ϵ1 · pi + 4ϵ1 · piϵ2 · k1

)
u(pi) , (3.17)

the expansion takes the form

Aii,(0)
k1k2

= Q2
i ϵ1 · piϵ2 · pi

k1 · pi(k1 · pi + k2 · pi)
A(0)

m − Q2
i

k1 · pi(k1 · pi + k2 · pi)

×
(
ϵ2 · piϵ1 · pi

(
k1 ·

∂

∂pi
Γ(0)

i

)
+ ϵ2 · pi

Γ(0)
i /k1 /ϵ1

2 + (k1 ↔ k2)
)
u(pi)

+ Q2
i ϵ1 · piϵ2 · pik1 · k2

k1 · pi(k1 · pi + k2 · pi)2A
(0)
m − Q2

i ϵ1 · piϵ2 · k1
k1 · pi(k1 · pi + k2 · pi)

A(0)
m +

Q2
iΓ

(0)
i /ϵ2 /ϵ1u(pi)

2(k1 · pi + k2 · pi)
+ (k1 ↔ k2) +O(λ0) . (3.18)

The second term in (3.18) reduces to the single-emission terms Ei(k2)Ai,(0)
k1,NLP and

Ei(k1)Ai,(0)
k2,NLP, with the NLP contribution defined in (3.6). This follows after adding the

corresponding term with (k1 ↔ k2) and applying the partial fraction (eikonal) identity

1
k1 · pi(k1 · pi + k2 · pi)

+ (k1 ↔ k2) =
1

k1 · pik2 · pi
. (3.19)

The third line gives rise to a new structure which is also proportional to the non-radiative
amplitude. The final result reads

Aii,(0)
k1k2

= Ei(k1)Ei(k2)A(0)
m + Ei(k2)Ai,(0)

k1,NLP + Ei(k1)Ai,(0)
k2,NLP + G(0)

i (k1, k2)A(0)
m +O(λ0) ,

(3.20)

with the new term given by

G(0)
i (k1, k2) (3.21)

= Q2
i

ϵ1 · pi ϵ2 · pi k1 · k2 + ϵ1 · ϵ2 k1 · pi k2 · pi − ϵ1 · pi ϵ2 · k1 k2 · pi − ϵ2 · pi ϵ1 · k2 k1 · pi

k1 · pi k2 · pi(k1 · pi + k2 · pi)
.

Combining (3.13), (3.14), and (3.20) gives for the total NLP amplitude

A(0)
m+2 = E(k1)E(k2)A(0)

m + E(k2)A(0)
k1,NLP + E(k1)A(0)

k2,NLP + G(0)(k1, k2)A(0)
m +O(λ0) , (3.22)

with

E(ka) =
∑

i

Ei(ka), G(0)(ka, kb) =
∑

i

G(0)
i (ka, kb) , (3.23)

and the total NLP contribution to the single-emission amplitude given by

A(0)
ka,NLP =

(∑
i

Ai,(0)
ka,NLP

)
+A(0)

;ka
. (3.24)
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The single-emission results of the previous section (3.6) and (3.10) together with (3.22)
implies for the unpolarised squared amplitude

M(0)
m+2({p}, {k1, k2}) =

(
E(k1)E(k2) + E(k1)D̃(k2) + E(k2)D̃(k1)

+ 2G(0)(k1, k2)
)
M(0)

m ({s}, {m2}) +O(λ−2) , (3.25)

with E, D, and G(0) defined in (2.4), (2.5), and (2.18), respectively. As the last step, the
factor of 2 in (3.25) from the interference can be rewritten as

2G(0)(k1, k2) = G(0)(k1, k2) +G(0)(k2, k1) , (3.26)

which proves the soft theorem (2.17) at tree level for n = 2.

3.3 Triple-photon emission

The extension to the three-photon case proceeds along the same line as in the previous
sections. The split of the amplitude into internal and external emissions reads

A(0)
m+3 =

(∑
i,j,l

Aijl,(0)
k1k2k3

)
+
(∑

i,j

Aij,(0)
k1k2;k3

+ (k1,2 ↔ k3)
)
+O(λ−1)

=
( ∑

i,j,l

k1 k2

k3

pi

pj

pl

)
+
( ∑

i,j

k1 k2

k3

pi

pj

+ (k1,2 ↔ k3)
)
+O(λ−1) ,

(3.27)

with the shorthand notation

(k1,2 ↔ k3) = (k1 ↔ k3) + (k2 ↔ k3) . (3.28)

In complete analogy to (3.13) and (3.14), internal emission as well as external radiation from
different legs reduces to single-emission terms. This yields for the corresponding amplitudes

Aij,(0)
k1k2;k3

= Ei(k1)Ej(k2)A(0)
;k3

+O(λ−1) (3.29)

and

Ai ̸=j ̸=l,(0)
k1k2k3

= Ei(k1)Ej(k2)El(k3)A(0)
m

+ Ei(k1)Ej(k2)Al,(0)
k3,NLP + Ei(k1)El(k3)Aj,(0)

k2,NLP + Ej(k2)El(k3)Ai,(0)
k1,NLP

+O(λ−1) . (3.30)

Similarly, in the case where two photons are emitted from the same leg, the external emission
contribution can be written in terms of single- and double-emissions according to

Aii ̸=l,(0)
k1k2k3

= El(k3)Aii,(0)
k1k2

+ Ei(k1)Ei(k2)Al,(0)
k3,NLP +O(λ−1) . (3.31)
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Inserting the expression (3.20) for the double-emission term then yields

Aii ̸=l,(0)
k1k2k3

= Ei(k1)Ei(k2)El(k3)A(0)
m

+ Ei(k1)Ei(k2)Al,(0)
k3,NLP + Ei(k1)El(k3)Ai,(0)

k2,NLP + Ei(k2)El(k3)Ai,(0)
k1,NLP

+ El(k3)G(0)
i (k1, k2)A(0)

m

+O(λ−1) . (3.32)

A new structure can only come from the same-leg triple emission contribution

Aiii,(0)
k1k2k3

=

k1 k2 k3

pi
=

k1 k2 k3

pi
+
∑

σ

(
σ(k1, k2, k3)

)
, (3.33)

where the crossed vertex denotes all possible attachments of the three photons. This
corresponds to summing over all possible permutations σ of the three photon momenta
as indicated on the r.h.s. of (3.33). The calculation of the NLP expansion of (3.33) is
conceptually the same as for the double-emission case (3.15). The result is

Aiii,(0)
k1k2k3

= Ei(k1)Ei(k2)Ei(k3)A(0)
m

+ Ei(k1)Ei(k2)Ai,(0)
k3,NLP + Ei(k1)Ei(k3)Ai,(0)

k2,NLP + Ei(k2)Ei(k3)Ai,(0)
k1,NLP

+ Ei(k3)G(0)
i (k1, k2)A(0)

m + Ei(k2)G(0)
i (k1, k3)A(0)

m + Ei(k1)G(0)
i (k2, k3)A(0)

m

+O(λ−1) . (3.34)

Also this case reduces to single- and double-emission objects without giving rise to additional
structures. As a result, the triple-emission amplitude to NLP is given by

A(0)
m+3 = E(k1)E(k2)E(k3)A(0)

m

+
(
E(k1)E(k2)A(0)

k3,NLP + E(k3)G(0)(k1, k2)A(0)
m + (k1,2 ↔ k3)

)
+O(λ−1) , (3.35)

with E and G(0) defined in (3.23) and the NLP single-emission contribution A(0)
ka,NLP given

in (3.24). At the level of the unpolarised squared amplitude this implies the soft theorem (2.17)
at tree level for n = 3.

While it might be possible to extend these calculations to an arbitrary number of soft-
photon emissions, the simple emerging structure becomes much more transparent in HLET.
This will be particularly important when taking into account loop corrections.

4 Multiple soft-photon emission in HLET to all orders

This section studies soft-photon emission in HLET. In this effective field theory the simple
structure of the NLP soft limit is much more transparent than in QED. This allows for a
generalisation of the previous results to an arbitrary number of photon emissions and to all
orders. Section 4.1 introduces the HLET Lagrangian and its Feynman rules. Based on this,
so-called eikonal identities are introduced in section 4.2, which form the key component of the
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following calculations. As a first step, the tree-level results of section 3 for single-, double-,
and triple-photon emission are reproduced in sections 4.3, 4.4, and 4.5, respectively. The
generalisation to an arbitrary number of photons is presented in section 4.6 and extended to
all orders in section 4.7. This completes the proof of the soft theorem (2.17).

4.1 Heavy-lepton effective theory

HLET is the Ablian version of HQET [29–33] and describes interactions between heavy
leptons and soft photons. The movement of the heavy leptons is only slightly affected by
the soft interactions. As a result, the lepton momenta pj stay close to their mass shell
and can be decomposed as

pµ
j = mjv

µ
j + qµ

j , (4.1)

with v2
j = 1 and |q2

j | ≪ m2
j . The large component of the lepton field ψj is then given by

hvj (x) = eimjvj ·xP+jψj(x) , (4.2)

with the projection operator P+j = (1 + /vj)/2. The HLET Lagrangian is obtained by
integrating out the heavy degrees of freedom and by expanding in the small parameter
λ ∼ |q2

j |/m2
j ≪ 1. This yields to NLP [41, 42]

LHLET = LLP + Lkin + Lmag +O(λ2) , (4.3)

with the LP term

LLP =
m∑

j=1

(
h̄vj ivj ·Dhvj

)
− 1

4FµνF
µν (4.4)

and the subleading kinetic and magnetic parts

Lkin =
m∑

j=1

1
2mj

h̄vj (iD⊥j
)2hvj , (4.5)

Lmag =
m∑

j=1

eCmag
4mj

h̄vjσµνF
µνhvj . (4.6)

The usual definitions are used for the covariant derivative Dµ = ∂µ−ieAµ, the electromagnetic
field strength Fµν = ∂µAν − ∂νAµ, and σµν = i[γµ, γν ]/2. Furthermore, the perpendicular
component of the metric w.r.t. the direction vj is denoted by

gµν
⊥j

= gµν − vµ
j v

ν
j , (4.7)

which implies

pµ
⊥j

= gµν
⊥j
pν = pµ − vµ

j vj · p (4.8)

for any four-momentum p. The Wilson coefficient of the kinetic NLP Lagrangian Lkin does
not receive loop corrections as a consequence of reparametrisation invariance under small
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O(λ) changes of the directions vj [43, 44]. The non-trivial Wilson coefficient Cmag is known
to three loops [45, 46].

The Feynman rules for the Lagrangian (4.3) are listed in the following. All labelled
momenta are taken to be incoming and the fermion charge Qj is defined as in section 2. The
LP Lagrangian yields the familiar eikonal Feynman rules

vj , q
= i

q · vj + i0P+j ,

k, µ

vj , q
= −iQjv

µ
j . (4.9)

Since all fermions are taken to be incoming in (2.13), the arrows denoting the charge flow
are not explicitly displayed (as for the QED diagrams in section 3). In contrast to QED,
HLET leptons are represented with a double line. At NLP, the kinetic term Lkin gives
rise to the three vertices

vj , q
= i

2mj
q2
⊥j
,

vj , q

k, µ

= −iQj

2mj
(2q + k)µ

⊥j
,

vj , q

µ ν

=
iQ2

j

mj
gµν
⊥j
. (4.10)

The only vertex with a non-trivial Dirac structure comes from the magnetic term Lmag
and reads

vj , q

k, µ

= QjCmag
2mj

σµνk
ν . (4.11)

In order to describe the scattering process (2.13) with HLET, the Lagrangian (4.3) has
to be supplemented with the most general, gauge-invariant operators (external currents)
that generate this process, i.e.

L = LHLET +OLP +ONLP . (4.12)

The LP operator, OLP, consists of the m fermion fields only. The NLP operator, ONLP,
contains in addition one covariant derivative which raises the mass dimension of the operator
by one unit. This gives rise to the following vertices:

OLP ONLP ONLP (4.13)

The exact structure of the above vertices does not matter in the following. The contribution
of the first two vertices in the calculation of radiative amplitudes can be determined through
the matching to the non-radiative process with off-shell external states. As for the single-
emission amplitude (3.3), the QED spinors are evaluated with on-shell momenta that do
not satisfy momentum conservation. Expanding the corresponding QED amplitude in the
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hard loop momentum region yields

AOLP({q}) = ⟨0|OLP|
m∏

j=1
hvj (qj)⟩ = OLP

v1, q1

v2, q2

vm, qm

= Am({p}) , (4.14)

AONLP({q}) = ⟨0|ONLP|
m∏

j=1
hvj (qj)⟩ = ONLP

v1, q1

v2, q2

vm, qm

=
m∑

j=1

(
qj ·

∂

∂pj
Γj({p})

)
u(pj) ,

(4.15)

where the non-radiative QED (sub)amplitudes Am = Γju(pj) are evaluated with on-shell
momenta pj = mjvj . In the case of the third vertex in (4.13), single-emission processes
have to be considered for the matching due to the additional photon. This is discussed in
section 4.3 in the context of the tree-level LBK theorem.

4.2 Eikonal identities

The all-order proof of the LBK theorem presented in [27] is based on an extension of the
well-known on-shell eikonal identity to account for single-photon emission from off-shell lines.
The identity is proven in appendix A of [27]. While the on-shell identity does not depend on
the number of external photons in the process, the off-shell version generalises non-trivially
to multiple radiation. This section extends the single-emission identity accordingly. The
occurrence of off-shell emissions originates from the NLP HLET vertices (4.10) and (4.11).
These vertices give rise to the generic diagrams (4.67) at tree level and (4.99) at loop level.
As shown in detail in the corresponding sections 4.6 and 4.7, the off-shell eikonal identity can
be used to derive remarkably simple expressions for these amplitudes.

The on-shell eikonal identity for n incoming momenta pi is given by

Rn =
v

p1 pn

=
n∏

i=1

Qvµi

pi · v
, (4.16)

where the crossed vertex represents all possible attachments of the photon lines as in (3.33).
This simple structure emerges from various cancellations among the diagrams in

∑
n1+n2=n−1

v

n1 n2pn

= Qvµn

pn · v
v

p1 pn−1

. (4.17)

As shown in detail in appendix A.1 of [27], all terms but one cancel after partial fraction
decomposition of the two propagators to the left and to the right of the photon line with
momentum pn. This yields the relation

Rn = Qvµn

pn · v
Rn−1 , (4.18)
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which recursively applied proves (4.16).
The NLP vertices (4.10) and (4.11) give rise to sub-diagrams of the form

T (q)
n,m =

k1 kn

ℓ1 ℓm

v, q
, (4.19)

where the photons attach to a heavy-lepton line with residual momentum q. The small blob on
the left side of the diagram indicates that the lepton is off shell. The momenta of the external
photons are denoted by ka, while ℓi is used for virtual photon lines. As shown in appendix
A.2 of [27], the cancellation is less complete in this case and the relation (4.17) is modified to

∑
n1+n2=n−1

n1 n2pn

v, q
= −Qvµn

pn · v

( p1 pn−1

v, q + pn

−

p1 pn−1

v, q
)
. (4.20)

The treatment of the case where pn in (4.20) corresponds to the loop momentum ℓm is
independent of the number of external photons in the process. The discussion from appendix
A.2 of [27] therefore still applies and is summarised in the following. The loop momentum
ℓm completely factorises in one of the diagrams on the r.h.s. of (4.20), which renders the
corresponding contribution scaleless and thus vanishing.3 Which diagram vanishes depends
on whether ℓm connects to a different external leg, to the external leg labelled by v, or to
another open photon line to form a loop. If ℓm connects to a different external leg, it is the
second diagram in (4.20) that is scaleless. This implies the simplified recursion relation

T (q)
n,m = −Qvµm

ℓm · v
T (q+ℓm)

n,m−1 . (4.21)

If ℓm connects to the external leg labelled by v, there is an implicit dependence on ℓm in
the residual momentum q. The substitution q → q̃ − ℓm makes this dependence explicit and
shows that the first diagram in (4.20) is scaleless. Taking the loop momentum as outgoing,
i.e. ℓm → −ℓm, this yields

T (q)
n,m = Qvµm

−ℓm · v + i0T
(q̃+ℓm)

n,m−1 . (4.22)

The +i0 is given explicitly here to emphasize that the minus sign in the propagator cannot be
factored out without changing the prescription. The case where ℓm connects to another loop
momentum ℓi is slightly more involved. The corresponding recursion relation is stated here
without reiterating the derivation from [27]. Assuming without loss of generality ℓj = −ℓm−1,
the relation is given by

T (q)
n,m = −Qvµm

ℓm · v + i0
Qvµm−1

−ℓm−1 · v + i0T
(q+ℓm)

n,m−2 . (4.23)

3This holds since diagrams with more than one NLP vertex only contribute beyond NLP. Hence, wherever
the open photon line for ℓm attaches, the on-shell eikonal identity (4.16) applies and no scale dependence is
introduced.
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This concludes the discussion of the recursion relations for pn = ℓm, which remain unchanged
compared to single-photon emission. The treatment of the case pn = kn, on the other hand,
differs depending on whether there is one or multiple external photons in the process. If there
is only one external soft scale, the second diagram on the r.h.s. of (4.20) is scaleless because
the only scale fully factorises. If there are multiple external photons, this conclusion does
not hold anymore and both diagrams are to be taken into account. The general recursion
relation for external photons is

T (q)
n,m = Qvνn

−kn · v

(
T (q)

n−1,m − T (q−kn)
n−1,m

)
, (4.24)

where the photon momentum is taken to be outgoing as in (2.13).
The recursive application of the relations (4.21), (4.22), (4.23), and (4.24) yields the

off-shell eikonal identity

T (q)
n,m =

(
m∏

i=1

−siQv
µi

siℓi · v + i0

)
n∏

a=1

Qvνa

−ka · v
∑

J⊂{1,...,n}

i(−1)|J |∑̃
jℓj · v −

∑
j∈J kj · v + q̃ · v

. (4.25)

This is the generalisation of the single-emission identity given in (A.10) of [27] to multi-
photon emission. All external photon momenta ka are taken to be incoming. The loop
momenta ℓi are outgoing if they attach to the external leg labelled by v and incoming if
they connect to a different external leg. If two ℓi form a loop, one momentum is taken to be
incoming and the other one outgoing. In this case the modified sum

∑̃
takes into account

the incoming momentum (cf. (4.23)). Furthermore, q̃ is derived from p by removing all
dependence on the loop momenta ℓi (cf. (4.22)). Finally note that si is +1 if ℓi is incoming
and −1 otherwise. The causal +i0 prescription is explicitly displayed in (4.25) to indicate
that these sign factors do not cancel.

4.3 Single-photon emission

This section considers the simple case of single-photon emission at tree level in HLET. The
corresponding amplitude is given by

A(0)
m+1 =

(∑
i

Ai,(0)
k1,OLP

+Ai,(0)
k1,ONLP

)
+A(0)

;k1,ONLP
+
(∑

i

Ai,(0)
k1,mag +Ai,(0)

k1,0γ +Ai,(0)
k1,1γ

)
+O(λ)

=
( ∑

i

k1

vi
OLP +

k1

vi
ONLP

)
+

k1

ONLP

+
( ∑

i

k1

vi
OLP +

k1

vi
OLP +

k1

vi
OLP

)
+O(λ) . (4.26)

The amplitudes on the r.h.s. of the first line are in one-to-one correspondence with the
diagrams in the second and third line. The diagrams where the kinetic vertex with no photon
(0γ) corrects an on-shell leg vanish and are not explicitly displayed. This follows directly
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from the Feynman rule (4.10) with qj = 0. Furthermore, in the case of single emission at
tree level there is no contribution from the third kinetic vertex in (4.10) with two photons.
Section 4.1 provides all ingredients to compute the diagrams in (4.26) with the exception
of A(0)

;k1,ONLP
. This remaining contribution can be determined via matching, i.e. by equating

the HLET amplitude with the QED result of section 3.1.
Based on the eikonal vertex rule in (4.9), the first two amplitudes evaluate to

Ai,(0)
k1,OLP

= Ei(k1)A(0)
OLP

({−k1}) = Ei(k1)A(0)
m , (4.27)

Ai,(0)
k1,ONLP

= Ei(k1)A(0)
ONLP

({−k1}) = Ei(k1)
(
− k1 ·

∂

∂pi
Γ(0)

i

)
u(pi) . (4.28)

The HLET amplitudes A(0)
OLP

and A(0)
ONLP

are expressed in terms of the QED (sub)amplitudes
A(0)

m = Γ(0)
i u(pi) with the matching relations (4.14) and (4.15). In the following, these

relations are often used without explicit reference.
The Feynman rule for the magnetic vertex (4.11) and the eikonal propagator in (4.9) yield

Ai,(0)
k1,mag = QiCmag

4mi

i

−k1 · vi
Γ(0)

i (1 + /vi)σµνuviϵ
µ
1 (−kν

1 ) . (4.29)

Upon using the Dirac algebra and the Dirac equation /viuvi = uvi , this can be rewritten
in terms of the tensor

Hµ
1 = γµ − 1

k1 · vi
/k1v

µ
i − 1

k1 · vi
γµ /k1 (4.30)

as

Ai,(0)
k1,mag = QiCmag

2mi
Γ(0)

i ϵ1 ·H1uvi . (4.31)

Due to the particular structure of Hµ
1 , the magnetic contribution (4.31) vanishes at the level

of the unpolarised squared amplitude, i.e. after interfering with the LP eikonal term and
summing over the spin of the fermion with momentum pi. This follows from basic Dirac
algebra as shown in section 5.2.1 of [47].

The Feynman rules for the kinetic vertices (4.10) give

A(0)
k1,0γ = 1

2mi
Ei(k1)

k2
1,⊥i

k1 · v1
A(0)

m = Qi

2mi
ϵ1 · viA(0)

m , (4.32)

A(0)
k1,1γ = Qi

2mi

ϵ1 · k1,⊥i

k1 · vi
A(0)

m = − Qi

2mi
ϵ1 · viA(0)

m , (4.33)

where the ⊥i-components are expanded according to (4.8). The total kinetic contribution
therefore vanishes

A(0)
k1,kin = A(0)

k1,0γ +A(0)
k1,1γ = 0 . (4.34)

The remaining amplitude A(0)
;k1,NLP can now be determined by matching to the QED

result given by the sum of (3.6) and (3.10). With pi = mivi +O(λ), this yields

A(0)
;k1,NLP =

∑
i

(
−Qi

(
ϵ1 ·

∂

∂pi
Γ(0)

i

)
u(pi) +

QiΓ(0)
i /k1 /ϵ1u(pi)
2k1 · pi

−Ai,(0)
k1,mag

)
+O(λ) . (4.35)
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By construction, the tree-level LBK theorem (2.3) is reproduced after adding (4.27), (4.28),
and (4.35), squaring the result and summing over spins and polarisations. This implies
the HLET-QED relation

∑
pol

∣∣∣∣(∑
i

Ai,(0)
k1,OLP

+Ai,(0)
k1,ONLP

)
+A(0)

;k1,ONLP

∣∣∣∣2 +O(λ0) = (E(k1) +D(k1))M(0)
m +O(λ0) ,

(4.36)

with E and D defined in (2.4) and (2.5), respectively. The magnetic contribution (4.31) as
well as the kinetic terms (4.32) and (4.33) cancel and do not contribute to (4.36).

4.4 Double-photon emission

Based on the previous section, it is now possible to reproduce the tree-level double-emission
result of section 3.2 by reducing as many terms as possible to single-emission objects. The
double-emission amplitude in HLET is given by

A(0)
m+2 =

(∑
i,j

Aij,(0)
k1k2,OLP

+Aij,(0)
k1k2,ONLP

)
+
(∑

i

Ai,(0)
k1;k2,ONLP

+ (k1 ↔ k2)
)

+
(∑

i,j

Aij,(0)
k1k2,mag +Aij,(0)

k1k2,0γ +Aij,(0)
k1k2,1γ

)
+
(∑

i

Aii,(0)
k1k2,2γ

)
+O(λ0))

=
( ∑

i,j

k1

vi
OLP

k2 vj

+

k1

vi
ONLP

k2 vj )
+
(∑

i

k1

vi

k2

ONLP + (k1 ↔ k2)
)

+
(∑

i,j

k1

vi

k2 vj

OLP +

k1

vi

k2 vj

OLP +

k1

vi

k2 vj

OLP + (k1 ↔ k2)
)

+
( ∑

i

k1 k2

vi
OLP

)
+O(λ0) . (4.37)

In the third diagram, the additional external photon with momentum k1 only has to be
taken into account at LP. This follows from internal emission not contributing at LP. As a
consequence, the diagram reduces to the single-emission terms

Ai,(0)
k1;k2,ONLP

= Ei(k1)A(0)
;k2,ONLP

. (4.38)

This is also the case for contributions where the two photons are emitted from different
legs, i.e. if i ̸= j. The LP term reduces to

Ai ̸=j,(0)
k1k2,OLP

= Ei(k1)Ej(k2)A(0)
m (4.39)
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and the NLP to

Ai ̸=j,(0)
k1k2,V = Ei(k1)Aj,(0)

k2,V + Ej(k2)Ai,(0)
k1,V , (4.40)

with V ∈ {ONLP,mag, 0γ, 1γ}. Note that for V = ONLP, the two emissions factorise due to
the linear dependence of the matching relation (4.15) on the residual momenta qj .

As for QED, new structures can only arise if the two photons are emitted from the same
leg. This does not happen, however, in the case of the first two amplitudes in (4.37) due
to the on-shell eikonal identity (4.16), which yields

Aii,(0)
k1k2,OLP

=

k1 k2

vi
OLP = Ei(k1)Ei(k2)A(0)

m (4.41)

and

Aii,(0)
k1k2,ONLP

=

k1 k2

vi
ONLP = Ei(k1)Ai,(0)

k2,ONLP
+ Ei(k2)Ai,(0)

k1,ONLP
. (4.42)

Furthermore, also the magnetic vertex does not give rise to a new structure and instead
reduces to the single-emission terms

Aii,(0)
k1k2,mag =

k1k2

vi
OLP +

k1 k2

vi
OLP + (k1 ↔ k2)

= Ei(k2)Ai,(0)
k1,mag + Ei(k1)Ai,(0)

k2,mag , (4.43)

with Ai,(0)
ka,mag given in (4.29). This follows after rewriting the propagators in the second

diagram as
1

k1 · vi(k1 · vi + k2 · vi)
= 1
k1 · vik2 · vi

− 1
k2 · vi(k1 · vi + k2 · vi)

. (4.44)

The only non-trivial contributions come from the kinetic vertices. The 0γ-vertex gives
rise to the diagrams

Aii,(0)
k1k2,0γ =

k1 k2

vi
OLP +

( k1 k2

vi
OLP + (k1 ↔ k2)

)
. (4.45)

After applying the on-shell eikonal identity (4.16) to the first diagram and (4.44) to the
second one, the amplitude factorises according to

Aii,(0)
k1k2,0γ = 1

2mi
Ei(k1)Ei(k2)A(0)

m

(
k2

1,⊥i

k1 · vi
+

k2
2,⊥i

k2 · vi
+

(k1 + k2)2
⊥i

− k2
1,⊥i

− k2
2,⊥i

k1 · vi + k2 · vi

)

= Ei(k2)Ai,(0)
k1,0γ + Ei(k1)Ai,(0)

k2,0γ + G(0)
i,0γ(k1, k2)A(0)

m (4.46)
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into the single-emission amplitude Ai,(0)
ka,0γ given in (4.32) and the genuine two-photon term

G(0)
i,0γ(k1, k2) =

Q2
i

mi

ϵ1 · viϵ2 · vik1,⊥i
· k2,⊥i

k1 · vik2 · vi(k1 · vi + k2 · vi)
. (4.47)

Similarly, the 1γ-vertex amplitude evaluates to

Aii,(0)
k1k2,1γ =

k1k2

vi
OLP +

k1 k2

vi
OLP + (k1 ↔ k2)

= Ei(k2)Ai,(0)
k1,1γ + Ei(k1)Ai,(0)

k2,1γ + G(0)
i,1γ(k1, k2)A(0)

m , (4.48)

with Ai,(0)
ka,1γ given in (4.33) and

G(0)
i,1γ(k1, k2) = −Q

2
i

mi

ϵ1 · viϵ2 · k1,⊥i
k2 · vi + ϵ2 · viϵ1 · k2,⊥i

k1 · vi

k1 · vik2 · vi(k1 · vi + k2 · vi)
. (4.49)

The 2γ-vertex does not contribute to single emission (at tree level) and therefore only
generates the genuine double-emission contribution

Aii,(0)
k1k2,2γ =

k1 k2

vi
OLP = Q2

i

mi

ϵ1,⊥i
· ϵ2,⊥i

k1 · vik2 · vi

k1 · vik2 · vi(k1 · vi + k2 · vi)
A(0)

m = G(0)
i,2γ(k1, k2)A(0)

m .

(4.50)

Summing up the three kinetic contributions (4.46), (4.48), and (4.50), writing out the ⊥i

components, and replacing vi = pi/mi + O(λ) yields

Aii,(0)
k1k2,kin = Aii,(0)

k1k2,0γ +Aii,(0)
k1k2,1γ +Aii,(0)

k1k2,2γ = G(0)
i (k1, k2)A(0)

m , (4.51)

where G(0)
i = G(0)

i,0γ + G(0)
i,1γ + G(0)

i,2γ is defined in (3.21) and the single-emission terms cancel
each other according to (4.34). Combining (4.51) with the expressions for the OLP and ONLP
amplitudes given in (4.38), (4.41), and (4.42) yields for the total NLP amplitude

A(0)
m+2 = E(k1)E(k2)A(0)

m

+
(
E(k2)

(∑
i

(
Ai,(0)

k1,ONLP
+Ai,(0)

k1,mag
)
+A(0)

;k1,ONLP

)
+ (k1 ↔ k2)

)
+ G(0)(k1, k2)A(0)

m +O(λ0) , (4.52)

with E and G(0) defined in (3.23). This exactly corresponds to the QED result (3.22) since
the NLP single-emission contribution (3.24) in HLET is given by

A(0)
ka,NLP =

∑
i

(
Ai,(0)

ka,ONLP
+Ai,(0)

ka,mag
)
+A(0)

;ka,ONLP
. (4.53)

Hence, the unpolarised squared amplitude (3.25) is successfully reproduced in HLET.

– 20 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
4

4.5 Triple-photon emission

Before turning to the case of an arbitrary number of external photons, the triple-emission result
from section 3.3 is reproduced in the following. Again the strategy is to reduce as many terms
as possible to lower multiplicity contributions. The NLP triple-emission amplitude is given by

A(0)
m+3 =

(∑
i,j,l

Aijl,(0)
k1k2k3,OLP

+Aijl,(0)
k1k2k3,ONLP

)
+
(∑

i

Aij,(0)
k1k2;k3,ONLP

+ (k1,2 ↔ k3)
)

+
(∑

i,j,l

Aijl,(0)
k1k2k3,mag +Aijl,(0)

k1k2k3,0γ +Aijl,(0)
k1k2k3,1γ

)
+
(∑

i,l

Aiil,(0)
k1k2;k3,2γ + (k1,2 ↔ k3)

)
+O(λ0)) , (4.54)

with the diagrammatic representation

A(0)
m+3 =

(∑
i,j,l

k1

vi
OLP

k2 vj

k3
vl

+

k1

vi
ONLP

k2 vj

k3
vl

)
+
(∑

i,j

k1

vi

k2 vj

k3

ONLP + (k1,2 ↔ k3)
)

+
(∑

i,j,l

k1

vi

k2 vj

k3
vl

OLP +

k1

vi

k2 vj

k3
vl

OLP +

k1

vi

k2 vj

k3
vl

OLP + (k2,3 ↔ k1)
)

+
( ∑

i,l

k1 k2

vi

k3
vl

OLP + (k1,2 ↔ k3)
)
+O(λ0) . (4.55)

The shorthand notation (ki,j ↔ kl) is defined in (3.28). The same logic as in the double-
emission case of the previous section applies here. The diagrams in the first line trivially
reduce to eikonal factors times single-emission terms as an immediate consequence of the
on-shell eikonal identity (4.16). All remaining diagrams reduce to double- and single-emission
contributions if the three photons are not emitted from the same leg. As a consequence, only
diagrams with triple emission from the same leg have to be considered explicitly.

The magnetic amplitude receives contributions from the diagrams

Aiii,(0)
k1k2k3,mag =

k1k2k3

vi
OLP +

k1k2k3

vi
OLP +

( k1 k2k3

vi
OLP + (k1 ↔ k2)

)

+ (k1,2 ↔ k3) . (4.56)
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Applying the on-shell eikonal identity (4.16) to the first diagram and the off-shell eikonal
identity (4.25) to the latter two, they evaluate to

Aiii,(0)
k1k2k3,mag = k3 · viAi,(0)

k3,magEi(k1)Ei(k2)
( 1 + 1− (1 + 1)
k1 · vi + k2 · vi + k3 · vi

+ 0− 1 + (1 + 0)
k1 · vi + k3 · vi

+ 0− 1 + (0 + 1)
k2 · vi + k3 · vi

+ 0 + 1 + (0 + 0)
k3 · vi

)
+ (k1,2 ↔ k3)

= Ei(k1)Ei(k2)Ai,(0)
k3,mag + (k1,2 ↔ k3) . (4.57)

The first two lines of (4.57) are written such that the individual contributions from the
off-shell eikonal identity (4.25) due to different choices of J ⊂ {k1, k2, k3} can easily be
identified. This can be illustrated with the second term in the bracket. The two zeros in the
numerator indicate that the first and fourth (corresponding to the (k1 ↔ k2) term) diagram
in the first line of (4.56) do not contribute to this propagator structure. The second and
third term in the numerator correspond to the contributions of the second and third diagram
with J = {k1} and J = {}, respectively. As in the case of double emission, the magnetic
contribution reduces to single-emission terms and thus vanishes for unpolarised scattering.

Similarly, the 0γ-amplitude evaluates to

Aiii,(0)
k1k2k3,0γ =

k1 k2 k3

vi
OLP +

( k1 k2 k3

vi
OLP +

k1 k2k3

vi
OLP + (k1,2 ↔ k3)

)

= 1
2mi

Ei(k1)Ei(k2)Ei(k3)A(0)
m

(
(k1+k2+k3)2

⊥i
−
(
(k1+k2)2

⊥i
−k2

3,⊥i
+ (k1,2 ↔ k3)

)
k1 · vi + k2 · vi + k3 · vi

+
((k1 + k2)2

⊥i
− k2

1,⊥i
− k2

2,⊥i

k1 · vi + k2 · vi
+ k3,⊥i

k3 · vi
+ (k1,2 ↔ k3)

))
. (4.58)

The numerator of the first fraction vanishes and the expression simplifies to

Aiii,(0)
k1k2k3,0γ = Ei(k1)Ei(k2)Ai,(0)

k3,0γ + Ei(k3)G(0)
i,0γ(k1, k2)A(0)

m + (k1,2 ↔ k3) , (4.59)

with the single-emission amplitude Ai,(0)
ka,0γ defined in (4.32) and the genuine double-emission

contribution G(0)
i,0γ given in (4.47). Finally, the results for the two remaining kinetic am-
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plitudes read

Aiii,(0)
k1k2k3,1γ =

k1k2k3

vi
OLP +

k1k2k3

vi
OLP +

( k1 k2k3

vi
OLP + (k1 ↔ k2)

)

+ (k1,2 ↔ k3)

= Ei(k1)Ei(k2)Ai,(0)
k3,1γ + Ei(k3)G(0)

i,1γ(k1, k2)A(0)
m + (k1,2 ↔ k3) , (4.60)

Aiii,(0)
k1k2k3,2γ =

k1k2k3

vi
OLP +

k1k2k3

vi
OLP + (k1,2 ↔ k3)

= Ei(k3)G(0)
i,2γ(k1, k2)A(0)

m + (k1,2 ↔ k3) . (4.61)

The single emission amplitude Ai,(0)
ka,1γ is given in (4.32) and the two double-emission objects

G(0)
i,1γ(k1, k2) and G(0)

i,2γ(k1, k2) are defined in (4.49) and (4.50), respectively. In total, the
kinetic contribution therefore reads

Aiii,(0)
k1k2k3,kin = Aiii,(0)

k1k2k3,0γ +Aiii,(0)
k1k2k3,1γ +Aiii,(0)

k1k2k3,2γ = Ei(k3)G(0)
i (k1, k2) + (k1,2 ↔ k3) , (4.62)

with G(0)
i = G(0)

i,0γ + G(0)
i,1γ + G(0)

i,2γ defined in (3.21). As for double emission, the single-emission
terms cancel according to (4.34). All of these results combined exactly reproduce the QED
amplitude (3.35) and therefore also the soft theorem (2.17) for triple emission at tree level.

4.6 n-photon emission

This section formalises the previous HLET calculations and extends them to an arbitrary
number of external photons. At LP the most general diagram to be considered is

Ai...i,(0)
k1...kn,OLP

=

n

vi
OLP , (4.63)

where the dashed line denotes n photons attached to the crossed vertex. Emissions from
different legs trivially factorise and are not considered explicitly here. Upon applying the
on-shell eikonal identity (4.16), this amplitude takes the simple form

Ai...i,(0)
k1...kn,OLP

=
n∏

a=1
Ei(ka)A(0)

m . (4.64)
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Exactly the same reasoning applies to the ONLP diagrams

Ai...i,(0)
k1...kn−1;kn,ONLP

=

knn − 1

vi
ONLP =

n−1∏
c=1

Ei(kc)A(0)
;kn,ONLP

, (4.65)

Ai...i,(0)
k1...kn,ONLP

=

n

vi
ONLP =

n∑
a=1

∏
c ̸=a

Ei(kc)Ai,(0)
ka,ONLP

. (4.66)

The remaining NLP diagrams with insertions of the magnetic and the kinetic vertices
are more involved. The corresponding generic diagram is given by

An,i
p,V =

∑
K⊂N

K K̄P

vi V
OLP + (k1,...,p ↔ kp+1,...,n) , (4.67)

where the sets P = {1, . . . , p}, K ⊂ N = {p + 1, . . . , n}, and K̄ = N \K define the index
sets for the momenta ka connected to the respective vertex. The notation (k1,...,p ↔ kp+1,...,n)
is a generalisation of (3.28) and denotes all possible permutations of {k1, . . . kn} modulo
permutations of {k1, . . . , kp} and {kp+1, . . . , kn}. The magnetic and kinetic contributions
are related to this generic amplitude via

Ai...i,(0)
k1...kn,mag = An,i

1,mag , (4.68)

Ai...i,(0)
k1...kn,0γ = An,i

0,0γ , (4.69)

Ai...i,(0)
k1...kn,1γ = An,i

1,1γ , (4.70)

Ai...i,(0)
k1...kn,2γ = An,i

2,2γ . (4.71)

The on-shell eikonal identity (4.16) can be used for the dashed line in (4.67) with the
index set K. In the case of the K̄ line, the generalised off-shell identity (4.25) applies with

p̃ · vi = −
∑
j∈K

kj · vi −
p∑

j=1
kj · vi (4.72)

and m = 0. This yields for the amplitude (4.67) the expression

An,i
p,V = Γ(0)

i

( p∏
c=1

ϵρc
c

n∏
c=p+1

Ei(kc)
∑

K⊂N

FK,V
ρ1...ρp

∑
J⊂K̄

(−1)|J |P J̃
p

)
uvi + (k1,...,p ↔ kp+1,...,n) ,

(4.73)

with J̃ = K ∪ J and the propagator structure

P J̃
p = i

−
∑

j∈J̃ kj · vi −
∑p

j=1 kj · vi
. (4.74)
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The Feynman rules for the magnetic and kinetic vertices given in (4.11) and (4.10) imply
for the corresponding vertex factors

FK,mag
ρ1 = −QiCmag

4mi
(1 + /vi)σρ1λk

λ
1 , (4.75)

FK,0γ = i

2mi

(
−
∑
j∈K

kj

)2

⊥i

, (4.76)

FK,1γ
ρ1 = −iQi

2mi

(
− k1 − 2

∑
j∈K

kj

)⊥i

ρ1

, (4.77)

FK,2γ
ρ1ρ2 = iQ2

i

mi
g⊥i

ρ1ρ2 . (4.78)

The expression (4.73) contains different propagator structures labelled by J̃ . In order to
collect for these structures the two sums over K and J can be reshuffled according to∑

K⊂N

a(K)
∑

J⊂K̄

(−1)|J | b(K ∪ J) =
∑

J̃⊂N

(−1)|J̃ | b(J̃)
∑

K⊂J̃

(−1)K a(K) , (4.79)

where a and b are generic functions of the index sets. Identifying a with the vertex factor
FK,V

ρ1...ρp
in (4.73) and b with the propagator structure P J̃

p , the amplitude is rewritten as

An,i
p,F = Γ(0)

i

( p∏
c=1

ϵρc
c

n∏
c=p+1

Ei(kc)
∑

J̃⊂N

F̄ J̃ ,V
ρ1...ρp

P J̃
p

)
uvi , (4.80)

where the coefficient of the propagator structure labelled by J̃ is given by

F̄ J̃ ,V
ρ1...ρp

= (−1)|J̃ |
∑

K⊂J̃

(−1)|K|FK,V
ρ1...ρp

. (4.81)

It turns out that the sum in (4.81) can be evaluated in closed form for any J̃ for all vertices.
In particular, plugging (4.75)–(4.78) into (4.81) gives

F̄ J̃ ,mag
ρ1 = −QiCmag

4mi
(1 + /vi)σρ1λk

λ
1

1, J̃ = {}
0, otherwise

, (4.82)

F̄ J̃ ,0γ = i

2mi



0, J̃ = {}
k2

a,⊥i
, J̃ = {ka}

2k⊥i
a · k⊥i

b , J̃ = {ka, kb}
0, otherwise

, (4.83)

F̄ J̃ ,1γ
ρ1 = iQi

2mi


k⊥i

1,ρ1 , J̃ = {}
2k⊥i

a,ρ1 , J̃ = {ka}
0, otherwise

, (4.84)

F̄ J̃ ,2γ
ρ1ρ2 = iQ2

i

mi
g⊥i

ρ1ρ2

1, J̃ = {}
0, otherwise

. (4.85)

– 25 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
4

Hence, these coefficients are only non-zero for very few choices of J̃ . This results in an
enormous simplification since the non-trivial part of the amplitude (4.80) is parameterised by
J̃ and p. The dependence on the photon momenta ka with a /∈ J̃ ∪ P , on the other hand,
trivially factorises in terms of eikonal factors.

The amplitude (4.80) can now be evaluated straightforwardly for the four vertex types.
The magnetic coefficient (4.82) vanishes for |J̃ | > 0. Since in addition p = 1 in (4.68),
the amplitude (4.80) reduces to single-emission terms times eikonal factors. In particular,
it evaluates to

Ai...i,(0)
k1...kn,mag = An,i

1,mag = Γ(0)
i

(
ϵρ1
1

n∏
c=2

Ei(kc)F̄ {},mag
ρ1 P{}

1

)
uvi + (k1 ↔ k2,...,n)

=
n∏

c=2
Ei(kc)

(
QiCmag
4mi

i

k1 · vi
Γ(0)

i (1 + /vi)σρ1λuviϵ
ρ1
1 k

λ
1

)
+ (k1 ↔ k2,...,n)

=
n∑

a=1

∏
c ̸=a

Ei(kc)Ai,(0)
ka,mag , (4.86)

where the expression for the magnetic single-emission amplitude (4.29) is recovered. This
confirms the simple structure (4.57) in the triple-emission case and extends it to an arbitrary
number of photon emissions.

The kinetic coefficients (4.83), (4.84), and (4.85) all vanish for p+ |J̃ | > 2. As a result,
the corresponding amplitudes reduce to the single- and double-emission terms

Ai...i,(0)
k1...kn,V =

n∑
a=1

∏
c ̸=a

Ei(kc)Ai,(0)
ka,V +

n∑
a,b=1

∏
c ̸=a,b

Ei(kc)G(0)
i,V (ka, kb)A(0)

m , (4.87)

with V ∈ {0γ, 1γ, 2γ}. The lower multiplicity objects Ai,(0)
ka,V and G(0)

i,V (ka, kb) have been
calculated in sections 4.3 and 4.4, respectively. For the purpose of illustration, this is
demonstrated explicitly in the case of the 0γ-vertex. Plugging the coefficient (4.83) into
the amplitude (4.80) gives

Ai...i,(0)
k1...kn,0γ = Γ(0)

i

n∏
c=1

Ei(kc)
( n∑

a=1
F̄ {ka},0γP{ka}

0 +
n∑

a,b=1
F̄ {ka,kb},0γP{ka,kb}

0

)
uvi

=
n∏

c=1
Ei(kc)

1
2mi

( n∑
a=1

k2
a,⊥i

ka · vi
+

n∑
a,b=1

2ka,⊥i
· kb,⊥i

ka · vi + kb · vi

)
A(0)

m

=
n∑

a=1

∏
c ̸=a

Ei(kc)Ai,(0)
ka,0γ +

n∑
a,b=1

∏
c ̸=a,b

Ei(kc)G(0)
i,0γ(ka, kb)A(0)

m , (4.88)

recovering the single- and double-emission objects given in (4.32) and (4.47), respectively.
The sum of the three kinetic amplitudes is thus given by

Ai...i,(0)
k1...kn,kin = Ai...i,(0)

k1...kn,0γ +Ai...i,(0)
k1...kn,1γ +Ai...i,(0)

k1...kn,2γ =
n∑

a,b=1

∏
c ̸=a,b

Ei(kc)G(0)
i (ka, kb)A(0)

m , (4.89)

with G(0)
i defined in (3.21) and the single-emission term cancelling according to (4.34).

Together with the OLP and ONLP results in (4.63), (4.65), and (4.66) this yields for the
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n-emission amplitude

A(0)
m+n =

n∏
a=1

E(ka)A(0)
m +

n∑
a=1

∏
c ̸=a

E(kc)A(0)
ka,NLP +

n∑
a,b=1

∏
c ̸=a,b

E(kc)G(0)(ka, kb)A(0)
m +O(λ−n+2) ,

(4.90)

with E and G(0) defined in (3.23) and the total NLP single-emission contribution A(0)
ka,NLP

given by (4.53). This generalises the tree-level result (3.35) for triple emission to an arbitrary
number of soft photons and proves the soft theorem (2.17) at tree level. Compared to QED,
the simple NLP structure becomes much more transparent in HLET. Since the soft expansion
is already performed at the Lagrangian level in the effective theory, the Dirac and propagator
structure is significantly simpler in HLET. This, in turn, allows for the derivation of the
eikonal identities of section 4.2, which form the basis of the above tree-level derivation and
its all-order generalisation presented in the following section.

4.7 n-photon emission to all orders

In what follows, the tree-level result of the previous section is generalised to all orders, which
completes the proof of the soft theorem (2.17). In order to do so, virtual corrections are added
to the generic diagrams (4.63), (4.65), (4.66), and (4.67). Due to the simple dependence
on the loop momenta in the off-shell eikonal identity (4.25), the derivation of the previous
section does not change substantially. In particular, the amplitudes reduce to all-order
single-emission contributions — which have been shown to be one-loop exact in [27] — and
tree-level exact double-emission terms.

To all orders, the generic LP amplitude (4.63) is given by

Ai...i
k1...kn,OLP =

∑
u,s,t

vi

n

OLP

u

t

s

, (4.91)

where the sums go from zero to infinity. The dashed lines represent multiple photons with
the given number. In addition to the dashed line for the n external photons, there are three
types of virtual corrections in (4.91). Loops that only attach to the emitting leg labelled by
vi are represented by the dashed line labelled by s. The remaining two types correspond
to corrections that connect the emitting leg with the remaining ones and others that only
correct the non-emitting legs. These are represented by the dashed lines labelled by u and
t, respectively. As a consequence of the on-shell eikonal identity (4.16), all loop corrections
in (4.91) turn out to be scaleless. There is, however, a subtlety in interpreting (4.91) in the
case of single-leg corrections. To avoid that some permutations of the photon lines result in
external self-energy corrections, it is useful to first discuss the loops that connect different
legs and then generalise the argument to the remaining corrections.
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In the case of the corrections that connect different legs, the on-shell eikonal identity (4.16)
can be applied to write the amplitude as

vi

n

OLP

u

=
n∏

a=1
Ei(ka)

1
u!

u∏
l=1

∫
[dℓl]

−Qivi,µl

[ℓ2l ][ℓl · vi]
Γµ1...µu

i uvi . (4.92)

The combinatorial factor u! takes into account the double counting due to the photon lines
connecting two crossed vertices. The d-dimensional loop measure

[dℓ] = iµ2ϵ ddℓ

(2π)d
(4.93)

is defined such that it absorbs the i from the corresponding virtual photon propagator.
The sub-amplitude Γµ1...µu

i represents the remaining part of the amplitude. Upon using the
on-shell eikonal identity (4.16) it takes the form

Γµ1...µu
i =

∑
j1,...,ju ̸=i

u∏
l=1

Qjl
vµl

jl

[−ℓl · vjl
]Γi , (4.94)

with Am = Γiuvi . All integrals in (4.92) are therefore scaleless. The additional loops in (4.91)
labelled by s and t are now correctly taken into account by inserting one-particle irreducible
(1PI) corrections at the crossed vertices. In this way, the aforementioned problem of external
self-energy corrections is avoided. After summing over all attachments to the 1PI diagram,
all momenta of the external photons completely decouple and the 1PI insertions are rendered
scaleless. The diagram on the r.h.s. of (4.91) thus collapses to the tree-level amplitude (4.14)
with u = s = t = 0 and evaluates to

Ai...i
k1...kn,OLP =

n∏
a=1

Ei(ka)AOLP =
n∏

a=1
Ei(ka)Am . (4.95)

The full all-order form of the matching relation (4.14) is used here for the first time.
In complete analogy to the tree-level case given in (4.65) and (4.66), the all-order ONLP

diagrams can be written in terms of the corresponding all-order single-emission amplitudes as

Ai...i
k1...kn−1;kn,ONLP =

∑
u,s,t

vi

knn − 1

ONLP

u

t

s

=
n−1∏
c=1

Ei(kc)Ai
;kn,ONLP , (4.96)

Ai...i
k1...kn,ONLP =

∑
u,s,t

vi

n

ONLP

u

t

s

=
n∑

a=1

∏
c ̸=a

Ei(kc)Ai
ka,ONLP . (4.97)
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In principle, an additional diagram type exists where a virtual photon connects to the ONLP
vertex instead of the external one in (4.96). However, as a consequence of the on-shell eikonal
identity (4.16) the corresponding loop integral completely factorises and is rendered scaleless.
Hence, these diagrams vanish and do not have to be considered explicitly. Furthermore, the all-
order single-emission amplitudes A;kn,ONLP and Ai

ka,ONLP
have already been considered in [27].

In particular, it was shown that their contribution to the unpolarised squared amplitude can
be computed via the naive all-order extension of the matching equation (4.36) given by

∑
pol

∣∣∣∣(∑
i

Ai
ka,OLP +Ai

ka,ONLP

)
+A;ka,ONLP

∣∣∣∣2 +O(λ0) = (E(ka) +D(ka))Mm +O(λ0) .

(4.98)

There are two reasons for this. First, all virtual corrections in (4.96) and (4.97) are scaleless
and therefore vanish. This is completely analogous to the LP case discussed above. Second,
the kinetic vertices only contribute at one loop (and not at tree level) and the magnetic
contribution vanishes completely at the level of the unpolarised squared amplitude. Hence,
the l.h.s. of (4.98) makes up the total purely hard contribution in HLET. It can therefore
be calculated by expanding the QED amplitude with the method of regions in the hard
momentum region, i.e. in the region where all loop momenta scale as ∼ λ0. It is, however,
precisely these purely hard contributions where the original tree-level proof of the LBK
theorem presented in section 3.1 still applies. This is because internal emission from hard
loops does not break locality. The only exception are factorisable corrections of the emitting
leg. As shown in section 5 of [27] these corrections are in one-to-one correspondence with the
magnetic contribution in HLET and thus vanish for unpolarised scattering.

The all-order generalisation of the generic NLP diagram (4.67) is given by

Anuts,i
pwrq,V =

∑
K⊂N

vi V

PK K̄

OLP

w
s − q

r

q u − w

t − r

+ (k1,...,p ↔ kp+1,...,n) , (4.99)

where we omit all dashed lines that directly result in scaleless integrals after applying the on-
shell eikonal identity (4.16). The index sets K, P and K̄ are defined as in (4.67). Furthermore,
the virtual dashed lines are given in pairs with a fixed combined number of photons, e.g.
w + (u− w) = u. This yields a decomposition of the amplitude into gauge-invariant subsets
at each given order in perturbation theory. The labels for the loop momenta decompose into
the sets {ℓ1, . . . ℓw}, {ℓw+1, . . . ℓu}, {ℓu+1, . . . , ℓu+s−q} for photon lines that connect different
external legs and {ℓ̃1, . . . ℓ̃r}, {ℓ̃r+1, . . . ℓ̃t}, {ℓ̃t+1, . . . ℓ̃t+q} for the ones that only correct the
leg labelled by vi. The all-order magnetic and kinetic contributions can be constructed based
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on the generic amplitude (4.99) via

Ai...i
k1...kn,mag =

∑
u,t

u∑
w=0

t∑
r=0

(
Anut0,i

1wr0,mag +Anut1,i
0wr0,mag +Anut1,i

0wr1,mag

)
, (4.100)

Ai...i
k1...kn,0γ =

∑
u,t

u∑
w=0

t∑
r=0

Anut0,i
0wr0,0γ , (4.101)

Ai...i
k1...kn,1γ =

∑
u,t

u∑
w=0

t∑
r=0

(
Anut0,i

1wr0,1γ +Anut1,i
0wr0,1γ +Anut1,i

0wr1,1γ

)
, (4.102)

Ai...i
k1...kn,2γ =

∑
u,t

u∑
w=0

t∑
r=0

(
Anut0,i

2wr0,2γ +Anut1,i
1wr0,2γ +Anut1,i

1wr1,2γ +Anut2,i
0wr0,2γ +Anut2,i

0wr1,2γ +Anut2,i
0wr2,2γ

)
.

(4.103)

As for the tree-level diagram (4.67), the on-shell eikonal identity (4.16) can be used for the
crossed vertices that attach to an external leg. For the crossed vertex that corrects the
off-shell leg, the off-shell identity (4.25) applies with

∑̃
j
ℓj · vi =

u∑
j=w+1

ℓj · vi +
t+q∑
j=1

ℓ̃j · vi , (4.104)

p̃ · vi =
w∑

j=1
ℓj · vi +

u+s−q∑
j=u+1

ℓj · vi −
∑
j∈K

kj · vi −
p∑

j=1
kj · vi . (4.105)

As a result, the amplitude (4.99) takes the form

Anuts,i
pwrq,V =

p∏
c=1

ϵρc
c

n∏
c=p+1

Ei(kc)
u+s−q∏

l=1

∫
[dℓl]

t+q∏
l=1

∫
[dℓ̃l] Γ

νq+1...νsµ1...µu

i (−1)sSwuSrt

×
∑

K⊂N

Fwrq,K
ν1...νsρ1...ρp,V

∑
J⊂K̄

(−1)|J |Pν1...νq ,J̃
utsq,µ1...µu

uvi + (k1,...,p ↔ kp+1,...,n) , (4.106)

with the propagator structure

Pν1...νq ,J̃
utsq,µ1...µu

=
(

u∏
l=1

Qivi,µl

[ℓ2l ][ℓl · vi]

)( u+s−q∏
l=u+1

1
[ℓ2l ]

)(
t∏

l=1

Q2
i

[ℓ̃2l ][ℓ̃l · vi][−ℓ̃l · vi]

)( t+q∏
l=t+1

Qiv
νi
i

[ℓ̃2l ][−ℓ̃l · vi]

)

× i∑u+s−q
j=1 ℓj · vi +

∑t+q
j=1 ℓ̃j · vi −

∑
j∈J̃ kj · vi −

∑p
j=1 kj · vi

. (4.107)

The sub-amplitude Γνq+1...νsµ1...µu

i denotes the remaining part of the amplitude. Since no
NLP vertex attaches to this part of the diagram, the loop momenta factorise according to
the on-shell eikonal identity. At tree level the sub-amplitude reduces to Γ(0)

i defined in (3.2).
Furthermore, there is a double counting of contributions in the cases where a dashed line
connects two crossed vertices. The factor

Sxy = (−1)x

x!(y − x)! (4.108)
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takes this into account for the two dashed lines with x and y − x photons. Furthermore, it
also absorbs the corresponding signs coming from the off-shell eikonal identity (4.25) and
the −1 from the photon propagators.

The vertex factor in (4.106) for the magnetic contribution reads

Fwrq,K
µ,mag = QiCmag

4mi
(1 + /vi)σµλp

λ , pλ =


−kλ

1 , q = 0, µ = ρ1

ℓλu+1, q = 0, µ = ν1

ℓ̃λt+1, q = 1, µ = ν1

. (4.109)

In the case of the three kinetic vertices it is given by

Fwr0,K
0γ = i

2mi

(
L−

∑
j∈K

kj

)2

⊥i

, (4.110)

Fwrq,K
µ,1γ = −iQi

2mi

(
p+ 2L− 2

∑
j∈K

kj

)⊥i

µ

, (4.111)

Fwrq,K
µ1µ2,2γ = iQ2

i

mi
g⊥i

µ1µ2 , (4.112)

with

Lµ =
w∑

l=1
ℓµl +

r∑
l=1

ℓ̃µl (4.113)

and pµ defined as in (4.109).
In complete analogy to the tree-level calculation of the previous section, the expres-

sion (4.106) can be collected in terms of the propagator structures by reshuffling the sums
according to (4.79). This yields

Anuts,i
pwrq,V =

p∏
c=1

ϵρc
c

n∏
c=p+1

Ei(kc)
u+s−q∏

l=1

∫
[dℓl]

t+q∏
l=1

∫
[dℓ̃l] Γ

νq+1...νsµ1...µu

i (−1)sSwuSrt

×
∑

J̃⊂N

F̄wrq,J̃
ν1...νsρ1...ρp,V P

ν1...νq ,J̃
utsq,µ1...µu

uvi + (k1,...,p ↔ kp+1,...,n) , (4.114)

with the propagator coefficients

F̄wrq,J̃
ν1...νsρ1...ρp,V = (−1)|J̃ |

∑
K⊂J̃

Fwrq,K
ν1...νsρ1...ρp,V . (4.115)

The evaluation of this coefficient does not significantly change compared to the tree-level
version (4.81). Also in this case the coefficients for the four vertex types turn out to vanish
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for most choices of J̃ and read

F̄wrq,J̃
µ,mag = QiCmag

4mi
(1 + /vi)σµλp

λ

1, J̃ = {}
0, otherwise

, (4.116)

F̄wr0,J̃
0γ = i

2mi



L2, J̃ = {}
(ka − 2L)⊥i · k⊥i

a , J̃ = {ka}
2k⊥i

a · k⊥i
b , J̃ = {ka, kb}

0, otherwise

, (4.117)

F̄wrq,J̃
µ,1γ = iQi

2mi


(−p− 2L)⊥i

µ , J̃ = {}
2k⊥i

a,µ, J̃ = {ka}
0, otherwise

, (4.118)

F̄wrq,J̃
µ1µ2,2γ = iQ2

i

mi
g⊥i

µ1µ2

1, J̃ = {}
0, otherwise

. (4.119)

The momentum pµ in (4.116) and (4.118) is chosen according to (4.109). The above expressions
reduce to the tree-level coefficients (4.82)–(4.85) for L = 0 and q = 0. Furthermore, if J̃ = {}
all loop integrals are trivially scaleless and we can set L = 0 in this case. In particular,
this implies that F̄wr0,{}

0γ = 0. The above coefficients thus have exactly the same structure
as the tree-level ones. Hence, also the all-order amplitude (4.114) reduces to single- and
double emission terms according to

Ai...i
k1...kn,mag =

n∑
a=1

∏
c ̸=a

Ei(kc)Ai
ka,mag , (4.120)

Ai...i
k1...kn,V =

n∑
a=1

∏
c ̸=a

Ei(kc)Ai
ka,V +

n∑
a,b=1

∏
c ̸=a,b

Ei(kc)Gi,V (ka, kb)Am , (4.121)

with V ∈ {0γ, 1γ, 2γ}. This is the all-order generalisation of the tree-level relations (4.86)
and (4.87). In [27], the all-order single-emission amplitudes Ai

ka,mag and Ai
ka,V have been

shown to be tree-level and one-loop exact, respectively. The corresponding argument is
repeated in the following and used to prove that the all-order double-emission objects
Gi,V (ka, kb) are tree-level exact.

Since F̄wr0,{}
0γ = 0 as argued above, the coefficients (4.116)–(4.119) are either independent

or linearly dependent on L. In addition, they enter the expression (4.114) that is completely
symmetric under permutations of {ℓ1, . . . , ℓw} and {ℓ̃1, . . . , ℓ̃r}, which allows for the simplifying
replacement

Lµ =
w∑

l=1
ℓµl +

r∑
l=1

ℓ̃µl → wℓµ1 + rℓ̃µ1 . (4.122)

This, in turn, allows for the evaluation of the corresponding sums in (4.100)–(4.103) with
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the identities
y∑

x=0
Sxy = δy,0 , (4.123)

y∑
x=0

Sxyx = −δy,1 . (4.124)

The vertex factors that are independent of w and r force the loop corrections related to u and t
to vanish. A linear dependence, on the other hand, gives rise to a one-loop exact contribution.

Genuine double-emission terms contributing to Gi,V in (4.121) only arise from the vertex
factors F̄wr0,{ka,kb}

0γ , F̄wr0,{ka}
ρ1,1γ , and F̄

wr0,{}
ρ1ρ2,2γ . All of them are independent of w and r which

implies together with (4.123) that u = 0 and t = 0. Since in addition q = 0, there are no loop
corrections at all in this case. The genuine double-emission term in (4.121) is thus tree-level
exact Gi,V = G(0)

i,V and the total kinetic amplitude simplifies to

Ai...i
k1...kn,kin =

n∑
a=1

∏
c ̸=a

Ei(kc)Ai
ka,kin +

n∑
a,b=1

∏
c ̸=a,b

Ei(kc)G(0)
i (ka, kb)Am . (4.125)

Contrary to the tree-level case (4.34), the total kinetic single-emission amplitude Ai
ka,kin does

not vanish. Instead, it gives rise to a one-loop exact contribution as shown in [27]. In the
case of the magnetic amplitude Ai

ka,mag, on the other hand, all loop corrections vanish as for
Gi,V . In the following, the explicit results from [27] are repeated for the sake of completeness.

The tree-level exact magnetic contribution is given by

Ai
ka,mag = QiCmag

2mi
Γiϵa ·Hauvi , (4.126)

with Hµ
a defined in (4.30). As already mentioned, the specific form of this tensor results in a

vanishing contribution for unpolarised scattering. The result (4.126) together with (4.120)
therefore proves that the magnetic contribution does not enter the soft theorem (2.17). The
result for the kinetic contribution is given in (4.40) of [27] and reads

Ai
ka,kin =

∑
j ̸=i

Q2
iQj

(
ϵa · pi

ka · pi
− ϵa · pj

ka · pj

)
S(1)(pi, pj , ka)Am , (4.127)

with the one-loop exact soft function S(1) defined in (2.10).
In summary, the all-order amplitude to NLP for an arbitrary number of soft-photon

emissions takes the remarkably simple form

Am+n =
n∏

a=1
E(ka)Am +

n∑
a=1

∏
c ̸=a

E(kc)Aka,NLP +
n∑

a,b=1

∏
c ̸=a,b

E(kc)G(0)(ka, kb)Am +O(λ−n+2) ,

(4.128)

with the NLP single-emission contribution

Aka,NLP =
(∑

i

Ai
ka,ONLP +Ai

ka,mag +Ai
ka,kin

)
+A;ka,ONLP . (4.129)
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The results for Ai
ka,mag and Ai

ka,kin are given in (4.126) and (4.127), respectively. The magnetic
contribution vanishes in the unpolarised case. The tree-level exact genuine double-emission
contribution G(0) is defined in (3.23). Finally, the contribution of the ONLP amplitudes
in (4.129) to the unpolarised squared amplitude is given by the matching relation (4.98).
This reproduces the soft theorem (2.17) and completes the all-order proof.

5 Real-real-virtual corrections for muon-electron scattering

This section considers muon-electron scattering as a first non-trivial application of the NLP
soft theorem (2.17). This process has gained considerable attention in recent years [48–62]
due to the MUonE experiment [63–66] requiring a high-precision theory prediction at the
level of 10 parts per million (ppm). The MUonE experiment aims at extracting the hadronic
contribution to the running of the QED coupling α with a precision below 1%. Currently, the
two independent Monte Carlo codes MESMER [50] and McMule [48] incorporate NNLO
QED corrections for muon-electron scattering. Both codes calculate the contributions that
only correct the electron and muon line without any approximation. In [50], the genuine two-
loop four-point topologies are approximated with a YFS-inspired approach. The calculation
presented in [49], on the other hand, takes these into account by massifying [67–70] the
amplitude with a vanishing electron mass [71–74]. This gives a correct description up to
terms that are polynomially suppressed by the electron mass.

The differential results presented in [49] indicate that corrections beyond NNLO are
required to meet the 10ppm precision goal. This has triggered a collaborative effort to
calculate the dominant electron-line corrections to muon-electron scattering at N3LO [75].
Two major steps in this direction have already been taken with the calculation of the
heavy-quark form factor at three loops [76–78] and the construction of the all-order FKSℓ

subtraction scheme [79]. One of the remaining challenges is the numerical stability of the
real-real-virtual amplitude. In the case of real-virtual corrections at NNLO, the method of
next-to-soft stabilisation [28] has proven to ensure stable evaluations for a wide range of
processes [28, 80, 81] and in particular also for muon-electron scattering [49]. Most numerical
instabilities in real-emission amplitudes occur in the region of soft-collinear photon emission.
By replacing the full amplitude in this delicate region with its soft NLP expansion, an
efficient, stable, and accurate implementation is obtained. In addition, the LBK theorem (2.8)
provides a fully automatable way to obtain the corresponding expansion based on lower-order
amplitudes. The generalisation (2.17) of the LBK theorem to multi-photon emission therefore
provides the basis to extend next-to-soft stabilisation to multiple radiation.

In the following, the one-loop electron line corrections to the process

e−(p1)µ−(p2) → e−(p3)µ−(p4)γ(k1)γ(k2) (5.1)

are calculated at NLP in the unordered soft limit k1 ∼ k2 ≪ pi,mi. The soft theorem (2.17)
is used with the charge and momentum signs

p1 →+ p1, p2 →+ p2, p3 →− p3, p4 →− p4 ,

Q1 =− e, Q2 =− e, Q3 =+ e, Q4 =+ e .
(5.2)
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These sign conventions also have to be taken into account in the derivatives ∂/∂pµ
i of (2.7).

Furthermore, the non-radiative invariants are chosen as

{s} = {s = (p1 + p2)2, t = (p2 − p4)2} . (5.3)

This definition has to be consistently used both in the evaluation of the non-radiative
amplitude as well as in the calculation of the derivatives ∂sL/∂p

µ
i . The LBK operators (2.7)

for the incoming and outgoing electron then read

D̃µ
1 (ka) =

(
pµ

1
ka · p1

ka · p2 − pµ
2

)
2 ∂
∂s

, (5.4)

D̃µ
3 (ka) = 0 . (5.5)

The operators D̃µ
2 and D̃µ

4 correspond to the muon line and do not enter the electron-
line corrections. The only remaining input needed for the soft theorem (2.17) is the non-
radiative one-loop amplitude which can easily be calculated based on the heavy-quark form
factor [82–85]. The corresponding result is expressed in terms of harmonic polylogarithms [86]
that can be evaluated with the Mathematica code HPL [87, 88].

As a verification, the NLP expansion obtained in this way is compared with the exact
computation of the amplitude. The YFS exponentiation formula [1]

eÊMm+2 = eÊ
∞∑

ℓ=0
M(ℓ)

m+2 = finite (5.6)

yields for the exact IR pole

M(1)
m+2 = −ÊM(0)

m+2 +O(ϵ0) . (5.7)

The explicit form of the integrated eikonal Ê is given in [89]. To compute the double-radiative
tree-level amplitude, M(0)

m+2, QGraf [90] was used to generate the corresponding diagrams and
Package-X [91] to evaluate them. After expanding the result in the soft momentum to NLP,
analytic agreement is found with the prediction from the NLP soft theorem. An analytic
comparison of the finite part, on the other hand, would be much more involved. Instead a
numerical comparison is performed with OpenLoops [92, 93] running in quadruple precision.
Figure 1 shows the relative difference between the LP and NLP soft approximations as a
function of the normalised photon energies 2k0

1,2/
√
s. For completeness the convergence is

shown both for the IR pole (figure 1(a)) as well as for the finite part (figure 1(b)). In both
cases the inclusion of the NLP term in the soft expansion results in a significant improvement
of the approximation. Due to the finite precision of the exact reference values, the convergence
saturates at the level of 10−11. Figure 1 thus represents a non-trivial validation of the NLP
soft theorem (2.17).
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Figure 1. The convergence of the soft approximation at LP and NLP as a function of the normalised
photon energies 2k0

1,2/
√
s. The exact reference values have been calculated using OpenLoops in

quadruple-precision mode. As expected, the relative difference of the soft approximation to the exact
value tends to zero for decreasing photon energies k0

1,2 → 0. The inclusion of the NLP term gives
a significant improvement of the approximation both for the IR pole as well as for the finite term.
Beyond the relative precision 10−11 no further improvement is observed due to the finite precision of
the exact computation.

6 Conclusion

This paper studied the behaviour of multi-photon emission amplitudes in the soft limit at
NLP and to all orders. The simple structure in this limit was made transparent by working
in HLET, the Abelian version of HQET. Following the methodology developed for single
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soft-photon radiation in [27], a generalised off-shell eikonal identity for multiple emissions was
derived, which forms the basis of the proof. Compared to the single-emission case, the presence
of multiple soft scales results in fewer scaleless integrals and therefore in a more intricate
structure of the identity. This, in turn, significantly complicates the combinatorics involved in
the analysis of the all-order amplitudes. Nevertheless, it is possible to write the amplitudes in
a form such that a simple structure emerges. Specifically, the NLP multi-emission amplitudes
were shown to reduce to single- and double-emission contributions only. At this point, the
approach of the single-emission study [27] can be applied to show that the genuine double-
emission contribution is tree-level exact. Combined with the one-loop exact soft function for
single emission, this results in the simple form of the NLP soft theorem given in (2.17). As a
validation and a first non-trivial application of this theorem, the real-real-virtual electron-line
corrections to muon-electron scattering were calculated at NLP in the soft limit.

The result of this article generalises the LP soft theorem of Yennie, Frautschi, and Suura
to NLP. This opens the door for several interesting applications. First of all, it provides the
basis for the application of next-to-soft-stabilisation to multi-emission amplitudes. This is
particularly useful for local subtraction schemes, which require a stable evaluation of radiative
amplitudes deep into the IR region. In the case of slicing schemes, on the other hand, it
offers the opportunity to take into account power corrections, which, in turn, allows for larger
values of the slicing cut. Furthermore, fixed-order computations could be supplemented
with the effect of an arbitrary number of NLP soft-photon emissions, extending existing
YFS frameworks for the resummation of soft logarithms. Finally, the theorem can be used
to cross check exact amplitudes or, in the case where such a computation is not possible,
to ‘bootstrap’ the result.
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