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1 Introduction

There are a few basic properties which quantum field theories (QFT) are supposed to
possess, causality, locality, analyticity, S-matrix unitarity. The last of these governs the
high-energy behavior of scattering amplitudes in renormalizable QFT. In particular, more
than half a century ago Froissart and Martin used unitarity together with dispersion rela-
tion to derive high-energy bound on elastic two-two amplitudes [1, 2]. Later the tree-level
unitarity bound on two-two amplitudes at high energy called the tree unitarity was intro-
duced [3–8]. Since the unitarity bound makes a relation among the quantities of different
orders in the coupling constants, the tree unitarity inductively exposes full order properties
of the perturbation with respect to the coupling constants [6], and it is expected to be a
very powerful tool in determining whether a given QFT is renormalizable or not. The
tree unitarity fails for QFT with higher derivative kinetic terms, including Lee-Wick type
QFT [9, 10] and R2

µν gravity [11, 12], because of negative norm field (ghost). The tree uni-
tarity can be extended to perturbative S-matrix unitarity (SS†= 1) for higher-derivative
QFT [13, 14].

The important question then arises whether the same holds true for the scattering
amplitude in gravity theories. In this paper we address ourselves to this question, and to
this end we compute the matter-graviton scattering amplitudes in two gravity theories,
Einstein gravity1 and R2

µν gravity [11], or quadratic gravity. The reason why we consider
both is that the former is a non-renormalizable theory while the latter is a renormalizable
one. A part of our results has been reported briefly in [14]. In the present paper we obtain
the matter-graviton scattering amplitudes in full, and study how the perturbative S-matrix
unitarity is obeyed, even though the tree unitarity fails, in quadratic gravity. Some of the

1The amplitudes in Einstein gravity have been known since long time ago [15, 16].
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amplitudes have been computed in earlier papers by considering leading terms in the power
of Mandelstam’s s (CMS energy squared) or for some helicity states [17, 18].

It was shown that in gauge theories the unitarity bound at tree-level, called the tree
unitarity, implies the same conditions for renormalizability [3–6]. A similar situation should
hold for the S-matrix unitarity. This expectation has been verified at tree level in scalar field
theories with higher-order derivatives [13]. In this paper, we focus on the S-matrix unitarity
for matter-graviton scattering amplitudes at the tree-level (figure 3) in R2

µν gravity.
The gravity theory which we study consists of only R and the quadratic curvature

terms in the action. This gravity theory is known to be renormaizable and is valid to
high energies [11]. It is known that starting with the Einstein action only, quadratic
curvature terms as well as those of higher orders are generated (with infinite coefficients)
by quantum corrections. This case is an effective field theory of gravity and is valid at
low energies. In such a theory, however, higher-order curvature terms than quadratic
break the renormalizability. Since our purpose is the investigation of the relation between
renormalizability and S-matrix unitarity in Stelle’s R2

µν gravity [11], higher-order curvature
terms should not be included in the action. We analyse the theory consisting of only R

and the quadratic curvature terms even at high energy in the action.
S-matrix unitarity is a key element in many processes involving gravitons; some stud-

ies of particle radiation from black holes have been made referring to unitarity [19–21].
It was pointed out that the quadratic curvature changes the fate of black holes [22, 23]
and the spacetime causality [24–29]. Unitarity should come into play in graviton scatter-
ing at Planckian energies [17, 18, 30–32]. The explicit evaluation of the matter-graviton
amplitudes (of all combinations of spin/helicity states including ghost field) in quadratic
gravity should show us the basic properties of QFT at Planckian energies, which are so far
unknown to us.

One intriguing property of the quadratic gravity is that the gravity field hµν contains
massive negative norm field (ghost) in addition to the usual massless graviton field and
a scalar component. The appearance of ghost field is common to higher-derivative field
theories [12] and it implies negative probability. This apparent difficulty of the higher-
derivative field theory has been investigated repeatedly in relation to unitarity (see for
instance a review article [33]) since the early works of Lee and Wick [9, 10]. In this paper
we are concerned with ghost fields only in connection with the question of how it comes to
rescue the perturbative S-matrix unitarity.

A recent work [34] studies how the ghost field may be treated as an unstable resonance
maintaining the unitarity. More recently there has been a new development [35–37], called
gravitational positivity bound, which aims at relating, by use of unitarity, dispersion re-
lation and graviton exchange, particle physics at low energies to Planckian energies. The
basic notion and tools are developed earlier in [38]. We wish to learn from our evaluation
of the scattering amplitudes in the quadratic gravity some hint on the question whether
this theory may provide the UV completion of quantum gravity.

The matter-matter scattering amplitude in R2
µν gravity has earlier been investiga-

ted [39]; the authors of this paper have shown that the unitarity bound is satisfied. The
matter considered there have no negative norm states, and thus, the discussion of S-matrix
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unitarity in matter-matter scattering cannot uncover the issue of negative norm fields. In
this paper, we analyse the matter-graviton scattering, which is the simplest situation that
involves the negative norm gravitons in the initial and/or final states.

We introduce a scalar field as matter. The renormalized action of R2
µν gravity with a

scalar field that we consider is [40]

S = Sg+Sm, (1.1)

Sg =
∫
d4x
√
−g
(

Λ+ 1
κ2R+αR2+βR2

µν

)
, (1.2)

Sm =
∫
d4x
√
−g
(
−1

2g
µν∂µφ∂νφ−

1
2m

2φ2− 1
4!λφ

4+ξφ2R

)
. (1.3)

We call Sg the gravitational action and Sm the matter action. We analyse scatterings on
the Minkowski background and thus Λ is set to vanish. Moreover, in tree-level amplitude
of matter-graviton scattering, the quartic-order term of φ (i.e. λφ4) does not give any
contribution.

Our (classical) background is the vacuum in Minkowski spacetime, and graviton hµν
is defined by the deviation of the physical metric gµν from Minkowski metric ηµν ,

hµν := gµν−ηµν . (1.4)

We expand the action (1.1) with respect to hµν and study the quantum field theory on the
background metric ηµν .

It is appropriate to see at this early stage what kinds of vertices of hµν ’s and φ’s we
need to compute the tree amplitudes of matter-graviton scattering. From all tree graphs
contributing to the scattering in figure 3, we find that we need vertices of only three kinds,
hµνφ

2, h3
µν , h2

µνφ
2.

The computation of the gravitation scattering is bound to be quite involved and
lengthy, particularly so for the case of quadratic gravity. To avoid reading the lengthy
calculations on the readers’ side, much of the lengthy calculations is relegated to a few
appendices, appendices B, C, D and E. Appendix A is a minimal necessary account of the
canonical quantization of the massive gravity. In the text only the results of the computa-
tion are reported.

This paper is organized as follows. In section 2, the canonical quantization is done. We
see that the asymptotic degrees of freedom of graviton are decomposed into three parts,
massless gravitons, a massive scalar graviton and massive gravitons. The first two have
positive norm, while the last is negative norm excitation, that is ghost modes. In sec-
tion 3, we show the propagators and vertex functions, which are required in the calculation
of scattering amplitude. In section 4, we give the derivation of scattering amplitude. In
section 5, we show the UV limit of scattering amplitude. We confirm that perturbative
S-matrix unitarity is satisfied in the quadratic gravity, in section 6. Section 7 is devoted
to a summary and discussion. Appendix A is given for the detailed derivation of canonical
quantization of massive graviton. In appendix B, we give a calculation technic in gravita-
tional perturbation. Appendices C, D and E are given to show the detailed calculations.
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We use the following notation. R2
µν represents RµνRµν and tensor squared appearing

in this paper means similar. The symmetrization of indices is expressed as

Aµ(α1α2|ν|α3|λ|α4α5...αn) := 1
n!
∑
σ

Aµασ1ασ2νασ3λασ4ασ5 ...ασn , (1.5)

where the sum is computed over all permutations σ= {σ1, · · · ,σn} of the set {1, · · · ,n}.

2 Canonical quantization

Two alternative ways of quantizing higher derivative gravity have been given in the past,
the path integral method [11] and the canonical quantization [41]. The latter method
seems more suitable for our purpose of computing scattering amplitudes and of dealing
with negative norm states. We recapitulate the minimal account of canonical quantization
for this purpose, particularly introducing the creation and annihilation operators.

For the scalar field, it is done by analysing the quadratic parts of the scalar field
action (1.1),

S(2)
m = 1

2

∫
d4x

[
−ηµν∂µφ∂νφ−m2φ2

]
. (2.1)

The canonical quantization is done in the usual way,

φ=
∫

d3p√
(2π)32p0

{
aφ(p)e−ipx+a†φ(p)eipx

}
,

(
p0 :=

√
p2+m2

)
, (2.2)

where aφ(p) and a†φ(p) are the creation and anihilation operators, respectively.
The second-order action for graviton is obtained by the expansion of the gravitational

action (1.2) with respect to hµν ,

Sg2 = 1
4

∫
d4x

[ 1
κ2hµνL

µν,αβhαβ+α
(
ηµνLµν,αβhαβ

)2
+β

(
Lµν,αβhαβ

)2
]
, (2.3)

where Lµν,αβ is a differential operator defined as

Lµν,αβ :=�ηµ(αηβ)ν−∂µ∂(αηβ)ν−∂ν∂(αηβ)µ−�ηµνηαβ+∂µ∂νηαβ+ηµν∂α∂β . (2.4)

The last two terms of eq. (2.3) have the higher-order derivatives in time, which give negative
norm states [12]. This type of theory can be quantized directly, but it involves many
constraints, which makes the analysis complicated. An easy way of quantizing such a
theory is to transform action (2.3) into that with second-order derivatives by introducing
Lagrange multiplier λµν ,

Sg2 = 1
4

∫
d4x

[ 1
κ2h

µνUµν+αU2+βU2
µν+λµν

(
Uµν−Lµν,αβhαβ

)]
, (2.5)

where U =Uµµ. The variation of this action with respect to λµν gives

Uµν−Lµν,αβhαβ = 0, (2.6)

and substituting back this into action (2.5), we go back to the original action (2.3).
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Any tensor Aµν can be decomposed into the trace part and traceless part by

Aµν = 1
4Aηµν+Āµν . (2.7)

The traceless part Āµν , satisfying Āµµ = 0, is obtained by operating the projection tensor

Ḡµν,αβ = ηµ(αηβ)ν−
1
4ηµνηαβ , (2.8)

that is

Āµν = Ḡµν,αβA
αβ . (2.9)

Then, the action (2.5) can be written as

Sg2 = 1
4

∫
d4x

[
βŪµν

2+ 1
κ2 h̄µνŪ

µν+λ̄µνŪµν

+
(
α+β

4

)
U2+ 1

4κ2hU+ 1
4λU−λµνL

µν,αβhαβ

]
. (2.10)

The constraint equations on U and Ūµν follow from the variation of action (2.10) with
respect to U and Ūµν . Substituting back these constraint equations into action (2.10), we
have

Sg2 = 1
4

∫
d4x

[
− 1

4β

( 1
κ2 h̄µν+λ̄µν

)2
− 1

64α+16β

( 1
κ2h+λ

)2
−λµνLµν,αβhαβ

]
. (2.11)

The field redefinition

hµν = Hµν+Iµν , (2.12)

λµν = − 1
κ2Hµν+ 1

κ2 Iµν (2.13)

makes the action (2.11) diagonal in Hµν and Iµν ,

Sg2 = 1
4κ2

∫
d4x

[
HµνLµν,αβHαβ−

(
IµνLµν,αβIαβ+ 1

βκ2

(
I2
µν−

α

4α+β I
2
))]

, (2.14)

where I := Iµµ. Since the quadratic action (2.14) is composed of diagonalized gravitons
with the second-order derivatives, we quantize these fields in the usual manner.

The form of the second-order action (2.14) for Hµν is the same as that for the linearized
graviton in Einstein gravity, that is a masslass spin-2 mode, and thus the same asymptotic
states as those in Einstein gravity are obtained,

Hµν =
∑
σ

∫
d3p

κ√
(2π)3p0

{
a

(σ)
H (p)e−ipx+a(σ)

H
†(p)eipx

}
e(σ)
µν (p), (2.15)

where p0 :=
√
p2 and the sum is computed over all elements of a basis of asymptotic states.

The same as in Einstein gravity, the number of independent components for massless
graviton Hµν is two. σ in eq. (2.15) represents two helicity states.

– 5 –
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There are a few different conventions of defining graviton polarization. Berends and
Gastmans use σ= +2,−2 as basis elements [16]. We use those constructed from the vector
elements [14, 47], given in eqs. (A.30) of appendix A.

The second-order action (2.14) for Iµν is that for massive graviton [45] but with the
negative sign. The mass term does not have Fierz-Pauli form unless 3α+β 6= 0. Therefore,
this massive graviton generically includes not only spin-2 but also spin-0 (scalar) degrees
of freedom. Because of the over all negative sign of the action, the massive spin-2 graviton
gives negative norm states, while the positive-norm spin-0 graviton appears. The way of
quantization is shown in appendix A, and the result is

Iµν =
∑
σ

∫
d3p

κ√
(2π)3p0

{
a

(σ)
T (p)e−ipx+a(σ)

T
†(p)eipx

}
e(σ)
µν

+
∫
d3p

κ√
(2π)3p0

{
aS(p)e−ipx+a†S(p)eipx

} 1√
3
θµν , (2.16)

where

θµν := ηµν+p̂µp̂ν , p̂µ := pµ√
|p2|

. (2.17)

The polarization basis e(σ)
µν appearing in eq. (2.15) and that in eq. (2.16) are the same

except that the mass in the former is set to zero while that in the latter nonzero. This
observation makes our computation of a few different amplitudes substantially easier.

The commutation relations for annihilation and creation operators are

[aφ(k),a†φ(p)] = δ3(k−p), [a(σ)
H (k),a(τ)

H
†(p)] = δστδ

3(k−p),
[a(σ)
T (k),a(τ)

T
†(p)] =−δστδ3(k−p), [aS(k),a†S(p)] = δ3(k−p). (2.18)

The negative sign in the third commutation relation means that the particle states of
a

(σ)
T (p) lead to negative norms.

3 Propagators and Vertex functions

3.1 Propagators

The propagators for the scalar field φ and graviton hµν are obtained from the quadratic
actions (2.1) and (2.3). For scalar field, it becomes

Gφ = −i
p2+m2 . (3.1)

The quadratic action for graviton (2.3) is written as

Sg2 =
∫
d4xhαβ

[1
4

( 1
κ2�+β�2

)
P (2)αβ,µν+

(
− 1

2κ2�+(3α+β)�2
)
P (0)αβ,µν

]
hµν ,

(3.2)

– 6 –
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Figure 1. Scalar (left) and graviton (right) propagators.

where P (2)
αβ,µν is the projection to the transverse-traceless component, and P

(0)
αβ,µν to the

transverse-trace part, defined respectively by2

P
(2)
αβ,µν := 1

2 (θαµθβν+θανθβµ)− 1
3θαβθµν , (3.3)

P
(0)
αβ,µν := 1

3θαβθµν . (3.4)

Thus, the quadratic action for graviton is decomposed into the spin-2 (transverse-traceless)
and the spin-0 (transverse-trace) parts. The degrees of freedom other than the transverse
ones are gauge modes. Theories with gauge degrees of freedom may be dealt with by
Becchi-Rouet-Stora-Tyutin (BRST) method, where gauge and Faddeev-Popov (FP) ghost
modes should be taken into account. However, in the tree-level approximation that we take
in this paper, gauge modes do not appear even in the internal lines. Hence, it is enough to
derive the propagators and vertex functions only for transverse modes. Therefore, we take
the harmonic gauge [11]

∂µhµν = 0. (3.5)

The graviton propagator is obtained by taking the inverse of each part in the quadratic
action for graviton (3.2),

Gαβ,µν = 2i
βp2 (p2+m2

I

)P (2)
αβ,µν+ i

2(3α+β)p2 (p2+m2
S

)P (0)
αβ,µν . (3.6)

where mI and mS are masses of the massive spin-2 and spin-0 modes, respectively, satis-
fying3

m2
I =−(βκ2)−1, m2

S =
(
2κ2(3α+β)

)−1
. (3.7)

The Feynman diagrams for propagators are shown in figure 1.

3.2 Vertex functions

Vertex functions are obtained by further expanding the total action (1.1) with respect
to hµν . As we have commented, imposing the transversality condition for graviton hµν ,
eq. (3.5) does not affect the result in the tree-level approximation. Therefore, hereinafter
the transversality condition (3.5) is used without notice. The matter-graviton scattering is
expessed by the Feynman diagrams with two φ- and two hµν-external lines, and then, only

2To be precise, the projection tensors are defined in Fourier space.
3To avoid tachyonic instability for massive graviton Iµν , we might be required to impose β≤ 0 and

3α+β≥ 0.
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Figure 2. Graviton-matter three-point (left) and the graviton-matter four-point (middle), graviton
three-point (right) vertex functions: the double wiggly lines corresponds to graviton hµν , while the
scalar field φ is described by dotted lines.

linear and quadratic orders for hµν of the matter action, and cubic order of gravitational
action are required. (See the Feynman diagrams appearing later in figure 3.)

Let us further expand the matter action (1.3) in powers of hµν ,

Sm =
∫
d4x

{1
2
[
−ηµν∂µφ∂νφ−m2φ2

]
+1

4h
[
−ηµν∂µφ∂νφ−m2φ2

]
+ 1

2h
µν∂µφ∂νφ−ξφ2�h

+
( 1

16h
2− 1

8h
αβhαβ

)[
−ηµν∂µφ∂νφ−m2φ2

]
+ 1

4hh
µν∂µφ∂νφ−

1
2h

µαhα
ν∂µφ∂νφ

+ξφ2
(
−1

2h�h−
1
4 (∂µh)(∂µh)+hµν∂µ∂νh+hµν�hµν

+3
4 (∂αhµν)(∂αhµν)− 1

2 (∂αhµβ)
(
∂βhµα

))}
+O

(
φ2h3). (3.8)

The second line in the above equation gives the 3-point vertex functions for
φ(p1)φ(p2)hµν(p3). We decompose it into ξ-independent and -dependent parts,

λµν3 = λ̃µν3 +ξλ̃µν3,ξ, (3.9)

λ̃µν3 = 1
2
[(
p1αp

α
2−m2

)
ηµν−pµ1p

ν
2−pν1p

µ
2

]
, (3.10)

λ̃µν3,ξ = 2p2
3η
µν . (3.11)

Similarly, the 4-point vertex functions for φ(p1)φ(p2)hµν(p3)hαβ(p4) become

λµν,αβ4 = λ̃µν,αβ4 +ξλ̃µν,αβ4,ξ , (3.12)

λ̃µν,αβ4 = 1
4
[(
p1γp

γ
2−m

2
)(
ηµνηαβ−ηµαηνβ−ηµβηνα

)]
+1

4
[
−(pµ1pν2 +pν1p

µ
2 )ηαβ−

(
pα1 p

β
2 +pβ1pα2

)
ηµν+(pµ1pα2 +pα1 p

µ
2 )ηνβ

+
(
pµ1p

β
2 +pβ1p

µ
2

)
ηνα+(pν1pα2 +pα1 pν2)ηµβ+

(
pν1p

β
2 +pβ1pν2

)
ηµα

]
, (3.13)

λ̃µν,αβ4,ξ =
(
p2

3+p2
4+p3 ·p4

)
ηµνηαβ−

(
2p2

3+2p2
4+3p3 ·p4

)
ηµαηνβ

−2pµ4pν4ηαβ−2pα3 p
β
3η

µν+ηµ(αp
β)
3 p

ν
4 +ην(αp

β)
3 p

µ
4 . (3.14)

The corresponding Feynman diagrams are shown in figure 2.
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Let us move to the graviton three-point vertex function corresponding to the rightmost
graph in figure 2. It is obtained from the gravitational action (1.2) but it involves a lengthy
calculation. The derivation is given in appendix B and we show here only the result,4

Sg3 =
∫
d4x

{
− 1
κ2

[ 1
16h

2�h− 1
8hh

αβ�hαβ−
3
16h

αβhαβ�h+ 1
4h

αβhβ
γ�hαγ

− 1
4hh

αβ∂α∂βh+ 1
4h

αβhα
γ∂β∂γh−

1
2h

αγhβλ∂α∂βhγλ+ 1
4h

αβhγλ∂α∂βhγλ

]
+α

[1
4h

2�2h− 3
4h

αβhαβ�
2h− 1

2h
αβ�hαβ�h−2hhαβ∂α∂β�h+hµαhµβ∂α∂β�h

]
+β

[
− 1

16h�h�h+ 3
32h

2�2h− 3
16hαβh

αβ�2h+ 1
8h�hαβ�h

αβ

− 1
8h

αβ�hαβ�h−
1
4h

αβhβ
γ�2hαγ−

1
2hh

αβ∂α∂β�h

+ 1
8h�h

αβ∂α∂βh+ 1
4h

µαhµ
β∂α∂β�h+hαµ�hβν∂α∂βhµν

+1
2h

αµhβν∂α∂β�hµν−
1
2h

αβhµν∂α∂β�hµν−
1
4h

µν�hαβ∂α∂βhµν

]}
. (3.15)

This gives the 3-point vertex function for hµν(p1)hαβ(p2)hγλ(p3), but, since the expression
is lengthy, we show it in appendix C. Here we show the 3-point vertices for modes with
basis elements e(σ)

µν and/or θµν/
√

3 (see eqs. (2.15) and (2.16) for the decomposition of hµν
in this basis). In the derivation, we use the relations among pµi , eσi,µν and θi,µν shown in
appendix C, which is obtained by direct calculations.

λµν,αβ,γλ3 e1µνe2αβe3γλ

=
[ 1

2κ2

(
p2

1+p2
2+p2

3

)
−β2

(
p4

1+p4
2+p4

3

)]
eµ1νe

ν
2αe

α
3µ

+
[
− 1
κ2 +β

(
p2

1+p2
2+p2

3

)](
p1µe

µ
2νe

ν
1αe

α
3βp

β
1 +p2µe

µ
1νe

ν
2αe

α
3βp

β
2 +p3µe

µ
2νe

ν
3αe

α
1βp

β
3

)
+
[ 1

4κ2−
β

4
(
p2

1+p2
2+p2

3

)](
e1µνe

µν
2 pγ1p

λ
1e3γλ+e1µνe

µν
3 pγ1p

λ
1e2γλ

+e1µνe
µν
2 pγ2p

λ
2e3γλ+e3µνe

µν
2 pγ2p

λ
2e1γλ+e1µνe

µν
3 pγ3p

λ
3e2γλ+e3µνe

µν
2 pγ3p

λ
3e1γλ

)
,

(3.16)

λµν,αβ,γλ3 e1µνe2αβ

( 1√
3
θ3γλ

)

=
√

3
[
− 1

4κ2

(
p2

3−
1
2
(
p2

1+p2
2

)
+ 1

6

(
p2

1−p2
2
)2

p2
3

)
+(3α+β)

(
−1

2p
4
3−

1
6p

2
3

(
p2

1+p2
2

))

+ β

24

(
−5
(
p4

1+p4
2

)
+
(
p2

1−p2
2
)2 (

p2
1+p2

2
)

p2
3

)]
e1µνe

µν
2

+
√

3
[

1
3κ2−

1
6κ2

(
p2

1+p2
2
)

p2
3

+ 2
3 (3α+β)p2

3+β

6
p4

1+p4
2

p2
3

]
p2µe

µ
1νe

ν
2αp

α
1 ,

(3.17)

4The result here is simplified by partial integration.
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λµν,αβ,γλ3 e1µν

( 1√
3
θ2αβ

)( 1√
3
θ3γλ

)
= pµ2e1µνp

ν
2

24p2
2p

2
3

{
κ−2

(
−p4

1+3p2
1(p2

2+p2
3)+2(p4

2+p4
3)−12p2

2p
2
3

)
+(3α+β)

(
12p2

1(p4
2+p4

3)+4(p6
2+p6

3)−36(p4
2p

2
3+p2

2p
4
3)
)

+β
(
p6

1+3p4
1(p2

2+p2
3)
)}
,

(3.18)

λµν,αβ,γλ3

( 1√
3
θ1µν

)( 1√
3
θ2αβ

)( 1√
3
θ3γλ

)

=
√

3
144p2

1p
2
2p

2
3

[
1
κ2

(
−(p8

1+p8
2+p8

3)+8(p2
1p

6
2+p2

1p
6
3+p6

1p
2
2+p6

1p
2
3+p2

2p
6
3+p6

2p
2
3)

−14(p4
1p

4
2+p4

1p
4
3+p4

2p
4
3)−28p2

1p
2
2p

2
3(p2

1+p2
2+p2

3)
)

+2(3α+β)
(
−(p10

1 +p10
2 +p10

3 )+11(p2
1p

8
2+p2

1p
8
3+p8

1p
2
2+p8

1p
2
3+p2

2p
8
3+p8

2p
2
3)

−10(p4
1p

6
2+p4

1p
6
3+p6

1p
4
2+p6

1p
4
3+p4

2p
6
3+p6

2p
4
3)

−34p2
1p

2
2p

2
3(p4

1+p4
2+p4

3)−42p2
1p

2
2p

2
3(p2

1p
2
2+p2

1p
2
3+p2

2p
2
3)
)]
,

(3.19)

where we omit the suffix (σ) denoting the helicites in e
(σ)
µν , and pµi ’s are the momenta of

modes associated with basis ei,µν or θi,µν/
√

3.

4 Amplitudes for matter-graviton scattering

The simplest scattering involving gravitons with positive norm and/or negative norm is a
matter-graviton two-body scattering, which is the concern of this paper. The graviton field
hµν is decomposed into the massless part Hµν and the massive part Iµν (see eq. (2.12)).
Hµν has two massless transverse-traceless (TT) degrees of freedom e

(σ)
µν (see eq. (2.15)) with

positive norm, while Iµν is composed of five negative-norm massive transverse-traceless
degrees of freedom e

(σ)
µν and one positive-norm massive TT degree of freedom θµν (see

eq. (2.16)). We expand Hµν and Iµν as

Hµν =
2∑

σ=1

∫
d3pH(σ)(p)e(σ)

µν (p), (4.1)

Iµν =
5∑

σ=1

∫
d3pI(σ)(p)e(σ)

µν (p)+
∫
d3pI(s)(p) 1√

3
θµν(p). (4.2)

H(σ)(p), I(σ)(p) are the operators for TT components, and I(s)(p) is that for the trace
component. The two e(σ)

µν appearing in eqs. (4.1) and (4.2) are the same except that the
mass is set to zero in the former. The operators H(σ)(p), I(σ)(p) are written with the
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Figure 3. Contact, s-, u- and t-channel exchange diagrams (from left to right): the double wiggly
lines correspond to graviton hµν , while the scalar field φ is described by dotted lines. The initial
(final) state is composed of a graviton hµν (hαβ) with momentum k1 (k3) and a scalar field φ with
momentum k2 (k4).

annihilation and the creation operators (see eqs. (2.15) and (2.16)) as

H(σ)(p) = κ√
(2π)3p0

{
a

(σ)
H (p)e−ipx+a(σ)

H
†(p)eipx

}
, (4.3)

I(σ)(p) = κ√
(2π)3p0

{
a

(σ)
T (p)e−ipx+a(σ)

T
†(p)eipx

}
, (4.4)

I(s)(p) = κ√
(2π)3p0

{
aS(p)e−ipx+a†S(p)eipx

}
. (4.5)

We introduce h(σ)(p) denoting either of TT modes H(σ)(p) or I(σ)(p), since the scattering
amplitudes become the same except for the value of mass.

We are now ready to discuss our main issue, the hµν-φ scattering amplitudes. We fix
the kinematics of hµν-φ scattering by

hµν(k1,e1,µν or θ1,µν)+φ(k2) → hαβ(k3,e3,αβ or θ3,αβ)+φ(k4), (4.6)

as shown in figure 3. In our calculation at the tree level, there are four types of graphs,
contact term due to λµν,αβ4 , the s- and u-channel exchanges of φ propagator and the t-
channel exchange of hµν propagator, denoted by Ac, As, Au, and At, respectively. Figure 3
shows the corresponding Feynman diagrams of them.

Three cases of hµν-φ scattering are considered separately:

A : h(σ)φ→h(σ′)φ,

B : h(σ)φ→ I(s)φ; I(s)φ→h(σ)φ, (two are related)
C : I(s)φ→ I(s)φ.

(4.7)

Since the expression of the amplitudes turns out to be the same regardless of the positivity
or negativity of the graviton norm, we do not need to distinguish them here.

The field operators H(σ)(p), I(σ)(p) and I(s)(p) of eqs. (4.3)–(4.5) are not canonically
normalized. Taking the normalization into account, we should add a factor κ per an
external graviton. Since we now have two external gravitons, we should multiply the usual
calculation from the Feynmann diagram by κ2. We will show each contribution and then
give the scattering amplitude by summing it up. Since the calculations of the t-channel
exchange and summation are complicated, we show the detailed derivation in appendix D.
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4.1 h(σ)φ → h(σ′)φ

Contributions from the contact interaction Ac, the s-channel exchange As and the u-
channel exchange Au are obtained as follows,

Ac =κ2
[1

2
(
k2 ·k4+m2

)
Tr[e1 ·e3]−(k2 ·e1 ·e3 ·k4+k2 ·e3 ·e1 ·k4)

]
−ξκ2

[(
2k2

1 +2k2
3−3k1 ·k3

)
Tr [e1 ·e3]+2k3 ·e1 ·e3 ·k1

]
, (4.8)

As =κ2k2 ·e1 ·k2 k4 ·e3 ·k4

(k1+k2)2+m2 , (4.9)

and Au is obtained from As by crossing relation k2 ↔ −k4, as seen from figure 3. The
calculation of the t-channel exchange At is more involved because of the three point vertex
of gravitons, and is given in appendix D,

At = κ2
(

1
(k1−k3)2 + β(k2

1 +k2
3)

β(k1−k3)4−κ−2(k1−k3)2

)
[
−(k1 ·k2+k1 ·k4)(k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2)+(k2 ·e1 ·k2)(k4 ·e3 ·k4)

+(k4 ·e1 ·k4)(k2 ·e3 ·k2)−2(k2 ·e1 ·k4)(k2 ·e3 ·k4)+ 1
4(k1 ·k2+k1 ·k4)2Tr[e1 ·e3]

]
+κ2

2 (k2 ·e1 ·e3 ·k4+k4 ·e1 ·e3 ·k2)+κ2
[

3
16(k1−k3)2+ (k2

1 +k2
3)

16

]
Tr[e1 ·e3]

+ κ2βk2
1k

2
3((k1−k3)2+4m2)

8(β(k1−k3)4−κ−2(k1−k3)2)Tr[e1 ·e3]

+ξκ2
[(

2k2
1 +2k2

3−3k1 ·k3
)
Tr [e1 ·e3]+2k3 ·e1 ·e3 ·k1

]
. (4.10)

The t-channel exchange contribution At by itself satisfies the crossing relation. The sum
of four terms is (calculation is shown in appendix D)

A = As+At+Au+Ac

= κ2

(k1−k3)2 [β(k1−k3)2−κ−2]

[(
2β(k2

1 +k2
3)−2β(k1 ·k3)−κ−2

)
×
(
−1

4(k2
1−2k1 ·k4)(k2

1 +2k1 ·k2)Tr[e1 ·e3]+(k2
1−2k1 ·k4)k2 ·e1 ·e3 ·k4

+(k2
1 +2k1 ·k2)k4 ·e1 ·e3 ·k2−2(k2 ·e1 ·k4)(k2 ·e3 ·k4)

−k
2
1−2k1 ·k4
k2

1 +2k1 ·k2
(k2 ·e1 ·k2)(k4 ·e3 ·k4)

−k
2
1 +2k1 ·k2
k2

1−2k1 ·k4
(k4 ·e1 ·k4)(k2 ·e3 ·k2)

)

+βk2
1k

2
3

(1
8(k2

1 +k2
3 +4m2)Tr[e1 ·e3]−k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2

+ 2
k2

1 +2k1 ·k2
(k2 ·e1 ·k2)(k4 ·e3 ·k4)

+ 2
k2

1−2k1 ·k4
(k4 ·e1 ·k4)(k2 ·e3 ·k2)

)]
, (4.11)
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where dot means contraction by spacetime index µ, for instance, k2 ·e1 ·k4 = kµ2 e1,µνk
ν
4 , and

Tr[e1 ·e3] is e1,µνe
µν
3 . Curiously, the amplitude (4.11) is independent of α and ξ. The

physical meaning of this is yet unclear to us.
Taking the Einstein limit (α,β,ξ→ 0), and setting the basis eµν to be the helicity-

2 shown in eq. (5.9) and eq. (5.15), we can reproduce the result of ref. [16] from the
amplitude (4.11).5

4.2 h(σ)φ → I(s)φ

The scattering amplitude is calculated in the similar manner to h(σ)φ→ h(σ)φ. The con-
tributions from Ac, As, Au and At, and their sum are obtained as follows.

Ac = −
√

3κ2

6m2
S

[
(k1 ·k4+k3 ·k4)k2 ·e1 ·k2−(k1 ·k2+k2 ·k3)k4 ·e1 ·k4−k2

1 k2 ·e1 ·k4
]

−ξκ
2
√

3
(k3 ·e1 ·k3)

m2
S

(
2k2

1 +4m2
S−k1 ·k3

)
, (4.13)

As = −
√

3κ2k2 ·e1 ·k2
(
3m2

Sk3 ·k4+2m2m2
S−2(k3 ·k4)2)

6m2
S [(k1+k2)2+m2]

−2
√

3ξκ2m2
S

k2 ·e1 ·k2
[(k1+k2)2+m2] ,

(4.14)

The u-channel exchange contribution Au is related to As by crossing relation k2 ↔ −k4.

At =
√

3κ2

24m2
S

(
(k1+k2)2−(k1−k4)2

)
(k2 ·e1 ·k2−k4 ·e1 ·k4)

+
√

3κ2

24m2
S

(
(k1−k3)2+k2

1 +5m2
S

)
(k2 ·e1 ·k2+k4 ·e1 ·k4)−

√
3κ2

6m2
S

k2
1 k2 ·e1 ·k4

−
√

3κ2

6

(
2 m2

(k1−k3)2 + 2(3α+β)
(2(3α+β)(k1−k3)2+κ−2)

m2
S

(k1−k3)2

(
(k1−k3)2−2m2

))
×k3 ·e1 ·k3

− ξκ2
√

3m2
S

{
(k1αk

α
3 )−2k2

1−4m2
S+ 12(3α+β)m4

S

2(3α+β)(k1−k3)2+κ−2

}
k3 ·e1 ·k3,

(4.15)

5The amplitudes in ref. [16] are calculated in a different basis, labeled by 2 and −2. Their amplitudes of
2→ 2 and −2→−2 become the same, i.e. A(2→ 2) =A(−2→−2) =:Adig. (In their notation, the amplitude
A(2→ 2) is denoted as −iφ2;2, and the signature of spacetime metric is flipped.) In addition, A(2→−2) =
A(−2→ 2) =:Aoff holds. Hence, the scattering amplitude is expressed as a matrix

A=
(
Adig Aoff
Aoff Adig

)
. (4.12)

Our basis elements (2,o) and (2,e), defined in eq. (5.8), are different from those in ref. [16], and give the
diagonal matrix of the scattering amplitude (4.12). Since the difference between the matrix of ref. [16]
and ours is caused by the different choices of basis, their eigenvalues should coincide with each other. We
confirm the coincidence and see that A in eq. (4.11) satisfies A(2,o→ 2,o)|β=0 =Adig−Aoff and A(2,e→
2,e)|β=0 =Adig+Aoff .
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A=As+Au+At+Ac

=−
√

3κ2

6
(
m2
S+2m2

)( k2 ·e1 ·k2
(k1+k2)2+m2 + k4 ·e1 ·k4

(k1−k4)2+m2

)
−
√

3κ2

6

(
2 m2

(k1−k3)2 + 2(3α+β)
(2(3α+β)(k1−k3)2+κ−2)

m2
S

(k1−k3)2

(
(k1−k3)2−2m2

))
×k3 ·e1 ·k3

−2
√

3ξκ2m2
S

( 2(3α+β)(k3 ·e1 ·k3)
2(3α+β)(k1−k3)2+κ−2 + k2 ·e1 ·k2

[(k1+k2)2+m2] + k4 ·e1 ·k4
[(k1−k4)2+m2]

)
.

(4.16)

We note that α and β appear only in combination (3α+β). The dependence of the total
amplitude on momentum is 4-th order lower than that of each contribution: As, Au, At
and Ac. Hence, cancelation occurs in the UV limit.

4.3 I(s)φ → I(s)φ

The scatteing amplitude in this case is also obtained in the similar manner,

Ac = −κ
2

12
[
k2 ·k4+5m2

]
−κ

2

6
k1 ·k2 k1 ·k4

m2
S

−κ
2

6
k2 ·k3 k3 ·k4

m2
S

+κ2k1 ·k3
6m4

S

(
(k2 ·k4+m2)k1 ·k3−2k1 ·k2 k3 ·k4−2k1 ·k4 k2 ·k3

)
+ξκ2

3

[
(k1 ·k3)3

m2
S

−8(k1 ·k3)2

m2
S

−(k1 ·k3)+2m2
S

]
, (4.17)

As = κ2 (3m2
Sk1 ·k2+2m2m2

S−2(k1 ·k2)2)(3m2
Sk3 ·k4+2m2m2

S−2(k3 ·k4)2)
12m4

S [(k1+k2)2+m2]

−ξκ2
(

2(k1 ·k2)−2m2
S−

2m4
S+4m2m2

S[
2(k1 ·k2)−m2

S

])+
12ξ2κ2m4

S

(k1+k2)2+m2 . (4.18)

The u-channel exchange contributionAu is obtained fromAs by crossing relation k2 ↔ −k4.

At = κ2

48m4
S

[
(k1+k2)2(k1−k4)2(k1−k3)2−6m2

S(k1+k2)2(k1−k4)2+(4m2
S−m2)(k1−k3)4

+(11m4
S−4m2m2

S−m4)(k1−k3)2−10m6
S−12m2m4

S+6m4m2
S

]

−κ2 (k1−k3)4−6(k1+k2)2(k1−k4)2+4(m2
S+m2)(k1−k3)2+6(m2

S+m2)2−8m2m2
S

12(κ2β(k1−k3)2−1)(k1−k3)2

+κ2

6
3m4

S(k1−k3)2+4m2
Sm

2(k1−k3)2−2m4
Sm

2

(k1−k3)2 ((k1−k3)2+m2
S

)
+ ξκ2

3

[
−(k1 ·k3)3

m4
S

+8(k1 ·k3)2

m2
S

+7(k1 ·k3)+10m2
S+ 12m4

S(
(k1−k3)2+m2

S

)] , (4.19)
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A=As+Au+At+Ac

=−κ
2

6
(
m2
S+m2

)
+κ2

6
3m4

S(k1−k3)2+4m2
Sm

2(k1−k3)2−2m4
Sm

2

(k1−k3)2 ((k1−k3)2+m2
S

)
−κ2 (k1−k3)4−6(k1+k2)2(k1−k4)2+4(m2

S+m2)(k1−k3)2+6(m2
S+m2)2−8m2

Sm
2

12(κ2β(k1−k3)2−1)(k1−k3)2

+κ2m
4
S+4m2m2

S+4m4

12

( 1
(k1+k2)2+m2 + 1

(k1−k4)2+m2

)

+2ξκ2
(

4m2
S+ 2m4

S(
(k1−k3)2+m2

S

)+
m4
S+2m2m2

S

(k1+k2)2+m2+
m4
S+2m2m2

S

(k1−k4)2+m2

)
. (4.20)

Here, we use k−2
1 = k−2

3 =−m−2
S =−2κ2(3α+β). Thus, the amplitude (4.20) depends on

(3α+β) through m2
S , but does not depend on α and β separately, the same as for h(σ)φ→

I(s)φ.

5 Scattering amplitude in the UV limit

We are interested in the high energy behavior of the scattering amplitude to investigate
the relation between renormalizability and UV unitarity. Two kinds of high energy limits
are often investigated, namely, the Regge limit and the hard scattering limit. Whether
these two different ways of analyzing the high-energy 2-2 amplitudes are related and how
if so has not been studied. As discussed in refs. [4–6, 8], we take the hard scattering limit
here due to the following reason. The basis of two-particle states can be independently
labeled in the total energy E, the total momentum P and the scattering angle θ. The
hard scattering limit, that is, E→∞ with P = 0 and θ fixed, does not change the measure
for P and θ in the inner product. Since the optical theorem, providing the tree unitarity,
involves the inner product, the analysis in the hard scattering limit straightforwardly gives
results.6

Although the scattering amplitudes have been derived in the previous section, their
dependences on the total energy are hard to be seen. One of the reasons is that each
element of the basis has a nontrivial energy dependence. The situation is similar to that
in gauge theories [46]. Another reason is that nontrivial cancelation occurs. In section 5.1,
the exact forms of the basis elements will be shown. We will see there that they have the
total energy dependence. With the exact forms of the elements, all amplitudes of matter-
graviton scattering will be derived in section 5.2. There exist thirteen non-zero amplitudes
in all.

6The Regge limit would provide a different condition for the tree unitarity. It is known that the Regge
limit gives constraints on the amplitude of the forward scattering [1, 2].
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5.1 Mode Decomposition

Without loss of generality, we always take the center of mass (CoM) frame due to Lorentz
symmetry. In CoM frame, for massive particle, their component can be expressed as

k1µ =
(√

k2+m2
1,k,0,0

)
, (5.1)

k2µ =
(√

k2+m2
2,−k,0,0

)
, (5.2)

k3µ =
(√

q2+m2
3, q cosθ,q sinθ,0

)
, (5.3)

k4µ =
(√

q2+m2
4,−q cosθ,−q sinθ,0

)
, (5.4)

where k and q are the amplitude of 3-momenta of initial and final particles. Moreover, m2
and m4 are equal to the mass of the scalar field m. The energy conservation law gives,

E=
√
k2+m2

1+
√
k2+m2 =

√
q2+m2

3+
√
q2+m2. (5.5)

In the UV limit, q is described by k and masses,

q= k

(
1+m2

1−m2
3

4k2 −
(
m2

1−m2
3
)(
m2

1−m2)
16k4 +O

(
k−6

))
. (5.6)

We define basis elements for vector to construct bases for gravitons. Transverse elements
are denoted as tµ and uµ, while lµ is the element for longitudinal. Their components is
explicitly written in

t1µ = (0,0,1,0) , l1µ =
(
k,
√
k2+m2

1,0,0
)
/m1,

t3µ = (0,−sinθ,cosθ,0) , l3µ =
(
q,
√
q2+m2

3 cosθ,
√
q2+m2

3 sinθ,0
)
/m3,

uµ( =u1µ =u3µ) = (0,0,0,1) . (5.7)

The basis elements for graviton is constructed from the vector elements [14, 47],

e
(0)
iµν = 2√

6
liµliν−

1√
6
tiµtiν−

1√
6
uµuν , e

(1,e)
iµν = 1√

2
(liµtiν+tiµliν) ,

e
(1,o)
iµν = 1√

2
(liµuν+uµliν) , e

(2,e)
iµν = 1√

2
(tiµtiν−uµuν) , (5.8)

e
(2,o)
iµν = 1√

2
(tiµuν+uµtiν) , e

(S)
iµν = 1√

3
(liµliν+tiµtiν+uµuν) = 1√

3
θiµν .

Here, e(0)
iµν , {e

(1,e)
iµν ,e

(1,o)
iµν }, {e

(2,e)
iµν ,e

(2,o)
iµν } and e

(S)
iµν are helicity-0 mode, helicity-1 modes,

helicity-2 modes and scalar mode, respectively. For massless graviton, the basis elements
of helicity-2 modes, which are only onshell states, can be obtained by taking massless limit
mi→ 0. Although in the massless limit the helicity-0 and -1 elements are ill-defined, it
does not matter because the massless graviton does not have helicity-0 and -1 modes.
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We can categorize the basis elements into two groups: {e(0)
iµν ,e

(1,e)
iµν ,e

(2,e)
iµν ,e

(s)
iµν} and

{e(1,o)
iµν ,e

(2,o)
iµν }. The former and the latter are named even and odd modes, respectively,

which stem from the number of uµ. Since the inner product with uµ and the others (tµ, lµ,
kµ) gives zero, any scalar quantity, including scattering amplitude, with the odd number of
uµ vanishs. This leads to the fact that the scattering amplitudes involving both even and
odd modes, all Tr[e1 ·e3], (k ·e1 ·e3 ·k) and (k ·e1 ·k)(k ·e3 ·k) become zero for any k. Therefore
only the scattering amplitudes with two odd gravitons or two even gravitons give non-zero
values. Let us see each case.

5.2 Scattering amplitudes in UV limit

The UV behaviors of scattering amplitudes are shown in this subsection. Since the calcula-
tions are lengthy, we give the derivations in appendix E. Although the scattering amplitudes
are shown in the previous section, they depend on the basis elements eµν . Since the differ-
ent basis elements eµν have the different momentum dependence, the individual analysis
for each is required. As in Weinberg-Salam theory [46], the nontrivial cancelation occurs,
and thus the naive estimation by separately checking the total-energy dependence of each
term gives the false result. The careful calculations are required.

5.2.1 h(2,o)φ →h(2,o)φ

The basis elements e(2,o)
1µν and e(2,o)

3µν become

e
(2,o)
1µν = 1√

2
(t1µuν+uµt1ν) , e

(2,o)
3µν = 1√

2
(t3µuν+uµt3ν) . (5.9)

Substituting the aboves into eq. (4.11) we have

As+At+Au+Ad =−κ2k2 1+cosθ
1−cosθ+O

(
k0
)
. (5.10)

The UV behavior of scattering amplitude has k2 dependence. This dominant contribution
does not depend on the initial nor final graviton mass, which means that the UV behavior
of scattering amplitude is independent of whether the initial and final graviton is massless
or negative-norm massive state.

5.2.2 h(2,o)φ → I(1,o)φ

The basis elements for them are described as

e
(2,o)
1µν = 1√

2
(t1µuν+uµt1ν) , e

(1,o)
3µν = 1√

2
(l3µuν+uµl3ν) , (5.11)

The scattering amplitude becomes

As+At+Au+Ad =κ2 mIk sinθ
2(1−cosθ) +O

(
k−1

)
. (5.12)

Note that all terms in k3 order are canceled. The dominant contribution does not depend on
the initial graviton (helicity-2 graviton) mass but depends on the final graviton (helicity-1
graviton) mass.
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5.2.3 I(1,o)φ → I(1,o)φ

The basis elements for them become

e
(1,o)
1µν = 1√

2
(l1µuν+uµl1ν) , e

(1,o)
3µν = 1√

2
(l3µuν+uµl3ν) . (5.13)

The scattering amplitude behaves

As+At+Au+Ad =−κ
2m2

I

8
22+(1+cosθ)2+(1−cosθ)2

(1−cosθ)2 +O
(
k−2

)
, (5.14)

where the cancelation occurs in k4 and k2 orders.

5.2.4 h(2,e)φ →h(2,e)φ

The basis elements for them are given as

e
(2,e)
1µν = 1√

2
(t1µt1ν−uµuν) , e

(2,e)
3µν = 1√

2
(t3µt3ν−uµuν) . (5.15)

Substituting the above into eq. (4.11), we have

As+At+Au+Ad =κ2k2 1+cosθ
1−cosθ+O

(
k0
)
. (5.16)

As is the case of 5.2.1 the dominant k2-order contribution, does not depends on the initial
and final graviton masses.

5.2.5 h(2,e)φ → I(1,e)φ

The basis elements are written as

e
(2,e)
1µν = 1√

2
(t1µt1ν−uµuν) , e

(1,e)
3µν = 1√

2
(l3µt3ν+t3µl3ν) . (5.17)

They give

As+At+Au+Ad =−κ2 mIk sinθ
2(1−cosθ) +O

(
k−1

)
. (5.18)

The cancelation occurs in k3 order and the dominant contribution does not depend on the
initial graviton mass as is the case of 5.2.2.

5.2.6 I(1,e)φ → I(1,e)φ

Substituting the basis elements for them

e
(1,e)
1µν = 1√

2
(l1µt1ν+t1µl1ν) , e

(1,e)
3µν = 1√

2
(l3µt3ν+t3µl3ν) (5.19)

into eq. (4.11), we have

As+At+Au+Ad =−κ
2m2

I

8
22+(1+cosθ)2+(1−cosθ)2

(1−cosθ)2 +O
(
k−2

)
, (5.20)

where the cancelation occurs as is the case of 5.2.3.
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5.2.7 h(2,e)φ → I(0)φ

In this case, we have

e
(2,e)
1µν = 1√

2
(t1µt1ν−uµuν) ,

e
(0)
3µν = 2√

6
l3µl3ν−

1√
6

(t3µt3ν+uµuν)

= − 2√
6k2

3
k3µk3ν+ 1√

6
(2ηµν−3t3µt3ν−3uµuν) . (5.21)

The cancelation occurs in k4 and k2 orders in the scattering amplitude and finally it
becomes

As+At+Au+Ad =O(k0). (5.22)

5.2.8 I(1,e)φ → I(0)φ

Substituting

e
(1,e)
1µν = 1√

2
(l1µt1ν+t1µl1ν) ,

e
(0)
3µν = − 2√

6k2
3
k3µk3ν+ 1√

6
(2ηµν−3t3µt3ν−3uµuν) , (5.23)

into eq. (4.11), we have

As+At+Au+Ad =O(k−1), (5.24)

where the cancelation occurs in k5, k3 and k1 orders.

5.2.9 I(0)φ → I(0)φ

The basis elements are written in

e
(0)
1µν = − 2√

6k2
1
k1µk1ν+ 1√

6
(2ηµν−3t1µt1ν−3uµuν) ,

e
(0)
3µν = − 2√

6k2
3
k3µk3ν+ 1√

6
(2ηµν−3t3µt3ν−3uµuν) . (5.25)

The scattering amplitude becomes

As+At+Au+Ac =−κ
2

2
m2
I(1+cosθ)

(1−cosθ)2 −
κ2

8 (m2
I+2m2)+O(k−2), (5.26)

where the cancelation occurs in k6, k4 and k2 orders.

5.2.10 h(2,e)φ → I(s)φ

Substituting the basis element for the initial graviton

e
(2,e)
1µν = 1√

2
(t1µt1ν−uµuν) , (5.27)

into eq. (4.16), we have

As+At+Au+Ac =O(k0). (5.28)
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5.2.11 I(1,e)φ → I(s)φ

The basis element for the initial graviton is expressed as

e
(1,e)
1µν = 1√

2
(l1µt1ν+t1µl1ν) , (5.29)

and the amplitude behaves as

As+At+Au+Ac =O(k−1). (5.30)

Note that the cancelation occurs in k order, in addition to that in the derivation of
eq. (4.16).

5.2.12 I(0)φ → I(s)φ

The basis element for the initial graviton is

e
(0)
1µν =− 2√

6k2
1
k1µk1ν+ 1√

6
(2ηµν−3t1µt1ν−3uµuν) . (5.31)

Then, the amplitude behaves as

As+At+Au+Ac =O(k0). (5.32)

The cancelation occurs in k2 order.

5.2.13 I(s)φ → I(s)φ

The amplitude is given in eq. (4.20), which indicates the scattering amplitude behaves as

As+At+Au+Ac =−κ
2

6
(
m2
S+m2

)
− 1

12β+8ξκ2m2
S+O

(
k−2

)
. (5.33)

Each contribution, As, At, Au and Ac, indeed has k6 terms, and hence the cancelation
occurs in the summation.

6 S-matrix unitarity

The S-matrix unitarity

SS†= I (6.1)

should be satisfied in any healthy theories, where I is the identity matrix. In theories
without negative norm states, to see the perturbative unitarity of a theory in the UV limit,
we usually check the unitarity bound for amplitude of two-body elastic scattering A(2→ 2)
at tree level. The unitarity bound is written in

|A|≤Eα, α≤ 0 (E→∞), (6.2)

where E is the total energy in the center-of-mass frame. Since in our 2-2 scattering problem
the total energy E is given by E' 2k at high energy (see eq. (5.5)), the UV limit means
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the limit E→∞ or k→∞. In theories without ghost fields, the bound (6.2) is a necessary
consequence from (6.1). Since R2

µν gravity has negative norm states, however the unitarity
bound is not necessarily satisfied. Instead of the unitarity bound, we will check its analog
for the S-matirix unitarity which is valid in the theories with negative norm states. To
construct the analog, we begin with the optical theorem, which is the starting point of the
derivation of the unitarity bound (6.2).

The matrix element of T is obtained from the scattering amplitude A as

〈Φ|T |Ψ〉= δ4 (pΨ−pΦ)A(Ψ→Φ) . (6.3)

The optical theorem can be written by the scattering amplitude A as

2ImA(Ψ→Ψ) =
∑
Φ
εΦδ

4 (p−pΦ) |A(Ψ→Φ) |2, (6.4)

where the summation is over all possible intermediate on-shell states, and εΦ is 1 or −1,
if the state Φ is normalized, depending on the norm of Φ being positive or negative. We
consider the following inequality,

|A(Ψ→Ψ)| ≥ ImA(Ψ→Ψ) =
∑
Φ
εΦδ

4 (p−pΦ) |A(Ψ→Φ) |2, (6.5)

where we ignore the unimportant numerical factors. If theory does not have negative norm
states, all εΦ are positive, and thus we have7

|A(Ψ→Ψ)| ≥ ImA(Ψ→Ψ) =
∑
Φ
δ4 (p−pΦ) |A(Ψ→Φ) |2≥ |A(Ψ→Ψ) |2. (6.6)

This inequality is simplified into

1≥ |A(Ψ→Ψ) |, (6.7)

which results in the unitarity bound (6.2). However, if theory has negative norm states,
the right hand side of the optical theorem (6.4) (or eq. (6.5)) is not bounded as the last
inequality in eq. (6.6). Therefore, we should directly analyse the inequality (6.5). Hence,
the inequality (6.5) is the analog of the unitarity bound for S-matrix unitarity.

The tree-level approximation of the unitarity bound (6.2) represents unitarity of theo-
ries well, such as gauge theories and Einstein gravity. As is the case in the unitarity bound,
the tree-level approximation of the analog is expected to give the information of S-matrix
unitarity, which has already been discussed in scalar field theory [13]. Therefore, we study
the analog of the unitarity bound for S-matrix unitarity, that is the inequality (6.5), at
tree level.

Let us move to the analysis of the inequality (6.5). We have to rewrite the inequality
of eq. (6.5) in the terms of momentum basis, which gives some contributions to order

7In the four dimensional spacetime, the dependence of
∑

Φ εΦδ
4 (pΨ−pΦ) on total energy in the UV

region is estimated as E0. It leads to the inequality (6.2). In other dimension, the bound for α in (6.2) is
different.
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of total energy from summation and delta functions for energy-momentum. However, in
four dimension, such contributions are accidentally canceled.8 Suppose that scattering
amplitudes for (h(σ)φ→h(σ′)φ), (h(σ)φ→ I(S)φ) and (I(S)φ→ I(S)φ) behave in UV limit
(E→∞) as

A(h(σ)φ→h(σ′)φ)→βσσ′E
ασσ′ , (6.8)

A(h(σ)φ→ I(S)φ)→βσsE
ασs , (6.9)

A(I(S)φ→ I(S)φ)→βssE
αss . (6.10)

Then, the inequality of eq. (6.5) for Φ =h(σ)φ is written as

|βσσEασσ | '
∣∣∣A(h(σ)φ→h(σ)φ)

∣∣∣
≥
∣∣∣∣∣∑

Φ
εΦ
∣∣∣A(h(σ)φ→Φ)

∣∣∣2∣∣∣∣∣
'
∣∣∣∣∣∑
σ′

εσ′
∣∣∣A(h(σ)φ→h(σ′)φ)

∣∣∣2−∑
s

∣∣∣A(h(σ)φ→ I(s)φ)
∣∣∣2∣∣∣∣∣

'
∣∣∣∣∣∑
σ′

εσ′ |βσσ′ |2E2ασσ′−
∑
s

|βσs|2E2ασs

∣∣∣∣∣ , (6.11)

where, in the last (approximated) equality, we ignore the states consisting of more than
two particles in the summation which is higher order in the perturbative expansion. The
right hand side of eq. (6.11) has |βσσ|2E2ασσ in the summation, while the total energy
dependence of the left hand side is Eασσ . Thus, in the naive estimation, if ασσ > 0 (for
helicity-two mode it is true since ασσ is two), the right hand side might be larger than
the left hand side in the UV limit E→∞, which means the violation of the inequality.
However, since the right hand side of eq. (6.11) has not only positive contribution but also
negative ones due to the negative norm states, there is a possibility that cancelation occurs
and then the inequality is satisfied. We will see that it is the case in the gravity theory
with quadratic curvatures.

The high energy behavior of scattering amplitude derived in the previous subsection
is summarized in table 1. We find that some of scattering amplitudes violate the unitarity
bound. For instance, the scattering amplitude for h(2,e)φ→h(2,e)φ diverges as ∝ k2, which
does not satisfy the unitarity bound (6.2). However, as we explained, it does not mean the
violation of the S-matrix unitarity due to the negative norm states. In order to explore the
S-matrix unitarity, we should see the inequality (6.11). Let us see the case for the forward
scattering of the scalar field φ and the massless positive norm graviton H(2,e),∣∣∣A(H(2,e)φ→H(2,e)φ)

∣∣∣≥∑
σ

∣∣∣A(H(2,e)φ→H(σ)φ)
∣∣∣2

−
∑
σ

∣∣∣A(H(2,e)φ→ I(σ)φ)
∣∣∣2+

∣∣∣A(H(2,e)φ→ I(s)φ)
∣∣∣2 . (6.12)

8It is really accidental. In other dimension, such contribution is important and a factor depending on E
in eq. (6.11) appears. The detail is discussed in [7, 8].
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h(2,o)φ→h(2,o)φ α= 2
h(2,o)φ→h(1,o)φ α= 1
h(1,o)φ→h(1,o)φ α= 0

h(2,e)φ→h(2,e)φ α= 2
h(2,e)φ→h(1,e)φ α= 1
h(2,e)φ→h(0)φ α= 0
h(2,e)φ→ I(s)φ α= 0
h(1,e)φ→h(1,e)φ α= 0
h(1,e)φ→h(0)φ α≤−1
h(1,e)φ→ I(s)φ α≤−1
h(0)φ→ I(0)φ α= 0
h(0)φ→ I(s)φ α≤ 0
I(s)φ→ I(s)φ α= 0

Table 1. Energy dependence of the scattering amplitudes in the UV limit. α shows the power
dependence of energy, that is, A→βEα.

The left hand side behaves as ∝ k2, while one of the terms in the right hand side∣∣∣A(H(2,e)φ→H(2,e)φ)
∣∣∣ behaves as∝ k4. Therefore, in the naive estimate, in the high energy

limit k4 terms in the right hand side becomes larger than the left hand side, and the in-
equality of eq. (6.12) seems to be violated. However, since a cancelation occurs, the naive
estimate does not give the correct result. In the right hand side,

∣∣∣A(H(2,e)φ→ I(2,e)φ)
∣∣∣

appears with the negative sign. As we see in section 5, the leading-order behaviors of∣∣∣A(H(2,e)φ→H(2,e)φ)
∣∣∣ and ∣∣∣A(H(2,e)φ→ I(2,e)φ)

∣∣∣ are the same, because the dominant con-
tribution of the amplitude does not depend on the graviton mass. Therefore, their k4 terms
are canceled and the sub-leading parts behave as ∝ k2. Other terms in the inequality of
eq. (6.12), such as

∣∣∣A(H(2,e)φ→H(1,e)φ)
∣∣∣, behave as ∝ k2 or the lower power. Thus, the

right hand side behaves as ∝ k2. Then, the leading-order terms in the left and right
hand sides have the same power. The right hand side is supressed by the coupling constant
(which should be small in the perturbative analysis), the inequality of eq. (6.12) is satisfied.

In conclusion, for all the other cases, we can see that the similar inequality obtained
from the optical theorem is satisfied. It means that S-matrix unitarity is satisfied.

7 Summary

In this paper, we have given the matter-graviton scattering amplitude in the quadratic
gravity. We have seen that the perturbative S-matrix unitarity (SS†= 1) is satisfied, al-
though the tree unitarity fails. The tree unitarity was introduced to investigate the UV
consistency in full order perturbation [3–8]. However, it was pointed out that the deriva-
tion of the tree unitarity is valid only if the theory has no negative norm states [13]. The
perturbative S-matrix unitarity is a generalization of the tree unitarity and it is applicable
to the theories with negative norm states as wll. Therefore, the analysis of the perturbative
S-matrix unitarity is expected to give a new sight on understanding the UV consistency,
as the tree unitarity contributed to the progress in the particle physics [46]. Our re-
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sult that the quadratic gravity satisfies the perturbative S-matrix unitarity shows that the
quadratic gravity behaves better in the UV than the Einstein gravity which violates the
tree unitarity [16], and it should be related to the renormalizability as discussed for the
tree unitarity [3–8].

One concern about the quadratic gravity is the existence of negative norm excitations.
Negative norm states violate the interpretation of probability in quantum system. However,
all the negative norm states in the quadratic gravity are massive such that all of them decay
into light particles, and thus they do not appear as asymptotic states [9, 10]. Therefore,
the Hilbert space in this theory, which should be defined in the asymptotic region as
usual, has no negative norm states. This idea has been recently applied to the quadratic
gravity [17]. The disappearance of negative norm asymptotic states may mean a possibility
that there exists a sector without negative norm states in psuedo-Hilbert space of the
quadratic gravity, although it would not be written in local operators, similar to dressed
states. This may imply that, for the description of quantum gravity with local operators,
an infinite number of operators are required.

Our results may suggest that superpositions of positive and negative gravitons are
physically-preferred states, since the cancelation of scattering amplitude among positive
and negative gravitons makes S-matrix unitarity hold. If some positive-norm superposed
states do not create any other states, the theory is closed under taking only positive norm
states. At low energy, it is approximately performed by redifinition of metric

gµν→ g̃µν = g̃µν(gαβ ,Rαβγλ). (7.1)

Under this redefinition of metric, the quadratic curvature terms in action can be eliminated,
but higher order curvature terms and nontrivial coupling between graviton and matter are
produced [48]. Since no quadratic curvature terms appear in the new theory, only the
positive norm gravitons exist in the approximation where we ignore higher curvature terms
than the quadratic. It may mean that the ghost pole push up to higher energy scale.
In terms of creation and annihilation operators, the transformation (7.1) is regarded as a
nonlocal superposition of positive and negative gravitons. It may imply that a nonlocal
superposition puts out the appearance of the negative norm states to high energy, and
our results of cancelation may support it even in high energy limit. For investigation, it
would be intersting to compare the scattering amplitude of before and after redefinition of
metric (7.1), which is left for future work.

The information paradox problem of black holes can be said to be the problem of
unitarity. This problem appears to stem from the fact that Einstein gravity is not unitary.
The problem roughly states that the correspondence between initial and final states is not a
one-to-one relation. The S-matrix unitarity, that is shown to be satisfied for the quadratic
gravity in this paper, quarantees the one-to-one correspondence between initial and final
states, even if negative norm states appear. Naively it seems to us that the solution to the
information paradox problem can be seen in the quadratic gravity. This is an interesting
future direction.

The exact form of scattering amplitudes, that we have derived, helps us with reveal-
ing the other properties of the quadratic gravity. For instance, the quadratic curvature
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correction of gravity enables us to predict the stability of the Higgs potential with quan-
tum gravitational corrections near Planck scale [49–53]. Our results of the amplitude of
matter-graviton scattering would provide other insight into the effect of UV physics from
the viewpoint of particle phenomenology. Furthermore, the gravitational positivity bound
is recently discussed in Einstein gravity [35–37], aiming at deriving constraints in the in-
flation cosmology. It is interesting to investigate whether different constraints may arise
in the quadratic gravity. The difficult problem of the negative-norm graviton is recently
discussed in ref. [34]. Together with these, namely, the gravitational positivity bound,
treatment with the negative-norm graviton and our results of the scattering amplitude, the
quadratic gravity appears as a UV complete quantum gravity theory. These topics are left
for the future works.
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A Quantization of massive graviton Iµν

In this appendix, we give the canonical quantization for massive graviton Iµν . The canonical
quantization for graviton is given in [42, 43] for the massless graviton, in [44] for the massive
graviton, in [41] for the quadratic gravity and in [54] for the conformal gravity. Some of
them involve the Faddeev-Popov ghosts in addition to the gauge fixing terms. Since they
do not contribute to the tree amplitudes that we focus on, in this appendix we give the
minimal requirement for our purpose.

The quadratic action for Iµν is given in (2.14),

SI2 =− 1
4κ2

∫
d4x

[
IµνLµν,αβIαβ+ 1

βκ2

(
I2
µν−

α

4α+β I
2
)]
. (A.1)

We take the Cartesian coordinate

ds2 =−dt2+dx2, (A.2)

which gives the (1+3)-decomposition of spacetime based on constant t surface. The action
in this decomposition becomes

SI2 = − 1
4κ2

∫
d4x

[
2I00 (∆δij−∂i∂j)Iij−2I0i (∆δij−∂i∂j)I0j

+2İij (2∂kδij−∂iδjk−∂jδik)I0k+İijGij,kl3 İkl+IijLij,kl3 Ikl

+ 1
βκ2

(
I2

00−2I2
0i+I2

ij−
α

4α+β (−I00+Iii)2
)]
. (A.3)
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where dot means time derivative and

Gij,kl3 := δi(kδl)j−δijδkl, (A.4)

Lij,kl3 := ∆δi(kδl)j−∂i∂(kδl)j−∂j∂(kδl)i−∆δijδkl+∂i∂jδkl+δij∂k∂l. (A.5)

Here, Latin letters {i, j, . . .} are the indices for the 3-dimensional space.
The canonical variables are obtained by the variation of action (A.3) with respect

to İµν ,

π00 = 0, π0i = 0, (A.6)

πij = − 1
2κ2

[
(2∂kδij−∂iδjk−∂jδik)I0k+Gij,kl3 İkl

]
. (A.7)

The first two are interpreted as the constraints, while the last equation can be solved for
İij as

İij =−G−1
3 ij,kl

(
2κ2πkl+(2∂mδkl−∂kδlm−∂lδkm)I0m

)
, (A.8)

where G−1
3 ij,kl is the inverse of Gij,kl3

G−1
3 ij,kl := δi(kδl)j−

1
2δijδkl, (A.9)

satisfying

Gij,kl3 G−1
3 kl,mn := δi(mδn)j . (A.10)

The Hamiltonian density H is expressed in terms of the canonical momenta as

H := πij İij−L+λµπ0µ

= 1
4κ2

[
−4κ4πijG−1

3 ij,klπ
kl+8κ2I0i∂jπ

ij+2I00 (∆δij−∂i∂j)Iij+IijLij,kl3 Ikl

+ 1
βκ2

(
I2

00−2I2
0i+I2

ij−
α

4α+β (−I00+Iii)2
)]

+λµπ0µ, (A.11)

where λµ is a multiplier. The time evolutions of the primary constraints (A.6) should be
set to zero. This requirement reads as follows. Define

1
2κ2C0 := π̇00 = [H,π00] = δH

δI00

= 1
2κ2 (∆δij−∂i∂j)Iij+

1
2βκ4

(
I00−

α

4α+β (I00+Iii)
)
, (A.12)

2Ci := π̇0i = [H,π0i] = δH
δI0i

= 2∂jπij−
1
βκ4 I0i. (A.13)

The secondary constraints amount to setting

Cµ = 0. (A.14)
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The time evolution of the secondary constraints (A.14) are required to be zero, that is,
Ċµ = 0. This is achieved by adjustment of the Lagrange multipliers λµ in eq. (A.11), and
generates no more constraints.

According to Dirac’s method of quantization, we put together all constraints in an
8-component vector CA := (π0µ,Cν), and calculate a matrix MAB := [CA,CB]. Here, A, B
run from 0 to 7; 0 to 3 corresponding to 0 to 3 of π0µ ’s µ and 4 to 7 to 0 to 3 of Cµ’s
µ, respectively. We note that detM 6= 0 is satisfied, and hence all CA = 0 are the second
class constraints. The Dirac bracket should be applied for the quantization of the Iij and
πkl. The 4×4 submatrix appearing the upper left in MAB is zero, and thus, in the inverse
submatrix, the lower right 4×4 submatrix is zero. The components with spacelike indices,
Iij and πij , are commutative (in Poisson bracket) with the first four components of the
constraints, i.e. π0µ. Therefore, for Iij and πij , Dirac bracket becomes the same as Poisson
bracket,

[Iij(x),πkl(y)]D = [Iij(x),πkl(y)]P = iδi(kδl)jδ
3(x−y). (A.15)

[Iij(x), Ikl(y)]D = [Iij(x), Ikl(y)]P = 0, (A.16)
[πij(x),πkl(y)]D = [πij(x),πkl(y)]P = 0, (A.17)

where [·, ·]D and [·, ·]P are Dirac and Poisson brackets, respectively.
The variation of the action (A.1) with respect to Iµν gives the equation of motion

(EoM) for Iµν :

2Lµν,αβIαβ+ 2
βκ2

(
Iµν−

α

4α+β Iηµν
)

= 0, (A.18)

where we omit the overall constant factor. Operating ∂µ to (A.18) and noting ∂µLµν,αβIαβ =
0, we have

∂µI
µν = α

4α+β∂
νI. (A.19)

Then, the trace of (A.18) can be expressed as

0 = 2
(
∂α∂βI

αβ−�I
)

+ 1
κ2 I

= −2(3α+β)�I+ 1
κ2 I. (A.20)

This equation shows that the trace part of Iµν behaves as a scalar field with mass

m2
S = 1

2(3α+β)κ2 . (A.21)

The general solution is given as

I =
∫
d3p

{
AS(p)e−ipx+A∗S(p)eipx

} (
where p0 =

√
p2+m2

S

)
, (A.22)

where AS is an integration constant depending on p.
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We separate the degrees of freedom in Iµν into that of I and the rest by expressing the
latter by Ĩµν . This can be made by writing

Ĩµν = Iµν+ 2κ2β(3α+β)
3(4α+β) ∂µ∂νI−

3α+β
3(4α+β)Iηµν . (A.23)

Then, Ĩµν satisfies the transverse-traceless condition

∂µĨµν = 0, Ĩ = 0, (A.24)

where we use the EoM for trace mode I, eq. (A.20). Equation (A.18) becomes

�Ĩµν+ 1
βκ2 Ĩµν = 0. (A.25)

Hence, Ĩµν is a transverse-traceless mode with mass m2
I =−(βκ2)−1, that is, interpreted as

a massive spin-2 field. The general solution for Ĩµν is given as

Ĩµν =
∑
σ

∫
d3p

{
A

(σ)
T (p)e−ipx+A(σ)

T
∗(p)eipx

}
e(σ)
µν

(
p0 =

√
p2+m2

I

)
, (A.26)

where A(σ)
T is an integration constant depending on p and e(σ)

µν shows the five elements of
the transverse traceless modes. In section 5.1, five degrees of freedom of (σ) are expressed
as (0), (1,o), (1,e), (2,o) and (2,e). The solution for Iµν is given as

Iµν = Ĩµν−
2κ2β(3α+β)

3(4α+β) ∂µ∂νI+ 3α+β
3(4α+β)Iηµν . (A.27)

Now, we quantize I and Ĩµν . It can be done by replacing {AS ,AT } and {A∗S ,A∗T } by
annihilation and creation operators, respectively. The normalization factors are fixed such
that the commutation relations (A.15)–(A.17) hold. To this end, we need the explicit form
of the basis e(σ)

µν . In preparation, we introduce a basis of vector as

lµ(pν) =
(
p,
√
p2+m2

I ,0,0
)
/m, tµ(pν) = (0,0,1,0) , uµ(pν) = (0,0,0,1) . (A.28)

Here, lµ, tµ and uµ are normalized spacelike vectors normal to momentum pν .

pν =
(√

p2+m2
I ,p,0,0

)
. (A.29)

Five elements for transverse-traceless modes are written with these vectors as [14, 47]

e(0)
µν (pα) = 2√

6
lµlν−

1√
6
tµtν−

1√
6
uµuν ,

e(1,e)
µν (pα) = 1√

2
(lµtν+tµlν) , e(1,o)

µν (pα) = 1√
2

(lµuν+uµlν) , (A.30)

e(2,e)
µν (pα) = 1√

2
(tµtν−uµuν) , e(2,o)

µν (pα) = 1√
2

(tµuν+uµtν) .
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Since the commutation relations (A.15)–(A.17), it is useful to define the three dimen-
sional elements for tensors. We use the elements for three-dimensional parts of tµ, uµ and

p̂i = (1,0,0). (A.31)

The (i, j)-components of e(σ)
µν can be written as

e
(0)
ij = 2√

6

(
p2

m2
I

+1
)
p̂ip̂j−

1√
6
titj−

1√
6
uiuj , (A.32)

e
(1,e)
ij =

√
p2+m2

I√
2mI

(p̂itj+tip̂j) , e
(1,o)
ij =

√
p2+m2

I√
2mI

(p̂iuj+uip̂j) ,

e
(2,e)
ij = 1√

2
(titj−uiuj) , e

(2,o)
ij = 1√

2
(tiuj+uitj) .

The space components of Iµν can be written as

Iij =
∑
σ

∫
d3p

{
A

(σ)
T (p)e−ipx+A(σ)

T
†(p)eipx

}
e

(σ)
ij

+ 3α+β√
3(4α+β)

∫
d3p

{
AS(p)e−ipx+A†S(p)eipx

}
e

(S)
ij , (A.33)

where

e
(S)
ij := 1√

3

(
1−2 p

2

m2
I

)
p̂ip̂j+

1√
3

(titj+uiuj) . (A.34)

The spatial components of the canonical momentum πij , defined in eq. (A.7), are
expressed as

πij = i

2κ2

[∑
σ

∫
d3p

√
p2+m2

I

{
A

(σ)
T (p)e−ipx−A(σ)

T
†(p)eipx

}
ē

(σ)
ij

− 2(3α+β)√
3(4α+β)

∫
d3p

√
p2+m2

S

{
AS(p)e−ipx−A†S(p)eipx

}
ē

(S)
ij

]
.

(A.35)

where

ē
(0)
ij = 2√

6
p̂ip̂j+

1√
6

(
2 p

2

m2
I

−1
)

(titj+uiuj) , ē
(1,q)
ij = m2

I

p2+m2
I

e
(1,q)
ij ,

ē
(2,q)
ij = e

(2,q)
ij , ē

(S)
ij = 1√

3
p̂ip̂j+

1√
3

(
p2

m2
I

+1
)

(titj+uiuj) , (A.36)

and q represents e or o. The basis elements ē(σ)
ij are the dual of the basis elements e(σ)

ij ,

e
(σ)
ij ē

(τ)
ij = δστ . (A.37)
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Substituting Iij and πij into the commutation relations (A.15)–(A.17) fixes the nor-
malization factors, and finally we have

Iµν =
∑
σ

∫
d3p

κ√
(2π3)p0

{
a

(σ)
T (p)e−ipx+a(σ)

T
†(p)eipx

}
e(σ)
µν

+
∫
d3p

κ√
(2π3)p0

{
aS(p)e−ipx+a†S(p)eipx

} 1√
3

(
ηµν−2pµpν

m2
I

)
, (A.38)

where

[a(σ)
T (k),a(τ)

T
†(p)] =−δστδ3(k−p), [aS(k),a†S(p)] = δ3(k−p), (A.39)

and other commutations are zero.
Field Hµν has the gauge symmetry. In the free-theory limit, it is written as

Hµν→Hµν+∂(µξν). (A.40)

Therefore, if we shift the field Hµν as

Hµν→Hµν+pµpνΦ, (A.41)

where Φ is an arbitrary operator, the obtained theory becomes the same. The fundamental
field appearing the theory is hµν and it is shifted in the above transformation as

hµν =Hµν+Iµν→Hµν+Iµν+pµpνΦ. (A.42)

This can be interpreted that the field Iµν can be shifted by pµpνΦ. Using this gauge degree
of freedom, we can eliminate the component propotional to pµpν , and then Iµν can be

Iµν =
∑
σ

∫
d3p

κ√
(2π3)p0

{
a

(σ)
T (p)e−ipx+a(σ)

T
†(p)eipx

}
e(σ)
µν

+
∫
d3p

κ√
(2π3)p0

{
aS(p)e−ipx+a†S(p)eipx

} 1√
3
θµν . (A.43)

B Perturvative expansion by variation

One way to expand a function F (g) of the metric gµν with respect to the perturbation

hµν := gµν−g(0)
µν , (B.1)

where g(0)
µν is a background metric (not need to be Minkowski metric ηµν), is substituting

gµν = g
(0)
µν +hµν into the function F (g). The derivation has not been explicitly given in the

past literature, as far as we can find. Here we rely on another way to derive the perturbative
expansion by use of Taylor series. Taylor series of function F (g) is obtained (where the
indices for metric gµν are omitted for simplicity) as

F (g) = δ0F (g(0))+δ1F (g(0);h)+δ2F (g(0);h,h)+. . .

=
∑
k=0

1
k!δ

kF (g(0);
k︷ ︸︸ ︷

h, · · · ,h). (B.2)
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The k-th order variation δkF (g(0);h, · · · ,h) relates to the (k−1)-th order variation
δk−1F (g(0);h, · · · ,h) as follows. Suppose we have an operator δk−1F (g;h, · · · ,h) on an ar-
bitrary background g. F (k−1)(g(0);h, · · · ,h) is described as δk−1F (g;h, · · · ,h)|g=g(0) . Then,
δkF (g(0);h, · · · ,h) is the first-order part of the expansion of δk−1F (g;h, · · · ,h) with respect
to hµν divided by k. This relation gives δkF (g(0);h, · · · ,h) successively. Taylor series can
give the perturbative expansion more easily than the direct substitution, especially if we
go to higher orders.

Let us calculate the expansion of gravitational action with respect to hµν , by Taylor
expansion. In this paper, the background metric is taken to be ηµν . Hence, we introduce
the symbol “∼” denoting that ηµν is taken as the background metric i.e.

δkF (g;h, · · · ,h)∼ δkF (η;h, · · · ,h), (B.3)

while, in this appendix, the symbol of equality “=” means that the background metric is an
arbitrary metric g. Be mindful that in the form of δkF (g;h, · · · ,h), raising and/or lowering
indices should be done by g, not by g(0) nor by η. Moreover, in this appendix, functions
without arguments show those of an arbitrary background metric gµν and hµν , that is,

δkF := δkF (g;h, · · · ,h). (B.4)

B.1 Christoffel symbols

The variations of the Christoffel symbols can be calculated as

δΓαβγ = 1
2g

αω (∇βhωγ+∇γhωβ−∇ωhβγ) (B.5)

δ2Γαβγ = −2gαωhωλδΓλβγ (B.6)

The n-th order variation is obtained by using eq. (B.6) itereatively,

δkΓαβγ = (−1)k−1k!
(
hk−1

)
α
λδΓλβγ , (B.7)

where
(
hk
)
α
λ := gαµ1hµ1ν1g

ν1µ2hµ2ν2g
ν2µ3 · · ·gνk−2µk−1hµk−1νk−1g

νk−1µkhµkλ, (B.8)

that is, the Christoffel symbols are expanded as

Γαβγ = Γαβγ |g=g(0) +
∑
k=0

(−1)k
(
hk
)
α
λδΓλβγ |g=g(0) , (B.9)

where
(
h0
)
α
λ := δαλ. (B.10)
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B.2 Riemann curvature

The variations of the Riemann curvature can be calculated as

δRαµβν = −1
2
(
∇(α∇β)hµν−∇(α∇ν)hµβ−∇(µ∇β)hαν+∇(µ∇ν)hαβ

+Rαµ[β
λhν]λ+Rβν[α

λhµ]λ
)
, (B.11)

δ2Rαµβν = −2gλεδ2Sεαβ
λ
µν , (B.12)

where

δ2Sεαγ
λ
µν := δΓ(ε

αγδΓλ)
µν−δΓ(ε

µγδΓλ)
αν . (B.13)

The variations of δ2Sεαγ
λ
µν becomes

δ
(
δ2Sεαγ

λ
µν

)
=−2gεκhκωδ2Sωαγ

λ
µν−2gλκhκωδ2Sεαγ

ω
µν . (B.14)

The higher-order variation of the Riemann curvature can be obtained by induction,

δkRαµβν = (−1)k−1k!gλκ
(
hk−2

)κ
εδ

2Sεαβ
λ
µν , (B.15)

Therefore, we can compile the Taylor series of the Rieman curvature into the following
simple form,

Rαµβν =Rαµβν |g=g(0) +δRαµβν |g=g(0) +
∑
k=0

(−1)k−1gλκ
(
hk
)κ

εδ
2Sεαβ

λ
µν |g=g(0) . (B.16)

With Leibniz rule, the Ricci curvature and the Ricci scalar are expressed as

δnRαβ =
n∑
k=0

n!
k!(n−k)!δ

kgµν δn−kRαµβν , (B.17)

δnRαβ =
n∑
k=0

k∑
l=0

n!
l!(k−l)!(n−k)!δ

lgαβ δkgµν δn−kRαµβν . (B.18)

B.3 Einstein-Hilbert action

Here, we show the perturbative expansion of Einstein-Hilbert action:

SEH :=
∫ √
−gRd4x. (B.19)

The first-order variation becomes

δSEH '−
∫ √
−g
(
gµαgνβ− 1

2g
µνgαβ

)
Rαβhµνd

4x∼ 0. (B.20)

where ' means that total derivative terms are ignored. The quadratic-order variation can
be obtained by taking another variation of the above,

δ2SEH ' −
∫ [{

δ

[√
−g
(
gµαgνβ− 1

2g
µνgαβ

)]}
Rαβhµν

−
√
−g
(
gµαgνβ− 1

2g
µνgαβ

)
[δRαβ ]hµν

]
d4x (B.21)

∼ −
∫ 1

2

(
hαβ− 1

2hη
αβ
)

(∂γ∂αhγβ+∂γ∂βhγα−∂γ∂γhαβ−∂α∂βh)d4x

' 1
2

∫ (
hαβ∂γ∂

γhαβ−2hαβ∂γ∂αhγβ+2hαβ∂α∂βh−h∂γ∂γh
)
d4x. (B.22)
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The cubic-order variation becomes

δ3SEH '
∫ (
−
{
δ2
[√
−g
(
gµαgνβ− 1

2g
µνgαβ

)]}
Rαβhµν

−2
{
δ

[√
−g
(
gµαgνβ− 1

2g
µνgαβ

)]}
[δRαβ ]hµν

−
√
−g
(
gµαgνβ− 1

2g
µνgαβ

)[
δ2Rαβ

]
hµν

)
d4x

∼
∫ (
−3

8 h̃
2�h̃+ 3

4 h̃h̃
αβ�h̃αβ+ 9

8 h̃
αβh̃αβ�h̃−

3
2 h̃

αβh̃β
γ�h̃αγ+ 3

2 h̃h̃
αβ∂α∂βh̃

−3
2 h̃

αβh̃α
γ∂β∂γ h̃+3h̃αγ h̃βλ∂α∂βh̃γλ−

3
2 h̃

αβh̃γλ∂α∂βh̃γλ

)
d4x, (B.23)

where, in the last equality “∼”, we omit the surface terms. Then, SEH is expanded as

SEH = δSEH+ 1
2δ

2SEH+ 1
6δ

3SEH+O
(
h4
)
. (B.24)

B.4 R2
µν term

Let us expand the quadratic curvature action

SR2
µν

:=
∫ √
−gRµνRµνd4x=

∫ √
−ggµαgνβRµνRαβd4x. (B.25)

The linear, qudratic and cubic variations can be calculated as

δSR2
µν

=
∫ ([

δ
(√
−ggµαgνβ

)]
RµνRαβ+2

√
−ggµαgνβRµνδRαβ

)
d4x∼ 0, (B.26)

δ2SR2
µν

=
∫ ([

δ2
(√
−ggµαgνβ

)]
RµνRαβ+4

[
δ
(√
−ggµαgνβ

)]
RµνδRαβ

+2
√
−ggµαgνβRµνδ2Rαβ+2

√
−ggµαgνβδRµνδRαβ

)
d4x

∼ 1
2

∫
(∂γ∂νhγµ−∂γ∂γhµν−∂µ∂νh+∂µ∂γhγν)(

∂λ∂
νhλµ−∂λ∂λhµν−∂µ∂νh+∂µ∂λhλν

)
d4x, (B.27)

δ3SR2
µν

=
∫ ([

δ3
(√
−ggµαgνβ

)]
RµνRαβ+6

[
δ2
(√
−ggµαgνβ

)]
RµνδRαβ

+6
[
δ
(√
−ggµαgνβ

)]
Rµνδ

2Rαβ+6
[
δ
(√
−ggµαgνβ

)]
δRµνδRαβ

+2
√
−ggµαgνβRµνδ3Rαβ+6

√
−ggµαgνβδRµνδ2Rαβ

)
d4x

∼ 6
∫ [
− 1

16 h̃�h̃�h̃+ 3
32 h̃

2�2h̃− 3
16 h̃αβh̃

αβ�2h̃+ 1
8 h̃�h̃αβ�h̃

αβ

−1
8 h̃

αβ�h̃αβ�h̃−
1
4 h̃

αβh̃β
γ�2h̃αγ−

1
2 h̃h̃

αβ∂α∂β�h̃+ 1
8 h̃�h̃

αβ∂α∂βh̃

+1
4 h̃

µαh̃µ
β∂α∂β�h̃+h̃αµ�h̃βν∂α∂βh̃µν+ 1

2 h̃
αµh̃βν∂α∂β�h̃µν

−1
2 h̃

αβh̃µν∂α∂β�h̃µν−
1
4 h̃

µν�h̃αβ∂α∂βh̃µν

]
d4x. (B.28)
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Then, SR2
µν

is expanded as

SR2
µν

= δSR2
µν

+ 1
2δ

2SR2
µν

+ 1
6δ

3SR2
µν

+O
(
h4
)
. (B.29)

B.5 R2 term

We have another quadratic curvature action in four dimensional spacetime,

SR2 :=
∫ √
−gR2d4x=

∫ √
−ggµνgαβRµνRαβd4x. (B.30)

The variations are calculated as

δSR2 =
∫ ([

δ
(√
−ggµνgαβ

)]
RµνRαβ+2

√
−ggµνgαβRµνδRαβ

)
d4x∼ 0, (B.31)

δ2SR2 =
∫ ([

δ2
(√
−ggµνgαβ

)]
RµνRαβ+4

[
δ
(√
−ggµνgαβ

)]
RµνδRαβ

+
√
−ggµνgαβRµνδ2Rαβ+

√
−ggµνgαβδRµνδRαβ

)
d4x

∼ 2
∫

(∂µ∂µh−∂µ∂νhµν)2 d4x, (B.32)

δ3SR2 =
∫ ([

δ3
(√
−ggµνgαβ

)]
RµνRαβ+6

[
δ2
(√
−ggµνgαβ

)]
RµνδRαβ

+6
[
δ
(√
−ggµνgαβ

)]
Rµνδ

2Rαβ+6
[
δ
(√
−ggµνgαβ

)]
δRµνδRαβ

+2
√
−ggµνgαβRµνδ3Rαβ+6

√
−ggµνgαβδRµνδ2Rαβ

)
' 6

∫ [1
4 h̃

2�2h̃− 3
4 h̃

αβh̃αβ�
2h̃− 1

2h
αβ�h̃αβ�h̃

−2h̃h̃αβ∂α∂β�h̃+h̃µαh̃µβ∂α∂β�h̃
]
d4x. (B.33)

Then, SR2 is expanded as

SR2 = δSR2 + 1
2δ

2SR2 + 1
6δ

3SR2 +O
(
h4
)
. (B.34)

B.6 φ2R term

The expansion of φ2R term

Sφ2R :=
∫ √
−gφ2Rd4x (B.35)

is written as

Sφ2R = δSφ2R+ 1
2δSφ2R+O

(
h3
)
, (B.36)

δSφ2R =
∫ ([

δ
√
−g
]
φ2R+

√
−gφ2δR

)
d4x∼−

∫
φ2�h̃d4x, (B.37)

δ2Sφ2R =
∫ ([

δ2√−g
]
φ2R+2

[
δ
√
−g
]
δφ2R+

√
−gφ2δ2R

)
d4x

∼
∫
φ2
(
−h̃�h̃− 1

2
(
∂µh̃

)(
∂µh̃

)
+2h̃µν∂µ∂ν h̃+2h̃µν�h̃µν

+3
2
(
∂αh̃µν

)(
∂αh̃µν

)
−
(
∂αh̃µβ

)(
∂βh̃µα

))
d4x. (B.38)
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C Supplement for the calculation of 3-point vertex for gravitons

We have expanded the gravitational action in appendix B. The cubic action for gravitons are
written as eq. (3.15). After Fourier transform, 3-point vertex function for
hµν(p1)hαβ(p2)hγλ(p3) is obtained as

λµν,αβ,γλ3

=
[ 1

8κ2

(
p2

1+p2
2+p2

3

)
+
(
α

2 + 3β
16

)(
p4

1+p4
2+p4

3

)
−β8

(
p2

1p
2
2+p2

2p
2
3+p2

3p
2
1

)]
ηµνηαβηγλ

+
[
− 1

8κ2

(
p2

2+p2
3

)
− 3

8κ2 p
2
1−

3
8 (4α+β)p4

1−
1
8 (4α+β)

(
p2

1p
2
2+p2

1p
2
3

)
+β

4 p
2
2p

2
3

]
×1

2η
µν
(
ηαγηβλ+ηαληβγ

)
+[(p1,µ,ν)↔ (p2,α,β)↔ (p3,γ,λ); (2 terms)]

+
[ 1

2κ2

(
p2

1+p2
2+p2

3

)
−β2

(
p4

1+p4
2+p4

3

)] 1
8
(
ηµαηβγηλν+ηναηβγηλµ+ηµβηαγηλν

+ηνβηαγηλµ+ηµαηβληγν+ηναηβληγµ+ηµβηαληγν+ηνβηαληγµ
)

+
[
− 1

4κ2 +β

8 p
2
3−

1
2 (4α+β)p2

2

]
ηµνηαβpγ2p

λ
2

+[(p1,µ,ν)↔ (p2,α,β)↔ (p3,γ,λ); (5 terms)]

+
[ 1

2κ2 + 1
2 (4α+β)p2

1

] 1
4η

µν
(
pα1 p

λ
1η

βγ+pβ1p
γ
1η

αλ+pα1 p
γ
1η

βλ+pβ1pλ1ηαγ
)

+[(p1,µ,ν)↔ (p2,α,β)↔ (p3,γ,λ); (2 terms)]

+
[
− 1
κ2 +β

(
p2

1+p2
2+p2

3

)] 1
4
(
ηµαηνγpβ1p

λ
1 +ηµβηνγpα1 pλ1 +ηµαηνλpβ1p

γ
1 +ηµβηνλpα1 p

γ
1

)
+[(p1,µ,ν)↔ (p2,α,β)↔ (p3,γ,λ); (2 terms)]

+
[ 1

4κ2−
β

4
(
p2

1+p2
2+p2

3

)] 1
2
(
ηµαηνβ+ηµβηνα

)
pγ1p

λ
1

+[(p1,µ,ν)↔ (p2,α,β)↔ (p3,γ,λ); (5 terms)] . (C.1)

Multiplying the corresponding basis elements e(σ)
µν and/or θµν/

√
3 by the above, we can

obtain the 3-point vertices for them. The results are shown in eqs. (3.16)–(3.19). In the
calculations, we use the following equalities,

eµ1νe
ν
2αθ

α
3µ = eµ1νe

ν
2µ−

1
p2

3
p2µe

µ
1νe

ν
2αp

α
1 , p3αe

α
1µe

µ
2νp

ν
3 = p2µe

µ
1νe

ν
2αp

α
1 , (C.2)(

p1µe
µ
2νe

ν
1αθ

α
3βp

β
1 +p2µe

µ
1νe

ν
2αθ

α
3βp

β
2 +p3µe

µ
2νθ

ν
3αe

α
1βp

β
3

)
=− 1

p2
3
pµ2e1µνp

ν
2 p

α
1 e2αβp

β
1 ,

(C.3)(
e1µνe

µν
2 pγ1p

λ
1θ3γλ+e1µνθ

µν
3 pγ1p

λ
1e2γλ+e1µνe

µν
2 pγ2p

λ
2θ3γλ

+θ3µνe
µν
2 pγ2p

λ
2e1γλ+e1µνθ

µν
3 pγ3p

λ
3e2γλ+θ3µνe

µν
2 pγ3p

λ
3e1γλ

)
=
(
−1

2p
2
3+
(
p2

1+p2
2

)
− 1

2p2
3

(
p2

1−p2
2

)2
)
eµ1νe

ν
2µ−

4
p2

3
pµ2e1µνp

ν
2 p

α
1 e2αβp

β
1 , (C.4)

pµ2e1µνp
ν
2 = pµ3e1µνp

ν
3 , e1µνθ

µν
2 =−p

µ
2e1µνp

ν
2

p2
2

, e1µνθ
µν
3 =−p

µ
2e1µνp

ν
2

p2
3

, (C.5)
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e1µ
νθ2ν

λθ3λ
µ =−p

2
1+p2

2+p2
3

2p2
2p

2
3

(pµ2e1µνp
ν
2) , (C.6)

pµ3e1µ
νθ2ν

λp3λ = p2
1+p2

2−p2
3

2p2
2

(pµ2e1µνp
ν
2) , (C.7)

pµ1θ2µνe
να
1 θ3αβp

β
1 = 1

4p2
2p

2
3

[
−p4

1+p4
2+p4

3−2p2
2p

2
3

]
(pµ2e1µνp

ν
2) , (C.8)

pµ2e1µνθ
να
2 θ3αβp

β
2 = 1

4p2
2p

2
3

[
p4

1−p4
2+p4

3−2p2
1p

2
3

]
(pµ2e1µνp

ν
2) , (C.9)

pµ3θ2µνθ
να
3 e1αβp

β
3 = 1

4p2
2p

2
3

[
p4

1+p4
2−p4

3−2p2
1p

2
2

]
(pµ2e1µνp

ν
2) , (C.10)

θ1µνθ
µν
2 = 1

4p2
1p

2
2

[
p4

1+p4
2+p4

3+10p2
1p

2
2−2p2

1p
2
3−2p2

2p
2
3

]
, (C.11)

pµ1θ2µνp
ν
1 = 1

4p2
2

[
−
(
p4

1+p4
2+p4

3

)
+2
(
p2

1p
2
2+p2

1p
2
3+p2

2p
2
3

)]
, (C.12)

θ1µ
νθ2ν

λθ3λ
µ = 1

8p2
1p

2
2p

2
3

[
p6

1+p6
2+p6

3−
(
p2

1p
4
2+p4

1p
2
2+p2

1p
4
3+p4

1p
2
3+p2

2p
4
3+p4

2p
2
3

)
+18p2

1p
2
2p

2
3

]
, (C.13)

pµ1θ2µνθ
νλ
3 p1λ = 1

8p2
1p

2
2p

2
3

[
p8

1−3p6
1(p2

2+p2
3)+3p4

1(p4
2+p4

3)

+2p4
1p

2
2p

2
3−p2

1(p6
3+p6

2)+p2
1p

2
2p

2
3(p2

2+p2
3)
]
, (C.14)

pµ1θ2µνθ
να
1 θ3αβp

β
1 = 1

16p2
1p

2
2p

2
3

[
p8

1−(p8
2+p8

3)+2p2
1(p6

2+p6
3)−2p2

1(p4
2p

2
3+p2

2p
4
3)

−2p6
1(p2

2+p2
3)−6p4

2p
4
3+4(p6

2p
2
3+p2

2p
6
3)
]
, (C.15)

pµ1θ2µνθ
να
1 θ3αβp

β
1 +pµ2θ1µνθ

να
2 θ3αβp

β
2 +pµ3θ2µνθ

να
3 θ1αβp

β
3

= 1
16p2

1p
2
2p

2
3

[
−(p8

1+p8
2+p8

3)+4(p6
1p

2
2+p6

1p
2
3+p2

1p
6
2+p6

2p
2
3+p2

1p
6
3+p2

2p
6
3)

−6(p4
1p

4
2+p4

1p
4
3+p4

2p
4
3)−4p2

1p
2
2p

2
3(p2

1+p2
2+p2

3)
]
, (C.16)

θ1µνθ
µν
2 pα1 θ3αβp

β
1

= 1
16p2

1p
2
2p

2
3

[
−(p8

1+p8
2+p8

3)+4(p6
1+p6

2)p2
3+4(p2

1+p2
2)p6

3−8(p6
1p

2
2+p2

1p
6
2)

+18p4
1p

4
2−6(p4

1+p4
2)p4

3−16p2
1p

2
2p

4
3+20(p4

1p
2
2p

2
3+p2

1p
4
2p

2
3)
]
, (C.17)

θ1µνθ
µν
2 pα1 θ3αβp

β
1 +θ1µνθ

µν
3 pα1 θ2αβp

β
2 +θ2µνθ

µν
3 pα2 θ1αβp

β
2

= 1
16p2

1p
2
2p

2
3

[
−3(p8

1+p8
2+p8

3)+6(p4
1p

4
2+p4

1p
4
3+p4

2p
4
3)+24p2

1p
2
2p

2
3(p2

1+p2
2+p2

3)
]
,

(C.18)

D Calculations of scattering amplitudes

Here we show the calculation of scattering amplitudes in details. Since the calculations of
the s-channel exchange and the contact term are not hard, we show only the result. The
derivation of the t-channel exchange is quite complicated. We give some equations which
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we used in the calculation. After showing each of the contributions separately, we sum up
all. Then, we can see nontrivial cancelations among the s-, t-, u-channel exchanges and
the contact term.

Four-momenta of the ingoing graviton, ingoing scalar field, outgoing graviton and
outgoing scalar field are denoted by kµ1 , k

µ
2 kµ3 kµ4 , respectively. Polarization tensors for

ingoing and outgoing gravitons are denoted as e1µν , e3µν , respectively.

D.1 s-channel exchange

In the s-channel exchange, only the scalar field mediates (see the second figure in figure 3)
and its contribution is obtained as follows,

As (hµν(k1)φ(k2);hαβ(k3)φ(k4))
=κ2e1µνλ

µν
3 (p1 = k2,p2 =−k1−k2) iG(p= k1+k2)λαβ3 (p1 =−k4,p2 = k3+k4)e3αβ

= κ2

4
[(
−k1µk

µ
2−k

2
2−m2

)
eµ1µ+2kµ2 kν2e1µν+4ξk2

1e
µ
1µ

][ 1
(k1+k2)2+m2

]
×
[(
−k3αk

α
4 −k2

4−m2
)
eα3α+2kα4 k

β
4 e3αβ+4ξk2

3e
α
3α

]

=



κ2k2 ·e1 ·k2 k4 ·e3 ·k4

(k1+k2)2+m2

(
for (h(σ)φ→h(σ′)φ)

)
−κ2

√
3k2 ·e1 ·k2

(
3k3 ·k4+2m2+2 (k3·k4)2

k2
3

)
6[(k1+k2)2+m2] +2

√
3ξκ2k2

3
k2 ·e1 ·k2

[(k1+k2)2+m2](
for (h(σ)φ→ I(S)φ)

)
κ2

(
3k1 ·k2+2m2+2 (k1·k2)2

k2
1

)(
3k3 ·k4+2m2+2 (k3·k4)2

k2
3

)
12[(k1+k2)2+m2]

−ξκ2
(

2(k1 ·k2)+2k2
1 + −2k4

1 +4m2k2
1

[(k1+k2)2+m2]

)
+12ξ2κ2 k2

1k
2
3

(k1+k2)2+m2(
for (I(S)φ→ I(S)φ)

)
.

(D.1)

where we use the transversality condition k1 ·e1 = 0 = k3 ·e3 and on-shell condition for ex-
ternal lines k2

2 = k2
4 =−m2. Note that the graviton propagators (3.2) and the vertex func-

tions (3.9), (3.12) and (3.15) are constructed with respect to hµν , not Hµν nor Iµν . The
factor κ2 appearing in (D.1) is due t the factor κ used in eqs. (2.15) and (2.16). The
u-channel exchange contribution can be obtained by the crossing relation k2 ↔ −k4.
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D.2 Contact term

Contact term is calculated as follows,

Ac (hµν(k1)φ(k2);hαβ(k3)φ(k4))
=κ2e1µνλ

µν,αβ
4 (p1 = k2,p2 =−k4)e3αβ

= κ2

4
[
−
(
k2γk

γ
4 +m2

)(
eµ1µe

ν
3ν−2e1µνe

µν
3

)]
+κ2

4
[
2kµ2 kν4e1µνe

α
3α+2kµ2 kν4e3µνe

α
1α−4kα2 k

β
4 e1αµe

µ
3β−4kα4 k

β
2 e1αµe

µ
3β

]
+ξ
[(
k2

1 +k2
3−k1µk

µ
3

)
eα1αe

β
3β−

(
2k2

1 +2k2
3−3k1µk

µ
3

)
e1αβe

αβ
3

−kµ3 k
ν
3e1µνe

α
3α−k

µ
1 k

ν
1e3µνe

α
1α−2kµ1 kν3e3µαe

α
1ν
]

=



κ2

2
(
k2 ·k4+m2)Tr [e1 ·e3]−κ2 (k2 ·e1 ·e3 ·k4+k2 ·e3 ·e1 ·k4)

+ξκ2 [−(2k2
1 +2k2

3−3k1 ·k3
)
Tr(e1 ·e3)−2k1 ·e3 ·e1 ·k3

](
for (h(σ)φ→h(σ′)φ)

)
√

3κ2

6k2
3

[
(k1 ·k4+k3 ·k4)k2 ·e1 ·k2−(k1 ·k2+k3 ·k2)k4 ·e1 ·k4−k2

1 k2 ·e1 ·k4
]

+
√

3ξκ2

3

[(k3 ·e1 ·k3)
k2

3

(
2k2

1−4k2
3−k1 ·k3

)] (
for (h(σ)φ→ I(S)φ)

)
κ2

12
[
−k2 ·k4−5m2]+κ2

6
k1 ·k2 k1 ·k4

k2
1

+κ2

6
k2 ·k3 k3 ·k4

k2
3

+κ2k1 ·k3
6k2

1k
2
3

(
(k2 ·k4+m2)k1 ·k3−2k1 ·k2 k3 ·k4−2k1 ·k4 k2 ·k3

)
+ξκ2

3

[
(k1 ·k3)3

m2
S

−8(k1 ·k3)2

m2
s

−(k1 ·k3)+2m2
S

] (
for (I(S)φ→ I(S)φ)

)
.

(D.2)

D.3 t-channel exchange and total amplitude

In the t-channel exchange, the gravitational field mediates (see the last figure in figure 3).
It involve the 3-point graviton vertex and thus the calculation becomes quite messy. We
give the detail in each case: (h(σ)φ→h(σ′)φ ), (h(σ)φ→ I(s)φ ) and (I(s)φ→ I(s)φ). The
graviton propagator appearing in the t-channel exchange is expressed in eq. (3.6). The
projection operators (3.3) and (3.4) in the graviton propagator are written as

P
(2)
αβ,µν =

∑
σ

e
(σ)
αβ e

(σ)
µν , (D.3)

P
(0)
αβ,µν =

( 1√
3
θαβ

)( 1√
3
θµν

)
. (D.4)

With this expression, we decompose the t-channel exchange contribution into two parts:
spin-2 propagator and spin-0 propagator parts. We also give the total amplitude, which is
the sum of all contribution Ac+As+At+Au.
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D.3.1 (h(σ)φ→h(σ′)φ)

The contribution from the t-channel exchange is written as

At
(
h(σ)
µν (k1)φ(k2);h(σ′)

αβ (k3)φ(k4)
)

= κ2e1µνe3αβλ
µν,αβ,γδ
3 (p1 = k1,p2 =−k3,p3 =−k1+k3)

×iGγδ,λω (p= k1−k3)λλω3 (p1 = k2,p2 =−k4)

= κ2
{[ 1

2κ2

(
k2

1 +k2
3 +(k1−k3)2

)
−β2

(
k4

1 +k4
3 +(k1−k3)4

)]
eα1γe

γβ
3

+
[
− 1
κ2 +β

(
k2

1 +k2
3 +(k1−k3)2

)](
k1γe

γ
3λe

λα
1 kβ1 +k3γe

γ
1λe

λα
3 kβ3−k1γe

γα
3 eβλ1 k3λ

)
+
[ 1

4κ2−
β

4
(
k2

1 +k2
3 +(k1−k3)2

)](
2e1γλe

γλ
3 kα1 k

β
1 +2eαβ1 kγ1k

λ
1 e3γλ +2eαβ3 kγ3k

λ
3 e1γλ

)}
× −2
β(k1−k3)4−κ−2(k1−k3)2

{1
2 (θαµθβν+θανθβµ)− 1

3θαβθµν
} 1

2 [kµ2 kν4 +kν2k
µ
4 ]

+κ2
{[
− 1

4κ2

(
(k1−k3)2− 1

2
(
k2

1 +k2
3

)
+ 1

6

(
k2

1−k2
3
)2

(k1−k3)2

)

+(3α+β)
(
−1

2(k1−k3)4− 1
6(k1−k3)2

(
k2

1 +k2
3

))
+ β

24

(
−5
(
k4

1 +k4
3

)
+
(
k2

1−k2
3
)2 (

k2
1 +k2

3
)

(k1−k3)2

)]
e1µνe

µν
3

−
[

1
3κ2−

1
6κ2

(
k2

1 +k2
3
)

(k1−k3)2 + 2
3 (3α+β)(k1−k3)2+β

6
k4

1 +k4
3

(k1−k3)2

]
k3µe

µ
1νe

ν
3αk

α
1

}

× −1
2(3α+β)(k1−k3)4+κ−2(k1−k3)2

(
−k2γk

γ
4−2m2+6ξ (k2−k4)2

)
, (D.5)

where we use θµν , defined in eq. (2.17), with p= (−k1+k3). We calculate each part of At
separately,

{1
2 (θαµθβν+θανθβµ)− 1

3θαβθµν
} 1

2 [kµ2 kν4 +kν2k
µ
4 ]

= 1
4 (k2α+k4α)(k2β+k4β)− 1

6θαβ
(
k2γk

γ
4−m

2
)
, (D.6)

eα1γe
γβ
3

{1
4 (k2α+k4α)(k2β+k4β)− 1

6θαβ
(
k2γk

γ
4−m

2
)}

=
(

1
6−

m2

3(k2−k4)2

)
(k2 ·e1 ·e3 ·k2+k4 ·e1 ·e3 ·k4)

+
(

1
3 + m2

3(k2−k4)2

)
(k2 ·e1 ·e3 ·k4+k4 ·e1 ·e3 ·k2)

−
(
k2γk

γ
4−m2)
6 Tr[e1 ·e3], (D.7)
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where we use the on-shell condition for matter, ı.e. k2
2 = k2

4 =−m2,

(
k1γe

γ
3λe

λα
1 kβ1 +k3γe

γ
1λe

λα
3 kβ3−k1γe

γα
3 eβλ1 k3λ

)
×
{1

4 (k2α+k4α)(k2β+k4β)− 1
6θαβ

(
k2γk

γ
4−m

2
)}

= 1
4 (k2γ+k4γ)(kγ1 +kγ3 )(k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2)

+1
4 (k2 ·e1 ·k2−k4 ·e1 ·k4)(k2 ·e3 ·k2−k4 ·e3 ·k4)

+
(
k2γk

γ
4−m2)

6(k1−k3)2 (k2 ·e1 ·k2+k4 ·e1 ·k4−2k2 ·e1 ·k4)

×(k2 ·e3 ·k2+k4 ·e3 ·k4−2k2 ·e3 ·k4) , (D.8)(
2e1γλe

γλ
3 kα1 k

β
1 +2eαβ1 kγ1k

λ
1 e3γλ+2eαβ3 kγ3k

λ
3 e1γλ

)
×
{1

4 (k2α+k4α)(k2β+k4β)− 1
6θαβ

(
k2γk

γ
4−m

2
)}

=
{(

(k1−k3)2

12 − k
2
1 +k2

3
6 +

(
k2

1−k2
3
)2

12(k1−k3)2

)(
k2γk

γ
4−m

2
)

+1
2 [(k2γ+k4γ)kγ1 ]2

}
Tr[e1 ·e3]

+(k2 ·e1 ·k2+k4 ·e1 ·k4)(k2 ·e3 ·k2+k4 ·e3 ·k4)−4k2 ·e1 ·k4 k2 ·e3 ·k4

+2
(
k2γk

γ
4−m2)

3(k1−k3)2 (k2 ·e1 ·k2+k4 ·e1 ·k4−2k2 ·e1 ·k4)

×(k2 ·e3 ·k2+k4 ·e3 ·k4−2k2 ·e3 ·k4) , (D.9)
k3µe

µ
1νe

ν
3αk

α
1 = −(k2 ·e1 ·e3 ·k2+k4 ·e1 ·e3 ·k4−k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2) . (D.10)

The external momenta squared of gravitons k2
1 and k2

3 can be written by the graviton
masses squared, that is m2

g = 0 (for positive norm modes) and m2
g =−1/(βκ2) (for negative

norm modes) where mg is mass of spin-2 graviton. Thus, we have four cases,

(
k2

1,k
2
3

)
=
{(

0,0
)
,
(
0, 1
βκ2

)
,
( 1
βκ2 ,0

)
,
( 1
βκ2 ,

1
βκ2

)}
. (D.11)

In all cases, equalities

1
κ2

(
k2

1 +k2
3

)
−β

(
k4

1 +k4
3

)
= 0,

(
k2

1−k2
3

)2
( 1
κ2−β

(
k2

1 +k2
3

))
= 0 (D.12)
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hold true. Then the t-channel exchange contribution At can be simplified as follows,

At = κ2
(

1
(k1−k3)2 + β(k2

1 +k2
3)

β(k1−k3)4−κ−2(k1−k3)2

)
×
[
−(k1 ·k2+k1 ·k4)(k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2)

+(k2 ·e1 ·k2)(k4 ·e3 ·k4)+(k4 ·e1 ·k4)(k2 ·e3 ·k2)

−2(k2 ·e1 ·k4)(k2 ·e3 ·k4)+ 1
4(k1 ·k2+k1 ·k4)2Tr[e1 ·e3]

]
+κ2

2 (k2 ·e1 ·e3 ·k4+k4 ·e1 ·e3 ·k2)+κ2
[

3
16(k1−k3)2+ (k2

1 +k2
3)

16

]
Tr[e1 ·e3]

+ κ2βk2
1k

2
3((k1−k3)2+4m2)

8(β(k1−k3)4−κ−2(k1−k3)2)Tr[e1 ·e3]

+ξκ2
[(

2k2
1 +2k2

3−3k1 ·k3
)
Tr [e1 ·e3]+2k3 ·e1 ·eν3 ·k1

]
. (D.13)

Taking the sum As+At+Au+Ad, we have the total scattering amplitude shown in
eq. (4.11). There we use

(k2
1 +k2

3)
(
k2

1 +k2
3−

1
κ2β

)
= 2k2

1k
2
3, (D.14)

which is satisfied in any case of eq. (D.11). Note that the contributions from α ξ are
canceled.

D.3.2 (h(σ)φ→ I(s)φ)

Contribution from the t-channel exchange is obtained as

At
(
h(σ)(k1)φ(k2);I(s)(k3)φ(k4)

)
= κ2e1µν

(√
3

3 θ3αβ

)
λµν,αβ,γδ3 (p1 = k1,p2 =−k3,p3 =−k1+k3)

×iGγδ,λω (p= k1−k3)λλω3 (p1 = k2,p2 =−k4)

=
√

3κ2
{[
− 1

4κ2

(
k2

3−
1
2
(
k2

1 +(k1−k3)2
)

+ 1
6

(
k2

1−(k1−k3)2)2
k2

3

)

+(3α+β)
(
−1

2k
4
3−

1
6k

2
3

(
k2

1 +(k1−k3)2
))

+ β

24

(
−5
(
k4

1 +(k1−k3)4
)

+
(
k2

1−(k1−k3)2)2 (k2
1 +(k1−k3)2)

k2
3

)]
e1αβ

+
[
− 1

6κ2

(
−2+

(
k2

1 +(k1−k3)2)
k2

3

)
+ 2

3 (3α+β)k2
3 +β

6
k4

1 +(k1−k3)4

k2
3

]
k3γe

γ
1αk1β

}

× −2
β(k1−k3)4−κ−2(k1−k3)2

{1
2 (θαµθβν+θανθβµ)− 1

3θαβθµν
} 1

2 [kµ2 kν4 +kν2k
µ
4 ]

+
√

3κ2
{

1
κ2

[
−k4

1 +2
(
(k1−k3)4+k4

3

)
−12(k1−k3)2k2

3 +3k2
1((k1−k3)2+k2

3)
]
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+4(3α+β)
[(

(k1−k3)6+k6
3

)
−9
(
(k1−k3)4k2

3 +(k1−k3)2
2k

4
3

)
+3k2

1

(
(k1−k3)4+k4

3

)]
+β

[
k6

1 +3k4
1

(
(k1−k3)2+k2

3

)]}

× 1
72(k1−k3)2k2

3

−kµ3 e1µνk
ν
3

2(3α+β)(k1−k3)4+κ−2(k1−k3)2

(
−k2γk

γ
4−2m2+6ξ (k2−k4)2

)
.

(D.15)

Now, the graviton in the final state is scalar one, mass of which is (−k2
3 =)m2

S = 1
2(3α+β)κ2 ,

while the graviton mass of the initial state (−k2
1 =)m2

1 = 0 or − 1
κ2β

. The latter gives

k2
1(κ−2−βk2

1) = 0. (D.16)

Using these equations, we have

− 1
4κ2

(
k2

3−
1
2
(
k2

1 +(k1−k3)2
)

+ 1
6

(
k2

1−(k1−k3)2)2
k2

3

)

+(3α+β)
(
−1

2k
4
3−

1
6k

2
3

(
k2

1 +(k1−k3)2
))

+ β

24

(
−5
(
k4

1 +(k1−k3)4
)

+
(
k2

1−(k1−k3)2)2 (k2
1 +(k1−k3)2)

k2
3

)

= 1
24

(
β(k1−k3)2− 1

κ2

)((k1−k3)4

k2
3

−5(k1−k3)2− k
2
1
k2

3
(k1−k3)2

)
, (D.17)

− 1
6κ2

(
−2+

(
k2

1 +(k1−k3)2)
k2

3

)
+ 2

3 (3α+β)k2
3 +β

6
k4

1 +(k1−k3)4

k2
3

= 1
6

(
β(k1−k3)2− 1

κ2

) (k1−k3)2

k2
3

, (D.18)

1
κ2

[
−k4

1 +2
(
(k1−k3)4+k4

3

)
−12(k1−k3)2k2

3 +3k2
1((k1−k3)2+k2

3)
]

+4(3α+β)
[(

(k1−k3)6+k6
3

)
−9
(
(k1−k3)4k2

3 +(k1−k3)2k4
3

)
+3k2

1

(
(k1−k3)4+k4

3

)]
+β

[
k6

1 +3k4
1

(
(k1−k3)2+k2

3

)]
=
(
2(3α+β)(k1−k3)2+κ−2

)(
2(k1−k3)4+6k2

1(k1−k3)2−18k2
3(k1−k3)2

)
−48(3α+β)k4

3(k1−k3)2, (D.19)

e1αβ

{1
2 (θαµθβν+θανθβµ)− 1

3θαβθµν
} 1

2 [kµ2 kν4 +kν2k
µ
4 ]

= 1
4 (k2 ·e1 ·k2+2k2 ·e1 ·k4+k4 ·e1 ·k4)+ 1

6(k1−k3)2

(
k2γk

γ
4−m

2
)
k3 ·e1 ·k3

= 1
4 (k2 ·e1 ·k2+2k2 ·e1 ·k4+k4 ·e1 ·k4)−

(
1
12 + m2

3(k1−k3)2

)
k3 ·e1 ·k3, (D.20)
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k3γe
γ
1αk1β

{1
2 (θαµθβν+θανθβµ)− 1

3θαβθµν
} 1

2 [kµ2 kν4 +kν2k
µ
4 ]

= 1
4 (k2γ+k4γ)kγ1 (k2 ·e1 ·k2−k4 ·e1 ·k4)

+
(

1
24 + 1

6
m2

(k1−k3)2

)(
(k1−k3)2+k2

1−k2
3

)
k3 ·e1 ·k3

= 1
8
[
(k1+k2)2−(k1−k4)2

]
(k2 ·e1 ·k2−k4 ·e1 ·k4)

+
(

1
24 + 1

6
m2

(k1−k3)2

)(
(k1−k3)2+k2

1−k2
3

)
k3 ·e1 ·k3. (D.21)

These equation simplify the form of At and finally we have

At =−
√

3κ2

24k2
3

(
(k1+k2)2−(k1−k4)2

)
(k2 ·e1 ·k2−k4 ·e1 ·k4)

−
√

3κ2

24k2
3

(
(k1−k3)2+k2

1−5k2
3

)
(k2 ·e1 ·k2+k4 ·e1 ·k4)+

√
3κ2

6k2
3
k2

1k2 ·e1 ·k4

−
√

3κ2

6

(
2m

2

p2 −
2(3α+β)

(2(3α+β)p2+κ−2)
k2

3
p2

(
p2−2m2

))
k3 ·e1 ·k3

+ ξκ2
√

3k2
3

{
(k1 ·k3)−2k2

1 +4k2
3 + 12(3α+β)k4

3
2(3α+β)(k1−k3)2+κ−2

}
k3 ·e1 ·k3. (D.22)

The sum As+Au+At+Ad is shown in eq. (4.16).

D.3.3 (I(s)φ→ I(s)φ)

Using the following equation

kα1 k
β
1

[1
4 (k2α+k4α)(k2β+k4β)− 1

6θαβ
(
k2γk

γ
4−m

2
)]

= 1
16
(
(k1+k2)2−(k1−k4)2

)2
− 1

48
(
(k1−k3)2+4m2

)(
(k1−k3)2−4k2

1

)
= 1

24
(
(k1−k3)4−6(k1+k2)2(k1−k4)2

−4(k2
1−m2)(k1−k3)2+6(k2

1−m2)2+8k2
1m

2
)
, (D.23)
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the t-channel exchange contribution is written as

At
(
I(s)(k1)φ(k2);I(s)(k3)φ(k4)

)
=κ2

(√
3

3 θ1µν

)(√
3

3 θ3αβ

)
λµν,αβ,γδ3 (p1 = k1,p2 =−k3,p3 =−k1+k3)

×iGγδ,λω (p= k1−k3)λλω3 (p1 = k2,p2 =−k4)

=κ2 kα1 k
β
1

24k2
1k

2
3

{
κ−2

(
−(k1−k3)4+3(k1−k3)2(k2

1 +k2
3)+2(k4

1 +k4
3)−12k2

1k
2
3

)
+(3α+β)

(
12(k1−k3)2(k4

1 +k4
3)+4(k6

1 +k6
3)−36(k4

1k
2
3 +k2

1k
4
3)
)

+β
(
(k1−k3)6+3(k1−k3)4(k2

1 +k2
3)
)}

× −2
β(k1−k3)4−κ−2(k1−k3)2

{1
2 (θαµθβν+θανθβµ)− 1

3θαβθµν
} 1

2 [kµ2 kν4 +kν2k
µ
4 ]

+ κ2

144k2
1k

2
3(k1−k3)2

[
1
κ2

(
−(k8

1 +(k1−k3)8+k8
3)

+8(k2
1(k1−k3)6+k2

1k
6
3 +k6

1(k1−k3)2+k6
1k

2
3 +(k1−k3)2k6

3 +(k1−k3)6k2
3)

−14(k4
1(k1−k3)4+k4

1k
4
3 +(k1−k3)4k4

3)−28k2
1(k1−k3)2k2

3(k2
1 +(k1−k3)2+k2

3)
)

+2(3α+β)
(
−(k10

1 +(k1−k3)10+k10
3 )

+11(k2
1(k1−k3)8+k2

1k
8
3 +k8

1(k1−k3)2+k8
1k

2
3 +(k1−k3)2k8

3 +(k1−k3)8k2
3)

−10(k4
1(k1−k3)6+k4

1k
6
3 +k6

1(k1−k3)4+k6
1k

4
3 +(k1−k3)4k6

3 +(k1−k3)6k4
3)

−34k2
1(k1−k3)2k2

3(k4
1 +(k1−k3)4+k4

3)

−42k2
1(k1−k3)2k2

3(k2
1(k1−k3)+k2

1k
2
3 +(k1−k3)2k2

3)
)]

× −1
2(3α+β)(k1−k3)4+κ−2(k1−k3)2

(
−k2γk

γ
4−2m2+6ξ (k2−k4)2

)
= κ2

48k2
1k

2
3

[
(k1+k2)2(k1−k4)2(k1−k3)2+6k2

1(k1+k2)2(k1−k4)2−(4k2
1 +m2)(k1−k3)4

+(11k4
1 +4k2

1m
2−m4)(k1−k3)2+10k6

1−12k4
1m

2−6k2
1m

4
]

+κ2

6
3k4

1(k1−k3)2−4k2
1m

2(k1−k3)2−2k4
1m

2

(k1−k3)2 ((k1−k3)2−k2
1
)

−κ2 (k1−k3)4−6(k1+k2)2(k1−k4)2−4(k2
1−m2)(k1−k3)2+6(k2

1−m2)2+8k2
1m

2

12(κ2β(k1−k3)2−1)(k1−k3)2

+ξκ2

3

[
−(k1 ·k3)3

k4
1
−8(k1 ·k3)2

k2
1

+7(k1 ·k3)−10k2
1 + 12k4

1(
(k1−k3)2−k2

1
)] . (D.24)

The sum As+Au+At+Ad is shown in eq. (4.20).
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E Derivation of the UV behavior

In the calculation, inner products of kµ, lµ, tµ and uµ appear frequently. Before going to
the calculation of each scattering amplitude, we summarise the inner products,

k1 ·k2∼−2k2−m
2
1+m2

2 +
(
m2

1−m2)2
8k2 , (E.1)

k1 ·k3∼−kq (1−cosθ)− kq2

(
m2

1
k2 +m2

3
q2

)
+ kq

8

(
m2

1
k2 −

m2
3

q2

)2

, (E.2)

k1 ·k4∼−kq (1+cosθ)− kq2

(
m2

1
k2 +m2

q2

)
+ kq

8

(
m2

1
k2 −

m2

q2

)2

, (E.3)

k2 ·k3∼−kq (1+cosθ)− kq2

(
m2

k2 +m2
3

q2

)
+ kq

8

(
m2

k2 −
m2

3
q2

)2

, (E.4)

k2 ·k4∼−kq (1−cosθ)− kq2

(
m2

k2 +m2

q2

)
+ kq

8

(
m2

k2 −
m2

q2

)2

, (E.5)

k3 ·k4∼−2q2−m
2
3+m2

2 +
(
m2

3−m2)2
8q2 , (E.6)

l1 ·k2∼
1
m1

[
−2k2−m

2
1+m2

2 +
(
m4

1+m4)
8k2

]
, (E.7)

l1 ·k3∼
1
m1

[
−kq (1−cosθ)− kq2

(
−m

2
1

k2 cosθ+m2
3

q2

)
+ kq

8

(
−m

4
1

k4 cosθ+m4
3

q4

)]
,

(E.8)

l1 ·k4∼
1
m1

[
−kq (1+cosθ)− kq2

(
m2

1
k2 cosθ+m2

q2

)
+ kq

8

(
m4

1
k4 cosθ+m4

q4

)]
, (E.9)

l3 ·k1∼
1
m3

[
−kq (1−cosθ)− kq2

(
m2

1
k2 −

m2
3

q2 cosθ
)

+ kq

8

(
m4

1
k4 −

m4
3

q4 cosθ
)]

,

(E.10)

l3 ·k2∼
1
m3

[
−kq (1+cosθ)− kq2

(
m2

k2 +m2
3

q2 cosθ
)

+ kq

8

(
m4

k4 +m4
3

q4 cosθ
)]

,

(E.11)

l3 ·k4∼
1
m3

[
−2q2−m

2
3+m2

2 +
(
m4

3+m4)
8q2

]
, (E.12)

t1 ·k2 = t3 ·k4 = 0, (E.13)
t1 ·k3 = q sinθ, t1 ·k4 =−q sinθ, (E.14)
t3 ·k1 =−k sinθ, t3 ·k2 = k sinθ, (E.15)

l1 ·l3∼
1

m1m3

−kq (1−cosθ)+ kq

2

(
m2

1
k2 +m2

3
q2

)
cosθ− kq8

(
m2

1
k2 −

m2
3

q2

)2

cosθ

 ,
(E.16)
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l1 ·t3 =−
√
k2+m2

1 sinθ/m1∼−
(
k

m1
+m1

2k −
m3

1
8k3

)
sinθ, (E.17)

l3 ·t1 =
√
q2+m2

3 sinθ/m3∼
(
q

m3
+m3

2q −
m3

3
8q3

)
sinθ, (E.18)

t3 ·t1 = cosθ, (E.19)

where “∼” means that we ignore the higher order terms of k−1. For later convenience, we
show also the following relations,

k2
1 +2k1 ·k2 =−4kq−m2

1−m2
3−m2+O(k−2), (E.20)

k2
1−2k1 ·k4 = 2kq(1+cosθ)+m2+O(k−2). (E.21)

We are now in a position to obtain the behaviors of the amplitudes in the UV limit, which
is the main purpose of this paper. As we commented in the last paragraph of section 5.1,
the scattering amplitudes involving both even and odd modes vanish. There are thirteen
non-zero scattering amplitudes in total. We give the analysis of each.

E.1 h(2,o)φ→h(2,o)φ

Since these modes satisfy

k ·e1 ·k = k ·e3 ·k= 0 for any k,

k2 ·e1 ·e3 ·k4 = 0, k4 ·e1 ·e3 ·k2 = 1
2(t1 ·k4)(t3 ·k2), (E.22)

Tr[e1 ·e3] = (t1 ·t3),

the scattering amplitude becomes simple,

As+At+Au+Ad

= κ2

8k1 ·k3

[
−2(k1 ·k2+k1 ·k4)(t1 ·k4)(t3 ·k2)−(k1 ·k2+k1 ·k4)2 (t1 ·t3)

]
−κ

2

4 (t1 ·k4)(t3 ·k2)+κ2

8 (k1 ·k3)(t1 ·t3)+O
(
k0
)

=−κ2 (k1 ·k2)
2k1 ·k3

[(t1 ·k4)(t3 ·k2)+(k1 ·k4)(t1 ·t3)]+O
(
k0
)

=−κ2k2 1+cosθ
1−cosθ+O

(
k0
)
. (E.23)

E.2 h(2,o)φ→ I(1,o)φ

In this case, the modes satisfiy

k ·e1 ·k = k ·e3 ·k= 0 for any k,

k2 ·e1 ·e3 ·k4 = 0, k4 ·e1 ·e3 ·k2 = 1
2(t1 ·k4)(l3 ·k2), (E.24)

Tr[e1 ·e3] = (t1 ·l3).

– 46 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
3

Calculation becomes uncomplicated,

As+At+Au+Ad

= κ2

8k1 ·k3

[
2(k1 ·k2+k1 ·k4)(t1 ·k4)(l3 ·k2)−(k1 ·k2+k1 ·k4)2 (t1 ·l3)

]
−κ

2

4 (t1 ·k4)(l3 ·k2)+κ2

8 (k1 ·k3)(t1 ·l3)+O
(
k−1

)
=κ2 (k2

1 +2k1 ·k2)
8k1 ·k3

[
−2(t1 ·k4)(l3 ·k2)+(k2

1−2k1 ·k4)(t1 ·l3)
]
+O

(
k−1

)
=κ2 m3k sinθ

2(1−cosθ) +O
(
k−1

)
. (E.25)

E.3 I(1,o)φ→ I(1,o)φ

In this case, e1 and e3 satisfy

k ·e1 ·k= k ·e3 ·k= 0 for any k,

ki ·e1 ·e3 ·kj = 1
2(l1 ·ki)(l3 ·kj) for any ki and kj , (E.26)

Tr[e1 ·e3] = (l1 ·l3).

Since the initial and the final gravitons are massive gravitons, we have the following rela-
tions

l1 ·l3 = 1
m2
I

k1 ·k3+(1+cosθ),

l1 ·k2 = l3 ·k4 = 1
mI

k1 ·k2+ 1
4
mIm

2
S

k2 +O
(
k−4

)
,

l1 ·k4 = l3 ·k2 = 1
mI

k1 ·k4+ 1−cosθ
2 mI−

1−cosθ
8

m3
I

k2 + 1
4
mIm

2
S

k2 +O
(
k−4

)
.

(E.27)

Then, we have

−1
4(k2

1−2k1 ·k4)(k2
1 +2k1 ·k2)Tr[e1 ·e3]+(k2

1−2k1 ·k4)k2 ·e1 ·e3 ·k4

+(k2
1 +2k1 ·k2)k4 ·e1 ·e3 ·k2−2(k2 ·e1 ·k4)(k2 ·e3 ·k4)

−k
2
1−2k1 ·k4
k2

1 +2k1 ·k2
(k2 ·e1 ·k2)(k4 ·e3 ·k4)− k

2
1 +2k1 ·k2
k2

1−2k1 ·k4
(k4 ·e1 ·k4)(k2 ·e3 ·k2)

= 1
m2
I

(
k1 ·k4+m2

I

2

)(
k1 ·k2−

m2
I

2

)(
k1 ·k3+m2

I(1+cosθ)
)

− 1
m2
I

(
k1 ·k4+m2

I

2

)(
k1 ·k2+m2

Im
2
S

4k2

)2

+ 1
m2
I

(
k1 ·k2−

m2
I

2

)(
k1 ·k4+ 1−cosθ

2 m2
I−

1−cosθ
8

m2
I

k2 + 1
4
m2
Im

2
S

k2

)2

+O
(
k0
)

= −1−cosθ
4 m2

Ik
2+O

(
k0
)
. (E.28)

– 47 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
3

Moreover, we have

1
8(k2

1 +k2
3 +4m2)Tr[e1 ·e3]−k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2

+ 2
k2

1 +2k1 ·k2
(k2 ·e1 ·k2)(k4 ·e3 ·k4)+ 2

k2
1−2k1 ·k4

(k4 ·e1 ·k4)(k2 ·e3 ·k2)

= − 1
2m2

I

(k1 ·k2)2− 1
2m2

I

(k1 ·k4)2+O
(
k2
)

= − k4

2m2
I

(
22+(1+cosθ)2

)
+O

(
k2
)
. (E.29)

From these equations, the total amplitude is estimated as

As+At+Au+Ad =−κ
2m2

I

8
22+(1+cosθ)2+(1−cosθ)2

(1−cosθ)2 +O
(
k−2

)
. (E.30)

E.4 h(2,e)φ→h(2,e)φ

In this case, we have the following relations,

k2 ·e1 ·k2 = k2 ·e1 ·k4 = k2 ·e3 ·k4 = k4 ·e3 ·k4 = 0

k4 ·e1 ·k4 = 1√
2

(t1 ·k4)2, k2 ·e3 ·k2 = 1√
2

(t3 ·k2)2,

k2 ·e1 ·e3 ·k4 = 0, k4 ·e1 ·e3 ·k2 = 1
2(t1 ·k4)(t3 ·k2)(t1 ·t3), (E.31)

Tr[e1 ·e3] = 1
2
[
(t1 ·t3)2+1

]
.

With these relations, the total amplitude is calculated as

As+At+Au+Ad

=− κ2

16k1 ·k3

[
4(k1 ·k2+k1 ·k4)(t1 ·k4)(t3 ·k2)(t1 ·t3)

+4(t1 ·k4)2(t3 ·k2)2+(k1 ·k2+k1 ·k4)2
[
(t1 ·t3)2+1

]]
−κ

2

4 (t1 ·k4)(t3 ·k2)(t1 ·t3)+κ2

16(k1 ·k3)
[
(t1 ·t3)2+1

]
+κ2 (t1 ·k4)2(t3 ·k2)2

2[(k2−k3)+m2] +O
(
k0
)

=− κ2

4k1 ·k3

[
2(k1 ·k2)(t1 ·k4)(t3 ·k2)(t1 ·t3)

+(t1 ·k4)2(t3 ·k2)2+(k1 ·k2)(k1 ·k4)
[
(t1 ·t3)2+1

]]
−κ2 (t1 ·k4)2(t3 ·k2)2

4k2 ·k3
+O

(
k0
)

=κ2k2 1+cosθ
1−cosθ+O

(
k0
)
. (E.32)
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E.5 h(2,e)φ→ I(1,e)φ

The inner products become

k2 ·e1 ·k2 = k2 ·e1 ·k4 = k4 ·e3 ·k4 = 0, k4 ·e1 ·k4 = 1√
2

(t1 ·k4)2,

k2 ·e3 ·k2 =
√

2(t3 ·k2)(l3 ·k2), k2 ·e3 ·k4 = 1√
2

(t3 ·k2)(l3 ·k4),

k4 ·e1 ·e3 ·k2 = 1
2(t1 ·k4)(l3 ·k2)(t1 ·t3)+ 1

2(t1 ·k4)(t3 ·k2)(t1 ·l3), (E.33)

k2 ·e1 ·e3 ·k4 = 0, Tr[e1 ·e3] = (t1 ·t3)(t1 ·l3),

and then we have the total scattering amplitude,

As+At+Au+Ad

=− κ2

8k1 ·k3

[
2(k1 ·k2+k1 ·k4) [(t1 ·k4)(l3 ·k2)(t1 ·t3)+(t1 ·k4)(t3 ·k2)(t1 ·l3)]

+4(t1 ·k4)2(t3 ·k2)(l3 ·k2)+(k1 ·k2+k1 ·k4)2 (t1 ·t3)(t1 ·l3)
]

−κ
2

4 [(t1 ·k4)(l3 ·k2)(t1 ·t3)+(t1 ·k4)(t3 ·k2)(t1 ·l3)]

+κ2

8 (k1 ·k3)(t1 ·t3)(t1 ·l3)+κ2 (t1 ·k4)2(t3 ·k2)(l3 ·k2)
(k2−k3)+m2 +O

(
k−1

)
=−κ2 (k2

1 +2k1 ·k2)(t1 ·t3)
8k1 ·k3

[
2(t1 ·k4)(l3 ·k2)−(k2

1−2k1 ·k4)(t1 ·l3)
]

−κ2 (t1 ·k4)(t3 ·k2)
4(k1 ·k3)(k2 ·k3)

[
(k2

1 +2k1 ·k2)(t1 ·l3)(k2 ·k3)+2(t1 ·k4)(l3 ·k2)(k1 ·k3+k2 ·k3)
]

−κ2k
2
3(t1 ·k4)2(t3 ·k2)(l3 ·k2)

4(k2 ·k3)2 +O
(
k−1

)
=κ2m3k

2−cosθ
2(1−cosθ) sinθ+O

(
k−1

)
. (E.34)

E.6 I(1,e)φ→ I(1,e)φ

The calculation in this case is complicated. Let us see the detail. e1µν and e3µν satisfy

k2 ·e1 ·k2 = k4 ·e3 ·k4 = 0, k2 ·e1 ·k4 = 1√
2

(t1 ·k4)(l1 ·k2),

k4 ·e1 ·k4 =
√

2(t1 ·k4)(l1 ·k4), k2 ·e3 ·k2 =
√

2(t3 ·k2)(l3 ·k2),

k2 ·e3 ·k4 = 1√
2

(t3 ·k2)(l3 ·k4), k2 ·e1 ·e3 ·k4 = 1
2(l1 ·k2)(l3 ·k4)(t1 ·t3), (E.35)

k4 ·e1 ·e3 ·k2 = 1
2
[
(t1 ·k4)(t3 ·k2)(l1 ·l3)+(l1 ·k4)(l3 ·k2)(t1 ·t3)

+(t1 ·k4)(l3 ·k2)(l1 ·t3)+(l1 ·k4)(t3 ·k2)(t1 ·l3)
]
,

Tr[e1 ·e3] = (t1 ·t3)(l1 ·l3)+(t1 ·l3)(l1 ·t3).
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Since now the masses of the initial and final are the same, the inner products of vectors
become

l1 ·l3 = 1
m2
I

(
−(k2+m2

I)(1−cosθ)+m2
I

)
,

l1 ·k2 = l3 ·k4 =− k

mI

(√
k2+m2

S+
√
k2+m2

I

)
,

l1 ·k4 = l3 ·k2 =− k

mI

(√
k2+m2

S+
√
k2+m2

I cosθ
)
,

= − k

mI

(√
k2+m2

S+
√
k2+m2

I−
√
k2+m2

I(1−cosθ)
)
,

t1 ·k3 = t3 ·k2 =−t1 ·k4 =−t3 ·k1 = k sinθ, (E.36)

t1 ·l3 = −t3 ·l1 = 1
mI

√
k2+m2

I sinθ,

k1 ·k2 = −
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I

)
+m2

I

k1 ·k4 = −
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I cosθ
)

+m2
I cosθ

= −
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I

)
+(k2+m2

I)(1−cosθ)+m2
I cosθ.

Then, we have

(k2 ·e1 ·k4)(k2 ·e3 ·k4) = − k4

2m2
I

sin2 θ

(√
k2+m2

S+
√
k2+m2

I

)2
,

(k4 ·e1 ·k4)(k2 ·e3 ·k2) = −2k4

m2
I

sin2 θ

(√
k2+m2

S+
√
k2+m2

I cosθ
)2
,

k2 ·e1 ·e3 ·k4 = k2

2m2
I

(√
k2+m2

S+
√
k2+m2

I

)2
cosθ, (E.37)

k4 ·e1 ·e3 ·k2 = k2

2m2
I

[(√
k2+m2

S+
√
k2+m2

I

)2
cosθ

−2
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I

)
(1+cosθ−2cos2 θ)

+(k2+m2
I)(1−cosθ)(3+cosθ−4cos2 θ)−m2

I sin2 θ

]
,

Tr[e1 ·e3] = 1
m2
I

(
−(k2+m2

I)(1+cosθ−2cos2 θ)+m2
I cosθ

)
.
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The inverse of (k2
1−k1 ·k4) is estimated as

(k2
1−2k1 ·k4)−1

=
(

2
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I cosθ
)
−m2

I(2cosθ+1)
)−1

=
(

2
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I cosθ
))−1

×

1− m2
I(2cosθ+1)

2
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I cosθ
)

−1

=
(

2
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I cosθ
))−2

×
[
2
√
k2+m2

I

(√
k2+m2

S+
√
k2+m2

I cosθ
)

+m2
I(2cosθ+1)

+
(
m2
I(2cosθ+1)

)2
2k2(1+cosθ)

]
+O

(
k−8

)
, (E.38)

With these equations, we can calculate the following quantity,

−1
4(k2

1−2k1 ·k4)(k2
1 +2k1 ·k2)Tr[e1 ·e3]+(k2

1−2k1 ·k4)k2 ·e1 ·e3 ·k4

+(k2
1 +2k1 ·k2)k4 ·e1 ·e3 ·k2−2(k2 ·e1 ·k4)(k2 ·e3 ·k4)

−k
2
1−2k1 ·k4
k2

1 +2k1 ·k2
(k2 ·e1 ·k2)(k4 ·e3 ·k4)− k

2
1 +2k1 ·k2
k2

1−2k1 ·k4
(k4 ·e1 ·k4)(k2 ·e3 ·k2)

= −3
4(1−cosθ)m2

Ik
2+O

(
k0
)
. (E.39)

where cancelation occurs in the leading and subleading order. We also have
1
8(k2

1 +k2
3 +4m2)Tr[e1 ·e3]−k2 ·e1 ·e3 ·k4−k4 ·e1 ·e3 ·k2

+ 2
k2

1 +2k1 ·k2
(k2 ·e1 ·k2)(k4 ·e3 ·k4)+ 2

k2
1−2k1 ·k4

(k4 ·e1 ·k4)(k2 ·e3 ·k2)

= − k4

2m2
I

(
22+(1+cosθ)2−2(1−cosθ)2

)
+O

(
k2
)
. (E.40)

From these equations, the total amplitude is estimated as

As+At+Au+Ad =−κ
2m2

I

8
22+(1+cosθ)2+(1−cosθ)2

(1−cosθ)2 +O
(
k−2

)
. (E.41)

E.7 h(2,e)φ→ I(0)φ

In this case, the graviton of the final state is the helicity-0 mode. Its basis is written as

e
(0)
3µν = 2√

6
l3µl3ν−

1√
6

(t3µt3ν+uµuν)

= − 2√
6k2

3
k3µk3ν+ 1√

6
(2ηµν−3t3µt3ν−3uµuν) . (E.42)
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With this expression, we have

k2 ·e3 ·k2 = − 2√
6k2

3
(k2 ·k3)2+ 1√

6

(
2k2

2−3(k2 ·t3)2
)
, (E.43)

k2 ·e3 ·k4 = − 2√
6k2

3
(k2 ·k3)(k3 ·k4)+ 2√

6
(k2 ·k4), (E.44)

k4 ·e3 ·k4 = − 2√
6k2

3
(k3 ·k4)2+ 2√

6
k2

4, (E.45)

Tr[e1 ·e3] = − 2√
6k2

3
(k2 ·e1 ·k2+k4 ·e1 ·k4−2k2 ·e1 ·k4)

− 3√
6

(t3 ·e1 ·t3+u·e1 ·u) , (E.46)

k2 ·e1 ·e3 ·k4 = − 2√
6k2

3
(k3 ·k4)(k2 ·e1 ·k2−k2 ·e1 ·k4)+ 2√

6
(k2 ·e1 ·k4), (E.47)

k4 ·e1 ·e3 ·k2 = − 2√
6k2

3
(k2 ·k3)(k2 ·e1 ·k4−k4 ·e1 ·k4)

+ 1√
6

(2(k2 ·e1 ·k4)−3(t3 ·e1 ·k4)(t3 ·k2)) . (E.48)

Substituting the above equations into the form of the total amplitude (4.11) and using

k2 ·k3 = k1 ·k4−
1
2
(
k2

1−k2
3

)
, k3 ·k4 = k1 ·k2+ 1

2
(
k2

1−k2
3

)
, (E.49)

k2 ·k4 = k1 ·k3−
1
2
(
k2

1 +k2
3

)
−m2, (E.50)

we have

As+At+Au+Ad

= κ2
√

6(k1 ·k3)

[
k2

3
2 (k2 ·e1 ·k4)+ k2

3(k1 ·k4)
4(k1 ·k2) (k2 ·e1 ·k2)

+k2
3(k1 ·k2)

4(k1 ·k4) (k4 ·e1 ·k4)− k
2
1

2 (k2 ·e1 ·k4)
]

+ κ2
√

6
1

2(k1 ·k3)

[
3(k1 ·k2)

(k1 ·k4)(t3 ·k2)2(k4 ·e1 ·k4)+6(k1 ·k2)(t3 ·k2)(t3 ·e1 ·k4)

+3(k1 ·k2)(k1 ·k4)(t3 ·e1 ·t3)+3(k1 ·k2)(k1 ·k4)(u·e1 ·u)

+3
2
k2

1 ((k1 ·k2)+(k1 ·k4))
(k1 ·k4)2 (t3 ·k2)2(k4 ·e1 ·k4)+3k2

1(t3 ·k2)(t3 ·e1 ·k4)

−3
2k

2
1(k1 ·k3)(t3 ·e1 ·t3)−(2k2

1 +2k2
3 +4m2)(k2 ·e1 ·k4)

+2m2k1 ·k4
k1 ·k2

(k2 ·e1 ·k2)+2m2k1 ·k2
k1 ·k4

(k4 ·e1 ·k4)
]
+(lower order of k)

=κ2 3(k1 ·k2)
2
√

6(k1 ·k3)

[
(t3 ·k2)2

(k1 ·k4) (k4 ·e1 ·k4)+2(t3 ·k2)(t3 ·e1 ·k4)

+(k1 ·k4)(t3 ·e1 ·t3)+(k1 ·k4)(u·e1 ·u)
]
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+κ2 3k2
1

4
√

6(k1 ·k3)

[
((k1 ·k2)+(k1 ·k4))

(k1 ·k4)2 (t3 ·k2)2(k4 ·e1 ·k4)+2(t3 ·k2)(t3 ·e1 ·k4)

−(k1 ·k3)(t3 ·e1 ·t3)−2(k2 ·e1 ·k4)
]

+κ2 3k2
3

4
√

6(k1 ·k3)

[
−2(k2 ·e1 ·k4)+ (k1 ·k4)

(k1 ·k2)(k2 ·e1 ·k2)+ (k1 ·k2)
(k1 ·k4)(k4 ·e1 ·k4)

]

+κ2 m2
√

6(k1 ·k3)

[
−2(k2 ·e1 ·k4)+ k1 ·k4

k1 ·k2
(k2 ·e1 ·k2)+ k1 ·k2

k1 ·k4
(k4 ·e1 ·k4)

]
+(lower order of k). (E.51)

Note that we do not fix the basis of the in-state graviton in the above equation. Therefore,
this equation is applicable to the cases for h(1,e)φ→h(0)φ and for h(0)φ→h(0)φ.

Substituting the basis of the in-state graviton

e
(2,e)
1µν = 1√

2
(t1µt1ν−uµuν) , (E.52)

into eq. (E.51), we have

As+At+Au+Ad

=κ2 3(k1 ·k2)
4
√

3(k1 ·k3)

[
(t3 ·k2)2

(k1 ·k4) (k4 ·t1)2+2(t3 ·k2)(t3 ·t1)(t1 ·k4)+(k1 ·k4)(t3 ·t1)2−(k1 ·k4)
]

+O(k0)

=κ2 3k2(k1 ·k2)
4
√

3(k1 ·k3)

[
sin2 θ

−(1+cosθ) sin2 θ+2sinθ cosθ(−sinθ)−(1+cosθ)cos2 θ+(1+cosθ)
]

+O(k0)
=O(k0). (E.53)

E.8 I(1,e)φ→ I(0)φ

Substituting the basis of the in-state graviton

e
(1,e)
1µν = 1√

2
(l1µt1ν+t1µl1ν) , (E.54)
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into eq. (E.51), we have

As+At+Au+Ad

=κ2 3(k1 ·k2)
4
√

3(k1 ·k3)

[
2(t3 ·k2)2

(k1 ·k4) (k4 ·t1)(l1 ·k4)+2(t3 ·k2)(t3 ·t1)(l1 ·k4)

+2(t3 ·k2)(t3 ·l1)(t1 ·k4)+2(k1 ·k4)(t3 ·t1)(l1 ·t3)
]

+κ2 3k2
1

8
√

3(k1 ·k3)

[
2((k1 ·k2)+(k1 ·k4))

(k1 ·k4)2 (t3 ·k2)2(k4 ·t1)(l1 ·k4)+2(t3 ·k2)(t3 ·t1)(l1 ·k4)

+2(t3 ·k2)(t3 ·l1)(t1 ·k4)−2(k1 ·k3)(t3 ·t1)(l1 ·t3)−2(k2 ·l1)(t1 ·k4)
]

+κ2 3k2
3

8
√

3(k1 ·k3)

[
−2(k2 ·l1)(t1 ·k4)+2(k1 ·k2)

(k1 ·k4)(k4 ·t1)(l1 ·k4)
]

+κ2 m2

2
√

3(k1 ·k3)

[
−2(k2 ·l1)(t1 ·k4)+2k1 ·k2

k1 ·k4
(k4 ·t1)(l1 ·k4)

]
+O(k0)

=κ2 3(k1 ·k2)
4
√

3(k1 ·k3)
[
2km1 sinθ

]
+κ2 3k2

1
8
√

3(k1 ·k3)

[
−4 k

3

m1
sinθ

]
+O(k0)

=O(k0) (E.55)

E.9 I(0)φ→ I(0)φ

In this case, we can also use eq. (E.51). As a preparation, we show the contraction of
the basis of the in-state graviton

e
(0)
1µν = 2√

6
l1µl1ν−

1√
6

(t1µt1ν+uµuν)

= − 2√
6k2

1
k1µk1ν+ 1√

6
(2ηµν−3t1µt1ν−3uµuν) (E.56)

with vectors,

k2 ·e1 ·k2 = − 2√
6

(k1 ·k2)2

k2
1

+ 2√
6
k2

2, k2 ·e1 ·k4 =− 2√
6

(k1 ·k2)(k1 ·k4)
k2

1
+ 2√

6
k2 ·k4,

k4 ·e1 ·k4 = − 2√
6

(k1 ·k4)2

k2
1

+ 2√
6
k2

4−
3√
6

(k4 ·t1)2,

t3 ·e1 ·t3 = − 2√
6

(k1 ·t3)2

k2
1

+ 2√
6
− 3√

6
(t1 ·t3)2, (E.57)

t3 ·e1 ·k4 = − 2√
6

(k1 ·t3)(k1 ·k4)
k2

1
− 3√

6
(t1 ·t3)(k4 ·t1), u·e1 ·u=− 1√

6
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With these equations, the total amplitude is calculated as

As+At+Au+Ad

=−κ2 (k1 ·k2)
2k2

1(k1 ·k3)

[
(t3 ·k2)2

(k1 ·k4) (k1 ·k4)2+2(t3 ·k2)(k1 ·t3)(k1 ·k4)+(k1 ·k4)(k1 ·t3)2
]

+κ2 (k1 ·k2)
4(k1 ·k3)

[
(t3 ·k2)2

(k1 ·k4) (−3)(k4 ·t1)2+2(t3 ·k2)(−3)(t1 ·t3)(k4 ·t1)

+(k1 ·k4)
(
2−3(t1 ·t3)2

)
+(k1 ·k4)(−1)

]

− κ2

4(k1 ·k3)

[
((k1 ·k2)+(k1 ·k4))

(k1 ·k4)2 (t3 ·k2)2(k1 ·k4)2+2(t3 ·k2)(k1 ·t3)(k1 ·k4)

−(k1 ·k3)(k1 ·t3)2−2(k1 ·k2)(k1 ·k4)
]

−κ2 k2
3

4(k1 ·k3)

[
−2(k1 ·k2)(k1 ·k4)+ (k1 ·k4)

(k1 ·k2)(k1 ·k2)2+ (k1 ·k2)
(k1 ·k4)(k1 ·k4)2

]
−κ2 m2

3(k1 ·k3)

[
−2(k1 ·k2)(k1 ·k4)+ k1 ·k4

k1 ·k2
(k1 ·k2)2+ k1 ·k2

k1 ·k4
(k1 ·k4)2

]
+O(k0)

=−κ2 3(k1 ·k2)
4(k1 ·k3)

[ 1
(k1 ·k4)

(
(t3 ·k2)(k4 ·t1)+(k1 ·k4)(t1 ·t3)

)2−(k1 ·k4)
]

−κ2 (t3 ·k2)2

4(k1 ·k3)
[(

(k1 ·k2)+(k1 ·k4)
)
−(k1 ·k4)−(k1 ·k3)

]
+O(k0)

=O(k0). (E.58)

E.10 h(2,e)φ→ I(s)φ

Since the basis e(2,e)
1µν for the initial graviton does not involve lµ, it does not affect the

order of k. Then, we find from eq. (4.16),

As+At+Au+Ad =O(k0). (E.59)

E.11 I(1,e)φ→ I(s)φ

In this case, the basis of the initial graviton satisfies

k2 ·e1 ·k2 = 0, k4 ·e1 ·k4 =
√

2(t1 ·k4)(l1 ·k4) ,
k3 ·e1 ·k3 =−

√
2(t1 ·k4)(l1 ·k3) . (E.60)

Substitute these equations into eq. (4.16), we have

As+At+Au+Ad =
√

6κ2

12
(
m2
S+2m2+12ξm2

S

)
(t1 ·k4)

(
l1 ·k4
k1 ·k4

− l1 ·k3
k1 ·k3

)
+O

(
k−1

)
= O

(
k−1

)
. (E.61)
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E.12 I(0,e)φ→ I(s)φ

k2 ·e1 ·k2 = −
√

6
3

(k1 ·k2)2

k2
1

+
√

6
3 k2

2

k4 ·e1 ·k4 = −
√

6
3

(k1 ·k4)2

k2
1

+
√

6
3 k2

4−
√

6
2 (k4 ·t1)2,

k3 ·e1 ·k3 = −
√

6
3

(k1 ·k3)2

k2
1

+
√

6
3 k2

3−
√

6
2 (k4 ·t1)2. (E.62)

Substitute these into eq. (4.16), the total amplitude can be estimated as

As+At+Au+Ad

=
√

2κ2

6k2
1

(
m2
S+2m2+12ξm2

S

)((k1 ·k2)2

k1 ·k2
− (k1 ·k4)2

k1 ·k4
− (k1 ·k3)2

k1 ·k3

)
+O

(
k0
)

=O
(
k0
)
. (E.63)

E.13 I(s)φ→ I(s)φ

The UV behavior of this case can be obtained by taking the UV limit of eq. (4.20)
directly, which gives eq. (5.33).
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