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1 Introduction

Instanton non-perturbative corrections make an essential contribution to the dynamic of
supersymmetric gauge theories. In [1] Nekrasov proposed a very convenient way to compute
the instanton part of the partition function of N = 2 SYM theory with SU(N) gauge group.
The instanton partition function can be viewed as a generating function of the contributions
of the k-instanton sectors

Z =
∞∑
k=1

qkZk (1.1)

and a single term Zk Nekrasov found in the integral form by equivariantisation of the theory
and applying the localisation technique. The poles defining the value of this integral are
parameterised by the N -tuples of Young diagrams with the total number of k boxes.

Although this approach provides a direct way to compute the instanton contribution to
the partition function, the difficulty of calculations increases when the number of instantons
k grows, and increases the faster the higher the rank N of the theory is.

A big step had been made when Poghossian in [2] noticed that a recurrence relation
found by Zamolodchikov in [3] for the conformal blocks in 2d CFT theory with SU(2) gauge
group can be translated to the language of the Nekrasov partition function. By this the
eminent Zamolodchikov recurrence relation for the instanton partition function in SU(2)
gauge theory appeared

Z(a) = 1 +
∞∑

m,n=1

qmnZ(εm,−n)
(−a+ εm,n)(a+ εm,n)

2εm,n∏m
i=−m+1

∏n
j=−n+1

(i,j) 6=(0,0)
εi,j

. (1.2)
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Here εm,n = mε1 + nε2, a is the difference a = a1 − a2, au are vacuum expectation values
of eigenvalues of the scalar field φ of the vector multiplet and ε1, ε2 are the equivariant
parameters.

Not only this relation allows us to calculate the Nekrasov partition function recurrently
in terms of the parameter q, but it also grants us a clear understanding of the positions
and of the orders of the poles of the partition function with respect to the variable a, which
are not obvious from the integral form. The relation (1.2) proved to be quite useful in the
computations related to N = 2 SYM SU(2) gauge theory [4, 5].

Later in [6] Poghossian basing on the analysis of the instantonic partition function
suggested a similar recurrence relation for N = 2 SYM SU(3) theory, and, by translating
it to the AGT-dual conformal theory language, a generalisation of the Zamolodchikov
conformal block recurrence relation. However, rigorous proof for the case of SU(3) gauge
group was lacking.

In [5] with the help of the Zamolodchikov recurrence relation an interesting relation
for the full partition function, consisting of the instanton, classical and one-loop parts, was
proved

lim
α→0

Z(α+ εm,n)
Z(α+ εm,−n) = −Sign(ε1). (1.3)

A similar relation for a higher rank theory was suggested, but, firstly, the conjecture was
not strong enough to recover a recurrence relation for the instanton partition function, and,
secondly, there was no proof.

In the present paper we fix these flaws. Directly from the Nekrasov’s integral repre-
sentation of the k-instanton term Zk we determine the positions and orders of its poles and
express its residue via the contribution of a smaller number of instantons. In terms of the
full partition function this relation can be written in a nice form generalising (1.3)

lim
auv→εm,n

Z(a)
Z(â(uv))

= −Sign(ε1), (1.4)

where u, v ∈ {1, . . . , N}, auv = au − av and the N -dimensional vectors a and â(uv) are
related by the partial Weyl permutation between the ε2-coefficients of au and av as defined
in the section 3. Unlike the formula proposed in [5] for the SU(N) case, which was written
in the leading order with respect to all N−1 independent arguments of Z, the relation (1.4)
is exact with respect to all variables except auv.

We prove the residue formula for the pure gauge theory, the theory with adjoint hy-
permultiplet and a theory with any number of fundamental and anti-fundamental hyper-
multiplets.

Basing on the residue formula we write recurrence relation for the partition function
in two different ways. In terms of the variables auv we present it only for the pure theory,
while in terms of the Weyl-symmetric variables we write it for all the listed above theories
except the case of total number of the fundamental and anti-fundamental hypermultiplets
greater than critical (Nf +Na) > 2(N − 1).

Proving the wanted relation between two different instanton sectors looks like a rather
sophisticated problem at the first glance. We approach it by establishing a refined duality
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between the terms contributing to the partition function. Namely, instead of treating all
the Young diagrams with the total number of k boxes together, we group them in smaller
families of Young diagrams and we prove the residue formula for sums running over these
families. This refinement is based on the interpretation of the partition function in the
language of the framed torsion-free sheaves on CP2 and twisting of the symmetry group.

It would be interesting to find the AGT-dual relation on the CFT side, but we do not
consider this problem in the present paper.

The paper is organised as follows:

• In section 2 we define the main objects which we use throughout the computations.

• Section 3 is the central part of the paper containing the formulation of the residue
formula, its refined version, its interpretation in terms of the framed torsion-free
sheaves, and finally the rigorous proof of the residue formula.

• In section 4 we provide the recurrence relation in terms of two different sets of vari-
ables.

• In section 5 we collect the main results of this paper.

2 Instanton partition function

We consider the N = 2 topologically twisted gauge theory with gauge group SU(N) on R4.
We identify the space R4 with C2 with coordinates x and y, and endow it with action of
U(1)2 ⊂ SO(2) defined as

(ε1, ε2) : (x, y) 7→ (eiε1x, eiε2y) (2.1)

for ε = (ε1, ε2) ∈ u(1)⊕ u(1).
The main object of our interest is the instanton partition function of this theory derived

in [1]. The instanton partition function is constructed by integration in the equivariant
cohomology and as a result depends on the formal parameters ε1 and ε2. Physically these
parameters characterise the non-trivial geometry of Ω-background (see [7]). It also depends
on a vector a = (a1, . . . , aN ) ∈ CN with ∑N

u=1 au = 0 which again has two equivalent
interpretation. In the language of the equivariant cohomology these are the coordinates on
the complexified Lie algebra of the maximal torus of the gauge group SU(N). Physically
they are the vacuum expectation values of the Higgs field.

Partition function is presented as a sum over a number of instantons

Z(R) =
∞∑
k=0

qkZ
(R)
k (a), (2.2)

where R stands for a representation of the matter hypermultiplet, and R = 0 corresponds
to the pure theory.

Z
(0)
k (a) = εk

(2πiε1ε2)k
∮ k∏

i=1

dφi∏N
u=1 [(φi − au)(au − φi + ε)]

∏
j<i

φ2
ij(φ2

ij − ε2)
(φ2
ij − ε21)(φ2

ij − ε22) (2.3)
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The poles of the integrand in (2.3) located inside the integration contour are parametrized
by N Young diagrams ~Y = (Y1, . . . , YN ) with the total number of boxes equal to the num-
ber of instantons |~Y | = k. The poles of integral corresponding to ~Y are located at the points

ΦI = aI − ε1(αI − 1)− ε2(βI − 1), (2.4)

where I is labelling a box belonging to one of the Young diagrams Yu ∈ ~Y , (αI , βI) are
coordinates of the box I in Yu and aI = au.

In the case of gauge theory with a matter field in the adjoint representation the con-
tribution to the k-th instanton sector can be written as

Z
(adj)
k (a) =

(
ε(ε1 +M)(ε2 +M)
(2πi)ε1ε2M(ε+M)

)k ∮ k∏
i=1

dφi
∏N
u=1 [(φi − au +M)(au − φi + ε+M)]∏N

u=1 [(φi − au)(au − φi + ε)]

·
∏
j<i

φ2
ij(φ2

ij − ε2)(φ2
ij − (ε1 +M)2)(φ2

ij − (ε2 +M)2)
(φ2
ij − ε21)(φ2

ij − ε22)(φ2
ij −M2)(φ2

ij − (ε+M)2) . (2.5)

The contours of integration are chosen in such a way that there are no new poles inside
the contours compared to (2.3).

In the case of presence of Nf fundamental hypermultiplets and Na anti-fundamental
the contribution of the k-sector is

Z
(fund)
k (a) = εk

(2πiε1ε2)k
∮ k∏

i=1
dφi

∏Nf
t=1(φi−mt)

∏Na
t=1(−φi+ε+mt)∏N

u=1 [(φi−au)(au−φi+ε)]
∏
j<i

φ2
ij(φ2

ij−ε2)
(φ2
ij−ε21)(φ2

ij−ε22) .

(2.6)
One may notice that the signs in the (2.3)–(2.6) differ from [1], but this choice of signs is
in agreement with [8] and [9]. To be completely clear with our sign convention let us write
the same partition functions evaluated in the manner of [9].

Z
(0)
k (a) =

∑
~Y

|~Y |=k

1∏N
u,v=1 ZYu,Yv(au, av)

, (2.7)

Z
(adj)
k (a) =

∑
~Y

|~Y |=k

N∏
u,v=1

ZYu,Yv(au, av +M)
ZYu,Yv(au, av)

, (2.8)

Z
(fund)
k (a) =

∑
~Y

|~Y |=k

∏Nf
u,v=1 Zø,Yv(mu, av)

∏Na
u,v=1 ZYu,ø(au,mv)∏N

u,v=1 ZYu,Yv(au, av)
, (2.9)

where

ZYu,Yv(au, av) =
∏

(i,j)∈Yu

(av − au + ε1(i− l̃Yv ,j)− ε2(j − 1− lYu,i))

·
∏

(i,j)∈Yv

(av − au − ε1(i− 1− l̃Yu,j) + ε2(j − lYv ,i)) (2.10)

and lY,i is the length of the i-th row of diagram Y , l̃Y,i is the length of the i-th column of
diagram Y .
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3 Residue formula

3.1 Dual points and the residue formula

The first step to establish the recurrence relation for the instanton partition functions is
to connect its residue with its value at some other point, which we will call the dual point.

As we can see from (2.7)–(2.9), Z(R)(a) has poles only with respect to the differences
au − av , auv located at the integer lattice points auv = mε1 + nε2 , εm,n with m,n ∈ Z.

In order to find the point dual to the pole at auv = εm,n let us define the partial Weyl
permutation.

We set

a = α+mε1 + nε2,

where (m, n) ∈ Z2N are integer reference points and α are shifts from this points, which
are not supposed to be small.

By the partial Weyl permutation between au and av we understand a permutation of
either ε1-coefficients mu and mv or ε2-coefficients nu and nv. Both choices are equivalent
here due to the symmetry under complete Weyl permutation. For definiteness we consider
the second case

a1 = α1 +m1ε1 + n1ε2

. . .

au = αu +muε1 + nuε2

. . .

av = αv +mvε1 + nvε2

. . .

aN = αN +mN ε1 + nN ε2

→

â
(uv)
1 = α1 +m1ε1 + n1ε2

. . .

â(uv)
u = αu +muε1 + nvε2

. . .

â(uv)
v = αv +mvε1 + nuε2

. . .

â
(uv)
N = αN +mN ε1 + nN ε2

(3.1)

Our claim is that the instanton partition function has poles only at auv = εm,n with
m · n > 0, the poles are simple and a residue for m > 0, n > 0 is the following

Resauv=εm,nZ
(R)(a) = qmn

P(uv)
N,R (m,n|a)

P(uv)
N (m,n|a)

Z(R)(â(uv)), (3.2)

where

P(uv)
N (m,n|a) =

m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

N∏
w=1
w 6=u, v

m∏
i=1

n∏
j=1

[(avw + εi,j)(−auw + εi,j)] (3.3)
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The prime in the first product means that the factor with (i, j) = (0, 0) is not included.

P(uv)
N,0 = 1, (3.4)

P(uv)
N,adj(m,n|a) =

m−1∏
i=−m

n−1∏
j=−n

(εi,j −M)

·
N∏
w=1
w 6=u, v

m∏
i=1

n∏
j=1

[(avw + εi,j +M)(−auw + εi,j +M)] , (3.5)

P(uv)
N,fund(m,n|a) =

m∏
i=1

n∏
j=1

[ Nf∏
t=1

−1
2εm,n + εi,j −mt −

1
2

N∑
w=1
w 6=u,v

aw

 (3.6)

·
Na∏
t=1

−1
2εm,n + εi,j +mt + 1

2

N∑
w=1
w 6=u,v

aw


]
.

The relation (3.2) can be written more elegantly if we add in the consideration the
classical and the one-loop parts of the full partition function of the gauge theory.

The classical part defined as

Zclass = q
−
∑

u

a2
u

2ε1ε2 = q
−
∑

u,v

a2
uv

4Nε1ε2 (3.7)

transforms under the partial Weyl permutation (3.1) as

Zclass(a) = q−mnZclass(â(uv)). (3.8)

The one-loop part depends on the representation of the matter hypermultiplet and can be
conveniently written in terms of the character [7]

Z
(R)
1−loop(a) = exp

(
− d

ds

[ Λs
Γ(s)

∫ ∞
0

dt
t
ts(χ(y, t1, t2)− χ(R)(y, t1, t2))

] ∣∣∣∣
s=0

)
, (3.9)

where the common part of the character χ(y, t1, t2) is

χ(y, t1, t2) =
∑
u<v(yuv + y−1

uv )
(1− t1)(1− t2) , (3.10)

the representation-depending parts of the character are

χ(0)(y, t1, t2) = 0

χ(adj)(y, t1, t2) =
∑
u<v(yuve−tM + y−1

uv e
−tM )

(1− t1)(1− t2) (3.11)

χ(fund)(y, t1, t2) =
∑
u(∑Nf

f=1 yue
tmf +∑Na

f=1 y
−1
u e−tmf )

(1− t1)(1− t2) (3.12)

and the arguments of the characters are

yuv = e−tauv , yu = e−tau , t1 = e−tε1 , t2 = e−tε2 . (3.13)

– 6 –
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One can easily derive how the characters change under the partial Weyl permutation (3.1).
For example, for the common part of the character one gets

χ(y,t1, t2)−χ(ŷ, t1, t2) = 1
(1− t1)(1− t2)

[
(tm1 − t−m1 )(tn2 − t−n2 )+(η−Sign(ε1)−1) (3.14)

+
∑
w

w 6=u,v

yuw(1− t−m1 )(1− t−n2 )+
∑
w

w 6=u,v

y−1
uw(1− tm1 )(1− tn2 )

]
,

where η = e−t(auv−εm,n) → 1 and it immediately gives in the case of pure theory R = 0

Lead
auv→εm,n

Z
(R)
1−loop(â(uv))

Z
(R)
1−loop(a(uv))

= −Sign(ε1)
αuv

P(uv)
N,R (m,n|a)

P(uv)
N (m,n|a)

. (3.15)

Treating the representation-dependent part of the character in the presence of the adjoint
hypermultiplet exactly in the same way as the common part (3.14) we see that (3.15) holds
also for this theory. To show that (3.15) works also in the case of a theory with the fun-
damental and anti-fundamental hypermultiplets we have to explicitly use that ∑u au = 0.

If we look at the point auv = ε−m,−n, then (3.2), (3.15) gain an additional minus sign.
Combining together (3.2), (3.8) and (3.15) for all types of theories we see that the full

partition function consisting of the classical, one-loop and instanton contributions

Z(R) = ZclassZ
(R)
1−loopZ

(R) (3.16)

transforms very simply under the partial Weyl permutation of ε2-coefficients as

lim
auv→εm,n

Z(R)(a)
Z(R)(â(uv))

= −Sign(ε1), m, n ∈ Z \ {0} (3.17)

and accordingly under the partial Weyl permutation of ε1-coefficients the obtained factor
is −Sign(ε2). If m = 0 or n = 0 the points a and â(uv) coincide or differ by a complete
Weyl permutation and hence the partition function at these points is the same.

3.2 Refined formula and geometric motivation

Proving (3.2) is complicated by the fact that there are a lot of terms in the sums on the
both sides of the equality. Indeed, the instanton partition function can be written as

Z(R)(a) =
∑
Y
Z

(R)
Y (a), (3.18)

where the sum runs over all possible N -tuples of the Young diagrams Y and Z(R)
Y (a) is a

contribution to the integral from a pole parameterised by Y, so the relation (3.2) connects
two sums of the type (3.18).

Of course one can reduce the number of terms in the sums by considering the different
instanton sectors separately,

Resauv=εm,n
∑
Y
|Y|=k

Z
(R)
Y (a) = qmn

P(uv)
N,R (m,n|a)

P(uv)
N (m,n|a)

∑
Y

|Y|=k−mn

Z
(R)
Y (â(uv)), (3.19)

– 7 –
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but this relation still has many terms on the both sides and is difficult to prove.
We are about to show that (3.19) can be refined even more, i.e. that the sums on the

both sides of (3.19) can be divided in smaller subsums and that the equality holds between
these subsums independently.

Resauv=εm,n
∑

Y∈F
|Y|=k

Z
(R)
Y (a) = qmn

P(uv)
N,R (m,n|a)

P(uv)
N (m,n|a)

∑
Y∈F̃

|Y|=k−mn

Z
(R)
Y (â(uv)), (3.20)

where F (or F̃) is a subset of the set of all the N -tuples of Young diagrams with k cells (or
k −mn cells), which we will call a family of Young diagrams (or a dual family). Dividing
all the Young diagrams into smaller families is the crucial point of the proof.

The next subsection contains a rigorous proof of (3.2) and a precise recipe of combining
Young diagrams into the families, however it lacks an explanation why the recipe is exactly
as it is given. We discuss the algebro-geometric picture behind this refinement and explain
how the families appear in the first place in the current subsection. A reader not interested
in this side of the problem can safely skip it and go directly to subsection 3.3, since the
proof provided there is self-consistent.

For simplicity in this subsection we consider only the pure theory, although the result-
ing relation holds for all cases. Instead of (3.2) we deal here with its equivalent form (3.17).

Algebro-geometric interpretation of the partition function. The partition func-
tion on C2 can be interpreted in terms of the framed torsion-free sheaves on CP2. [9–12]

From this point of view the functions Zk are considered as integrals over the moduli
space of framed rank-N torsion-free sheaves on CP2 with the second Chern class k. This
space is equipped with the natural action of T = C∗2 × C∗N , where the first factor is the
complexification of the geometric rotations U(1)2 and the second factor is the maximal
torus of GL(N) acting on the framings. On the physical side the latter can be interpreted
as a complexification of the gauge group U(N).1 The integrals can be computed by means
of the equivariant localisation.

The fixed points turn out to be direct sums of N rank-1 equivariant ideal sheaves with
trivial framing

E =
N⊕
u=1
Iu.

In the sequel we call such sheaves the fixed-point sheaves.
To describe each Iu it is enough to define the space Iu of its sections on C2 as an ideal

of the coordinate ring C[x, y]. Each ideal Iu in its turn is described by a set of monomials
which do not belong to it

Yu = {(i, j)|xi−1yj−1 /∈ Iu}. (3.21)

Since Iu is an ideal of C[x, y], if a monomial xiyj belongs to it, then so do xi+1yj and
xiyj+1. Therefore the set Yu always has the shape of a Young diagram.

1We can instead deal with C∗(N−1), the maximal torus of SL(N), which is a complexification of SU(N),
but it would introduce unnecessary technicalities.
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The space of sections of the whole sheaf E is then

E =
N⊕
u=1

Iu. (3.22)

As it was in the gauge theory picture, we see that the fixed points are characterised by the
N -tuples of Young diagrams.

By the equivariant localisation the partition function on C2 is given by a sum over the
N -tuples of the Young diagrams

Z =
∑
Y
ZY (3.23)

The contribution of a fixed point ZY is exactly the contribution of the pole of (2.3)
parametrized by the N -tuple of the Young diagrams Y in the sense of (2.4) [1].

From the equivariant localization formula [13] we expect that the integral over the
moduli space of framed torsion-free sheaves can be given in terms of the weights of the
representation of group T acting on its tangent space at the fixed point. It can be shown
that the latter is determined by the representation of this group acting on the space of
sections E, so let us describe it.

Twisted equivariant structure. Sections of a fixed-point sheaf transform into the sec-
tions of the same sheaf under the action of T . We will mark a section p(x, y) ∈ Iu ⊂ C[x, y]
by a subindex u as (p)u to indicate that it is considered as an element of the u-th summand
in E and to distinguish it from identical polynomials which may appear in Iv, v 6= u.

The equivariant structure is given by the action of (eiε1 , eiε2 , eia1 , . . . , eian) ∈ T

Iu 3 (p(x, y))u 7→ (eiaup(xe−iε1 , ye−iε2))u ∈ Iu. (3.24)

In particular, each monomial (pi,j(x, y))u = (xi−1yj−1)u ∈ Iu spans a space carrying an
irreducible representation of T of weight χu,i,j(ε1, ε2,a) = au − (i− 1)ε1 − (j − 1)ε2.

We interpret the shifted argument of the partition function in the duality (3.17) as a
twist of the group T , which makes the geometric group to act on the framing. Physically
it corresponds to a mixing of the geometric and the global gauge groups.

To do so we define new coordinates (ε1, ε2, α1, . . . , αN ) on T instead of the old ones
(ε1, ε2, a1, . . . , aN ) by setting

au = αu +muε1 + nuε2, u = 1, . . . , N, (3.25)

where mu, nu are arbitrary integers.
Then the weight of a monomial (pi,j(x, y))u becomes

αu + (mu − i+ 1)ε1 + (nu − j + 1)ε2. (3.26)

We understand now αu as a weight of a representation of C∗N and (mu − i+ 1)ε1 + (nu −
j + 1)ε2 as a weight of a representation of C∗2. The latter is not trivial even for a constant
section (p1,1)u = (x0y0)u, which reflects that the groups were twisted.
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In (1.4) we are interested in the limit αuv → 0 for some fixed pair u, v ∈ {1, . . . , N}. It
is equivalent to breaking the symmetry group down to T (uv) = C∗2 × C∗(N−1) ⊂ T , where
the subgroup is fixed by the equation αu = αv. From the discussion above, we conclude
that the behavior of ZY in this limit is essentially determined by the representation of
T (uv) on E. For this reason, below we look for such a description of a fixed point sheaf E
that the representation of T (uv) carried by E is explicit.

Bifiltrations and their graphical representation. Now we want to show that the
information about the space of sections E of a fixed-point sheaf and about the N -tuples
of the twisting parameters m, n can be encoded together in the form of a bifiltration of
subspaces of CN . A graphical representation of these bifiltrations will provide us a recipe
of how to combine the Young diagrams in the families.

Let us remind that a non-increasing bifiltration B of subspaces of CN is a set of spaces
Bi,j ⊆ CN enumerated with two indices and ordered with respect to both of them, so
that Bi,j ⊆ Bi−1,j and Bi,j ⊆ Bi,j−1, satisfying the conditions for the maximal space
Bi�0,j�0 = CN and the minimal space Bi�0,j�0 = 0.

In our case the bifiltration arises from a decomposition of the space E into isotypical
representation of the twisted C∗2,

E =
⊕

(i,j)∈Z2

Bi,j ,

where Bij is a subspace of E transforming under the action of the twisted C∗2 with the
weight iε1 + jε2. From (3.26) and (3.21) we read

Bi,j = {(pmu−i+1,nu−j+1)|u = 1, . . . , N, (mu − i+ 1, nu − j + 1) /∈ Yu}. (3.27)

Note that by construction the dimensions dimBi,j are the multiplicities of the irreducible
representations appearing in E. In other words, the array {dimBi,j}i,j∈Z characterizes E
as a vector space carrying a representation of C∗2 completely.

Now we introduce the linear operators

x, y : E −→ E, (3.28)

x(p)u = (x · p)u, y(p)u = (y · p)u,

where · is the usual product of polynomials. We see by definitions (3.27) and (3.21) that

xBi,j ⊂ Bi−1,j and yBi,j ⊂ Bi,j−1. (3.29)

By construction, the maps x and y are injective, therefore they define isomorphisms of Bi,j
with its images in Bi−1,j and Bi,j−1:

Bi,j ∼= xBi,j and Bi,j ∼= yBi,j . (3.30)
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Finally, all these isomorphisms are compatible in the sense that they commute with each
other. So, we can identify the isomorphic vector spaces

Bi,j = xBi,j ⊂ Bi−1,j Bi,j = yBi,j ⊂ Bi,j−1. (3.31)

Then Bi,j becomes a non-increasing bifiltration.2
The only structure yet not described in terms of bifiltrations is the twisted C∗N action.

As the action of C∗N on E commutes with x and y, it is compatible with the identifica-
tion (3.31). Then it is enough to specify how C∗N acts on the maximal space of bifiltration
Bi�0,j�0. From (3.27) we see that

Bi�0,j�0 =
N⊕
u=1

E[u] = CN ,

where E[u] with u = 1, . . . , N is a one-dimensional space transforming with the weight eiαu
under the action of C∗N . Then, with the identification (3.31) the explicit expression (3.31)
takes the form

Bi,j =
⊕

u:i≤mu,j≤nu,
(mu−i+1,nu−j+1)/∈Yu

E[u]. (3.32)

Therefore Bi,j is a bifiltration consisting of not just any subspaces of CN , but exclusively
of direct sums of E[u]. The bifiltration (3.32) contains all information about the space of
sections E of a fixed-point sheaf and about the N -tuples of the twisting parameters m, n.

It is useful to introduce edge filtrations of a bifiltration. We define them as follows

B
(1)
i = Bi,j�0, B

(2)
j = Bi�0,j . (3.33)

Due to (3.32) we see that

B
(1)
i =

⊕
u:i≤mu

E[u], B
(2)
j =

⊕
u:j≤nu

E[u]. (3.34)

Note that if the twisting parameters m, n are ordered alike (mi1 > mi2 > . . . > miN and
ni1 > ni2 > . . . > niN ), then the subspaces of the edge filtrations B(1)

i , B(2)
j coincide.

Let us now look at the graphical representation of bifiltrations.
To begin with, we consider a simple case of a reflexive fixed-point sheaf, which is a sheaf

with a space of section containing all the polynomials (i.e. with all the Young diagrams
Yu listing the missing monomials being empty). For such a sheaf and N -tuples of twisting
parameters m, n we construct a bifiltration according to (3.32).

It is easy to see that the spaces of the bifiltration of a reflexive sheaf are simply the
intersections of its edge filtrations

B
(ref)
i,j = B

(1)
i ∩B

(2)
j . (3.35)

2The operators x and y play an important role, because they make E into a C[x, y]-module, without
which the original sheaf can not be reconstructed. After the identification (3.31), this information is encoded
in the relative alignment of the spaces Bi,j .
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Let us look at some examples, always in the N = 2 case (generalisation will be straight-
forward).

We now assume that the twisting parameters are ordered as m1 > m2 and n1 >

n2. In this case according to (3.34) the subspaces appearing in the both edge filtrations
coincide and the bifiltration can be represented graphically as in figure 1 (a). This and
further pictures should be read as follows. Each space Bi,j is represented by a cell with
right-top coordinates (i, j) on the plane. All cells belonging to a region bonded by solid
lines correspond to the same space (in figure 1 (a) these are the zero space, the one-
dimensional space E[1] and the whole C2). The colours of regions show the dimensions of
the corresponding space. Namely, the two-dimensional subspaces are coloured with dark
grey, the one-dimensional subspaces are coloured with light grey, and the empty spaces are
shown by white cells. The edge filtrations B(`)

i are written along the axes for convenience.
In general, a space of sections of a fixed-point sheaf does not contain all polynomials,

so Bi,j ⊂ B
(ref)
i,j . In other words, a bifiltration B can be obtained by cutting out some

subspaces from B
(ref)
i,j . From (3.32) we see that the set of cut out subspaces has the shape

of the Young diagrams Yu and the origins of the cut out Young diagrams are located at
the points (mu, nu).

An example of a general bifiltration is shown on figure 1 (b). We again take N = 2
and order the twisting parameters as m1 > m2, n1 > n2. By heavy points we mark the
origins of the cut out Young diagrams located at (m1, n1), (m2, n2).

If we order the twisting parameters differently, for example as m1 > m2, n1 < n2, then
the one-dimensional subspaces of the edge filtrations (3.34) do not coincide. A bifiltration
corresponding to a reflexive sheaf with the twisting parameters ordered like this can be seen
in figure 2 (a), and an example of a general bifiltration with this ordering of the twisting
parameters can be seen in figure 2 (b).

Duality. Finally we have all we need to propose the refinement of the relation (3.17).
We want to establish a correspondence between the value of the partition function

at the points which differ by the partial Weyl permutations. As agreed, we interpret
the argument of the partition function as the twisting of the groups, and the twisting
parameters in our graphical representation are the origins of cut out Young diagrams.
Therefore in terms of the bifiltrations we want to see some kind of correspondence between
the bifiltrations with the coordinates of the origins of two of the Young diagrams being
partially permuted.

We again for a time being concentrate on the case of N = 2. In this case T (12) =
C∗2 × C∗. Its gauge factor C∗ acts diagonally on the whole space E and thus can be
ignored. Therefore we expect that the related contributions of the fixed point sheaves are
the ones producing identical representations of the geometric group C∗2.

Let us compare bifiltrations with the twisting parameters ordered alike and oppositely.
We will denote the latter bifiltration by B and the former by B̃. As we just saw, the
edge filtrations of B have identical one-dimensional subspaces and the edge filtrations of
B̃ are different, therefore B and B̃ are for sure two different bifiltrations. However, for
certain spaces of sections the dimensions of the spaces Bij and B̃ij of the corresponding
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Figure 1. Bifiltration corresponding to the twisted parameters ordered alike and (a) empty Young
diagrams;
(b) non empty Young diagrams.
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Figure 2. Bifiltration corresponding to the twisted parameters ordered in the opposite way and
(a) empty Young diagrams; (b) non empty Young diagrams.
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Ẽ

[2
] .
..
Ẽ
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Figure 3. An example of two dual bifiltrations. (a) Bifiltration with m1 > m2, n1 > n2 and one
rectangular Young diagram; (b) bifiltration with m1 > m2, n̂1 < n̂2 and empty Young diagrams.

bifiltrations can coincide. The simplest example is shown on figure 3, where B̃ has both
Young diagram empty, while B have one rectangular Young diagram (m2−m1)× (n2−n1)
and one empty (we assume that m1 > m2, n1 > n2, n1 = n̂2 > n̂1 = n2.).

Now if we recall that the dimensions dimBi,j determine completely the representation
of the geometric group C∗2 carried by a bifiltration, we see that B and B̃ are isomorphic
as representations of C∗2. In fact, we will see that

lim
a→0

Z(�,ø)(α+ εm,n)
Z(ø,ø)(α+ εm,−n) = −Sign(ε1), (3.36)

where ø stands for the empty Young diagram and � stands for the rectangular one.
In figure 4 a non-trivial example of dual bifiltrations with all the Young diagrams

being non empty is demonstrated. We will see that for such couples of the cut out Young
diagrams again holds the relation of the type (3.36).

One could expect that the duality holds for all the bifiltrations B, B̃ such that
dimBi,j = dim B̃i,j for all i, j ∈ N. However, in general there could be many bifiltra-
tions B and B̃ satisfying

dimBi,j = dim B̃i,j = di,j (3.37)

for some fixed numbers di,j and the refinement (3.20) should be formulated in terms of the
dual families, and not in terms of single contributions.

The rule is the following: a family is formed by all the bifiltrations with coinciding
subspaces of the edge filtrations and with dimensions of the subspaces of the bifiltrations
satisfying (3.37). Two families are dual if they have different one-dimensional subspaces
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Figure 4. Example of dual bifiltrations with all the cut out Young diagrams being non empty. (a)
m1 > m2, n1 > n2 ; (b) m1 > m2, n̂1 < n̂2.

of the edge filtrations, but the dimensions of the subspaces of the bifiltrations of the both
families satisfy (3.37). All bifiltrations in a family and its dual family are isomorphic as
representations of twisted C∗2. An example of a family is provided on figure 5 and its dual
family is shown on figure 6. The contours of the Young diagrams are shown by the lines of
triangles and crosses.

For families defined in this way we will indeed see that

lim
a→0

∑
(Y1,Y2)∈F Z(Y1,Y2)(α+ εm,n)∑

(Ỹ1,Ỹ2)∈F̃ Z(Ỹ1,Ỹ2)(α+ εm,−n) = −Sign(ε1). (3.38)

Generalisation to the higher rank is straightforward. For a fixed couple u, v ∈
{1, . . . , N} we expect that the families consist of the sheaves producing identical repre-
sentations of the group T (uv). We can decompose the space E into two parts,

E = E′ + E′′, E′ = E[u] ⊕ E[v], E′′ =
⊕
w 6=u,v

E[w],

and note that representation of T carried by E′′ can be uniquely reconstructed from the
representation of T (uv) carried by E′′, since the broken factor by construction does not
affect E′′. For E′ the action of the gauge factor C∗(N−1) is diagonal and fixed and hence
only the geometric group C∗2 is relevant. We set

Bi,j = B′i,j +B′′i,j , B
′
i,j = Bi,j ∩ E′B′′i,j = Bi,j ∩ E′′

and conclude that the members of the same family (and its dual) should have identical
bifiltrations B′′i,j and dimensions dimB′i,j . In other words, Yu and Yv should be related in
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Figure 5. Example of a family of bifiltrations.
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Figure 6. Example of a family of bifiltrations dual to the family on the figure 5.
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the same way as in N = 2 case and the rest N − 2 of the Young diagrams should coincide
in a family and its dual.

Remark. The bifiltration Bi,j is very similar to the ones appearing in Klyachko classifi-
cation of equivariant sheaves on compact toric varieties [14, 15]. It is not a coincidence. In
fact, in this classification the sheaves on CP2 are described by triples of bifiltrations, one for
each fixed point of CP2 with respect to C∗2. But since we consider framed sheaves, which
are trivial on one of the divisors, only one of the bifiltration survives. The twisting (3.25)
then prescribes a non-trivial equivariantization of this trivial sheaf. However the decom-
position (3.32) determining the framing does not appear in the Klyachko’s construction.

The similarity of our approach with Klyachko classification has yet another interpre-
tation. The equivariant torsion-free sheaves on compact toric varieties are the fixed point
in the geometric approach to the computation of N = 2 gauge theory partition function.
At the same time there are a lot of indications that this partition function can expressed
via products of the shifted C2 partition functions [4, 5, 12]. Apparently there is a corre-
spondence between the bifiltrations, describing the equivariant torsion free sheaves on the
compact toric variety, and bifiltrations, assigned to the terms of shifted partition function
as above.

Finally, it is worth noting that the relation between the representations of the symme-
try group acting on the tangent space of the moduli space of sheaves at a fixed point and
on the space of sections of the fixed point sheaves, very similar to the ones lying behind
our reasoning, was found in [14].

3.3 Proof via the dual families of Young diagrams

In this subsection we reformulate the refinement (3.20) in terms of the Young diagrams
and prove it and hence (3.2). We start with the pure theory and then add the matter
hypermultiplets to the consideration.

Taking the integrals. First let us look at the integral form of Z(0)
k (2.3) and define the

variables of integration around the poles

ξI = φI − ΦI , (3.39)

so the integrals with respect to ξI go around the zeros. The contours are chosen to be circles
with centres at the origin and radii rI = αIδ1 + βIδ2, where (αI , βI) are the coordinates
of the cell I as defined below (2.4), and δ1/δ2 > k or the other way round. In that way
the contours of integration over ξI , ξJ with I, J belonging to the same diagram do not
intersect, while the integration over ξI , ξJ with I, J belonging to the different diagrams is
independent since there are no poles with respect to ξIJ .

We start the proof with the N = 2 case. We set a12 = a, â(12)
12 = â and denote by

Zk(Y1, Y2) a contribution to Z(0)
k coming from the pole marked by the Young diagrams
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Y1, Y2.

Zk(Y1, Y2) = εk

(2πiε1ε2)k
∮ ∏

J∈Y1

∏
I∈Y2

dξJdξIfJ(0, ξJ)fJ(a, ξJ)fI(−a, ξI)fI(0, ξI)

·WJI(a, ξJI)

 ∏
T∈Y1
T 6=J

WJT (0, ξJT )


 ∏
T∈Y2
T 6=I

WTI(0, ξTI)

 , (3.40)

where

fI(a, ξI) = [(a− ε1(αI − 1)− ε2(βI − 1) + ξI)(−a+ ε1αI + ε2βI − ξI)]−1

and

WJI(aJI , ξJI) = φ2
JI(φ2

JI − ε2)
(φ2
JI − ε1)2(φ2

JI − ε2)2 , (3.41)

φJI = aJI − ε1(αJ − αI)− ε2(βJ − βI) + ξJI .

Note for future that we can shift the indices and the arguments simultaneously

f(αI ,βI)(a, ξI) = f(αI+m,βI+n)(a+mε1 + nε2, ξI), (3.42)
W(αJ ,βJ )(αI ,βI)(a, ξJI) = W(αJ+m,βJ+n)(αI ,βI)(a+mε1 + nε2, ξJI) (3.43)

= W(αJ ,βJ )(αI+m,βI+n)(a−mε1 − nε2, ξJI)

We will further refer to factorsWIJ as the interaction factors. There is interaction between
every pair I 6= J of k cells.

The poles with respect to all ξI are simple. To see that let us look at the integrals
with respect to ξI with I running through the cells of one of the Young diagrams. We
evaluate the integrals one by one, starting with the contour closest to zero. There is a
simple pole with respect to ξ(1,1) coming from f(1,1)(0, ξ(1,1)), while the interaction factors
do not contain any poles since all the rest of the variables ξJ are separated from the origin.

As soon as we compute the first integral we set ξ(1,1) = 0 in the interaction factors,
and the poles with respect to two more variables come from the interaction, namely ξ(2,1)
and ξ(1,2). The poles appear to be simple again and we can easily take the integrals.

When it comes to the integration over ξ(2,2), we see that there is a double zero in the de-
nominator coming from the interaction with the boxes (1, 2) and (2, 1) and a zero in the nu-
merator coming from the interaction with the box (1, 1). Therefore the pole is simple again.

The pattern repeats on the next steps and we always see that there are single poles
with respect to the variables ξ(1,K) and ξ(K,1) coming from the interaction with the boxes
(1,K−1) and (K−1, 1) respectively, while with respect to the variables ξ(L>1,K>1) we have
simple poles combined from the interactions with (L,K − 1), (L − 1,K) in denominator
and (L− 1,K − 1) in numerator. Thus taking all the integrals in (3.44) with respect to ξI
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marking the boxes in both Young diagrams we just get

Zk(Y1, Y2) = εk

(ε1ε2)k
∏
J∈Y1

∏
I∈Y2

fJ(a, 0)f̄J(0, 0)f̄I(0, 0)fI(−a, 0) (3.44)

·WJI(a, 0)

∏
T∈Y1
T 6=J

WJT (0, 0)

∏
T∈Y2
T 6=I

WTI(0, 0)

 ,
where f̄I(0, 0) stands for fI(0, 0) with the omitted multiplier (−ε1(αI − 1)− ε2(βI − 1))−1

with I = (1, 1) and ∏ stands for the product with all the zeros in numerator and de-
nominator omitted. (Note that as soon as we omit some factors in WJT , it is no longer
symmetrical with respect to the indices permutation and one has to keep the order of
indices in agreement with the integration over ξI .)

Since the dependence on ξI disappeared after the integration we will further omit the
second argument of fI and WIJ .

The main idea of the proof. As we will see soon Zk(Y1, Y2) has a pole at a = ā = εm,n
only if Y1 contain the box (m,n). So let us look at the simplest nontrivial case, namely
Y2, Ỹ1, Ỹ2 = ø and Y1 be a rectangle of size m × n, which we denote as Y1 = � for
convenience. We will denote the dual point as ˆ̄a = εm,−n. We would like to show that

Resa=āZk(Y1, Y2) = 1
P2(m,n)Zk−mn(Ỹ1, Ỹ2)|a=ˆ̄a, (3.45)

We omitted the argument a of P2(m,n) since in the simplest case N = 2 it is actually a
numerical coefficient and not a polynomial.

As one can see Zk−mn(Ỹ1, Ỹ2) = Z0(ø,ø) = 1 and from (3.44)

Zk(Y1, Y2) = Zmn(�,ø) = εmn

(ε1ε2)mn
∏
I∈�

f̄I(0)fI(a)

∏
T∈�
T 6=I

WTI(0)

 , (3.46)

The pole with respect to a is simple and taking the residue one gets

Resa=āZk(Y1, Y2) =
m∏

i=−m+1

n∏′

j=−n+1
(−εi,j)−1 =

m−1∏
i=−m

n−1∏′

j=−n
(εi,j)−1 , (3.47)

which is exactly P2(m,n)−1, so (3.45) is verified.
We can always separate in (3.44) the factors combining in Zmn(�,ø). Although

Zk(Y1, Y2) in general can have a higher order pole at a = ā, we will show soon that we can
group all (Y1, Y2) in families in such a way that the sum of Zk(Y1, Y2) over the family F
has only a simple pole at this point and it appears in the factor Zmn(�,ø). Therefore

Resa=ā
∑

Y1,Y2∈F
Zk(Y1, Y2) = 1

P2(m,n)
εk−mn

(ε1ε2)k−mn · Σ1, (3.48)

Σ1 =
( ∑
Y1,Y2∈F

∏
I∈Y1\�

∏
J∈Y2

fI(0)fI(ā+ α)fJ(−ā− α)f̄J(0)

· WJI(ā+ α)

∏
T∈Y2
T 6=J

WJT (0)

∏
T∈Y1\�
T 6=I

WTI(0)

 [∏
T∈�
WIT (0)WJT (ā+ α)

])∣∣∣∣
α=0
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β

α

n

mY1

Y2

∼ (a− ā)−1 ∼ (a− ˆ̄a)0

n

mỸ1

Ỹ2

(b)

y1

y2y3y4

Figure 7. (a) Example of a family of one member with the correspondent exponent of (a− ā) and
its dual family with the correspondent exponent of (a − ˆ̄a). There is an overlap, but no blinking
group. (b) Overline of subregions of the diagrams.

Note that fI(0), I ∈ Y1 \� does not have any factors omitted since the box (1, 1) is already
included in Zmn(�,ø).

On the other hand we will group all Zk−mn(Ỹ1, Ỹ2) in corresponding sums over dual
families F̄ and show that a sum over a dual family F̄ is regular at ˆ̄a (although an individual
term Zk−mn(Ỹ1, Ỹ2) can be singular at this point)

∑
Ỹ1,Ỹ2∈F̄

Zk−mn(Ỹ1, Ỹ2)|a=ˆ̄a = εk−mn

(ε1ε2)k−mnΣ2 (3.49)

Σ2 =
( ∑
Ỹ1,Ỹ2∈F̄

∏
I∈Ỹ1

∏
J∈Ỹ2

f̄I(0)fI(ˆ̄a+ α)fJ(−ˆ̄a− α)f̄J(0)

· WJI(ˆ̄a+ α)

∏
T∈Ỹ1
I 6=T

WTJ(0)

∏
T∈Ỹ2
J 6=T

WTI(0)

)∣∣∣∣∣
α=0

.

We will show then that for a dual pair F , F̄ the sums coincide, Σ1 = Σ2 and thus will
prove (3.2) for N = 2 case.

Families and dual families of Young diagrams. The way of grouping the pairs of
Young diagrams in families is dictated by the correspondence formulated in the end of
subsection 3.2. We gather in a family all such pairs that their corresponding bifiltrations
have the same dimension at all positions.

In terms of diagrams the general recipe of combining pairs (Y1, Y2) in families is the
following. We shift the origin of diagram Y2 on m cells in positive vertical direction and
n cells in positive horizontal direction with respect to the origin of Y1 (see figure 7 (a)).
We introduce an occupation number for a cell, which is 0 if a cell does not belong to any
diagram, 1 if it belongs to one diagram, and 2 if it belongs to both. Then a family is formed
by all the pairs (Y1, Y2) which have the same occupation numbers for all the cells.

– 20 –



J
H
E
P
0
3
(
2
0
2
3
)
2
2
0

Y1
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Y1

Y2

Y1

Y2

Y1

Y2

Ỹ1

Ỹ2

∼ (a− ā)−5 ∼ (a− ā)−5 ∼ (a− ā)−5 ∼ (a− ā)−5

Ỹ1

Ỹ2

Ỹ1

Ỹ2

Ỹ1

Ỹ2

∼ (a− ˆ̄a)−4 ∼ (a− ˆ̄a)−4 ∼ (a− ˆ̄a)−4 ∼ (a− ˆ̄a)−4

Figure 8. Example of a family and its dual family with the associated to each member exponent
of (a− ā) and (a− ˆ̄a) correspondingly.

∼ α−1 ∼ α1 α2

Figure 9. Zeroes and poles coming from interaction.

We also define a dual family of pairs of Young diagrams (Ỹ1, Ỹ2). We shift the corner of
diagram Ỹ2 on m cells in positive vertical direction, while the origin of diagram Ỹ1 we shift
on n cells in positive horizontal direction with respect to the origin of Y1. We introduce
the dual occupation number based on belonging of a cell to the diagrams Ỹ1, Ỹ2. The
families are dual if all the cells except the rectangle m×n at the origin of Y1 have the same
occupation number and dual occupation number. See figure 8 for example of a family with
several members.

This construction is clearly in agreement with the conjecture of section 3.2 since the
occupation numbers of the cells in a family coincide with the dimension of spaces lacking
in a bifiltration B comparing to the bifiltration B(ref) (see (3.35)).

Proving the relation between the families and their dual families. Let us first
understand the order of the pole of Zk(Y1, Y2) at a = ā. The poles and zeroes at ā arise
from several factors in Zk(Y1, Y2).

The first source of poles is fI(a), where I marks the cells (m,n) or (m + 1, n + 1) in
the diagram Y1.
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The second source is the interaction between the diagrams Y1 and Y2. Due to the shift
of the origin of Y2 with respect to the origin of Y1 we have poles or zeros at ā from the
interaction of coinciding cells or from the nearest neighbours, but not from the separated
cells. To be more precise, every pair of coinciding cells gives a double zero, every pair of
cells sharing an edge gives a pole and every pair of cells having a common upper right or
lower left angle brings a zero (see figure 9).

Keeping that in mind it is easy to see that if Y1 and Y2 overlap, the interaction of the
whole overlapping region gives us a double zero at ā.

Counting the poles and zeroes coming from the interaction of overlapping and non
overlapping regions, we see that they all cancel each other if the first line of Y2 is longer
than the m-th line of Y1, the first column of Y2 is longer than the n-th column of Y1 and
the edge of Y2 does not touch the edge of Y1 (see figure 10 for example). If any of these
conditions is broken, the contribution of the pair of diagrams gains a pole.

From this immediately follows that pairs of diagrams Zk(Y1, Y2) which cannot be
drawn in the dual way are exactly the pairs giving a regular contribution to Zk(Y1, Y2)
at the point a = ā and hence not contributing to the residue at this point. Therefore for
our proof it is enough to consider only the families of diagrams (Y1, Y2) which have dual
families (Ỹ1, Ỹ2). In particular, to contribute to the residue at a = ā the diagram Y1 must
contain the box (m,n).

Another thing which is easy to see from the counting of the poles is that Zk(Y1, Y2) is
regular at ā = εm,n if m = n = 0.

Before considering the general case let us look at two simple examples.
The first one has an overlap of Y1 and Y2, but does not have blinking cells, i.e. the

cells which can belong either to Y1 or to Y2 (see figure 7 (a) again). It means that there
is a single member in the family and in the dual family, and we see that Zk(Y1, Y2) indeed
has only a simple pole and the dual Zk−mn(Ỹ1, Ỹ2) is regular.

We intersect the diagrams into subregions �, y1, y2, y3 which can belong to different
diagrams (the overline of the subregions is shown on figure 7 (b)). The transformation of
Σ1 into Σ2 goes as follows:

• The interaction between the pairs of yi as parts of ~Y turns into the interaction
between the same pairs of yi as parts of ~̃Y with the help of the shift of coordinates
and arguments (3.43).

• Factors fI with index I associated with the cells of yi as a part of ~Y multiplied by
the interaction between yi and � turn into factors fI with index I associated with
the cells of yi as a part of ~̃Y after a shift of coordinates and arguments (3.42).

Checking the transformation one has to be careful with the factors omitted due to
integration over ξI both in Σ1 and Σ2.

The second example is the one with no overlap, but with a group of blinking cells (see
figure 11). We denote the family members as (Y1, Y2) and (Y ′1 , Y ′2). We again intersect the
diagrams into subregions and their outline coincides with the outline of subregions �, y1,
y2, y3 from figure 7(b).
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β

α

n

mY1

Y2

a) Pair of diagrams giving
a regular at ā contribution to Zk;

b) cells (m,n) and (m+ 1, n+ 1)
of the tableau Y1
bring a double pole (a− ā)−2;

c) overlapping region
brings a double zero (a− ā)2;

d) cells of non overlapping regions
bringing a zero (a− ā);

e) cells of non overlapping regions
bringing a pole (a− ā)−1;

Figure 10. Pair of diagrams giving a regular at ā contribution to Zk and the sources of zeros and
poles at ā.

Both Zk(Y1, Y2) and Zk(Y ′1 , Y ′2) have double pole at ā, but the sum has only a simple
pole.

The factors common for the members in the family of ~Y can be taken out of parenthesis
in a sum over the family and they transform into the common factors of the members of the
dual family ~̃Y exactly as in the previous example. Let us give a closer look to the different
parts of the family members around the singularity a = ā+α and see how the cancellation
of the extra singularity happens. The sum of the different parts is the following

∆1=
∏

I∈y3⊂Y1

fI(0)fI(ā+α)
[∏

T∈Y1\y3
WIT (0)

]
+

∏
I∈y3⊂Y ′2

fI(−ā−α)f̄I(0)

 ∏
T∈Y ′1

WIT (−ā−α)


(3.50)

Both terms are singular at α = 0. Let us write explicitly the behaviour around the
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Y ′2

(a− ā)−2 (a− ā)−2 (a− ˆ̄a)−1 (a− ˆ̄a)−1

Ỹ1

Ỹ2

Ỹ ′1

Ỹ ′2

Figure 11. Example of a family with a blinking group, but with no overlap, and its dual family
with the associated to each member exponent of (a− ā) and (a− ˆ̄a).

singularity

f(m+1,n+1)(ā+ α) = 1
α
f̄(m+1,n+1)(ā+ α)

∏
T∈Y ′1

I=(1,1)∈Y ′2

WIT (−ā− α)

 = − 1
α

 ∏
T∈Y ′1

I=(1,1)∈Y ′2

WIT (−ā− α)

 . (3.51)

(Note that it is crucial here that as the interaction in the first term we have WIT and not
WTI because of the order of integration with respect to ξI .)

Expanding all the factors of ∆1 around α = 0 we see that the poles cancel and

∆1 = ∂

∂α

 ∏
I∈y3⊂Y1

fI(α)f̄I(ā+ α)
[∏

T∈Y1\y3
WIT (α)

] ∣∣∣∣
α=0

. (3.52)

On the other hand, the corresponding factors in Zk−mn(Ỹ1, Ỹ2) and Zk−mn(Ỹ ′1 , Ỹ ′2) are
the following

∆2 =
∏

I∈y3⊂Ỹ1

fI(0)fI(ˆ̄a+ α)
[∏

T∈y1⊂Ỹ1
WIT (0)

]  ∏
T∈Ỹ2

WIT (ˆ̄a+ α)

 (3.53)

+
∏

I∈y3⊂Ỹ2

fI(−ˆ̄a− α)fI(0)

 ∏
T∈Ỹ1

WIT (−ˆ̄a− α)

 [∏
T∈y2⊂Ỹ2

WIT (0)
]
. (3.54)

Again, both terms are singular at ˆ̄a with the singularity coming from the interaction of
y3 ∈ Yi with yj ∈ Yj , i 6= j, but the sum is regular.

In the same way as before we get a regular expression

∆2 = ∂

∂α

 ∏
I∈y3⊂Ỹ1

fI(α)fI(ˆ̄a+ α)
[∏

T∈y1⊂Ỹ1
WIT (α)

] [∏
T∈Ỹ2
WIT (ˆ̄a+ α)

] ∣∣∣∣
α=0

(3.55)
It is easy to check that (3.53) coincides with (3.55).
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In general we have both the overlap and several blinking groups of cells (see again fig-
ure 8). For n blinking groups we will have n extra poles which should be cancelled in a sum
over 2n family members. We already know how the common factors of a family transform
into the common factors of its dual family. We now denote the region of overlapping by
y3, a region occupied by an i-th blinking group with two possible affiliations as y3+i. If
we now explicitly write the behaviour around the singularity we will get the sum of the
different factors over 2n members of the family

∆1 = 1
αn

∑
(Y1,Y2)∈F

 ∏
i:yi∈Y1

∏
I∈yi

fI(0)fI(ā+α)
[∏

T∈Y1\yi
WIT (0)

][∏
T∈Y2
WIT (ā+α)

]
·

 ∏
j:yj∈Y2

(−1)
∏
J∈yj

fJ(−ā−α)fJ(0)
[∏

T∈Y1
WJT (−ā−α)

][∏
T∈Y2\yj

WJT (0)
](3.56)

Expanding all factors in terms of small parameter α we will see that all singular terms
cancel and ∆1 can be written as

∆1 = ∂n

∂αn

n+3∏
i=4

∏
I∈yi⊂Y1

fI(α)fI(ā+ α)
[∏

T∈Y1\yi
WIT (α)

] [∏
T∈Y2
WIT (ā+ α)

] ∣∣∣∣
α=0

,

(3.57)
where Y1 contains all the blinking parts yi, i = 4, . . . , n+ 3 and Y2 does not have any.

On the other hand, a sum of different factors in Zk−mn treated in the same way gives us

∆2 = ∂n

∂αn

n+3∏
i=4

∏
I∈yi⊂Ỹ1

fI(α)fI(ˆ̄a+ α)
[∏

T∈Ỹ1\yi
WIT (α)

] [∏
T∈Ỹ2
WIT (ˆ̄a+ α)

] ∣∣∣∣
α=0

,

(3.58)
where again Ỹ1 contains all the blinking groups and Ỹ2 does not contain any.

Both ∆1 and ∆2 are regular and one can make sure that they coincide.
By this we proved (3.2) for N = 2 pure theory.
Now we also can finally show that Z(a) is regular at ā = εm,n if m = 0 or n = 0. In

order to see it we should again form a family (with one of sides of the rectangular being
zero). Again, although a single member of the family Zk(Y1, Y2) can be singular at this
point, the sum over the family is regular. To show that we repeat the steps we made above
to prove the regularity of the sum over the dual family.

Higher rank case. Let us generalise the proof for arbitrary N . To do that we just add
N − 2 diagrams to all families and the same N − 2 diagrams to the dual families. Adding
the diagrams we do not bring any new poles or zeroes with respect to a12. Note that
after the partial Weyl permutation (3.1) of the coefficients in a1, a2, changes not only the
difference a12, but also all au1, au2.

Comparing to (3.44) in the case of higher N we have more interaction factors and we
have more factors fI associated with every cell I in Zk. Every cell brings us now

fI(aI1)fI(aI2) . . . fI(aIN )

Let us compare Zk(Y1, Y2, Y3, . . . , YN ) and Zk−mn(Ỹ1, Ỹ2, Y3, . . . , YN ).
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• Self-interaction of diagrams Y3, . . . , YN and interaction among themselves appears
identically in Zk and Zk−mn.

• Interaction of diagrams Y3, . . . , YN with Y1, Y2 turns into their interaction with Ỹ1, Ỹ2
due to (3.43).

• Factors fI(au1)fI(au2) at a12 = ā turn into factors fI(au1)fI(au2) at a12 = ˆ̄a due to
the interaction with the rectangle.

• The factors fI coming from the cells I ∈ � contribute to Zk(�,ø, . . . ,ø), i.e. to the
coefficient in (3.2)

P(1 2)
N (m,n|a) =

m∏
i=−m+1

n∏′

j=−n+1
(−εi,j) ·

N∏
v=3

m∏
i=1

n∏
j=1

[(a1v − εi−1,j−1)(−a1v + εi,j)]

=
m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

N∏
v=3

m∏
i=1

n∏
j=1

[(a2v + εi,j)(−a1v + εi,j)] . (3.59)

All the rest transforms exactly as in N = 2 case. Therefore (3.2) for the pure theory is
proved.

Adding matter hypermultiplets. In a theory with a matter hypermultiplet the par-
tition function gains an additional factor, but it does not affect our consideration of the
order of the poles at auv = εm,n. In the case of fundamental matter it is clear directly
from (2.6) and in the case of a theory with adjoint multiplet it is easier to see from (2.8).

The additional factors associated with the cells I ∈ � contribute to the polynomi-
als (3.5), (3.6), and the factors associated with the rest of the cells transform into the
factors associated with the corresponding cells in the dual family.

In the case of an adjoint matter multiplet it is easy to see that the transformation of
the additional factors goes exactly in the same way as in the pure theory, so we get

P(12)
N,adj(m,n|a) =

m∏
i=−m+1

n∏′

j=−n+1
(−(εi,j +M)) ·

N∏
v=3

m∏
i=1

n∏
j=1

[(a2v+εi,j +M)(−a1v+εi,j +M)] .

(3.60)
If we are dealing with a theory with fundamental multiplets, the additional factor

associated with a cell I is

gI(aI) =
Nf∏
t=1

(aI − ε1(αI − 1)− ε2(βI − 1)−mt) (3.61)

·
Na∏
t=1

(−aI + ε1αI + ε2βI +mt).

The additional factors gI(aI) arising from the cells belonging to the diagrams
Y3, . . . , YN coincide in Z(fund)

k and Z(fund)
k−mn.
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To see the transformation of the factors associated with Y1, Y2 we have to recall that∑N
u=1 au = 0. Keeping this in mind we can write that

a1 = 1
2a12 −

1
2

(
N∑
w=3

aw

)
(3.62)

and see that the cells marked by I ∈ Y1 \� transform into the cells of Ỹ1

g(αI ,βI)(a1) = g(αI ,βI−n)(â1) (3.63)

and the cells marked by I ∈ Y2 transform into the cells of Ỹ2

g(αI ,βI)(a2) = g(αI−m,βI)(â2). (3.64)

As for the factors gI coming from the cells marked by I ∈ �, they contribute to the
polynomial P(12)

N,fund(m,n|a).

P(12)
N,fund(m,n|a) =

m∏
i=1

n∏
j=1

g(i,j)(a1) =
m∏
i=1

n∏
j=1

[ Nf∏
t=1

(
1
2a12 − εi,j + ε−mt −

1
2

N∑
w=3

aw

)

·
Naf∏
t=1

(
−1

2a12 + εi,j +mt + 1
2

N∑
w=3

aw

)]
(3.65)

and hence (3.6) immediately follows.
By this we completely proved (3.2).

4 Zamolodchikov-like recurrence relations

4.1 Recurrence relations in terms of the variables auv
Let us first write the recurrence relation for the pure theory in terms of the variables auv.
As it is clear from (2.7) the partition function of the pure theory at infinity tends to 1.

In the SU(2) theory we get the Zamolodchikov recurrence relation

SU(2) : Z(0)(a) = 1 +
∞∑

m,n=1

qmnZ(0)(â(12))
P(12)

2 (m,n)

(
1

a− εm,n
− 1
a+ εm,n

)

= 1 +
∞∑

m,n=1

qmnZ(0)(εm,−n)
(a− εm,n)(a+ εm,n)

2εm,n
P(12)

2 (m,n)
. (4.1)

In SU(3) theory we should chose N − 1 = 2 independent variables, for example, a13
and a23. Let us assume that a23 is away from the poles. Then Z(0)(a) has poles only with
respect to a13 at the points a13 = εm,n and a13 = εm,n + a23. Using (3.2) we can write
immediately

SU(3) : Z(0)(a) = 1 +
∞∑

m,n=1

qmnZ(0)(â(13))
(a13 + εm,n)(a13 − εm,n)

2εm,n(m,n|a)
P(13)

3 (m,n|a)
(4.2)

+
∞∑

m,n=1

qmnZ(0)(â(12))
(a13 − a23 + εm,n)(a13 − a23 − εm,n)

2εm,n
P(12)

3 (m,n|a)
.

By analytical continuation (4.2) is valid everywhere on the domain of Z(a).
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We can generalise the answer for SU(N) theory. Let us chose N − 1 independent
variables to be auN , u = 1 . . . N − 1 and assume that awN , w = 2 . . . N − 1 are away from
the poles as well as their differences aw1N−aw2N . Then Z(0)(a) has poles only with respect
to a1N at the points a1N = εm,n and a1N = εm,n + awN and we can write

SU(N) : Z(0)(a) = 1 +
N∑
w=2

∞∑
m,n=1

qmnZ(0)(â(1w))
(a1N − awN + εm,n)(a1N − awN − εm,n)

· 2εm,n
P(1w)
N (m,n|a)

. (4.3)

In presence of matter hypermultiplets, however, defining asymptotic behaviour at infin-
ity is a difficult problem. Indeed, according to our construction of the recurrence relation,
we should seek for asymptotic behaviour with a1N → ∞ with all the rest of independent
variables auv being arbitrary. Such an asymmetric way to approach infinity results in non-
trivial dependence on auv at infinity. In the next subsection we will treat the problem in a
symmetrical way and will be able to say more on the question.

Remark. Function Z(0)(a) depends on N−1 variables and can have a singularity of order
up to N(N − 1)/2. Function Z(0)(â(1w)) depends on N − 2 variables and has one fixed
parameter â1w = εm,−n. Its order of singularity is up to N(N − 1)/2 − 1. One can apply
again the recurrence relation to Z(0)(â(1w)) and make up to N − 1 steps in the reduction
of the order of singularity. For N > 2 one can never express Z(0)(a) on the whole domain
in terms of the value of Z(0)(a) at its regular points. In particular in the case of SU(3)
theory one can write Z(0)(a) on the whole domain through its values at the regular points
and the points where the function is singular with respect to only one variable auv.

4.2 Recurrence relations in terms of symmetric variables

Although the generalisation of the Zamolodchikov relation provided above is very straight-
forward, it lacks manifested Weyl symmetry. For sure Z(0)(a) written as (4.2) has no choice
but to satisfy (3.2) when one takes the residue with respect to a23, but showing it explicitly
requires some additional computations. Another problem is the mentioned above difficulty
with finding the asymptotic behaviour of the partition function.

To expose the Weyl symmetry of the recurrence relation and to write it for the theories
with matter hypermultiplets we are going to rewrite it in terms of symmetric variables.

Symmetric variables. One can find an elegant symmetrical form of Z(R) for SU(3)
theory in [6] given in terms of the parameters, which are nothing but a basis of symmetric
functions of au written upon a condition ∑

i ai = 0. Following this lead we introduce
variables providing a basis for symmetric functions of au in SU(N) theory

w1 =
∑
i1<i2

ai1ai2

w2 =
∑

i1<i2<i3

ai1ai2ai3 (4.4)

. . .

wN−1 = a1a2 . . . aN .
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For further convenience we also introduce a vector composed of the first N −2 variables wi

ω = (w1, . . . , wN−2).

We will also use the notation w = (ω, wN−1).
By (4.4) we introduced a map a 7→ w. In order to rewrite (3.2) in terms of the

symmetric variables we will need also the inverse map w 7→ a. This function is multivalued
and has N ! branches corresponding to the Weyl permutations of au.

Poles of Z(R)(w). Function Z(a) has poles at auv = εmn and is Weyl symmetric, hence
all its singular terms can be grouped in such a way that the common denominator of these
singularities is symmetric and has the form

∆(m,n)(a) =
∏
u 6=v

(a2
uv − ε2m,n). (4.5)

To find the poles in terms of the symmetric variables we need to write the denomina-
tor (4.5) as a function of w. To do that let us introduce a polynomial of x with coefficients
defined by a or equivalently by w.

Q(x|a) = (x− a1) . . . (x− aN ) = xN + xN−2w1 − xN−3w2 + . . .+ (−1)NwN−1 = Q(w)(x) .
(4.6)

Then the denominator (4.5) can be written as

∆(m,n)(a) = (−1)
N(N−1)

2
1
εNmn

res(Q(x|a), Q(x+ εm,n|a))

= (−1)
N(N−1)

2
1
εNmn

res(Q(x)(w), Q(x+ εm,n)(w)) = ∆(m,n)(w), (4.7)

where res(A(x), B(y)) is the resultant, and for normalised polynomials A(x), B(y) it is
defined as

res(A(x), B(y)) =
∏

(x̄,ȳ):A(x̄)=0,B(ȳ)=0
(x̄− ȳ) . (4.8)

The resultant res(A(x), B(y)) can be written as a determinant of the Sylvester matrix with
components defined by the coefficients of the polynomials A(x), B(y) [17], but in order to
compute it in any particular case one can simply use the Euclidean algorithm described
below or a builtin function of a computer algebra system.

Therefore the poles of Z(R)(w) are located at w̄(k|m,n) = (ω, w̄(k|m,n)
N−1 ), m ·n > 0, where

ω is arbitrary parameters and w̄(k|m,n)
N−1 are roots of the equation

∆(m,n)(w) = 0. (4.9)

The equation (4.9) on w̄(k|m,n)
N−1 is of order N − 1 and k marks the roots.

Note that since by construction the map w 7→ a has N ! branches, every one of N − 1
roots w̄(k|m,n)

N−1 (ω) describes the poles with respect to all auv at the points āuv = ±εm,n.
In order to rewrite (3.2) in terms of the symmetric variables we will choose one branch
of the inverse map, but as long as the final relations are written in terms of single-valued
functions of w, this intermediate choice will not ruin the Weyl symmetry.
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Dual point. A residue of Z(R) is proportional to its value at the dual point. While in [6]
the dual point was taken from the AGT approach, we are appealing to the statement proven
in a previous section that in terms of the variables a a residue of Z(R) with respect to auv
at the point āuv is proportional to Z(R) at the point â(uv) with partial Weyl permutation
performed in āu, āv and the rest of the variables left unchanged.

Let us choose the branch such that ā12 = εm,n and its dual point â = (â1, â2, a3 . . . , aN )
with â1, â2 related with ā1, ā2 by the partial Weyl permutation.

We introduce two polynomials

Q̄(x) = Q(x|ā) = Q(w̄(k|m,n))(x),
Q̂(x) = Q(x|â) = Q(ŵ(k|m,n))(x). (4.10)

The point ŵ(k|m,n) is the wanted dual to w̄(k|m,n).
The normalised difference of these polynomials is a polynomial of degree N − 2 with

the roots ai, i = 3 . . . N .

∆Q(x) = 1
∆w(m,n)

1

(
Q̄(x)− Q̂(x)

)
(4.11)

= aN−2 − aN−3 ∆w(k|m,n)
2

∆w(m,n)
1

+ . . .+ (−1)N
∆w(k|m,n)

N−1

∆w(m,n)
1

= (x− a3) . . . (x− aN ),

where

∆w(m,n)
1 = w1 − ŵ(m,n)

1 ,

∆w(k|m,n)
i = wi − ŵ(k|m,n)

i , i = 2, . . . , N − 2
∆w(k|m,n)

N−1 = w̄
(k|m,n)
N−1 − ŵ(k|m,n)

N−1 .

From (4.11) we see immediately that

∆w(m,n)
1 = (x− ā1)(x− ā2)− (x− â1)(x− â2)

= ā1ā2 − â1â2 = −mnε1ε2. (4.12)

Polynomial Q̄(x) is dividable by ∆Q(x), and the quotient is a polynomial of degree 2 with
the roots ā1, ā2.

Q̄(x)
∆Q(x) = x2 + x

∆w(k|m,n)
2

∆w(m,n)
1

+ w̄1 −
∆w(k|m,n)

3

∆w(m,n)
1

+ (∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

= (x− ā1)(x− ā2). (4.13)

The discriminant of this polynomial is ā2
12 = ε2m,n, and together with the requirement that

the remainder of division of the polynomials Q̄(x), ∆Q(x) vanish in all orders of x we get
a system of N − 1 recurrent equations

wi−1−
∆w(k|m,n)

i+1

∆w(m,n)
1

+ ∆w(k|m,n)
i ∆w(k|m,n)

2

(∆w(m,n)
1 )2

+ 1
4

∆w(k|m,n)
i−1

∆w(m,n)
1

(
ε2m,n −

(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

)
= 0, (4.14)
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The boundary conditions are ∆w(k|m,n)
N = ∆w(k|m,n)

N+1 = 0. Solving the system (4.14) and
using that Q̄(ā1) = Q̄(ā2) = 0 we can find all ∆w(k|m,n)

i in terms of ∆w(k|m,n)
2 as follows

∆w(k|m,n)
i

∆w(m,n)
1

= 1
εm,n

(
N−2∑
t=i

wt
(
(−ā1)−t+i−1−(ā2)−t+i−1

)
+ w̄

(k)
N−1

(
(−ā1)−N+i−(ā2)−N+i

))
,

(4.15)
where

ā1(∆w(k|m,n)
2 ) = 1

2

(
εm,n −

∆w(k|m,n)
2

∆w(m,n)
1

)
(4.16)

ā2(∆w(k|m,n)
2 ) = −1

2

(
εm,n + ∆w(k|m,n)

2

∆w(m,n)
1

)
.

For the shift ∆w(k|m,n)
N−1 we always get

∆w(k|m,n)
N−1 =

4w̄(k|m,n)
N−1

(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

− ε2m,n
. (4.17)

One can note that ŵ(k|m,n)
N−1 satisfies an equation

∆(m,−n)(ω̂(k|m,n), ŵ
(k|m,n)
N−1 ) = 0. (4.18)

Finally to find ∆w(k|m,n)
2 we use the fact that polynomial Q̄(x) has the roots ā1, ā2 with

the difference εm,n. In other words we want to impose a condition that the polynomials
Q̄(x) and Q̄(x+ ā12) have the greatest common divisor gcd(Q̄(x), Q̄(x+ εmn)) = (x− a2).
To do it we apply the Euclidean algorithm.

The algorithm is based on the fact that if we divide a polynomial A(x) by a polynomial
B(x)

A(x) = q(x)B(x) + r(x),

where q(x) is the quotient and r(x) is the remainder, then

gcd(A(x), B(x)) = gcd(B(x), r(x)).

So on the first two steps we write

Q̄(x+ εm,n) = q1(x)Q̄(x) + r1(x),
Q̄(x) = q2(x)r1(x) + r2(x) (4.19)

and then we proceed with division

ri−2(x) = qi−1(x)ri−1(x) + ri(x). (4.20)

In the general case without degeneration after N steps we get a constant remainder
rN proportional to ∆(mn)(w̄(k|m,n)) and hence rN = 0. It expresses the fact that the
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polynomial Q̄(x) indeed has two roots with the difference εm,n. On the previous step on
the other hand we get a linear polynomial rN−1(x) which is the wanted greatest common
divisor (x− a2), so

rN−1(a2(∆w(k|m,n)
2 )) = 0,

which gives us a linear equation for ∆w(k|m,n)
2 with coefficients depending on (ω, w̄(k|m,n)

N−1 ).
Although the algorithm is very straightforward, it is difficult to write an explicit form

of the resulting equation for ∆w(k|m,n)
2 in the general case of SU(N).

In such a way we find all the ∆w(k|m,n)
i and hence the point ŵ(k|m,n) dual to the pole

w̄(k|m,n).

Polynomials P via symmetric variables. The polynomials connecting residue of Z(R)

with its value at the dual point can be easily expressed through the symmetric variables.
Indeed,

P(1 2)
N (m,n|a) =

m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

N∏
k=3

m∏
i=1

n∏
j=1

[(a2k + εi,j)(−a1k + εi,j)] (4.21)

=
m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

m∏
i=1

n∏
j=1

[
(−1)N∆Q(a2(∆w(k|m,n)

2 ) + εi,j)∆Q(a1(∆w(k|m,n)
2 )− εi,j)

]
, P(m,n)

N (ω, w̄(k|m,n)
N−1 ).

In the same manner we see

P(uv)
N,adj(m,n|a) =

m−1∏
i=−m

n−1∏
j=−n

(εi,j −M) (4.22)

·
m∏
i=1

n∏
j=1

[
(−1)N∆Q(a2(∆w(k|m,n)

2 ) + εi,j +M)∆Q(a1(∆w(k|m,n)
2 )− εi,j −M)

]
, P(m,n)

N,adj (ω, w̄(k|m,n)
N−1 ).

In the case of presence of fundamental matter we get

P(12)
N,fund(m,n|a) =

m∏
i=1

n∏
j=1

[ Nf∏
t=1

(
−1

2εm,n + εi,j −mt −
1
2

N∑
w=3

aw

)

·
Na∏
t=1

(
−1

2εm,n + εi,j +mt + 1
2

N∑
w=3

aw

)]

=
m∏
i=1

n∏
j=1

[ Nf∏
t=1

(
−1

2εm,n + εi,j −mt −
1
2

∆w(k|m,n)
2

∆w(m,n)
1

)
(4.23)

·
Na∏
t=1

(
−1

2εm,n + εi,j +mt + 1
2

∆w(k|m,n)
2

∆w(m,n)
1

)]
, P(m,n)

N,fund(ω, w̄(k|m,n)
N−1 ).
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Jacobian. The last missing piece we need to rewrite the residue of Z(R) with respect to
a12 in terms of a residue with respect to wN−1 is the Jacobian in terms of the symmetric
variables. We will denote it as

J (m,n)(ω, w̄(k|m,n)
N−1 )Resa12=ā12Z

(R)(a) = Res
wN−1=w̄(k|m,n)

N−1
Z(R)(w) (4.24)

where

J (m,n)(ω, w̄(k|m,n)
N−1 ) =

(
∂∆(m,n)(w)
∂wN−1

)−1 ∣∣∣∣
wN−1=w̄(k|m,n)

N−1

·
(
∂∆(m,n)(a)

∂a12

) ∣∣∣∣
a12=ā12=εmn

. (4.25)

The last factor can be expressed via the same polynomials Q(x), ∆Q(x) again.

(
∂∆(m,n)(a)

∂a12

) ∣∣∣∣
a12=ā12=εm,n

= 2εm,n
(

N∏
k=3

(a2
1k − ε2m,n)

)(
N∏
k=3

(a2
2k − ε2m,n)

)

·

 N∏
k,l=3
k 6=l

(a2
kl − ε2m,n)


= 2εm,n∆Q(a1 + εm,n)∆Q(a1 − εm,n)
·∆Q(a2 + εm,n)∆Q(a2 − εm,n) (4.26)

·(−1)
(N−2)(N−3)

2

εN−2
m,n

res(∆Q(x),∆Q(x+ εm,n)).

Therefore

J (m,n)(ω, w̄(k|m,n)
N−1 ) = (−1)2ε3m,nres(∆Q(x),∆Q(x+ εm,n)) (4.27)

·
(
∂res (Q(w)(x), Q(w)(x+ εm,n))

∂wN−1

)−1 ∣∣∣∣
wN−1=w̄(k|m,n)

N−1

·∆Q
(
−1

2
∆w(k|m,n)

2

∆w(m,n)
1

+ 3
2εm,n

)
∆Q

(
−1

2
∆w(k|m,n)

2

∆w(m,n)
1

− 3
2εm,n

)

·∆Q
(
−1

2
∆w(k|m,n)

2

∆w(m,n)
1

− 1
2εm,n

)
∆Q

(
−1

2
∆w(k|m,n)

2

∆w(m,n)
1

+ 1
2εm,n

)
.

The residue formula in terms of the symmetric variables has the form

Res
wN−1=w̄(k|m,n)

N−1
Z(R)(ω,wN−1) = qmnJ (m,n)(ω, w̄(k|m,n)

N−1 )
P(mn)
N,R (ω, w̄(k|m,n)

N−1 )

P(mn)
N (ω, w̄(k|m,n)

N−1 )
Z(R)(ŵ(k|m,n)).

(4.28)
As expected, this is a relation between single-valued functions of (ω, w̄(k|m,n)

N−1 ), any trace
of the intermediate choice ā12 = εm,n disappeared, and hence (4.28) is Weyl symmetric.
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Asymptotic behaviour at infinity. To construct the recurrence relation in terms of
the symmetric variables we have to send wN−1 to infinity while keeping all the rest of wi
finite. In this case

Q(x|a)→ xN + (−1)NwN−1 (4.29)

and since the roots of the polynomial Q(x|a) are au we see, that in terms of the variables
au the correct way to approach infinity is to place them at the vertices of a regular N -sided
polygon and send its diameter to infinity, so

au = aN ε
u, ε = e

2πiu
N , |aN | → ∞. (4.30)

With this symmetric approach we are able to analyse the asymptotic behaviour both in
the pure theory and in a theory with matter hypermultiplet.

• Pure theory. For the pure theory we see from (2.7) that

Z
(0)
k −→

wN−1→∞
1

a
2k(N−1)
N

, (4.31)

so the only non-vanishing at infinity contribution is Z0 and thus

Z(0) −→
wN−1→∞

1. (4.32)

• Adjoint matter. In the case of a theory with adjoint matter hypermultiplet it is easy
to see both from (2.5) and from (2.8) that interaction between the Young diagrams
simply turns into a factor 1, and thus the asymptotic behaviour of Z(adj) is factorised

Z(adj) −→
wN−1→∞

∑
k

qk
∑
~Y

|~Y |=k

N∏
u=1

∏
(i,j)∈Yu

f(i,j)(M)
f(i,j)(0) =

∑
Y

∏
(i,j)∈Y

f(i,j)(M)
f(i,j)(0)

N , (4.33)

where the last sum runs over single Young diagrams Y and

f(i,j)(M) =
(
ε1
ε2

(i− l̃Yu,j)−(j−1− lYu,i)+M

ε2

)(
−(i−1− l̃Yu,j)+ ε2

ε1
(j− lYu,i)+M

ε1

)
.

(4.34)
Therefore the asymptotic behaviour of Z(adj) is a universal constant to the power of N .
In the simplest case of M = 0 the result is easy to get

Z(adj) −→
wN−1→∞

∑
Y

∏
(i,j)∈Y

1

N =
( ∞∏
k=1

(1− qk)−1
)N

=
(
q−

1
24 η(q)

)−N
. (4.35)

If ε1 = −ε2 = ε̃ we have

f(i,j)(M) =
(
h(i,j) −

M

ε̃

)(
h(i,j) + M

ε̃

)
, (4.36)

where h(i,j) is the hook length of the cell (i, j) ∈ Y

h(i,j) = lY,i + l̃Y,j − i− j + 1. (4.37)
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For this case the product in (4.33) was computed in [16] with combinatorical
calculations, whereas in [7] the asymptotic behaviour of Z(adj) was analysed in U(1)
theory with the guage theory approach. The result obtained in these papers is

Z(adj) −→
wN−1→∞

∑
Y

∏
(i,j)∈Y

(
h(i,j) − M

ε̃

) (
h(i,j) + M

ε̃ )
)

h2
(i,j)

N =
(
q−

1
24 η(q)

)−N(1−M
2

ε̃2

)
.

(4.38)
For ε1 6= −ε2 the product in (4.33) was not rigorously computed yet, but in [2, 6] a
suggestion has been made for SU(2) and SU(3) theories which appears to be correct.
Embracing this conjecture we get

Z(adj) −→
wN−1→∞

∑
Y

∏
(i,j)∈Y

f(i,j)(M)
f(i,j)(0)

N =
(
q−

1
24 η(q)

)−N(1+M
ε1

)(
1+M

ε2

)
. (4.39)

• Fundamental and anti-fundamental matter. In the case of fundamental and anti-
fundamental hypermultiplets we see from (2.9) that the leading term of Z(fund)

k is

Z
(fund)
k −→

wN−1→∞
a
k(Nf+Na)
N

a
2k(N−1)
N

ck, (4.40)

where ck is some constant. Therefore if Nf + Na < 2(N − 1), then the only
non-vanishing contribution is again Z(fund)

0 and

Z(fund) −→
wN−1→∞

1, Nf +Na < 2(N − 1). (4.41)

In the case of the critical number of matters Nf +Na = 2(N − 1) the limit of Z(fund)

is a constant not depending on a. Let us find this constant.
Only the leading term of Zk matters in this case, so

Z
(fund)
k −→

wN−1→∞

∑
~Y

|~Y |=k

ε(2N−2)
∑N

u=1 u|Yu|∏N
u=1(∏v 6=u(εv − εu)|Yu|) ·∏N

v=1(∏u 6=v(εv − εu)|Yv |)

· 1∏N
u=1

∏
(i,j)∈Yu ε1ε2f(i,j)

=
∑
~Y

|~Y |=k

N∏
u=1

1∏
v 6=N (−(1− εv))2|Yu|

1∏
(i,j)∈Yu ε1ε2f(i,j)

. (4.42)

Note that ∏
v 6=N

(1− εv) = lim
x→1

xN − 1
x− 1 = dxN

dx

∣∣∣∣
x=1

= N. (4.43)

Therefore

Z
(fund)
k −→

wN−1→∞

∑
~Y

|~Y |=k

N∏
u=1

(
(−1)N−1

N2ε1ε2

)|Yu| ∏
(i,j)∈Yu

1
f(i,j)

. (4.44)
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We see again that there is no interaction between the Young diagrams in (4.44), and
hence we can write

Z(fund) −→
wN−1→∞

∑
k

qk
∑
~Y

|~Y |=k

N∏
u=1

(
(−1)N−1

N2ε1ε2

)|Yu| ∏
(i,j)∈Yu

1
f(i,j)

=

∑
Y

q|Y |
(

(−1)N−1

N2ε1ε2

)|Y | ∏
(i,j)∈Yu

1
f(i,j)

N . (4.45)

Using a relation provided3 in [9]∑
Y

x|Y |
∏
I∈Y

1
f(i,j)

= ex (4.46)

we immediately get

Z(fund) −→
wN−1→∞

exp
(

(−1)N−1 q

Nε1ε2

)
, Nf +Na = 2(N − 1). (4.47)

Finally if the number of fundamental and anti-fundamental hypermultiplets is above
critical Nf + Na > 2(N − 1) the asymptotic behaviour of Z(fund)(a) can be a
nontrivial function of a and finding it goes beyond this paper. We refer an interested
reader to [2, 6], where this behaviour was studied with the AGT approach in SU(2)
and SU(3) theories. Although our residue formula (3.2) is valid also in this case, the
recurrence relation which we will find below does not describe it.

The recurrence relations will be written for a partition function Z̄(a) normalised to
the constants discussed above, so the asymptotic behaviour of the normalised partition
function is

Z̄(R) −→
wN−1→∞

1. (4.48)

The recurrent relation via symmetric variables. Putting all together and taking
into account the behaviour at infinity we get the recurrent Zamolodchikov-like relations in
terms of the symmetric variables.

Z̄(R)(ω, wN−1) = 1 +
N−1∑
k=1

∞∑
m,n=1

qmnJ (m,n)(ω, w̄(k|m,n)
N−1 )

(wN−1 − w̄(k|m,n)
N−1 )

P(m,n)
N,R (ω, w̄(k|m,n)

N−1 )

P(m,n)
N (ω, w̄(k|m,n)

N−1 )
Z̄(R)(ŵ(k|m,n)).

(4.49)

Explicit examples. Let us now explicitly write the recurrence relations in several sim-
plest cases.

• SU(2) case.
For completeness let us formulate the SU(2) case in terms of symmetric variables,
although the Weyl symmetry is evident even in terms of the variables a in this case.

3To see (4.46) from (4.5) of [9] one has to replace t1 → eε1δ, t2 → eε2δ, q → δ2q and send δ to zero.
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The only symmetric variable in this case is

w1 = a1a2 = −1
4a

2
12.

The polynomial Q(w)(x) is quadratic

Q(w)(x) = x2 + w1

and the resultant gives us the denominator

∆(m,n)(w) = −4w1 − ε2m,n,

so the pole is located at
w̄1 = −1

4ε
2
m,n

as it should.
The dual point is

ŵ
(m,n)
1 = w̄1 −∆w(m,n)

1 = −1
4ε

2
m,n +mnε1ε2 = −1

4ε
2
m,−n,

which obviously corresponds to the partial Weyl permutation in a1, a2.
The polynomial ∆Q(x) in this case is just a constant ∆Q(x) = 1, so the most part of
P(m,n) and J (m,n)(w̄1) disappears, and the recurrent relation for the pure theory is just

Z̄(R)(w1) = 1 +
∞∑

m,n=1

qmn2εm,n(
−4w1 − ε2m,n

) P(m,n)
2,R

P(m,n)
2

Z̄(R)
(
−1

4ε
2
m,−n

)
, (4.50)

where

P(m,n)
2 =

m−1∏
i=−m

n−1∏′

j=−n
εi,j , (4.51)

P(m,n)
2,adj =

m−1∏
i=−m

n−1∏
j=−n

(εi,j −M), (4.52)

P(m,n)
2,fund =

m∏
i=1

n∏
j=1

[ Nf∏
t=1

(
−1

2εm,n + εi,j −mt

)
·
Na∏
t=1

(
−1

2εm,n + εi,j +mt

)]
. (4.53)

• SU(3) case.
Let us now compare our result in the SU(3) case with the one obtained in [6].
The variables (u, v) used in [6] differ from ours by a numerical factor

w1 =
∑
i<j

aiaj = −1
3(a2

12 + a12a23 + a2
23) = −1

3u,

w2 = a1a2a3 = − 1
27(a12 − a23)(2a12 + a23)(a12 + 2a23) = − 1

27v.
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The polynomial Q(x) in this case is

Q(w)(x) = x3 + xw1 − w2,

which gives us a quadratic equation for the poles

27w2
2 + 4w3

1 + 9w2
1ε

2
m,n + 6w1ε

4
m,n + ε6m,n = 0 (4.54)

and hence the positions of the poles are

w̄
(k|m,n)
2 = ±1

3(w1 + ε2m,n)
√
−1

3(4w1 + ε2m,n) , ±w(m,n)(w1). (4.55)

System of recurrent equations (4.14) boils down to only one equation

w1 + 3
4

(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

+ 1
4ε

2
m,n = 0. (4.56)

It has two roots and we have to pick one for each of w̄(k|m,n)
2 using the Euclidean

algorithm to divide Q̄(x + εm,n) by Q̄(x). After two steps of the division we get a
linear remainder

r2(x) = x

(
2w1

3 +
2ε2m,n

3

)
− w̄(k|m,n)

2 + w1εm,n
3 +

ε3m,n
3 (4.57)

and demanding that r2(a2(∆w(k|m,n)
2 )) = 0 we find the shift ∆w(k|m,n)

2

∆w(k|m,n)
2 = −3w̄(k|m,n)

2 ∆w(m,n)
1

w1 + εm,n
. (4.58)

Substituting two roots w(k|m,n)
2 given by (4.55) we see that (4.58) is indeed the two

roots of (4.56).
Therefore the dual points (ŵ(m,n)

1 , ŵ
(k|m,n)
2 ) are

ŵ
(m,n)
1 = w1 +mnε1ε2,

ŵ
(k|m,n)
2 = ±w(m,n)(w1)

(
1 + 3∆w(m,n)

1
w1 + εm,n

)
= ±w(m,−n)(ŵ

(m,n)
1 ) (4.59)

in agreement with (4.18).
The polynomial ∆Q(x) is linear

∆Q(x) = x− ∆w(k|m,n)
2

∆w(m,n)
1

. (4.60)

The recurrence relation in SU(3) theory is the following

Z̄(R)(w1, w2) = 1 +
2∑

k=1

∞∑
m,n=1

(
qmn(3w1 + ε2m,n)(−w1 − ε2m,n)εmn

9w̄(k|m,n)
2 (w2 − ŵ(k|m,n)

2 )
(4.61)

·
P(m,n)

3,R (w1, w̄
(k|m,n)
2 )

P(m,n)
3 (w1, w̄

(k|m,n)
2 )

Z̄(R)(ŵ(m,n)
1 , ŵ

(k|m,n)
2 )

)
,
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where

P(m,n)
3 (w1, w̄

(k|m,n)
2 ) =

m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

m∏
i=1

n∏
j=1

(3w1 + ε2m,n − εi,jεm−i,n−j), (4.62)

P(m,n)
3,adj (w1, w̄

(k|m,n)
2 ) =

m−1∏
i=−m

n−1∏
j=−n

(εi,j −M)

·
m∏
i=1

n∏
j=1

(3w1 + ε2m,n − (εi,j +M)(εm−i,n−j −M)), (4.63)

and P(m,n)
3,fund(ω, w̄(k|m,n)

N−1 ) is always the same and given by (4.23).

One can recurrently see that for a pure theory and a theory with the adjoint matter
the partition function actually depends only on (∆w(k|m,n)

2 )2, i.e. only on w2
(m,n), so

we can write (4.61) as

Z̄(R)(w1, w
2
2) = 1 +

∞∑
m,n=1

qmn(3w1 + ε2m,n)(−w1 − ε2m,n)2εm,n
9(w2

2 − w2
(m,n))

P(m,n)
3,R (w1)

P(m,n)
3 (w1)

· Z̄(R)(ŵ(m,n)
1 , w2

(m,−n)(ŵ
(m,n)
1 )). (4.64)

The results for pure theory and theory with adjoint hypermultiplet coincide with
the ones found in [6] up to the sign of the mass of adjoint multiplet M . To compare
also the case with fundamental and anti-fundamental matter we should consider a
particular case of Nf = Na = N and redefine the masses as

mt → ε−mt fundamental
mt → −mt anti− fundamental

In this case we do not know the behaviour of the partition function at infinity since
2N is above the critical number 2(N−1), but if we embrace the asymptotic behaviour
provided in [6], we will recover exactly the recurrence relation found in there.

• SU(4) case.

Finally we are to write the recurrence relations for a non considered before case of
SU(4) theory.

The polynomial Q(w)(x) in this case is

Q(w)(x) = x4 + w1x
2 − w2x+ w3, (4.65)

and the equation for the poles

res(Q(ω,w3)(x), Q(ω,w3)(x+ εm,n)) = 0 (4.66)

is a cubic equation on w3 of general form with three roots w̄(k|m,n)
3 (ω).
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The system of recurrence equations (4.14) consists of two equations
w2 + ∆w(k|m,n)

3 ∆w(k|m,n)
2

(∆w(m,n)
1 )2

+ 1
4

∆w(k|m,n)
2

∆w(m,n)
1

(
ε2m,n −

(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

)
= 0

w1 −
∆w(k|m,n)

3
∆w(m,n)

1
+ 3

4
(∆w(k|m,n)

2 )2

(∆w(m,n)
1 )2

+ 1
4ε

2
m,n = 0

(4.67)

For the shift ∆w3 we get

∆w3 = 4w̄(k|m,n)
3

(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

− ε2m,n
. (4.68)

After three steps of the Euclidean algorithm of the division of Q̄(x + εm,n) by Q̄(x)
we find the remainder

r3(x) = 2εm,n
(2w1 + 5ε2m,n)2 ·

( (
2x+ εm,n)(−8w1w̄

(k|m,n)
3 − 20w̄(k|m,n)

3 ε2m,n (4.69)

+2w3
1 + 9w2

2 + 9w2
1ε

2
m,n + 12w1ε

4
m,n + 5ε6m,n

)
−2w2(12w̄(k|m,n)

3 + w2
1 + 8w1ε

2
m,n + 7ε4m,n)

)
and since r3(a2(∆w(k|m,n)

2 )) = 0 we get

∆w(k|m,n)
2

∆w(m,n)
1

=
−2w2(12w̄(k|m,n)

3 +w2
1+8w1ε

2
m,n+7ε4m,n)

(−8w1w̄
(k|m,n)
3 −20w̄(k|m,n)

3 ε2m,n+2w3
1+9w2

2+9w2
1ε

2
m,n+12w1ε4m,n+5ε6m,n)

.

(4.70)
The polynomial ∆Q(x) in this case is

∆Q(x) = x2 − ∆w(k|m,n)
2

∆w(m,n)
1

x+ ∆w(k|m,n)
3

∆w(m,n)
1

. (4.71)

The recurrence relation is

Z̄(R)(ω, w3) = 1 +
3∑

k=1

∞∑
m,n=1

qmnJ (m,n)(ω, w̄(k|m,n)
3 )

(w3 − w̄(k|m,n)
3 )

P(m,n)
4,R (ω, w̄(k|m,n)

3 )

P(m,n)
4 (ω, w̄(k|m,n)

3 )

· Z̄(R)(ω̂(k|m,n), ŵ
(k|m,n)
3 )), (4.72)

where w̄(k|m,n)
3 are the roots of equation (4.66),

J (m,n)(ω, w̄(k|m,n)
3 ) = (−1)1

3εm,n
(
w1 +2∆w(k|m,n)

3

∆w(m,n)
1

+ε2
)

·
(
w2

1−4w1
∆w(k|m,n)

3

∆w(m,n)
1

+4(∆w(k|m,n)
3 )2

(∆w(m,n)
1 )2

+8w1ε
2
m,n−4∆w(k|m,n)

3

∆w(m,n)
1

ε2m,n+7ε4m,n

)

·
(
w2

1−4w1
∆w(k|m,n)

3

∆w(m,n)
1

+4(∆w(k|m,n)
3 )2

(∆w(m,n)
1 )2

+ 4
3w1ε

2
m,n−

4
3

∆w(k|m,n)
3

∆w(m,n)
1

ε2m,n+ 1
3ε

4
m,n

)

·
(

2w4
1 +18w1w

2
2−32w2

1w̄
(k|m,n)
3 +96(w̄(k|m,n)

3 )2 +4w3
1ε

2
m,n+27w2

2ε
2
m,n

−48w1w̄
(k|m,n)
3 ε2m,n+3w2

1ε
4
m,n−28w̄(k|m,n)

3 ε4m,n+2w1ε
6
m,n+ε8m,n

)−1
(4.73)
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and

P(m,n)
4 (ω, w̄(k|m,n)

3 ) =
m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

m∏
i=1

n∏
j=1

(
(w1 − 2∆w(k|m,n)

3

∆w(m,n)
1

+ εi,jεm−i,n−j)2

−(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

ε2m−2i,n−2j

)
, (4.74)

P(m,n)
4,adj (ω, w̄(k|m,n)

3 ) =
m−1∏
i=−m

n−1∏
j=−n

(εi,j −M) (4.75)

·
m∏
i=1

n∏
j=1

(
(w1 − 2∆w(k|m,n)

3

∆w(m,n)
1

+ (εi,j +M)(εm−i,n−j −M))2

−(∆w(k|m,n)
2 )2

(∆w(m,n)
1 )2

(εm−2i,n−2j − 2M)2
)
,

and P(m,n)
4,fund(ω, w̄(k|m,n)

N−1 ) is given by (4.23).

5 Summary of results

In this section we collect the main relations obtained throughout the paper.
We showed that the instanton partition function Z(R)(a) has poles only at the points

auv = εm,n = mε1 + nε2 with m, n ∈ Z and m · n > 0, the poles are simple and the residue
of the instanton partition function with respect to the variable auv can be expressed via
its value at the point â(uv) distinguished from a by the partial Weyl permutation between
au and av, which can be chosen as

au = α+muε1 + nuε2

av = α+mvε1 + nvε2
→

â(uv)
u = α+muε1 + nvε2

â(uv)
v = α+mvε1 + nuε2

or as a permutation of mu, mv instead. For the positive m, n the residue is

Resauv=εm,nZ
(R)(a) = qmn

P(uv)
N,R (m,n|a)

P(uv)
N (m,n|a)

Z(R)(â(uv)), (5.1)

where

P(uv)
N (m,n|a) =

m−1∏
i=−m

n−1∏′

j=−n
εi,j ·

N∏
w=1
w 6=u, v

m∏
i=1

n∏
j=1

[(avw + εi,j)(−auw + εi,j)] . (5.2)

For the pure theory we found a trivial numerator

P(uv)
N,0 = 1, (5.3)

for a theory with the adjoint matter there is a polynomial

P(uv)
N,adj(m,n|a) =

m−1∏
i=−m

n−1∏
j=−n

(εi,j −M) ·
N∏
w=1
w 6=u, v

m∏
i=1

n∏
j=1

[(avw + εi,j +M)(−auw + εi,j +M)] ,

(5.4)
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and finally for the theory with fundamental and anti-fundamental multiplets the
polynomial is

P(uv)
N,fund(m,n|a) =

m∏
i=1

n∏
j=1

[ Nf∏
t=1

−1
2εm,n + εi,j −mt −

1
2

N∑
w=1
w 6=u,v

aw

 (5.5)

·
Na∏
t=1

−1
2εm,n + εi,j +mt + 1

2

N∑
w=1
w 6=u,v

aw


]
.

One can easily see from the proof of these relations that these hypermultiplets can be
considered together, and the polynomial in the numerator will be simply the product of
the polynomials above.4

For the residue at the point auv = ε−m,−n there is an additional minus sign.
There is an equivalent form in terms of the full partition function

lim
auv→εm,n

Z(R)(a)
Z(R)(â(uv))

= −Sign(ε1), m, n ∈ Z \ {0} (5.6)

for the permutation of ε2-coefficients (and −Sign(ε2) for the permutation of ε1-coefficients).
For the pure theory we found a recurrence relation for the instanton partition function

in terms of the variables auv.

Z(0)(a) = 1 +
N∑
w=2

∞∑
m,n=1

qmnZ(0)(â(1w))
(a1N − awN + εm,n)(a1N − awN − εm,n)

2εm,nP(1w)
N,0 (m,n|a)

P(1w)
N (m,n|a)

.

(5.7)
To write the recurrence relation for theories with matter hypermultiplets we switched to
the symmetrical variables defined as

ωl =
∑

i1<...<ik

ai1 · . . . · ail+1 l = 1, . . . , N − 1. (5.8)

The recurrence relation for the normalised instanton partition function Z̄(R) is

Z̄(R)(ω, wN−1) = 1 +
N−1∑
k=1

∞∑
m,n=1

qmnJ (m,n)(ω, w̄(k|m,n)
N−1 )

(wN−1 − w̄(k|m,n)
N−1 )

P(m,n)
N,R (ω, w̄(k|m,n)

N−1 )

P(m,n)
N (ω, w̄(k|m,n)

N−1 )
Z̄(R)(ŵ(k|m,n)),

(5.9)
where w̄(k|m,n)

N−1 are the roots of equation (4.9), the polynomials P(m,n)
N , P(m,n)

N,R and Jacobian
J (m,n) are defined in (4.21), (4.22), (4.23) and (4.27).

4It is actually not difficult to see that the residue formula holds for the matter in any representation,
but in the general case the polynomial in the numerator is too long to write in a paper.
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The normalisation constants are defined by the behaviour at infinity, which is the
following

Z(0) −→
wN−1→∞

1. (5.10)

Z(fund) −→
wN−1→∞

1, Nf +Na < 2(N − 1). (5.11)

Z(fund) −→
wN−1→∞

exp
(

(−1)N−1 q

Nε1ε2

)
, Nf +Na = 2(N − 1). (5.12)

Z(adj) −→
wN−1→∞

(
q−

1
24 η(q)

)−N(1+M
ε1

)(
1+M

ε2

)
. (5.13)
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