
J
H
E
P
0
3
(
2
0
2
3
)
2
4
3

Published for SISSA by Springer

Received: January 26, 2023
Revised: February 22, 2023
Accepted: March 23, 2023
Published: March 30, 2023

T T̄ flow as characteristic flows

Jue Hou
School of Physics, Southeast University,
Nanjing 211189, China
Shing-Tung Yau Center, Southeast University,
Nanjing 210096, China

E-mail: juehou@seu.edu.cn

Abstract: We show that method of characteristics provides a powerful new point of view
on T T̄ -and related deformations. Previously, the method of characteristics has been applied
to T T̄ -deformation mainly to solve Burgers’ equation, which governs the deformation of the
quantum spectrum. In the current work, we study classical deformed quantities using this
method and show that T T̄ flow can be seen as a characteristic flow. Exploiting this point of
view, we re-derive a number of important known results and obtain interesting new ones.
We prove the equivalence between dynamical change of coordinates and the generalized
light-cone gauge approaches to T T̄ -deformation. We find the deformed Lagrangians for a
class of T T̄ -like deformations in higher dimensions and the (T T̄ )α-deformation in 2d with
generic α, generalizing recent results in [1] and [2].

Keywords: Field Theories in Lower Dimensions, Integrable Field Theories

ArXiv ePrint: 2208.05391

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2023)243

mailto:juehou@seu.edu.cn
https://arxiv.org/abs/2208.05391
https://doi.org/10.1007/JHEP03(2023)243


J
H
E
P
0
3
(
2
0
2
3
)
2
4
3

Contents

1 Introduction 1

2 Method of characteristics 3
2.1 Linear equation: a simple example 4
2.2 Fully nonlinear equations 5

3 T T̄ flow as characteristic flows 6
3.1 Characteristic flows 7
3.2 Dynamical coordinate transformations 10
3.3 Trace flow equation 10

4 Light-cone gauge method as characteristics 11
4.1 Uniform light-cone gauge method 12
4.2 Dual description of the light-cone gauge method 14

5 (T T̄ )α-deformation in two dimensions 15
5.1 (T T̄ )α-deformation 16
5.2

√
T T̄ -deformation 18

6 T T̄ -like deformation in arbitrary dimensions 20
6.1 Characteristics for T T̄ -like deformation 20
6.2 (T T̄ )α-deformation in arbitrary dimensions 24

7 Conclusions 25

A Solve characteristic equations about T T̄ deformation 25

1 Introduction

Recently, solvable irrelevant deformations have been under intensive study, for good rea-
sons. The best studied example is T T̄ -deformation [3, 4], which is defined in the Lagrangian
formulation by

∂L(λ)

∂λ
= OT T̄ , (1.1)

where Lλ is the Lagrangian density and OT T̄ is a composite operator constructed from the
stress-energy tensor Tµν as

OT T̄ = det(Tµν). (1.2)
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Such a deformation can be defined for any relativistic quantum field theories in 1+1 di-
mensions and exhibit interesting new features [5]. One of the reasons that T T̄ -deformation
raised broad interest is that it lies at the intersection of several research directions in
theoretical physics.

The original motivation for studying the composite operator (1.2) [3, 4] and the de-
formation triggered by it comes from integrability. For integrable models, T T̄ -deformation
belongs to a family of infinitely many irrelevant deformations which preserve integrabil-
ity [3]. These deformations modify the S-matrix by CDD factors and does not change the
IR properties of the theory. On the other hand, it alters the UV behavior of the deformed
QFT significantly. Moreover, such deformations can be defined beyond relativistic QFTs,
such as integrable non-relativistic models [6–8] and integrable quantum spin chains [9, 10].
Models with integrable boundary conditions have also been considered recently in [11].

Another important motivation comes from holography. T T̄ -deformation can be defined
for 2d CFTs. The resulting theory is no longer a local QFT in the usual sense, yet its
solvability makes it accessible for analytic studies. In view of AdS/CFT correspondence,
a natural question is finding the holographic dual of T T̄ -deformation in the bulk. The
first proposal [12–14] states that T T̄ -deformation corresponds to a cut-off geometry in the
bulk. This proposal, albeit simple and intuitive, only works for one sign of the deformation
parameter in the pure gravity sector. Another proposal which overcomes these limitations
was put forward in [15] where T T̄ -deformation was interpreted in the bulk as changing the
boundary conditions in the holographic dictionary. Further developments can be found
in [16, 17].

Yet another crucial source of T T̄ -deformation comes from string theory. A first hint
that these two subjects are related is that T T̄ -deformed massless scalar field theory becomes
the Nambu-Goto action in the static gauge, which describes the propagation of a free
bosonic string. This is not accidental. In fact, many important features of T T̄ -deformed
theories have already been discovered from the study of effective theory of long relativistic
strings [18, 19]. The worldsheet theory of the effective string is the T T̄ -deformed free
massless boson. Later it was pointed out that T T̄ -deformation is also intimately related to
the uniform lightcone gauge in string theory [20–23]. The relation of T T̄ -deformation and
non-critical strings have also discussed in [24].

The fact that T T̄ -deformation lies at the intersection of several research areas makes it
possible to formulate it from various different point of views. Apart from the original defi-
nition (1.1), several alternative formulations of T T̄ -deformation have been proposed. These
include random geometry picture [25], coupling the QFT to a 2d topological gravity [26–
28], dynamical change of coordinates [26, 29–32], uniform lightcone gauge approach [20–23]
and more [7, 33]. It is far from obvious that these formulations are equivalent. The usual
way to see the equivalence is by computing the same deformed quantity, say the deformed
Lagrangian, using different methods while obtaining the same final result.

In this work, we clarify the relation between various aforementioned methods by offer-
ing yet another point of view on T T̄ -deformation. We study T T̄ -deformation using method
of characteristics and view T T̄ flow as a characteristic flow. Method of characteristics is
a general approach to solve first order partial differential equations. Previously, it has
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been applied in T T̄ -deformation to solve inviscid Burgers’ equation, which gives the quan-
tum spectrum of deformed CFTs and the Lagrangian of some specific models [34, 35]. In
the current work, we consider classical quantities using this approach for general T T̄ -like
deformations.

The basic idea is simple. We rewrite the flow equation of the deformed quantity as a
first order non-linear partial differential equation (PDE) and then investigate the equation
by method of characteristics. In this approach, we can view the deformation parameter
λ as time and the deformation as a ‘time evolution’ of the original theory. In order to
find analytic solutions, the key point is finding certain quantities which are constant along
the flow. As we shall see, the dynamical change of coordinate of T T̄ -deformation can be
obtained rather straightforwardly from these constants. The uniform lightcone approach
can also be investigated from the point of view of characteristic flow. In this way, we prove
the equivalence of the two approaches, at least classically.

More importantly, we show that the applicability of the method goes beyond T T̄ -
deformation. Recently, an interesting T T̄ -like deformation in higher dimensions has been
proposed in [1],1 where the authors pointed out the deformation is equivalent to a metric
deformation. Using method of characteristics, we can rederive the results in [1] with a
different approach. The authors of [1, 2, 36] considered the root T T̄ -deformation and
obtained the classical deformed Lagrangian.2 We see that method of characteristic can be
successfully applied to solve a wider class of deformations of the form (T T̄ )α with generic
power α.

In section 2, we give a brief review on the method of characteristics. In section 3, we
prove that the T T̄ flow is just the characteristic flow and the method of characteristics is
equivalent to the dynamical coordinate transformation. Using the result of the character-
istics, we prove the trace flow equation of T T̄ -deformation. In section 4, we prove that the
light-cone gauge method is equivalent to the method of characteristics and get a dual de-
scription of the light-cone gauge method. In section 5, we study (T T̄ )α-deformation, where√
T T̄ -deformation is a special case. In section 6, we use the method of characteristics to

prove that T T̄ -like deformation in arbitrary dimensions is equivalent to the dynamical met-
ric transformation. Then we generalize the equivalence to (T T̄ )α-deformation in arbitrary
dimensions.

2 Method of characteristics

The method of characteristics is a general technique for solving first-order PDEs. In the
method, a PDE is converted into a system of ordinary differential equations (ODEs). In
the section, we give a brief review of the method. More details could be found in [48].

1Other proposals for higher dimensional T T̄ -like deformations can be found in [37–40].
2Some perturbative results have been discussed in early works [19, 29, 30]. Further developments can be

found in [41, 42], which implies the root T T̄ is related to ModMax theories [43–45], and in [46, 47], which
implies the root T T̄ is related to BMS algebra.
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Figure 1. The characteristic curve C lies in the solution plane S. At each point (x, y, u(x, y)),
the tangent vector of C is given by ~v = (a(x, y), b(x, y), c(x, y)) and the normal vector is given by
~n = (∂xu(x, y), ∂yu(x, y),−1).

2.1 Linear equation: a simple example

Let us first consider a first-order linear PDE, whose equation is given by{
a(x, y)∂xu+ b(x, y)∂yu = c(x, y),
u|Γ = φ,

(2.1)

where Γ is a boundary. It is a Cauchy problem with the boundary curve Γ and the
boundary condition u|Γ = φ. Suppose u(x, y) is a solution of the equation. Then at each
point (x0, y0), (2.1) can be written as

(a(x0, y0), b(x0, y0), c(x0, y0)) · (∂xu(x0, y0), ∂yu(x0, y0),−1) = 0. (2.2)

(2.2) has a nice geometrical interpretation as shown in figure 1. For a solution plane
S = (x0, y0, u(x0, y0)), whose normal vector is given by ~n = (∂xu(x0, y0), ∂yu(x0, y0),−1),
the vector (a(x0, y0), b(x0, y0), c(x0, y0)) lies in the tangent plane of S.

Now we want to construct the solution plane by the vector (a(x, y), b(x, y), c(x, y)).
Let us look for a curve C parametrized by s, C = (x(s), y(s), z(s)), whose tangent vector
is given by (a(x(s), y(s)), b(x(s), y(s)), c(x(s), y(s))). Then C is the integral curve for the
vector field (a(x, y), b(x, y), c(x, y)) and is called the characteristic curve, see figure 1. From
the definition of the tangent vector, we can get

dx(s)
ds

= a(x(s), y(s)),

dy(s)
ds

= b(x(s), y(s)),

dz(s)
ds

= c(x(s), y(s)),

(2.3)

which are called characteristic equations. We can solve the ODEs with initial conditions,

x(s = 0) = x0,

y(s = 0) = y0,

z(s = 0) = z0,

(2.4)
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where x0, y0 and z0 satisfy the boundary condition z0|Γ(x0,y0) = φ. As the initial point
(x0, y0) moves, the curve C sweeps the solution plane S = (x, y, u(x, y)), where u(x, y) is
given by

u(u, y) = z(x0(x, y), y0(x, y), s(x, y)). (2.5)

Let us explain how the method of characteristics works by an example.

Example. {
x∂xu+ ∂yu = −x,
u(x, y = 0) = 1.

(2.6)

The characteristic equations are given by

dx(s)
ds

= x,

dy(s)
ds

= 1,

dz(s)
ds

= −x,

(2.7)

with initial conditions,

x(s = 0) = x0,

y(s = 0) = 0,
z(s = 0) = 1.

(2.8)

The solution is given by

x = x0e
s,

y = s,

z = −x0e
s + x0 + 1.

(2.9)

To find the solution u(x, y), we need to eliminate s and x0 in z from above equations,

s = y,

x0 = xe−y.
(2.10)

Therefore,

u(x, y) = z(x0(x, y), y0(x, y), s(x, y)),
= −x+ xe−y + 1.

(2.11)

2.2 Fully nonlinear equations

For the general case, let us consider the first-order fully nonlinear equation,{
F (~x, u, ∂~xu) = 0, ~x ∈ Rn,
u|Γ = φ,

(2.12)
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where ~x is a collection of n variables and Γ is a (n − 1)-dimensional manifold in Rn.
Let us parameterize Γ by a (n − 1) dimension vector ~r = (r1, . . . , rn−1), so that Γ =
(x1(~r, s), . . . , xn(~r, s))|s=0 ≡ (γ1(~r), . . . , γn(~r)). Defining z(s) = u(~x(s)), pi(s) = ∂xiu(~x(s)),
here s is the affine parameter of characteristic curve, the PDE becomes

F (~x, z, ~p) = 0. (2.13)

Then we can introduce 2n+ 1 characteristic equations by

dxi(~r, s)
ds

= ∂F

∂pi
,

dz(~r, s)
ds

=
n∑
i=1

pi
∂F

∂pi
,

dpi(~r, s)
ds

= − ∂F
∂xi
− ∂F

∂z
pi,

(2.14)

and initial conditions (boundary conditions)

xi(~r, 0) = γi(~r),
z(~r, 0) = φ(~r),
pi(~r, 0) = ψi(~r), ~r ∈ Rn−1,

(2.15)

where i = 1, 2, . . . , n. The n unknown functions ψi(~r) satisfy

∂φ

∂ri
= ψ1(~r)∂γ1

∂ri
+ . . .+ ψn(~r)∂γn

∂ri
i = 1, . . . , n− 1,

F
(
γ1(~r), . . . , γn(~r), φ(~r), ~ψ1(~r), . . . , ψn(~r)

)
= 0.

(2.16)

It is worth emphasizing that the solution of ψi(~r) may not exist and may not be unique.
If we get the solution of characteristic equations, (~x(~r, s), z(~r, s), ~p(~r, s)), and we can

find the inverse functions of the solution such that ~r = ~R(~x) and s = S(~x), the solution of
the original PDE is given by

u(~x) ≡ z(~r, s) = z(~R(~x), S(~x)). (2.17)

3 T T̄ flow as characteristic flows

In this section, we show that T T̄ flow is the characteristic flow of the PDE of the defining
equation. And we derive how the fields change on the flow. Then we prove that the
dynamical coordinate transformation is equivalent to the method of characteristics. Finally,
as an example, we use the result to re-derive the trace flow equation of the stress-energy
tensor.
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3.1 Characteristic flows

Consider a Lagrangian which only depends on N fields ~ϕ and its first order derivative. The
T T̄ flow equation is given by

∂L(λ)

∂λ
= det(Tµν), (3.1)

where the stress-energy tensor is defined as

Tµν = ∂L
∂∂µ~ϕ

· ∂ν ~ϕ− δµνL. (3.2)

~a ·~b means the inner product of two vectors, ~a ·~b = Gija
ibj , where Gij is the target space

metric. In two dimensions, the determinant can be expanded as

∂L
∂λ

=L2 − L
(
∂L
∂∂1~ϕ

· ∂1~ϕ+ ∂L
∂∂2~ϕ

· ∂2~ϕ

)
+
(
∂L
∂∂1~ϕ

· ∂1~ϕ

)(
∂L
∂∂2~ϕ

· ∂2~ϕ

)
−
(
∂L
∂∂2~ϕ

· ∂1~ϕ

)(
∂L
∂∂2~ϕ

· ∂1~ϕ

)
.

(3.3)

Here we take the Lorentz index µ = 1, 2. Let u = L, ~xµ = ∂µ~ϕ, x3 = λ, ~pµ = ∂~xµu =
∂~xµL, p3 = ∂x3u = ∂x3L. Then the flow equation becomes

F (~x,z,~p) = p3−z2+z (~p1 ·~x1+~p2 ·~x2)−(~p1 ·~x1)(~p2 ·~x2)+(~p1 ·~x2)(~p2 ·~x1) = 0. (3.4)

Notice that here we view the fields like ∂µφ as variables in the PDE. The “coordinate” are
~x = (~x1, ~x2, x3) ∈ R2N+1. The initial conditions are given by

~x1(~r, 0) = γ1(~r) = ~r1,

~x2(~r, 0) = γ2(~r) = ~r2,

x3(~r, 0) = γ3(~r) = 0,
z(~r, 0) = u(~x1, ~x2, x3 = 0) = L0,

~p1(~r, 0) = ~ψ1 = ∂L0
∂~r1

,

~p2(~r, 0) = ~ψ2 = ∂L0
∂~r2

,

p3(~r, 0) = ψ3 = L2
0 − L0

(
~ψ1 · ~r1 + ~ψ2 · ~r2

)
+
(
~ψ1 · ~r1

) (
~ψ2 · ~r2

)
−
(
~ψ1 · ~r2

) (
~ψ2 · ~r1

)
,

(3.5)

– 7 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
3

where ~r = (~r1, ~r2) ∈ R2N and L0 is a function of ~r1, ~r2. Here ~r1, ~r2 are the undeformed
fields ∂1~φ, ∂2~φ respectively. The characteristic equations are given by

d~x1
ds

= z~x1 − ~x1(~p2 · ~x2) + ~x2(~p2 · ~x1), (3.6a)

d~x2
ds

= z~x2 − ~x2(~p1 · ~x1) + ~x1(~p1 · ~x2), (3.6b)

dx3
ds

= 1, (3.6c)

dz

ds
= z (~p1 · ~x1 + ~p2 · ~x2) + p3 − 2 (~p1 · ~x1) (~p2 · ~x2) + 2 (~p1 · ~x2) (~p2 · ~x1) , (3.6d)

d~p1
ds

= −~p1 (~p1 · ~x1 + ~p2 · ~x2 − 2z)− (z~p1 − ~p1(~p2 · ~x2) + ~p2(~p1 · ~x2)) , (3.6e)

d~p2
ds

= −~p2 (~p1 · ~x1 + ~p2 · ~x2 − 2z)− (z~p2 − ~p2(~p1 · ~x1) + ~p1(~p2 · ~x1)) , (3.6f)

dp3
ds

= −p3 (~p1 · ~x1 + ~p2 · ~x2 − 2z) . (3.6g)

We show how to solve the characteristic equations in appendix A. The solution is
summarized as follows,

~x1 = 1
det(J−1)

[(
1 + s(~ψ1 · ~r1 − L0)

)
~r1 + s(~ψ2 · ~r1)~r2

]
, (3.7a)

~x2 = 1
det(J−1)

[(
1 + s(~ψ2 · ~r2 − L0)

)
~r2 + s(~ψ1 · ~r2)~r1

]
, (3.7b)

x3 = s, (3.7c)

~p1 = 1
det(J−1)

[(
1 + s(~ψ2 · ~r2 − L0)

)
~ψ1 − s(~ψ1 · ~r2)~ψ2

]
, (3.7d)

~p2 = 1
det(J−1)

[(
1 + s(~ψ1 · ~r1 − L0)

)
~ψ2 − s(~ψ2 · ~r1)~ψ1

]
, (3.7e)

p3 = ψ3
det(J−1) , (3.7f)

z = L0 − sψ3
det(J−1) , (3.7g)

where

det(J−1) = 1 + s(~ψ1 · ~r1 + ~ψ2 · ~r2 − 2L0) + s2ψ3,

ψ3 = L2
0 − L0(~ψ1 · ~r1 + ~ψ2 · ~r2) + (~ψ1 · ~r1)(~ψ2 · ~r2)− (~ψ1 · ~r2)(~ψ2 · ~r1).

(3.8)

If the inverse functions exist, i.e. ∃ ~r1(~x1, ~x2, s), ~r2(~x1, ~x2, s), then we can plug the in-
verse functions into the expression of z, (3.7g) and express T T̄ -deformed Lagrangian z by
~x1, ~x2, x3.

At λ = 0, the Lagrangian z is undeformed and expressed by variables ~r1, ~r2, which
satisfy ~x1(λ = 0) = ~r1, ~x2(λ = 0) = ~r2. At λ point, z is expressed by ~x1, ~x2. However,
we can also express z by ~r1, ~r2, i.e. (3.7g). It is worth emphasizing that (3.7g) is not the
undeformed Lagrangian, but the T T̄ -deformed Lagrangian expressed by the undeformed
coordinate ~r1, ~r2, see figure 2.
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Figure 2. T T̄ flow as characteristic flow. The undeformed variables are ~rµ, ~ψµ,L0 and the deformed
variables are ~xµ, ~pµ,Lλ.

Example: N scalars with a potential. As an example, let us consider N scalars with
a potential, whose undefomed Lagrangian is given by

L0 = ~r1 · ~r2 + V (~φ). (3.9)

Then, the undeformed canonical momenta can be got by definition,

~ψ1 = ~r2, ~ψ2 = ~r1. (3.10)

The solution of the characteristic equations (3.7) becomes

~x1 = 1
det(J−1) [(1− sV )~r1 + s(~r1 · ~r1)~r2] , (3.11a)

~x2 = 1
det(J−1) [(1− sV )~r2 + s(~r2 · ~r2)~r1] , (3.11b)

x3 ≡ λ = s, (3.11c)

z = ~r1 · ~r2 + V − sψ3
det(J−1) , (3.11d)

where

det(J−1) = 1− 2sV + s2ψ3,

ψ3 = V 2 − (~r1 · ~r1) (~r2 · ~r2) .
(3.12)

The next step is to get the inverse functions ~r1(~x1, ~x2, λ), ~r2(~x1, ~x2, λ), s(~x1, ~x2, λ). However,
in this example, we don’t need to get ~rµ = ~rµ(~xµ, λ) but just need to express ~rµ · ~rν by
~xµ · ~xν , λ, where µ, ν = 1, 2. The final result is

Lλ = z(~r1(~x1,~x2,λ),~r2(~x1,~x2,λ),s(~x1,~x2,λ)),

= 1
2λ(1−λV )

(
−1+2λV +

√
(1+2λ(1−λV )~x1 ·~x2)2−4λ2(1−λV )2(~x1 ·~x1)(~x2 ·~x2)

)
.

(3.13)
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3.2 Dynamical coordinate transformations

In [29, 30], the authors proposed that T T̄ -deformation is equivalent to a coordinate trans-
formation, (w, w̄) −→ (z, z̄). It is an unconventional change of coordinates because it is field
dependent. We prove that the dynamical coordinate transformation is equivalent to the
method of characteristics.

In [29, 30], the coordinate transformation is defined as

J−1 =
(
∂wz ∂wz̄

∂w̄z ∂w̄z̄

)
=
(

1 + λT (0)w̄
w̄ −λT (0)w̄

w

−λT (0)w
w̄ 1 + λT (0)w

w

)
. (3.14)

And the Lagrangian is given by

L(λ) = 1
det(J−1)

(
L0(φ(w(z))− λ detT (0)

)
. (3.15)

Let us translate them into our notations, ~r1 = ∂w~ϕ,~r2 = ∂w̄~ϕ, ~x1 = ∂z ~ϕ, ~x2 = ∂z̄ ~ϕ. From
the definition of the stress-energy tensor,

T (0)α
β = ∂L0

∂~rα
· ~rβ − δαβL0. (3.16)

Under the dynamical coordinate transformation [29, 30], the fields satisfy(
~r1
~r2

)
=
(

1 + λT (0)w̄
w̄ −λT (0)w̄

w

−λT (0)w
w̄ 1 + λT (0)w

w

)(
~x1
~x2

)

=

 1 + λ
(
~ψ2 · ~r2 − L0

)
−λ~ψ2 · ~r1

−λ~ψ1 · ~r2 1 + λ
(
~ψ1 · ~r1 − L0

)( ~x1
~x2

)
.

(3.17)

It is the same as (3.7a)(3.7b) in the method of characteristics. The Lagrangian (3.15) can
be written as

L(λ) = L0 − λψ3
1− 2λL0 + λCψ3 + λ2ψ3

. (3.18)

It matches perfectly with (3.7g) in the method of characteristics if we take λ = s.
Therefore, the two methods are equivalent. And we find that in the view of the method

of characteristics, T T̄ -deformation is just the flow along the characteristic curve from ~r1, ~r2
to ~x1, ~x2 and the T T̄ flow parameter is just the intrinsic parameter of the characteristic
curve.

3.3 Trace flow equation

Now, we derive the trace flow equation of the stress-energy tensor by the method of charac-
teristics, which matches the results in [49]. The deformed stress-energy tensor is given by

T (λ)µ
ν = ∂L(λ)

∂~xµ
· ~xν − δµνL(λ) = ~pµ · ~xν − δµνz (3.19)
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By (A.4) and (3.7), we can get3

T (λ)µ
ν = T (0)µ

ν + δµνλ det(T (0))
det(J−1) , (3.20)

where

T (0)µ
ν = ∂L0

∂~rµ
· ~rν − δµνL0 = ~ψµ · ~rν − δµνL0, (3.21)

and we have used the relation that

ψ3 = det(T (0)). (3.22)

From (3.20), we obtain

tr(T (λ)) = tr(T (0)) + 2λ det(T (0))
det(J−1) . (3.23)

For a 2 × 2 matrix, we use the identity, det(1 + A) = 1 + tr(A) + det(A), from which we
have det(J−1) = 1 + λ tr(T (0)) + λ2 det(T (0)). Combining with (3.20), we get

det(T (λ)) = det(T (0))
det(J−1) .

(3.24)

Therefore, we obtain the generalized trace flow equation

tr(T (λ)) = 2λ det(T (λ)) + tr(T (0))
1 + λ tr(T (0)) + λ2 det(T (0))

. (3.25)

If the initial theory is a CFT, that is tr(T (0)) = 0, then the generalized trace flow equation
becomes

tr(T (λ)) = 2λ det(T (λ)). (3.26)

which has been obtain in many papers [4, 12, 50, 51].

4 Light-cone gauge method as characteristics

In the section, we show that the uniform light-cone gauge method in [21] is equivalent
to the method of characteristics, and as a result, equivalent to the dynamical coordinate
transformation. As a byproduct, we present a dual description of the uniform light-cone
gauge method.

3The expression is different from one in [49].
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4.1 Uniform light-cone gauge method

In [21], the authors consider a type of theories, whose Lagrangian can be written as the
form

L = Kt
t +Kx

x − V, (4.1)

where

Kµ
ν ≡ P

µ
i ∂νΨi, Pµi ≡

∂L0
∂(∂µXi) , µ, ν = t, x, (4.2)

V is a function of Pµi and is independent of ∂γΨa. The T T̄ -deformed Lagrangian with T T̄
parameter s is given by

L = Kt
t +Kx

x − V + s
(
Kt
tK

x
x −Kt

xK
x
t

)
1 + sV

. (4.3)

Since V doesn’t depend on s explicitly, one can find the explicit expression of V by taking
the limit s→ 0,

L|s→0 = L0 = Kt
t |s→0 +Kx

x |s→0 − V (4.4)

We can rewrite the T T̄ -deformed Lagrangian as

L = K11 +K22 −F0 + s(K11K22 −K12K21)
1 + sF0

. (4.5)

Here, index 1, 2 can be Euclidean coordinate t, x or other coordinates such as z = t+x, z̄ =
t− x and F0 is just V in (4.4).

We find that Pµi are the conjugate momentum in undeformed theories, i.e. ~Pµ = ~ψµ
and ∂νΨa are fields in T T̄ -deformed theories, i.e. ∂ν ~Ψ = ~xν . By our notation used in the
method of characteristics,

Kµν ≡ ~pµ(0) · ~xν(s) = ~ψµ · ~xν . (4.6)

And we introduce another variable

kµν ≡ ~pµ(0) · ~xν(0) = ~ψµ · ~rν . (4.7)

Firstly, we want to get the relation between Kµν and kµν . Multiply two sides of (3.7a),
(3.7a) by ~ψ1, ~ψ2 and get

K11 = 1
det(J−1) [(1 + s (k11 − L0)) k11 + sk21k12] ,

K21 = 1
det(J−1) [(1 + s (k11 − L0)) k21 + sk21k22] ,

K12 = 1
det(J−1) [(1 + s (k22 − L0)) k12 + sk12k11] ,

K22 = 1
det(J−1) [(1 + s (k22 − L0)) k22 + sk12k21] ,

(4.8)
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where det(J−1) is defined by (3.8). We can also expressed kµν by Kµν by solving equa-
tions (4.8). The solution is given by

k11 = (1− sL0) (K11 + s (K11K22 −K12K21))
1− s2 (K11K22 −K12K21) ,

k12 = (1− sL0)K12
1− s2 (K11K22 −K12K21) ,

k21 = (1− sL0)K21
1− s2 (K11K22 −K12K21) ,

k22 = (1− sL0) (K22 + s (K11K22 −K12K21))
1− s2 (K11K22 −K12K21) ,

(4.9)

Then, we prove the T T̄ -deformed Lagrangian in the method of characteristics and the
light-cone gauge method are equivalent. The T T̄ -deformed light-cone gauge Lagrangian (4.5)
is given by

L = K11 +K22 − (k11 + k22 − L0) + s(K11K22 −K12K21)
1 + s(k11 + k22 − L0) . (4.10)

Plugging (4.8) into the above expression, we can get

L = L0 + s(k12k21 − k11k22) + sL0(k11 + k22 − L0)
1 + s(k11 + k22 − 2L0 + s(k11 − L0)(k22 − L0)− k12k21s)

= L0 − sψ3
det(J−1) , (4.11)

which is precisely the deformed Lagrangian from the method of characteristics.
For the light-cone gauge method, one needs to eliminate Pµi by the equation of motion

of the light-cone gauge Lagrangian (4.5). Finally, we prove the solution of characteris-
tics, (3.7a) and (3.7e) , is just the solution of the equation of motion of the light-cone
gauge Lagrangian (4.5). According to (4.4), we get

F0(~ψ1, ~ψ2) = ~ψ1 · ~r1 + ~ψ2 · ~r2 − L0. (4.12)

This is a multiple Legendre transformation. It is easy to get Hamilton’s equations,
∂F0

∂ ~ψ1
= ~r1,

∂F0

∂ ~ψ2
= ~r2. (4.13)

According to the definition of Kµν = ~ψµ · ~xν , (4.6), one get
∂Kµν

∂ ~ψρ
= δρµ~xν . (4.14)

The equations of motion in the light-cone gauge method are given by
δL
δ ~ψµ

= ∂L
∂ ~ψµ

= 0, µ = 1, 2, (4.15)

where L is given by (4.5). Using (4.13) and (4.14), the solution of (4.15) is

~x1 = 1
det(J−1)

[(
1 + s(~ψ1 · ~r1 − L0)

)
~r1 + s(~ψ2 · ~r1)~r2

]
,

~x2 = 1
det(J−1)

[(
1 + s(~ψ2 · ~r2 − L0)

)
~r2 + s(~ψ1 · ~r2)~r1

]
.

(4.16)

It is just the solution (3.7a) and (3.7b) of the method of characteristics.
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It is worth noting that the undeformed variable ~pµ(0) = ~ψµ and the deformed variable
~xν(s) are mixed in the light-cone gauge method. The T T̄ -deformed Lagrangian can be
expressed by four groups of variables, i.e. Lλ(~ψµ, ~rν),Lλ(~ψµ, ~xν),Lλ(~pµ, ~rν) and Lλ(~pµ, ~xν).
What we ultimately want is Lλ(~pµ, ~xν), which is the Lagrangian expressed by deformed
variables (~pµ, ~xν). The light-cone gauge method is to derive Lλ(~pµ, ~xν) from Lλ(~ψµ, ~xν).
The dynamical coordinate transformation is to derive Lλ(~pµ, ~xν) from Lλ(~ψµ, ~rν). And
there is a new method to derive Lλ(~pµ, ~xν) from Lλ(~pµ, ~rν), which is called the dual de-
scription of the light-cone gauge method in the next subsection.

4.2 Dual description of the light-cone gauge method

By the multiple Legendre transformation, we can introduce another new method, which is
dual to the light-cone gauge method, to get T T̄ -deformation.

The dual description of (4.5) is given by

F = K̃11 + K̃22 − L0 − s(K̃11K̃22 − K̃12K̃21)
1− sL0

, (4.17)

where

K̃µν ≡ ~pµ(s) · ~xν(0) = ~pµ · ~rν . (4.18)

Vary the variable (4.17) by ~r1, ~r2 to get the equations of motion

δF
δ~rµ

= 0, µ = 1, 2. (4.19)

Using the definition of K̃µν (4.18) and ∂L0
∂~rµ

= ~ψµ, the solution of the equations of mo-
tion (4.19) about ~p1, ~p2 is

~p1 = 1
det(J−1)

[
(1 + s (k22 − L0)) ~ψ1 − s (k12) ~ψ2

]
,

~p2 = 1
det(J−1)

[
(1 + s (k11 − L0)) ~ψ2 − s (k21) ~ψ1

]
.

(4.20)

Plugging the solution back to (4.17), we can get

F = k11 + k22 − L0 + sψ3
det(J−1) . (4.21)

The dual description is equivalent to the method of characteristics. The solution (4.20)
is the same as the solution of the method of characteristics (3.7d) and (3.7e). Consider-
ing (3.7), then F (4.21) becomes

F = k11 + k22 − L0 + sψ3
det(J−1) = ~p1 · ~x1 + ~p2 · ~x2 − L, (4.22)

which is just the multiple Legendre transformation of the T T̄ -deformed Lagrangian L.
When s→ 0, F becomes F0 which is introduced in (4.5),

lim
s→0
F = ~ψ1 · ~r1 + ~ψ2 · ~r2 − L0 = F0. (4.23)
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It is noticed that for the light-cone gauge method, the independent variables are ~xµ.
To get T T̄ -deformed Lagrangian, one needs to eliminate ~ψµ by the equation of motion
of L. For the dual description, the independent variables are ~pµ. To get T T̄ -deformed
Lagrangian, one needs to eliminate ~rµ by the equation of motion of F .

Example: one free scalar. Let us show how the dual description works by an example.
Consider the simplest example, the free scalar theory, whose Lagrangian is given by,

L0 = ~r1 · ~r2. (4.24)

Then
~ψ1 = ∂L0

∂~r1
= ~r2, ~ψ2 = ∂L0

∂~r2
= ~r1,

F0 = ~ψ1 · ~r1 + ~ψ2 · ~r2 − L0 = ~ψ1 · ~ψ2.

(4.25)

The (4.17) becomes

F = ~p1 · ~r1 + ~p2 · ~r2 − ~r1 · ~r2
1− s~r1 · ~r2

. (4.26)

Vary (4.26) by ~r1, ~r2 to get the equations about ~r1, ~r2 and solve them. With the initial
conditions (4.25), the solution is

~r1 = 1−
√

1− 4s~p1 · ~p2
2s~p1

,

~r2 = 1−
√

1− 4s~p1 · ~p2
2s~p2

.

(4.27)

Plug the solution into (4.26) and we get

F = 1−
√

1− 4s~p1 · ~p2
2s . (4.28)

We can get the Lagrangian by the inverse Legendre transformation,

~x1 = ∂F
∂~p1

= ~p2√
1− 4s~p1 · ~p2

,

~x2 = ∂F
∂~p1

= ~p1√
1− 4s~p1 · ~p2

,

(4.29)

and4

L = ~p1 · ~x1 + ~p2 · ~x2 −F = −1 +
√

1 + 4s~x1 · ~x2
2s . (4.30)

5 (T T̄ )α-deformation in two dimensions

The method of characteristics is a powerful tool to solve all kind of the first order differential
deformations. In the section, we apply this method to (T T̄ )α-deformation.

4In fact, there are two branches when ~p1, ~p2 are expressed by ~x1, ~x2. Considering the initial value of L,
we can easily drop one of them.
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5.1 (T T̄ )α-deformation

The flow equation of the generalized deformation is given by

∂L
∂λ

= (det(Tµν))α , α ∈ C̄ = C
⋃
{∞}. (5.1)

The flow equation can be rewritten as

F = pa3 − z2 + z (~p1 · ~x1 + ~p2 · ~x2)− (~p1 · ~x1) (~p2 · ~x2) + (~p1 · ~x2) (~p2 · ~x1) = 0, (5.2)

where a = 1/α. And the characteristic equations are (3.6a)(3.6b)(3.6e)(3.6f)(3.6g) and

dx3
ds

= apa−1
3 , (5.3a)

dz

ds
= z (~p1 · ~x1 + ~p2 · ~x2) + apa3 − 2 (~p1 · ~x1) (~p2 · ~x2) + 2 (~p1 · ~x2) (~p2 · ~x1) . (5.3b)

By (5.2), (5.3b) becomes

dz

ds
= 2z2 − zCp3 + (a− 2)pa3. (5.4)

Using the above equation and (3.6g), we can get

d

ds

(
z

p3

)
= (a− 2)pa−1

3 = a− 2
a

dx3
ds

. (5.5)

Therefore,

z

p3
= a− 2

a
λ+ L0

ψ3
, (5.6)

where λ = x3. Plugging the solution back into (3.6g), we can get

p3 =
(
ψa−2

3 + a− 2
a

2L0 − Cψ3
ψ3

λ+
(
a− 2
a

)2
λ2
) 1
a−2

,

z =
(
ψa−2

3 + a− 2
a

2L0 − Cψ3
ψ3

λ+
(
a− 2
a

)2
λ2
) 1
a−2 (a− 2

a
λ+ L0

ψ3

)
,

(5.7)

(3.6a)(3.6b) become

d~x1
dλ

= 1

a

[
ψa−1

3 + a−2
a (2L0−Cψ3)λ+

(
a−2
a

)2
λ2ψ3

] [(L0− ~ψ2 ·~r2+ a−2
a

λψ3

)
~x1+(~ψ2 ·~r1)~x2

]
,

d~x2
dλ

= 1

a

[
ψa−1

3 + a−2
a (2L0−Cψ3)λ+

(
a−2
a

)2
λ2ψ3

] [(L0− ~ψ1 ·~r1+ a−2
a

λψ3

)
~x2+(~ψ1 ·~r2)~x1

]
.

(5.8)

The above system of equations can be rewritten as a matrix form,

dX

dλ
= AX, (5.9)
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where X = (~x1, ~x2)T and A is the coefficient matrix. The general solution of (5.9) is

X(λ) = Pe
∫ λ

0 dλAX0, (5.10)

where P means the time-ordering integral. For this case, [A(λ1), A(λ2)] = 0, the time-
ordering integral degenerates into the ordinary integral,

X(λ) = e
∫ λ

0 dλAX0, (5.11)

which can be calculated explicitly. It is noticed that it is very special when a = 2, which is
just
√
T T̄ -deformation. In the case, above expressions are valid in the sense of limit a→ 2.

As for a = 1, the deformation is just T T̄ -deformation. Actually, we can take a in C̄. It can
be understood in the sense of xy = ey lnx.

Example: one free scalar. We solve the equations (5.8) about the simplest case, where
the seed theory is a free scalar, L0 = ∂zφ∂z̄φ = r1r2. In the case,

z =
(

(−1)−1/aL
a−2
a

0 + λ− 2λ
a

)((a− 2)2λ2

a2 + (−1)
a−2
a L2− 4

a
0

) 1
a−2

, (5.12)

and we can get the solution of (5.8) by (5.11).

x1 = r1

(−1)
1
a

+1(a− 2)λL
2
a
−1

0
a

+ 1

1/(a−2)

,

x2 = r2

(−1)
1
a

+1(a− 2)λL
2
a
−1

0
a

+ 1

1/(a−2)

.

(5.13)

Here, we just need to express L0 by X ≡ x1x2. From the above solution, we can get L0
and X satisfy the equation,

a2Xa−2 = a2La−2
0 + (−1)2/a(a− 2)2λ2La+ 4

a
−4

0 − 2(−1)1/a(a− 2)aλLa+ 2
a
−3

0 . (5.14)

The equation cannot always be solved explicitly. However, for some special a, such as
a = 1, 2,−1,−2, . . ., L0 can be expressed by X explicitly and the deformed Lagrangian z
can be expressed by X.

For T T̄ -deformation, a = 1,

L0 = 1 + 2λX −
√

4λX + 1
2λ2X

,

z =
√

4λX + 1− 1
2λ .

(5.15)

For
√
T T̄ -deformation, a = 2,

L0 = eiλX,

z = eiλX.
(5.16)
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5.2
√
T T̄ -deformation

The flow equation of
√
T T̄ -deformation is given by

∂L(λ)

∂λ
=
√

det(Tµν). (5.17)

It is a special case of (T T̄ )1/a when a = 2. Taking the limit, a→ 2, in (5.7) and (5.8), we
can get

z = L0e
− λ

2ψ3
(Cψ3−2L0) (5.18)

and
d~x1
dλ

= 1
2ψ3

[
(L0 − ~ψ2 · ~r2)~x1 + (~ψ2 · ~r1)~x2

]
,

d~x2
dλ

= 1
2ψ3

[
(L0 − ~ψ1 · ~r1)~x2 + (~ψ1 · ~r2)~x1

]
.

(5.19)

It is worth emphasizing that the coefficients on the right hand side in (5.19) is independent
of λ, so (5.19) can be always solved easily.

Trace flow equation. For the
√
T T̄ -deformation, the trace flow equation is simple.

By (5.6)(5.18)(A.4)(A.5) and the definition of the stress-energy tensor, we obtain

T (λ)µ
ν = T (0)µ

ν exp

− λ tr(T (0))

2
√

det(T (0))

, (5.20)

where we have use the definition of ψ3 =
√

det(T (0)). Then the trace flow equation becomes

tr(T (λ)) = tr(T (0)) exp

− λ tr(T (0))

2
√

det(T (0))

. (5.21)

If the seed theory is a conformal field theory in classical level, which means that the stress-
energy tensor is traceless, tr(T (0)) = 0, the deformed theory is still conformal.5

In the following, we solve (5.19) in two examples.

Example: N free scalars. Consider the N free scalars as the seed theory, whose La-
grangian is given by

L0 = Gij∂wφ
i∂w̄φ

j ≡ ~r1 · ~r2. (5.22)

The initial conditions become

~ψ1 = ~r2, ~ψ2 = ~r1, ψ3 =
√
−(~r1 · ~r1)(~r2 · ~r2). (5.23)

5It is subtle when tr(T (0)) = 0 and
√

det(T (0)) = 0 simultaneously. We can take some regularization

scheme, such as T (0)µ
ν =

(
T (0)1

1 + ε T (0)1
2

T (0)2
1 T (0)2

2

)
and take ε→ 0, to get rid of the divergence.
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The characteristic equations (5.19) become

d~x1
dλ

= 1
2ψ3

(~r1 · ~r1)~x2,

d~x2
dλ

= 1
2ψ3

(~r2 · ~r2)~x1.

(5.24)

Solve the above equations and plug the solution into (5.18), we get

Lλ = z = (~x1 · ~x2) cosλ± i
√

(~x1 · ~x1)(~x2 · ~x2) sin λ,

= Gij∂zφ
i∂z̄φ

j cosλ± i
√

(Gij∂zφi∂zφj)(Gkl∂z̄φk∂z̄φl) sin λ.
(5.25)

The result is the same as one in [2] if we change λ → −iγ. The difference, −i, comes
from the sign of the definition of the stress-energy tensor. Notice that in [2], the author
take the traceless stress-energy tensor, which is different from ours. Then, in this paper,√
T T̄ -deformation is defined as

∂L(λ)

∂λ
=
√
−1

2T
(λ)µ

νT (λ)ν
µ + 1

2T
(λ)µ

µT (λ)ν
ν , (5.26)

but in [2],
√
T T̄ -deformation is defined as

∂L(γ)

∂γ
=
√

1
2T

(γ)µ
νT (γ)ν

µ −
1
4T

(γ)µ
µT (γ)ν

ν , (5.27)

where we take our notation and stress-energy tensor is general but not traceless. When
the seed theory is conformal, the definitions of the

√
T T̄ -deformation (5.26) and (5.27) are

coincident. However, for non-conformal seed theories, they are not.

Example: one scalar with a potential. Consider the one scalar with a potential as
the seed theory, whose Lagrangian is given by

L0 = ∂wφ∂w̄φ+ V (φ) ≡ r1r2 + V. (5.28)

The initial conditions become

ψ1 = r2, ψ2 = r1, ψ3 =
√
V 2 − r2

1r
2
2. (5.29)

The characteristic equations (5.19) become

dx1
dλ

= 1
2ψ3

(V x1 + r2
1x2),

dx2
dλ

= 1
2ψ3

(V x2 + r2
2x1).

(5.30)

The solution of the above equations is

∂zφ = x1 = r1e
λ

2ψ3
(V+r1r2)

,

∂z̄φ = x2 = r2e
λ

2ψ3
(V+r1r2)

.
(5.31)
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Plugging the solution into (5.18), we get

Lλ = z = (V +R)e
λV√
V 2−R2 , (5.32)

where R = r1r2 is the solution of the equation

X = ∂zφ∂z̄φ = Re
λ

√
V+R
V−R . (5.33)

For the model, there is no explicit function form of the deformed Lagrangian. By the
iterative method, we can get the first few orders of the deformed Lagrangian,

Lλ =V +X + λ
√
V 2 −X2 + λ2V

2 − V X +X2

2(V −X) ,

+ λ3
(
V 2 − 3V X +X2) (V 2 + V X +X2)

6(V −X)5/2
√
V +X

+O(λ4).
(5.34)

6 T T̄ -like deformation in arbitrary dimensions

In the section, we get the T T̄ -like deformation in [1] by the method of characteristics. Then
we generalize the definition to (T T̄ )α-deformation in arbitrary dimensions.

6.1 Characteristics for T T̄ -like deformation

In d dimensions with Euclidean signature, the action is given by

A =
∫

ddx√gL =
∫

ddxL,

g ≡ det [gµν ] , ddx ≡ dx0 dx1 . . . dxd−1,
(6.1)

where L ≡ √gL is the Lagrangian density. The flow equation of the T T̄ -like deformation
is given by

∂Aλ
∂λ

=
∫

ddx√gO[r,d]
λ , (6.2)

where
O[r,d]
λ ≡ 1

d

(
rTµλ µT

ν
λ ν − T

µ
λ νT

ν
λ µ
)
, r ∈ R, d ≥ 2. (6.3)

We take the symmetric Hilbert stress-energy tensor

Tµν
λ = −2

√
g

δAλ
δgµν

= −2
√
g

∂Lλ
∂gµν

. (6.4)

When r = 1, d = 2, the deformation becomes T T̄ -deformation and

OTT
λ ≡ O[1,2]

λ = det
(
Tµλ ν

)
. (6.5)

We exploit the method of characteristics to obtain the deformed Lagrangian. The
coordinates on the characteristic flow curve are (gµν , λ) and the conjugate momenta are
(pµν = ∂L

∂gµν
, pλ = ∂L

∂λ ), respectively, and z = L. The flow equation (6.2) becomes

F = pλ − 4
√
gd

(rpµµpνν − pµνpνµ) = 0, (6.6)
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with initial conditions

gµν(s = 0) = ηµν ,

pµν(s = 0) = ψµν ,

λ(s = 0) = 0,
pλ(s = 0) = ψλ,

z(s = 0) = L0,

(6.7)

where µ, ν are Lorentz index and λ is the parameter of the deformation. The initial
conditions satisfy the constraint

F (s = 0) = ψλ − 4
√
ηd

(rψµµψνν − ψµνψνµ) = 0. (6.8)

Notice that ηµν is the initial value of gµν but is not necessarily the metric of the flat
space-time.

The characteristic equations (2.14) are given by

dλ

ds
= 1, (6.9a)

dgαβ
ds

= − 8
√
gd

(rpµµgβα − pµαgβµ), (6.9b)

dz

ds
= −pλ, (6.9c)

dpλ

ds
= 0, (6.9d)

dpαβ

ds
= −g

αβpλ

2 + 8
√
gd

(rpµµpβα − pβνpνα) (6.9e)

We have used the flow equation (6.6) to get (6.9c) and (6.9e). (6.9a), (6.9c) and (6.9d) can
be solved readily, yielding

λ = s, pλ = const = ψλ, z = −sψλ + L0. (6.10)

We assume that for the seed theory, the metric and the stress-energy tensor are symmetric,
i.e. ηµν = ηνµ and ψµν = ψνµ. Then we can derive that gµν = gνµ and pµν = pνµ are always
correct along the flow by (6.9b) and (6.9e). Using (6.9b), (6.9e) and the above property,
we get

dpαβ
ds

= d(pαµgµβ)
ds

= −p
λ

2 δ
α
β . (6.11)

Therefore,

pαβ = −p
λ

2 δ
α
βs+ ψαβ . (6.12)
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By (6.9b), we can get

d
√
g

ds
= 1

2√g
δg

δgαβ

dgαβ
ds

,

= −4
d

(rd− 1)(−d2sψ
λ + ψµµ),

(6.13)

where we use the formula δg
δgαβ

= ggαβ . The solution of the equation is given by

√
g = (rd− 1)ψλs2 − 4

d
(rd− 1)ψµµs+√η. (6.14)

Plug the all above results into (6.9b), we can get the matrix form of (6.9b),

dG

ds
= GA, (6.15)

where G is the matrix form of the metric, G = (gµν). A is the matrix,

A = 1√
g(s)

(f(s)I +B),

f(s) = 4
d

(rd− 1)ψλs, Bµ
ν = 8

d
(ψµν − rψααδµν),

(6.16)

where
√
g(s) is given by (6.14). Because [A(s1), A(s2)] = 0, the general solution of (6.15) is

G(s) = G0e
∫ s

0 dsA, (6.17)

which can be calculated explicitly. Now the characteristic equations have been solved.
Expressing the initial values ηµν , ψµν ,L0, ψ

λ by gµν , λ and plugging the result into z =
−sψλ + L0, (6.10), we can get the deformed Lagrangian density.

By (6.9e) and (6.13), we can also calculate the flow equation of T̂µν ,

dT̂µν

ds
= 4
d

T̂µαT̂α
ν −

2
d

(rd− 1)TααT̂µν + 1
d

(rTµµT νν − TµνT νµ) (rd− 1)gµν , (6.18)

where

T̂µν ≡ rgµνTαα − Tµν . (6.19)

And (6.9b) can be rewrite as

dgµν
ds

= 4
d

T̂µν . (6.20)

The (6.18) and (6.20) are the same as (3.9) in [1].
It should be noted that although the matrix integral in (6.17) could be calculated

explicitly, it is too complicated. For some models, we don’t need to calculate the integral,
such as a free scalar model.
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Example: one free scalar. Consider one free scalar model as the seed model, whose
Lagrangian density is given by

L0 = √ηηµν∂µφ∂νφ. (6.21)

The conjugate momenta are

ψαβ = δL0
δηαβ

= ηαβ

2 L0 −
√
η∂αφ∂βφ. (6.22)

ψλ = 4
d
√
η

(rψµµψνν − ψµνψνµ) = − L
2
0√
η
, (6.23)

where we use ∂gµν

∂gαβ
= −gµαgνβ . We consider T T̄ -deformation in 2 dimensions, where

d = 2, r = 1. For the model, (6.14) becomes

√
g = √η + s2ψλ. (6.24)

Introduce a new variable X ≡ gµν∂µφ∂νφ. By (6.9b) and (6.13), we get

d(√gX)
ds

= 2L0X. (6.25)

Solve the system of equations (6.23), (6.24) and (6.25), we get

ψλ =
√
g(−1− 2sX +

√
1 + 4sX)

2s2
√

1 + 4sX
,

L0 =
√
gX√

1 + 4sX
,

√
η =
√
g(1 + 2sX +

√
1 + 4sX)

2
√

1 + 4sX
.

(6.26)

And the Lagrangian density z is

z = L0 − sψλ =
√
g(−1 +

√
1 + 4sX)

2s . (6.27)

Here, z = Ls(gµν(s)). We want the deformed Lagrangian density in flat space-time, i.e.
gµν(s) = δµν = diag(1, 1). Therefore, the T T̄ -deformed Lagrangian density is given by

Lλ = −1 +
√

1 + 4λδµν∂µφ∂νφ
2λ . (6.28)

There are two perspectives about T T̄ -deformation. In this section, the fields ∂µφ is a
constant along the characteristic flow but the metric gµν depends on the flow parameter
s. In section 3, on the contrary, along the characteristic flow, ∂µφ depends on the flow
parameter s but the metric gµν is a constant.
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6.2 (T T̄ )α-deformation in arbitrary dimensions

On the analogy of the definition of T T̄ -like deformation, we can define (T T̄ )α-deformation as

∂Aλ
∂λ

=
∫

ddx√g
(
O[r,d]
λ

)α
, (6.29)

where Aλ and O[r,d]
λ are defined as (6.1) and (6.3) respectively. In our notation, the flow

equation becomes

F = (pλ)a − 4
(√g)2−ad

(rpµµpνν − pµνpνµ) = 0, (6.30)

where a = 1/α ∈ C̄. The initial conditions are the same as (6.7) and satisfy the constraint

F (s = 0) = (ψλ)a − 4
(√η)2−ad

(rψµµψνν − ψµνψνµ) = 0. (6.31)

The characteristic equations (2.14) are given by

dλ

ds
= a(pλ)a−1, (6.32a)

dgαβ
ds

= − 8
(√g)2−ad

(rpµµgβα − pµαgβµ), (6.32b)

dz

ds
= −(2− a)(pλ)a, (6.32c)

dpλ

ds
= 0, (6.32d)

dpαβ

ds
= −2− a

2 gαβ(pλ)a + 8
(√g)2−ad

(rpµµpβα − pβνpνα). (6.32e)

The solution is given by

pλ = const = ψλ,

λ = a(ψλ)a−1s,

z = −s(2− a)(ψλ)a + L0,

pαβ = −2− a
2 (ψλ)aδαβs+ ψαβ ,

√
g2−a = (rd− 1)(ψλ)a(2− a)2s2 − 4

d
(rd− 1)(2− a)ψµµs+√η2−a,

(6.33)

and

G(s) = G0e
∫ s

0 dsA, (6.34)

where G = (gµν) and

A = 1
(√g)2−a (f(s)I +B),

f(s) = 4
d

(rd− 1)(2− a)(ψλ)as, Bµ
ν = 8

d
(ψµν − rψααδµν).

(6.35)

When d = 2, r = 1, the deformation degenerates into the case in section 5.
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7 Conclusions

In this work, we use the method of characteristics to study T T̄ -deformed theories. We
find that the T T̄ flow is just the characteristic flow in essence. In this viewpoint, we prove
that the dynamical coordinate transformation and the light-cone gauge method are both
equivalent to the method of characteristics, at least for the Lagrangian of scalar fields. Here,
the equivalence means that not only these methods can derive the same results, but also
the processes of each methods are equivalent. Along the flow, the difference among these
methods are the variables used to express the T T̄ -deformed Lagrangian. The dynamical
coordinate transformation is to derive Lλ(~pµ, ~xν) from Lλ(~ψµ, ~rν). The light-cone gauge
method is to derive Lλ(~pµ, ~xν) from Lλ(~ψµ, ~xν). And the dual description of the light-
cone gauge method, which is a new method to derive the T T̄ -deformed Lagrangian, is to
derive Lλ(~pµ, ~xν) from Lλ(~pµ, ~rν). Among these methods, the method of characteristics
can be used to solve the flow equation, directly. Exploiting our method to generalized
T T̄ -deformations, we find the deformed Lagrangians for T T̄ -like deformation and (T T̄ )α-
deformation with generic α in arbitrary dimensions.

It is interesting that in 2 dimensions, there are two equivalent perspectives about T T̄ -
deformation along the characteristic flow. In one perspective, the field ∂µφ evolves and the
metric gµν is a constant along the flow. In another perspective, the metric evolves and the
field is a constant.

It is noticed that in the paper, we don’t consider the algebraic structure of theories. If
we want to extend the method of characteristics to theories with fermions and gauge fields,
anti-commutative relations and Lie algebras should be considered carefully.

There is a very interesting question how other physical quantities evolve along the
characteristic flow. For integrable QFTs, some works show that Lax connections satisfy
the rules of the dynamical coordinate transformation on the flow [29, 52]. However, the
result is not proven strictly, yet. Maybe the method of characteristics is a good point to
prove the result. Furthermore, there are other quantities for integrable theories, such as the
R-matrix. We don’t know how they evolve. Correlation functions of some T T̄ -deformed
models have been evaluated by perturbation in first several orders [27, 51, 53–56]. Maybe
we can explore how they evolve along the characteristic flow.

We are also interested in another question whether bosonization holds under T T̄ -
deformation. We have tried the traditional method, which maps fermion fields to boson
fields, to bosonized the T T̄ -deformed fermion theories. However we can’t get the correct
dual boson theories. Maybe one can take the view in section 6 to study bosonization of
T T̄ -deformation.

The method can be also used to more generalized T T̄ -like deformations, such as the
multiple T T̄ deformation [57].

A Solve characteristic equations about T T̄ deformation

In the appendix, we solve the characteristic equations about T T̄ -deformation (3.6) with
initial conditions (3.5).
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By (3.6c). we get

x3 = s. (A.1)

The ODEs look a bit complicated, we notice that it can be solved by finding conserved
quantities. By (3.6a), (3.6e) and (3.6g), we can get

d(~p1 · ~x1)
ds

= −(~p1 · ~x1)(~p1 · ~x1 + ~p2 · ~x2 − 2z) = ~p1 · ~x1
p3

dp3
ds

. (A.2)

Then the relation between these variables is

~p1 · ~x1 = p3C11, (A.3)

where the constant C11 can be got by the initial condition. C11 = ~ψ1·~r1
ψ3

. Similarly, we get
other relations

~p1 · ~x1 = p3C11,

~p2 · ~x2 = p3C22,

~p1 · ~x2 = p3C12,

~p2 · ~x2 = p3C21,

(A.4)

and the constants

C11 =
~ψ1 · ~r1
ψ3

, C22 =
~ψ2 · ~r2
ψ3

,

C12 =
~ψ1 · ~r2
ψ3

, C21 =
~ψ2 · ~r1
ψ3

.

(A.5)

Plugging (A.4) into (3.6d) and (3.6g), we get

dz

ds
= (zC + 1)p3 − 2p2

3C̄,

dp3
ds

= (2z − Cp3)p3,

(A.6)

where C ≡ C11 + C22, C̄ ≡ C11C22 − C12C21. Considering the flow equation (3.4),

F (~x, z, ~p) = p3 − z2 + zp3C − p2
3C̄ = 0 (A.7)

(A.6) becomes

dz

ds
= 2z2 − (zC + 1)p3,

dp3
ds

= (2z − Cp3)p3.

(A.8)

From the above equations, we find that

d

ds

(
z

p3

)
= −1. (A.9)
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The relation between z and p3 is

z

p3
= L0
ψ3
− s. (A.10)

Finally, we get the result that

z = L0 − sψ3
1− 2sL0 + sCψ3 + s2ψ3

,

p3 = ψ3
1− 2sL0 + sCψ3 + s2ψ3

.

(A.11)

The equations of ~x1, ~x2 are

d~x1
ds

= z~x1 − C22p3~x1 + C21p3~x2,

d~x2
ds

= z~x2 − C11p3~x2 + C12p3~x1.

(A.12)

Plugging (A.11) into the above equations, we get

d~x1
ds

= 1
1− 2sL0 + sCψ3 + s2ψ3

[
(L0 − ~ψ2 · ~r2 − sψ3)~x1 + (~ψ2 · ~r1)~x2

]
,

d~x2
ds

= 1
1− 2sL0 + sCψ3 + s2ψ3

[
(L0 − ~ψ1 · ~r1 − sψ3)~x2 + (~ψ1 · ~r2)~x1

]
.

(A.13)

Do some calculation directly and it is easy to get

d

ds

[(
1 + s(~ψ2 · ~r2 − L0)

)
~x1 − s(~ψ2 · ~r1)~x2

]
= 0,

d

ds

[
−s(~ψ1 · ~r2)~x1 +

(
1 + s(~ψ1 · ~r1 − L0)

)
~x2
]

= 0.
(A.14)

With initial conditions, we get(
1 + s(~ψ2 · ~r2 − L0)

)
~x1 − s(~ψ2 · ~r1)~x2 = ~r1,

−s(~ψ1 · ~r2)~x1 +
(
1 + s(~ψ1 · ~r1 − L0)

)
~x2 = ~r2.

(A.15)

To solve the above equations, we get

~x1 = 1
det(J−1)

[(
1 + s(~ψ1 · ~r1 − L0)

)
~r1 + s(~ψ2 · ~r1)~r2

]
,

~x2 = 1
det(J−1)

[(
1 + s(~ψ2 · ~r2 − L0)

)
~r2 + s(~ψ1 · ~r2)~r1

]
,

(A.16)

where det(J−1) ≡ 1− 2sL0 + sCψ3 + s2ψ3. Now, we calculate the expressions of conjugate
momenta ~p1 and ~p2. From (A.4) and the soluntion of p3, (A.11), we get

~p1 · ~x1 =
~ψ1 · ~r1

det(J−1) ,
(A.17)
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and from (A.16), we get

~p1 · ~x1 = 1
det(J−1)

[
(1 + s(~ψ1 · ~r1 − L0))(~p1~r1) + s(~ψ2 · ~r1)(~p1 · ~r2)

]
. (A.18)

Similarly, we can consider ~p1 · ~x2. Finally we get the equations,

~ψ1 · ~r1 =
(
1 + s(~ψ1 · ~r1 − L0)

)
(~p1 · ~r1) + s(~ψ2 · ~r1)(~p1 · ~r2),

~ψ1 · ~r2 =
(
1 + s(~ψ2 · ~r2 − L0)

)
(~p1 · ~r2) + s(~ψ1 · ~r2)(~p1 · ~r1).

(A.19)

The solution of the equations is given by

~p1 · ~r1 = 1
det(J−1)

[(
1 + s(~ψ2 · ~r2 − L0)

)
(~ψ1 · ~r1)− s(~ψ2 · ~r1)(~ψ1 · ~r2)

]
,

~p1 · ~r2 = 1
det(J−1)

[(
1 + s(~ψ1 · ~r1 − L0)

)
(~ψ1 · ~r2)− s(~ψ1 · ~r2)(~ψ1 · ~r1)

]
.

(A.20)

To get the expression of ~p1 from the above equations, we decompose ~p1 by ~ψ1, ~ψ2 and take
an ansatz ~p1 = a~ψ1 + b~ψ2. Here a, b are undetermined scalar functions about all variables
besides ~ψ1, ~ψ2. Plugging the ansatz into (A.20), we get

a = 1 + s(~ψ2 · ~r2 − L0)
det(J−1) , b = −s(

~ψ1 · ~r2)
det(J−1) . (A.21)

Then, the expressions of ~p1, ~p2 are given by

~p1 = 1
det(J−1)

[(
1 + s(~ψ2 · ~r2 − L0)

)
~ψ1 − s(~ψ1 · ~r2)~ψ2

]
,

~p2 = 1
det(J−1)

[(
1 + s(~ψ1 · ~r1 − L0)

)
~ψ2 − s(~ψ2 · ~r1)~ψ1

]
.

(A.22)
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