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Abstract: The holographic superconductor is one of the most popular models in the
context of applied holography. Despite what its name suggests, it does not describe a
superconductor. On the contrary, the low temperature phase of its dual field theory is a
superfluid with a spontaneously broken U(1) global symmetry. As already observed in the
previous literature, a bona fide holographic superconductor can be constructed using mixed
boundary conditions for the bulk gauge field. By exploiting this prescription, we study
the near-equilibrium collective dynamics in the Higgs phase and reveal the characteristic
features of the Anderson-Higgs mechanism. We show that second sound disappears from
the spectrum and the gauge field acquires a finite energy gap of the order of the plasma
frequency. We observe an overdamped to underdamped crossover for the Higgs mode which
acquires a finite energy gap below ≈ Tc/2, with Tc the superconducting critical temperature.
Interestingly, the energy gap of the Higgs mode at low temperature is significantly smaller
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than 2∆, with ∆ the superconducting energy gap. Finally, we interpret our results using
Ginzburg-Landau theory and we confirm the validity of previously derived perturbative
analytic expressions.
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1 Introduction

In the last decade, the holographic correspondence, or gauge-gravity duality, has become an
invaluable complementary tool to investigate the many-body dynamics of strongly correlated
materials and strongly coupled condensed matter systems [1–4], with a particular emphasis
on the problem of strange metals and high-Tc superconductors [5–8].

The so-called holographic superconductor, or HHH model, introduced by Hartnoll,
Herzog and Horowitz [9, 10], is one of the most popular models in the context of holography
applied to condensed matter and it has received an enormous amount of attention in the
last years (see [11, 12] for reviews on the topic). Nevertheless, it presents a “small” problem:
it does not describe a superconductor. On the contrary, since the U(1) symmetry of the
dual field theory is global rather than local, it describes a superfluid. One could argue
that for some questions, e.g. the electric conductivity, the difference between the two is
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not important and hence one could still consider the holographic superfluid model as a
weakly gauged holographic superconductor. Unfortunately, for many other features (e.g.,
the nature and dynamics of vortices, the collective low energy modes, etc.), a superfluid is
profoundly different from a superconductor.

In order to investigate these different aspects, it is imperative to construct a bona fide
holographic superconductor model. As a matter of fact, that has already been considered
by many authors in the past [13–29]. The “trick” to transform a holographic superfluid into
a holographic superconductor consists in modifying the boundary conditions for the bulk
gauge field from Dirichlet to mixed boundary conditions, as introduced in the seminal works
by Witten [30, 31] (see also [32–35]), and described in detail by Marolf and Ross [36].1 This
procedure, which is equivalent to a Legendre transform of the dual field theory generating
functional together with the introduction of a boundary Maxwell kinetic term, allows
to gauge the boundary U(1) symmetry and bring in dynamical electromagnetism in the
dual description.

The same type of boundary conditions have resulted to be important in several other
holographic applications including the study of plasmons [38–48], Friedel oscillations [49],
anyons [50–52] and magnetohydrodynamics [53].2 An analogous procedure can also be used
to make the boundary metric dynamical and obtain semiclassical Einstein equations in the
boundary dynamics [56–58].

One fundamental difference between superfluids and superconductors is the spectrum
of collective low-energy excitations. Superfluids are characterized by the appearance of
an additional sound mode [59], known as second sound.3 This new excitation is a direct
manifestation of the emergent Goldstone mode of the spontaneously broken U(1) global
symmetry. The latter coincides with the fluctuations of the phase of the order parameter
which cost no energy. On the contrary, the fluctuations of the amplitude of the order
parameter, collectively labelled as the Higgs mode, are not hydrodynamic,4 and they are
overdamped close to the critical temperature. At low temperature, the Higgs mode is
expected to develop a real energy gap which is proportional to the superconducting gap
∆. This whole dynamics can be directly derived using a phenomenological time-dependent
Ginzburg Landau (GL) description [60, 61]. At the same time, the late time and long distance
dynamics of a superfluid in the broken phase can be consistently described using relativistic
superfluid hydrodynamics [62–68], as a formal extension of the two-fluid Tisza-Landau
model [69, 70].

In a superconductor, the major difference with what just described is due to the
famous Anderson-Higgs mechanism [71–74]. The massless Nambu-Goldstone mode, which
in superfluids corresponds to the fluctuations of the phase of the order parameter, gets
“eaten” by the dynamical gauge field and the corresponding photon becomes massive (see
cartoon in figure 1). The mass of the photon is expected to be order of the plasma

1See [37] for some subtleties about the two different approaches.
2In this context, it has been proved in [54] that the mixed boundary conditions are equivalent to the

action of an electromagnetic duality in the bulk and the usage of higher-form bulk fields therein [55].
3Or fourth sound if translational invariance is explicitly broken.
4Below the critical point, T < Tc, the frequency ω(k) of the Higgs mode does not go to zero as k → 0.
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Figure 1. Left: The typical Mexican-hat potential in the GL phenomenological description of
2nd order phase transition. In blue, the fluctuations of the phase of the order parameter, the
Nambu Goldstone mode. In red, the fluctuations of the amplitude of the order parameter, the Higgs
mode. Right: The spectrum of low-energy collective modes in a superconductor. The Higgs mode is
expected to have an energy gap of the size of the superconducting gap. The NG mode is “eaten” by
the gauge field and the photon becomes massive with an energy gap of order of the plasma frequency.

frequency ωp and it is a direct effect of the presence of dynamical electromagnetism. In
other words, apart from the presence of first sound,5 in a superconductor, and differently
from a superfluid, we do not expect any other gapless excitation.

The low-energy spectrum of holographic superfluids has been investigate numerically
by computing the quasinormal modes at finite frequency and wave-vector. In the probe
limit, this task has been originally achieved in [75–77].6 More completely, in [80], a
fully backreacted analysis has been done and matched 1-to-1 with the expectations from
relativistic superfluid hydrodynamics. Perturbative computations near the critical point
were originally performed in [81]. More recently, using a more advanced method based on
the concept of symplectic current, extended analytical results have been presented [82, 83].
Those studies investigated the dynamics of the overdamped order parameter fluctuations [84]
(see also [85, 86] for earlier studies) and provided a concrete comparison near Tc between
the holographic superfluid model, time-dependent Ginzburg Landau theory and model F in
Hoenberg-Halperin classification [87]. To the best of our knowledge, an underdamped Higgs
mode with a real energy gap, obeying the standard effective theory expectations [88, 89], has
never been observed in holographic superfluids. On the contrary, in [90], the authors observed
the emergence of a pair of underdamped complex valued modes at low temperature arising
from microscopic degrees of freedom and not related to the dynamics of the order parameter.7

At the same time, we are not aware of any computation of the low energy collective
modes in a bona fide holographic superconductor model. In [18], the authors made an
attempt in this direction by considering purely alternative (i.e., Neumann) boundary
conditions for the bulk gauge field. As explained in [53], and re-iterated below, those

5In the rest of this manuscript, we will not consider the fluctuations of energy and momentum, therefore
we will not discuss the dynamics of first sound arising from those.

6See also [78] for the extension to more exotic superfluid phase transitions and [79] for the generalization
in presence of a small explicit breaking of the global U(1) symmetry.

7We thank Aristomenis Donos to point this out to us.
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boundary conditions simply perform a Legendre transform of the boundary action but do
not introduce any kinetic term for the boundary gauge field. In other words, those boundary
conditions correspond to the limit of infinite boundary gauge coupling and miss most of the
relevant physics.

The scope of this work is to fill this gap and study in detail the collective dynamics of
a bona fide holographic superconductor model at finite frequency and wave-vector. The
manuscript is organized as follows. In section 2, following the work of [91], we present a
phenomenological time dependent Ginzburg Landau description of the collective dynamics;
in section 3, we present the holographic setup and all the details related to it; in section 4, we
describe the main thermodynamic and transport properties in the Higgs phase; in section 5,
we present the results for the transverse modes; in section 6, we present the results for the
longitudinal modes and evidence for the Anderson-Higgs mechanism; finally, in section 7,
we conclude with some final remarks and observations for the future.

2 Ginzburg-Landau phenomenological approach: a review

In this section, we present a brief review of the phenomenological Ginzburg-Landau the-
ory [92] in its different incarnations. Our task is not to construct a complete Ginzburg-
Landau description for strongly coupled superconductors nor to exactly match the results
from holography to the effective description. On the contrary, we will use the results
presented here as a guidance for the interpretation and discussion of the holographic results.
For simplicity, we will follow closely the presentation of ref. [91] (see also [63, 93]). In order
to avoid clutter, the speed of light and the Planck constant ~ will be set to unity in the rest
of the manuscript.

2.1 Ginzburg-Landau theory

Let us start from the most known form of Ginzburg-Landau theory which is a valid
description for a superfluid transition close to the critical point. The starting point is the
free energy density F [Ψ] which is expressed as a function of a complex order parameter
field Ψ,

F [Ψ] = Fn (T ) +
∫

d3rF [Ψ] = Fn (T ) +
∫

d3r

[
a |∇Ψ|2 + b |Ψ|2 + c

2 |Ψ|
4
]
, (2.1)

where a, b, c are phenomenological parameters. For vanishing order parameter, Ψ = 0, the
free energy F coincides with the normal phase free energy, Fn (T ). The complex scalar
field can be conveniently parameterized as Ψ = |Ψ(r)| eiθ(r), where |Ψ(r)| is its modulus
and θ(r) its phase. In order to implement the spontaneous symmetry breaking of the
global U(1) symmetry and the transition to a superfluid phase at small temperature, one
phenomenologically assumes that b = β (T − Tc). In this way, for T < Tc, the quadratic
term in the free energy density becomes negative and the minima of the latter are shifted to
a finite value of Ψ. This is the familiar dynamics of the Mexican-hat potential (see figure 1).

Minimizing the functional in eq. (2.1), we obtain the classical equation of motion

a∇2Ψ− bΨ− c|Ψ|2Ψ = 0 , (2.2)
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which, for homogeneous solutions, gives rise to an equilibrium value Ψ0:

|Ψ| =

√
|b|
c

=: Ψ0 ∼
√
Tc − T . (2.3)

At the critical temperature, the susceptibility χ diverges, χ−1 ∝ b, and the heat capacity
displays a jump [93]. By construction, the order parameter obeys the mean-field scaling
behavior with critical exponent 1/2. For later use, we also define the superfluid density ns
and the normal density nn as

ns := 2|Ψ|2 , nn = n− ns = n− 2Ψ2
0 . (2.4)

Here, n indicates the total density and the factor of 2 comes from the comparison with the
microscopic theory in which the condensate is formed by a pair of electrons [94].

In order to promote this picture out of equilibrium, different routes can be followed. At
first, we will ignore dissipative terms, and just insist on a field theory approach based on a
Lagrangian formalism. Later, we will discuss in detail the shortcomings of this picture. The
idea is to promote the Ginzburg-Landau functional to an action S defined in Minkowski
space with coordinates {vt, ~r}:

S =
∫

dt d3rL , (2.5)

where v is an emergent lightcone velocity which does not depend a priori on temperature.
A simple way to build the Lagrangian L in eq. (2.5) is to recast the free energy density F

in eq. (2.1) in a relativistic-invariant form using the following substitution

∇Ψ → ∂µΨ , ∂µ :=
(
∂t
v
,∇
)
. (2.6)

The corresponding Lagrangian can be then written down as

L = a (∂µΨ) (∂µΨ∗)− b |Ψ|2 − c

2 |Ψ|
4 = a

v2
∂Ψ
∂t

∂Ψ∗
∂t
− F . (2.7)

For stationary solutions, i.e., equilibrium configurations, the dynamics obtained from the
action principle in eq. (2.7) reduces to the standard Ginzburg-Landau theory in eq. (2.1).

Decomposing the complex scalar order parameter into its modulus and phase, the
Lagrangian in eq. (2.7) can be further expressed

L = a ∂µ|Ψ| ∂µ|Ψ∗|+ a |Ψ|2 ∂µθ ∂µθ − b |Ψ|2 −
c

2 |Ψ|
4 . (2.8)

In order to study the dynamics out of equilibrium, let us consider a small deviation of the
modulus from its equilibrium value

|Ψ| = Ψ0 + φ , (φ� Ψ0) , (2.9)

where Ψ0 is given in eq. (2.3) and it is real valued. Then, the Lagrangian in eq. (2.8) reduces
to

L = a ∂µφ ∂
µφ− 2|b|φ2 + aΨ2

0 ∂µθ ∂
µθ + b2

2c ,
(2.10)
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which consequently yields to the two dynamical equations

a

(
1
v2
∂2φ

∂t2
−∇2φ

)
+ 2|b|φ = 0 , 1

v2
∂2θ

∂t2
−∇2θ = 0 . (2.11)

The former is the equation for the modulus of the complex order parameter, often indicated
as the Higgs/amplitude mode, while the latter is that for the phase, which is identified with
the Goldstone mode.

By going to Fourier space, and solving the above equations, we obtain two different
low-energy excitations which are described by

Higgs mode: ω2 = 2|b|v2

a
+ v2k2 , Goldstone mode: ω2 = v2k2 . (2.12)

As expected, the Goldstone mode shows a gapless dispersion relation with velocity v. On
the contrary, the Higgs mode presents an energy gap

ωH :=

√
2|b|v2

a
, (2.13)

which vanishes at the critical temperature as ∼
√
Tc − T . In addition, the Higgs mass in

eq. (2.12) can be obtained using the relativistic formula for the energy, ω2
H = m2

Hv
4 +P 2v2,

as

mH := ωH
v2 =

√
2|b|
av2 ∼

√
Tc − T , (2.14)

In what follows, we use the word “mass” interchangeably with the term “energy gap”.
Before continuing, let us emphasize the (many) shortcomings of this first simple

approach. (I) All dissipative effects are neglected. The latter would have several effects
on the dispersion relation of the modes discussed. First, they would introduce attenuation
in the dispersion of the Goldstone mode. Second, they would make the Higgs mode
overdamped close to the critical temperature. (II) The dynamics considered so far is
restricted to the order parameter Ψ and ignores completely its coupling to other conserved
quantities as charge density, momentum and energy. Moreover, we ignored the coupling to
a potential external gauge fields, parameterizing for example an external chemical potential
or superfluid velocity. (III) The Lagrangian construction is completely phenomenological
and poorly motivated. In particular, it is not able to reproduce the well-known fact that the
speed of propagation of the Goldstone mode vanishes at the critical temperature T = Tc.
This is simply because the velocity v is introduced by hand using the emergent light-cone
structure and it is not related to the superfluid density as it should. Within the standard
GL picture, in order to obtain propagating modes, as second or fourth sound, one needs
to include reactive couplings to other conserved quantities such as charge density (see for
example [93]). Proceeding in this section, we will describe some of the more advanced
alternatives to this method and discuss the possibility to have a complete description of the
dissipative dynamics.

– 6 –
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2.2 Anderson-Higgs mechanism

So far, we have considered a system with a global U(1) symmetry and in particular the
transition between a normal fluid to a superfluid state. Now, we want to promote the
Ginzburg-Landau description to the case of superconductors where the U(1) symmetry is
gauged. In order to do that, we perform the following transformation

∂µΨ → DµΨ := (∂µ + iq̃Aµ) Ψ , (2.15)

where we have defined for convenience q̃ := q/v. Moreover, we add in the Lagrangian a
coupling to an external current Jµext and a kinetic term for the dynamical gauge field:

L → L−AµJµext −
1

4λF
2 . (2.16)

Here, λ, parameterizes the strength of the gauge coupling or, in other words, the strength
of the electromagnetic interactions.

By setting the external sources to zero, Jµext = 0, we obtain:

L = a (∂µ + iq̃Aµ) Ψ (∂µ − iq̃Aµ) Ψ∗ − b |Ψ|2 − c

2 |Ψ|
4 − 1

4λF
2 , (2.17)

which, following the same steps as before, can be expressed near equilibrium

L = a ∂µφ ∂
µφ− 2|b|φ2 + b2

2c + a q̃2 Ψ2
0AµA

µ − 1
4λF

2 , (2.18)

where we neglected mixed terms ∼ Ψ0φAµA
µ (see [91] for details regarding this approxima-

tion). In addition, the phase degree of freedom θ has disappeared from the Lagrangian as
it can be simply reabsorbed into a gauge transformation. Comparing the Lagrangian in
eq. (2.18) with that in eq. (2.10), one can notice that the phase θ (the Goldstone mode) is
absorbed into the gauge field Aµ which has now acquired a finite mass ∝ Ψ2

0. This is the
famous Anderson-Higgs mechanism [71–74, 95].

Using eq. (2.18), the equations of motion for the gauge field can be derived as

∂µF
µν + 1

λ2
GL
Aν = 0 , λ2

GL := 1
2a q̃2Ψ2

0 λ
, (2.19)

i.e., the famous London equation, where λGL is the London penetration length.
In Fourier space, the dispersion relation for the photon becomes

ω2 = ω2
A + v2k2 , ωA := v

λGL
= qΨ0

√
2aλ . (2.20)

The gauge field mass in the relativistic form is then given by

mA := ωA
v2 = 1

v λGL
∼
√
Tc − T , (2.21)

where we used the expression for λGL in (2.19) and eq. (2.3).
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As for the Higgs mode (2.14), mass of the gauge field (2.21) vanishes at the critical
temperature following the mean-field behavior (T − Tc)1/2, but with a different multiplicative
prefactor. Taking the ratio between the two masses (or energy gaps), we get:

mH

mA
= ωH
ωA

=
√

2 λGL
ξGL

=:
√

2κGL , (2.22)

where we have defined the GL parameter κGL, and the correlation length ξGL

ξGL :=
√
a

|b|
. (2.23)

This shows that, depending on the type of superconductor, one mass could be larger or
smaller than the other. Indeed, for type-I superconductors one has κGL < 1/

√
2 while, for

type-II superconductors, κGL > 1/
√

2. In our general scenario, in which the EM coupling is
taken as arbitrary, this distinction depends on the value of λ since κGL ∼ 1/

√
λ.

By projecting these expressions to zero temperature, one obtains an interesting result
regarding the mass of the photon field in the zero temperature limit. Let us stress that
this extrapolation is a priori not trustable since the GL framework is reliable only close to
the critical point around which the value of the order parameter Ψ is small, and the free
energy can therefore be legitimately expanded in powers of it. On the contrary, going at
low temperature, the order parameter grows and the GL treatment is not well grounded.
Nevertheless, let us abuse of this approximation and see what we get. In the limit of zero
wave-vector, k = 0, and zero temperature, the dispersion relation in eq. (2.20) becomes

ωA(T = 0) = v

λGL(T = 0) =
√

2a q2Ψ2
0(T = 0)λ =

√
a q2 nλ , (2.24)

where we have used the expression for the London penetration length λGL in eq. (2.19). In
addition, in the last equality, Ψ0 is replaced by the total density n using (2.4):

nn = n− 2Ψ2
0

T=0−−−→ n = 2Ψ2
0 . (2.25)

Here, we have assumed that the normal component nn is vanishing at T = 0. Under this
assumption, one can see that

ωA(T = 0) = ωp , ωp :=
√
a q2 nλ , (2.26)

where ωp is the plasma frequency.8

8In the non-relativistic limit, one has:

a = ~2

4me
, q = 2e

~
,

and then recovers the familiar expression for the plasma frequency [91]:

ω2
p = λ e2n

me
.

For relativistic systems, the mass density nme has to be substituted with the relativistic form ε+ p. More in
general, what appears in the denominator is the momentum susceptibility χππ. In relativistic systems, χππ
takes the aforementioned form because of the equivalence between energy current and momentum density
imposed by the Lorentz boosts Ward identity.
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Following this argument, we find that the “mass” of the photon in the zero temperature
limit is determined by the value of the plasma frequency. This can also be thought as a
consequence of the Anderson-Higgs mechanism. In other words, we do expect the sound
mode to be pushed by Coulomb interactions to the plasma frequency value. Since, via the
Anderson-Higgs mechanism, the Goldstone mode is absorbed into the gauge field, the “mass”
of the gauge field at small temperature is pushed to the plasma frequency value as well.

2.3 Dissipative effects

So far, we have completely ignored any dissipative effects coming from the conductivity,
the viscosity, etc. For simplicity, we will first follow the treatment in [91] and then discuss
possible improvements.

The first effect of dissipation comes from the fact that the material is a conductor, with
a finite conductivity σ. Because of this reason, the electric permittivity cannot be assumed
to be a constant. On the contrary, in the simplest scheme of approximations, it becomes a
complex and frequency dependent quantity given by

ε0 → ε(ω) = ε0

(
1 + i λ

σ(ω)
ω

)
. (2.27)

This substitution arises naturally in the standard treatment of electromagnetism in conduc-
tors [96], and it can be easily derived from the Maxwell equation:

∇ ·D = ρ , D = εE , (2.28)

where D is the displacement vector and E the electric field. By using Ohm’s law, J = σE,
together with the continuity equation ∂tρ+∇ · J = 0, one obtains that:

ρ = k · J
ω

= σ
k · E
ω

, (2.29)

which, plugged into the Gauss law for the displacement vector, gives rise to the substitution
in eq. (2.27). Under this simple replacement, the dispersion relation of the massive gauge
field in eq. (2.20) becomes [91]

ω2 = ω2
A + v2k2 − iv2λσ ω , ωA := v

λGL
= qΨ0

√
2aλ (2.30)

where we have assumed the conductivity σ(ω) to be a constant. Frequency dependent
terms in the conductivity are obviously present but will not affect the dispersion relation at
leading order in ω.

Notice that for ωA = 0 this equation describes the propagation of electromagnetic waves
in a conductor and implies the well-known skin-effect arising from the imaginary term ∝ λ.
Usually, this equation is solved by assuming a complex-valued wave-vector and a real-valued
frequency. Here, we take the opposite approach and consider the wave-vector real and the
frequency complex. At zero wave-vector, the solutions of eq. (2.30) are given by

ω = −iv
2λσ

2 ±

√
ω2
A −

(
v2λσ

2

)2
. (2.31)
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Because of the square root structure, there is clearly a competition between the dissipative
effects and the mass term ωA arising because of Anderson-Higgs mechanism which can
result in a overdamped mode or an underdamped one. More precisely, the excitations of
the gauge field show a real mass gap only when:

ωA >
v2λσ

2 . (2.32)

On the contrary, in the limit of strong dissipation, the frequencies are purely imaginary.
Let us consider the two limiting cases: (I) the near-critical region T ≈ Tc and (II) the

low temperature region T ≈ 0. When T → Tc, ωA → 0 because of eq. (2.20) (or equivalently
λGL →∞), then eq. (2.31) gives two simple solutions

T → Tc: ω = −iv2λσ , ω = 0 , (2.33)

where the decay time of the overdamped mode is τ = 1/(v2λσ). On the other hand, at
T → 0, we do expect all dissipative effects, and in particular the conductivity σ, to vanish.
The same equation gives rise to a pair of solutions which read

T → 0: ω = ±ωA − i
v2λσ

2 = ±ωp − i
v2λσ

2 . (2.34)

where we used (2.26) in the last equality. In this opposite case, the excitations have a real
gap with a small attenuation constant. Assuming that the conductivity vanishes at zero
temperature, one would simply get ω = ±ωp at exactly T = 0. The crossover between the
overdamped (high T ) and underdamped (low T ) regimes can be approximately found by
equating the two terms, ωA = v2λσ

2 ,

λGL(T )σ(T ) = 2
v λ

. (2.35)

Using common values for these quantities in weakly coupled superconductors, one obtains
that the crossover temperature T ∗ is approximately given by T ∗/Tc ∼ 0.5 [91].

In a similar way, using the Rayleigh dissipation function formalism [97], the effects of the
conductivity on the dispersion relation of the Higgs mode, eq. (2.12), can be incorporated
in the attenuation constant γ given by [91]:

γ ∼ σ ξ2
GL Ψ2

0 . (2.36)

where ξGL is given in (2.23). In this approximation, the dispersion relation of the mode is
modified into

ω2 = ω2
H + v2k2 − i2γω , ω2

H := 2|b|v2

a
(2.37)

which is of the same form of that for the gauge field fluctuations in eq. (2.30).
Similarly, we consider the zero momentum solution of eq. (2.37) which reads

ω = −iγ ±
√
ω2
H − γ2 . (2.38)
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In the near-critical regime, where T → Tc, we have that

T → Tc: ωH ∼ (T − Tc)1/2 , γ ∼ ξ2
GLΨ2

0 ∼ const. (2.39)

Thus, around the critical point we have ωH � γ which implies the appearance of two
overdamped modes of the type

ω = −i ω
2
H

2γ , ω = −2iγ , (2.40)

where the relaxation time of the longest-living excitation is given by

τ1 = 2γ
ω2
H

∼ 1
|T − Tc|

. (2.41)

Note that the strong effects of damping near Tc render the observation of the Higgs
mode problematic since the latter is strongly overdamped. In the opposite limit of small
temperature, we do expect the conductivity to vanish and we therefore expect the effects of
dissipation to be negligible compared to the ωH term. In particular, there, we do expect a
pair of weakly attenuated modes with a real gap ωH

T → 0: ω = ±ωH − iγ . (2.42)

Before concluding, let us present some remarks about the introduction of dissipative
effects and the coupling to other conserved quantities. A standard way to promote the
Ginzburg-Landau framework out of equilibrium and include dissipative effects is the so-
called time-dependent complex Ginzburg-Landau theory [98]. Let us sketch the idea quickly
by considering the dynamics of the complex order parameter Ψ and the ungauged case
(i.e., the superfluid). While the equilibrium solution is given by minimizing the free energy
density introduced in eq. (2.1), the deviations from it are assumed to obey the simple
time-dependent equation:

∂Ψ
∂t

= −Γ0
δF

δΨ∗ , (2.43)

where Γ0 is a phenomenological parameter which governs the relaxation of the order
parameter. In general, the latter is taken to be a complex number. At the linearized
level, and neglecting inhomogeneities, this equation also predicts the appearance of an
overdamped amplitude (Higgs) mode near the critical point with dispersion:

ω = −iRe [Γ0] b+ . . . . (2.44)

This result is qualitatively analogous to what was obtained before using the Rayleigh
dissipation function. Indeed, also in this case, the imaginary gap of the amplitude mode
vanishes at the critical temperature. Notice that in this language the mass of the Higgs mode
is controlled by the imaginary part of the phenomenological parameter Γ0, ωH = Im [Γ0] b,
and also vanishes as expected at the critical point.

More in general, in order to consider the near-critical dynamics of a superfluid, and
in particular to obtain also propagating modes, one needs to couple the dynamics of the
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order parameter to the conserved charge density [93]. For superfluids, this procedure will
automatically end up in the so-called model F in the Hoenberg-Halperin classification [99]
(see also [87] for a holographic derivation of this dynamics in the holographic superfluid
model, [100, 101] for a study of the nonlinear dynamics and [102] for an analysis of the
universality class of holographic superconductors). It would be interesting to extend the
model F in order to account for a dynamical gauge field and the coupling between the
different modes.

Notice that model F does not take into account the dynamics of energy and momentum
fluctuations, which will be anyway irrelevant for our holographic model in the probe limit.
One could also formally derive a hydrodynamic theory for the superconductor by matching
together magneto-hydrodynamics with the spontaneous breaking of the U(1) symmetry. In
this case, the most challenging question is how to incorporate in a precise way the presence
of non-hydrodynamic modes therein, as it is the case for the fluctuations of the amplitude
mode. Near the critical temperature, an approach similar to those used around the QCD
critical point [103–105] or those employed for pinned charge density waves [5] might work.

We leave the construction of a complete and rigorous effective description of the
superconducting critical dynamics in presence of dissipation as a task for the future. We
will come back to this discussion in the outlook.

3 The holographic setup

We consider the four dimensional Abelian-Higgs bulk action [9, 10]

Sbulk =
∫

d4x
√
−g

[
R+ 6− 1

4F
2 − |DΦ|2 −M2|Φ|2

]
, (3.1)

in presence of a negative cosmological constant Λ = −3. We have defined the bulk field
strength F := dA and the covariant derivative Dµ := ∇µ − iQAµ, with Q the charge of the
complex bulk scalar field Φ and M its mass.

For simplicity, we work in the probe limit in which the dynamics of the metric fluctua-
tions is kept frozen. The corresponding equations of motion for the matter bulk fields are
given by:

∇µFµν − iQ(Φ∗DνΦ− ΦDνΦ∗) = 0 , (3.2)(
D2 −M2

)
Φ = 0 ,

(
D2 −M2

)
Φ∗ = 0. (3.3)

The background metric is chosen as:

ds2 = 1
z2

(
−f(z) dt2 + dz2

f(z) + dx2 + dy2
)
, (3.4)

with the emblackening factor which takes the Schwarzschild form:

f(z) = 1− z3

z3
h

. (3.5)
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The corresponding temperature and entropy density of the dual field theory are given by:

T = 3
4πzh

, s = 4π
z2
h

. (3.6)

Finally, the ansatz for the bulk matter field is taken as:

A = At(z) dt , Φ = ψ(z) . (3.7)

Note that, with Az = Ax = Ay = 0, the Maxwell equation of motion (3.2) implies that the
phase of the scalar Φ is a constant [9]. Hence, for simplicity, we set the background phase
to be zero and take Φ to be a real scalar in the background.

Using the aforementioned notations, the bulk equations of motion can be written as

A′′t −
2Q2ψ2

z2 f
At = 0 , ψ′′ +

(
f ′

f
− 2
z

)
ψ′ + Q2A2

t

f2 ψ − M2

z2f
ψ = 0 , (3.8)

and are solved numerically integrating them from the horizon (z = zh) to the boundary
(z = 0). For the concrete numerical computations, we take (zh, Q,M2) = (1, 1,−2). We
assume standard quantization for the bulk scalar field and fix the conformal dimension of
the dual operator to be ∆ψ = 2. At the horizon, we impose the regularity conditions for
both the gauge field, At(zh = 1) = 0, and the scalar field. Near the boundary, the matter
fields behave as

At = µ− ρz + O(z2) , ψ = ψ1z + ψ2z
2 + O(z3) . (3.9)

Using the holographic dictionary, µ can be interpreted as the chemical potential in the dual
field theory and ρ as the charge density. Moreover, using standard quantization for the
scalar field, ψ1 represents the source for the dual scalar operator (the order parameter)
and ψ2 its the expectation value, i.e., the scalar condensate 〈O2〉. In order to describe the
spontaneous symmetry breaking of the dual U(1) symmetry, we always set the source to be
zero, ψ1 = 0. We will describe the main physical properties of the broken phase in section 4.

3.1 Fluctuations and boundary conditions

In order to study the dynamics of the low energy modes in the dual field theory, on top of
the background solution eq. (3.4), we switch on the following bulk field fluctuations:

δA = δat(t, z, x) dt+ δax(t, z, x) dx+ δay(t, z, x) dy ,
δΨ = δσ(t, z, x) + i δη(t, z, x) ,

(3.10)

where the radial gauge Ar = 0 is assumed. Importantly, we work in the probe limit in which
the fluctuations of the metric are kept frozen. Moreover, we decompose all fluctuations in
Fourier space using the notation:

ξ(t, z, x) = ξ̄(z) ei(kx−ωt) . (3.11)

where for simplicity the wave-vector ~k is aligned along the x direction and ξ is a collective
label denoting a generic bulk field fluctuation.
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The equations of motion for the fluctuations arising from eqs. (3.2)–(3.3) decouple into
two independent sectors:

Longitudinal sector: {δat(z), δax(z), δσ(z), δη(z)} ,
Transverse sector: {δay(z)}.

(3.12)

Note that the complex scalar field fluctuation (δσ, δη) are only coupled to the longitudi-
nal vector components (δat, δax). The equations in each sectors are as follows. In the
longitudinal sector, we have

0 = fδη′′+
(
f ′− 2f

z

)
δη′+

(
Q2A2

t

f
−M

2

z2 + ω2

f
−k2

)
δη− 2QiωAt

f
δσ

− iQωψ
f

δat− iQkψ δax , (3.13)

0 = fδσ′′+
(
f ′− 2f

z

)
δσ′+

(
Q2A2

t

f
−M

2

z2 + ω2

f
−k2

)
δσ+ 2Q2Atψ

f
δat+

2QiωAt
f

δη ,

(3.14)

0 = fδat
′′−

(
k2 +2Q2ψ

2

z2

)
δat−ωk δax−

2Qiωψ
z2 δη−4Q2Atψ

z2 σ , (3.15)

0 = fδax
′′+f ′δax

′+
(
ω2

f
−2Q2ψ

2

z2

)
δax+ ωk

f
δat+

2Qikψ
z2 δη , (3.16)

together with the constraint equation

ω

f
δat
′ + kδax

′ = 2Qi
z2

(
ψ′ δη − ψ δη′

)
. (3.17)

In the transverse sector, the dynamics of the fluctuations is controlled by

0 = f δay
′′ + f ′δay

′ +
(
ω2

f
− k2 − 2Q2ψ

2

z2

)
δay . (3.18)

After defining the equations of motion, we need to specify the boundary conditions for
the fluctuations and in particular for those of the bulk gauge field. Following ref. [14] and
our more recent work, ref. [53], we promote the external gauge field in the boundary field
theory to be a dynamical field. This is fundamental to describe a superconducting phase
rather than a superfluid one.

Let us start by considering the bulk Maxwell action in (3+1) dimension as

Sbulk = − 1
4e2

∫
d4x
√
−gF 2 , (3.19)

where F = dA is the field strength for the U(1) gauge field A and the EM bulk coupling e
is re-introduced for clarity. We then introduce the following boundary terms

Sboundary =
∫

d3x

[
− 1

4λF
2
µν + JµextAµ

]
, (3.20)
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where λ parameterizes the strength of Coulomb interactions at the boundary (not to be
confused with the bulk coupling e in eq. (3.19)) and the last term is just a Legendre
transform in terms of an external current Jµext.

The variation of the total action, Stot := Sbulk + Sboundary, reads

δAµStot =
∫

d3x

[
Πµ − 1

λ
∂νF

µν + Jµext

]
δAµ , (3.21)

where the conjugate momenta of the gauge field, Πµ, is given by9

Πµ = δSbulk
δAµ

=
√
−g
e2 F zµ

∣∣
z→0 . (3.22)

Eq. (3.21) is equivalent to the boundary Maxwell equations

∂νF
µν = λ (Πµ + Jµext) , (3.23)

which implies that the gauge field, Aµ, is now dynamical in the boundary field theory
description. Following this prescription, the external sources can be determined as

δJ
x (L)

ext = −ω
λ
Z

(L)
Ax
− 1
e2

ω

ω2 − k2Z
(S)
Ax

, δJ
y (L)

ext = −ω
2 − k2

λ
Z

(L)
Ay
− 1
e2Z

(S)
Ay

, (3.24)

where ZAx := kδat + ωδax, ZAy := δay. (L) and (S) respectively stand for leading and
subleading terms. Additionally, the conservation equation ∇µJµext = 0 holds and it implies
that the time component, δJ t (L)

ext , is fixed by the others appearing in eq. (3.24).
Near the AdS boundary (z → 0), the fluctuations behave as

δaµ = δa(L)
µ + δa(S)

µ z + . . . ,

δσ = δσ(L)z + δσ(S)z2 + . . . ,

δη = δη(L)z + δη(S)z2 + . . . ,

(3.25)

and the gauge-invariant combinations Z(L) or (S)
Aµ

are constructed accordingly.
We will derive the dispersion relations of the low-energy modes using the determinant

method [106]. For this purpose, we define the source matrix for the longitudinal/transverse
sector as

Slong =

 δJ
x (L) (I)

ext δJ
x (L) (II)

ext δJ
x (L) (III)

ext
δη(L)(I) δη(L)(II) δη(L)(III)

δσ(L)(I) δσ(L)(II) δσ(L)(III)

 , Strans = δJ
y (L)

ext , (3.26)

where the indices I, II, III denote the n-th independent solution. The dispersion relation
of the modes are then obtained by imposing the determinant of the source matrix to vanish:

det Slong (ω, k) = 0 , Strans (ω, k) = 0 . (3.27)

In what follows, we set e = 1 and keep λ as a free parameter to control the ratio between
the strength of Maxwell interactions in the bulk and those at the boundary.

9Note that Πµ is the radially conserved bulk current obtained from the Maxwell equation: 0 =
∂z (
√
−g F zµ) = ∂z Πµ.
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Figure 2. Order parameter 〈O2〉 vs. reduced temperature T/Tc. The critical temperature is
Tc/µ = 0.0587. The inset shows the near-critical mean field behavior: numerical result (solid black),
fitting result (4.1) (dashed red).

4 The equilibrium superconducting state

By numerically solving equations (3.8) with the boundary conditions defined in the previous
section, one observes the appearance of a bulk solution with a non-trivial profile for the
bulk complex scalar field above a certain critical value of the chemical potential. This is
the broken phase in which the U(1) symmetry is spontaneously broken. For our choice of
parameters, we find µc zh ≈ 4.062 which corresponds to a critical temperature Tc/µ = 0.0587
consistent with the results in ref. [75]. We plot the profile of the scalar condensate as a
function of the reduced temperature in figure 2. As expected, close to the critical point we
observed the typical mean-field behavior

〈O2〉 ∼
√

1− T/Tc . (4.1)

Before moving to the dynamics of the fluctuations at finite frequency and wave-vector, we
can study the electric response of the system in the broken phase. The electric conductivity10

can be defined holographically using

σ(ω) = 1
iω

δa
(S)
x

δa
(L)
x

, (4.2)

where δa(L)
x is the leading coefficient of the fluctuation δax, while δa(S)

x the subleading
coefficient. In absence of coupling to momentum (i.e., in the probe limit), the optical
conductivity takes the simple form

σ(ω) = σ0 +
(
i

ω
+ δ(ω)

)
ρs
µ
, (4.3)

where ρs is the superfluid density. The superfluid density approaches the total density at
low temperature, as shown in the left panel of figure 3.

10Previous studies of the conductivity in presence of Coulomb interactions in holography can be found
in [47, 48].
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Figure 3. Left: Total density ρ/µ2 (dashed) and superfluid density ρs/µ
2 (solid). The total density

ρ is evaluated from eq. (3.9) while the superfluid density is from the optical conductivity data.
Right: σ0 as a function of the reduced temperature. The inset shows the low temperature behavior:
numerical result (solid black), fitting result (4.4) (dashed gray).

From the formula above, we can also extract the parameter σ0. In the small temperature
regime, T/Tc � 1, it was shown [9, 10, 12, 107] that σ0 := lim

ω→0
Re[σ(ω)] is associated with

the superconducting energy gap ∆ via

σ0 ∼ e−∆/T , ∆ :=
√
〈O2〉/2 , (4.4)

i.e., the low temperature behavior of conductivity σ0 is exponentially suppressed by the
condensate 〈O2〉. We show this behavior in the right panel of figure 3, proving that the
formula above works very well. Notice that, as well known, the energy gap extracted is
given by 2∆ ∼ 8Tc and much larger than the BCS prediction 2∆ ∼ 3.5Tc.

5 Transverse collective modes

In this section, we study the dispersion relation of the transverse low-energy collective
modes. Unless otherwise mentioned, we set λ/T = 0.1.

5.1 Massive electromagnetic waves

In order to understand the dynamics in the transverse sector, we utilise the following
equation:

ω2 = ω̃2
A + ṽ2k2 − i σ̃ ω , (5.1)

which is exactly of the same form as the one derived in the dissipative Ginzburg-Landau
framework in the previous section, eq. (2.30), i.e.,

ω̃A ↔ ωA , ṽ ↔ v , σ̃ ↔ v2 λσ . (5.2)

Using these notations, ṽ parameterizes the velocity of propagation of EM waves, σ̃ the
dissipative effects coming from the conductivity and ω̃A the emergent mass arising because
of the Anderson-Higgs mechanism.
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Figure 4. The dispersion relation of the lowest collective modes in the transverse sector for different
values of the reduced temperature T/Tc = (1, 0.999, 0.998) (red, green, blue). Symbols represent the
numerical values and solid lines are fits using eq. (5.1).

Transverse excitations in the normal phase. In the normal phase, T ≥ Tc, the
equation (5.1) can be formally derived using magnetohydrodynamics [108] and has been
verified holographically in [44, 53]. In particular, because of the probe limit, in the normal
phase we do expect

T ≥ Tc: ω̃A = 0 , ṽ2 = 1− λχBB , σ̃ = σ0λ , (5.3)

together with χBB = −3/(4πT ), as proved explicitly in [53] (see also appendix A for the
derivation of ṽ). Furthermore, let us recall that above Tc, the bulk field At (associated with
the chemical potential) is absent in the transverse sector (3.18), which implies that the
transverse dispersion relation of the normal phase is independent of the value of µ. As a
consequence, the dispersion data shown in red color in figure 4 are representative for all the
temperatures T ≥ Tc (or µ ≤ µc).

Transverse excitations in the superconducting phase. The dispersion relation of
the lowest collective modes in the transverse sector is shown in figure 4 for different values
of temperature in the superconducting phase. At the critical temperature (red data),
we observe the standard behavior for EM waves in a conductor, in which the effects of
screening induce a gap in the wave-vector [109]. The dynamics of EM waves displays a
crossover between an overdamped diffusive behavior for long wave-lengths to a propagating
behavior at short wave-lengths. The crossover between the two regimes is controlled by
the conductivity of the system and the value of the electromagnetic coupling λ. We refer
to [53] for a complete study of this behavior.

By decreasing the temperature and moving deeper into the superconducting phase (green
and blue data), we observe that the critical wave-vector becomes smaller. At a critical value
of the temperature, the gap of the dispersion relation changes its nature and becomes a real
energy gap, while the imaginary part of the dispersion becomes approximately constant.11

11The dynamics of the real part of the dispersion relation is reminiscent of what found in [110, 111] with
the difference that therein no hydrodynamic mode survives.
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Figure 5. The dynamics of the lowest collective modes in the transverse sector at k = 0 by
decreasing the reduced temperature from T/Tc = 1 to 0.3 (in the direction of the arrows). The (red,
green, blue) data are the same as in figure 4.

In figure 4, we also display the fitting curves (solid lines) using (5.1), which are in
good agreement with the numerical values (symbols). Note that in general there are three
fitting parameters (ω̃A , ṽ , σ̃), while the numerical quasi-normal mode data has only two
independent degrees of freedom at a given wave-vector. Therefore, for practical purposes,
we fix ṽ2 = 1 − λχBB even in the superconducting phase and we only fit for the two
parameters ω̃A , σ̃. We then verify a posteriori the validity of this assumption. In the
following subsections, we discuss their temperature and EM coupling dependence in detail.

Before continuing, we remind the reader that, in the case of holographic superfluids,
the spectrum does not display any transverse hydrodynamic mode (see [75] for details).

5.2 Zero wave-vector excitations

We are ready to investigate the dispersion relation of the transverse EM waves in the
superconducting phase. For simplicity, we start with the homogeneous case, k = 0. The
solutions of eq. (5.1) at k = 0 read

ω = − i2 σ̃ ±
1
2

√
4 ω̃2

A − σ̃2 (5.4)

and will be analyzed in detail below. Let us remind that in the normal phase we have σ̃
finite and ω̃A = 0.

Depending on the value of ω̃A and σ̃, the dispersion in eq. (5.4) can give purely imaginary
or complex modes. More precisely, we have three distinct cases. Whenever the dissipative
effects are dominating, 4 ω̃2

A < σ̃2, the modes are purely imaginary, with dispersion relation

ω(±) = − i2

(
σ̃ ±

√
σ̃2 − 4 ω̃2

A

)
. (5.5)

In the small ω̃A limit, these imaginary poles are just given by

ω(+) ≈ −i
(
σ̃ − ω̃2

A

σ̃

)
, ω(−) ≈ −i

ω̃2
A

σ̃
. (5.6)
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Figure 6. Left: The dynamics of the lowest QNMs in the transverse spectrum at k = 0 for
T/Tc ∈ [1, 0.3] with λ/T = 0.1− 0.5 (from red to blue data). The red data corresponds to figure 5.
Right: The collision frequency, ωcollision, as a function of the EM coupling λ/T . The black solid line
is the phenomenological finding in eq. (5.8).

At a critical value of the mass, 4 ω̃2
A = σ̃2, these two poles collide on the imaginary axes at

ωcollision = − i
2 σ̃. After the collision, they split into two complex poles and move away from

the imaginary axes towards the real axes in a symmetric fashion.
In the opposite limit, in which the mass dominates over the dissipative effects, 4 ω̃2

A > σ̃2,
we have the complex poles

ω = ω(C) := ±ω(R) − i ω(I) = ±1
2

√
4 ω̃2

A − σ̃2 − i

2 σ̃ .
(5.7)

As a general rule, dissipative effects become subdominant at low temperature. Therefore,
the dynamics just described is what we do expect by decreasing the temperature from the
critical point down to zero temperature. This is exactly what we observe in figure 5.

As an interesting observation, we find that, at leading order in the EM coupling λ, the
collision between the two modes occurs at the specific value

Im [ω]
T

∣∣∣∣
collision

= −1
2
λ

T
, (5.8)

which is confirmed numerically in figure 6. As shown explicitly in the right panel, this
expression represents only an approximation in the regime of small EM coupling and it fails
above λ/T ≈ 0.4.

By fitting the data at k = 0, we can extract the temperature dependence of the phe-
nomenological parameters (σ̃/T, ω̃A/T ). Their behavior is shown in figure 7. Interestingly,
we find that the dissipative parameter σ̃ takes the same form as in the normal phase and
does not receive corrections in the superconducting state. In particular, for all the values of
the temperature, within the probe limit approximation, we find that

σ̃ = σ0 λ , (5.9)

where:
σ0 := lim

ω→0
Re[σ(ω)] , (5.10)

and σ(ω) is the conductivity defined in eq. (4.2) and shown in the right panel of figure 3.
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Figure 7. The temperature dependence of the phenomenological paramters σ̃ and ω̃A in eq. (5.4).
Dots are evaluated from the numerical fits. Solid lines represent the analytical expression in eq. (5.9)
(left panel) and eq. (5.11) (right panel). The insets show the data near the critical point, T = Tc.
The dashed red line in the right panel is the expression in eq. (5.12).

The dynamics of the other fitting parameter, ω̃A, is more complex. In the regime
of small temperature, T � Tc, we find that this parameter is well fitted by the plasma
frequency value

ωp :=
√
λ

ρ2

ε+ p
, (5.11)

where ε is the energy density, and p the thermodynamic pressure which can be evaluated
using the Smarr relation ε+ p = sT + µρ. The low temperature behavior of ω̃A is shown in
the right panel of figure 7 using a solid line. On the contrary, near the critical point, the
value of ω̃A strongly deviates from the plasma frequency value, eq. (5.11), and vanishes at
the critical point with a square root behavior,

ω̃A = α
√

1− T/Tc , (5.12)

where α is a λ-dependent constant.
In particular, the mass of the EM waves vanishes at the critical point since λGL →∞ in

eq. (2.21). At the same time, it is expected that in the limit of small temperature, the mass
of the gauge field fluctuations approaches the plasma frequency value, see eq. (2.26). In
other words, our holographic results are perfectly compatible with the GL picture reviewed
in section 2. In principle, using perturbative methods, one could extract analytically the
value of the parameter α which determines the near-critical behavior of the mass ω̃A, as
done in [87]. We leave this analysis for the future.

5.3 EM coupling dependence

To find the EM coupling dependence, we have performed the same analysis for different
values of λ. The results are shown in figure 8. First, we observe that for all the values of
the electromagnetic coupling and temperature, the parameter σ̃ obeys the expression in
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Figure 8. The phenomenological parameters appearing in the dispersion relation of the lowest QNMs
in the transverse sector at k = 0. Different colors from red to blue correspond to λ/T = 0.1−0.5. Top
left: the conductivity σ̃ and the expression in eq. (5.9) (solid lines). Top right: the phenomenological
mass ω̃A together with the plasma frequency value in eq. (5.11) (solid lines). Bottom left: the
behavior of the mass close to the critical point, T ∼ Tc and the fitting formula in eq. (5.12) (dashed
lines). Bottom right: the phenomenological parameter α as a function of the EM coupling. The
dashed line is the fitting formula α/T = 5.5

√
λ/T .

eq. (5.9). Second, we find that independently of the value of the EM coupling, the mass of
the gauge field fluctuations approaches the plasma frequency value at low temperatures.
Interestingly, we observe that the mass ω̃A reaches the plasma frequency value at a larger
temperature for smaller values of the EM coupling (see top right panel in figure 8). Finally,
near the critical temperature, the mass always vanishes following the mean-field behavior
in eq. (5.12). The constant of proportionality α depends on the electromagnetic coupling
and, at least for this choice of parameters, it is well approximated by the fitting expression
α/T = 5.5

√
λ/T . As already mentioned, the value of this constant should be related to

the GL parameters which can be computed directly from the holographic picture, as done
in [87] for the superfluid case.

Comparison with the perturbative analytical results near the critical point.
Recently, ref. [26] studied the holographic Meissner effect in the holographic superconductor
model using perturbative analytical techniques valid in the near-critical regime (see [81, 87]
for similar analyses in the case of holographic superfluids). In particular, a closed-form for
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Figure 9. The gauge field mass ω̃A. Dots are numerically obtained by fitting the dispersion
relation. Dashed lines represent the analytical expression in eq. (5.13). Left: λ/T = 0.1. Right:
λ/T = 0.1− 0.5 (red-blue).

the London penetration length, λholo, was obtained. Using that expression, we can extract
an analytical formula for the mass of the gauge field ω̃A which is given by

ω̃A = 1
λholo

=
√

2λ
1 + λ

I , I :=
∫ 1

0
dz
(
ψ(z)
z

)2
. (5.13)

In the expression above, ψ(z) is the bulk complex scalar field (see eq. (3.7)). The limits of
integration are the location of the boundary z = 0 and that of the horizon z = 1.

The comparison between our numerical data and the expression (5.13) derived in [26]
is presented in figure 9. The agreement near the critical point, T/Tc ≈ 1, is excellent.
Interestingly, we notice that the validity of eq. (5.13) extends to lower temperatures when
the EM coupling is small. On the contrary, for large values of the EM coupling λ, the
analytical formula approximates well the numerical data only very close to the critical point.

6 Longitudinal collective modes and the Anderson-Higgs mechanism

We now move to the discussion of the longitudinal sector. Once again, unless otherwise
mentioned, we set the value of the EM coupling to λ/T = 0.1.

6.1 Collective excitations

For simplicity, let us start with the homogeneous case, k = 0. Given that the dynamics is
complicated, we find instructive to first present a schematic description which refers to the
top panel of figure 10.

In the normal phase, above the critical temperature, the fluctuations of the scalar
order parameter at zero wave-vector decouple from those of the gauge field. The modes
associated with the scalar fluctuations, sometimes referred as critical modes, have both a
real and imaginary gap which vanish at the critical temperature. This dynamics is exactly
equivalent to that presented in the probe holographic superfluid in [75] (see also [87]) and
can be easily derived using the time-dependent Ginzburg-Landau theory.
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Figure 10. Top panel: Schematic plot of the poles in the longitudinal channel at zero momentum.
In the normal phase, the black symbols represent the scalar fluctuations (δσ, δη), while the gray
symbol is the damped charge diffusion from (δax, δat). Below Tc, the scalar sector couples to the
gauge sector and three damped poles appear (Ω, ω(+), ω(−)). As the temperature is lowered, the
ω(+) pole collides with ω(−) and generates a coupled of complex modes (blue symbols). The other
pole Ω becomes more and more overdamped. Bottom panel: the numerical data. Bottom left: the
near critical region, T/Tc = 1.001− 0.999 (red-blue). The ω(±) poles are represented with circles
while the Ω one with stars. The inset shows the behavior of ω(+) pole. Bottom right: the collision
regime, T/Tc = 0.999− 0.989 (blue, pink, purple, black). The ω(±) poles (circles) collide on the real
axes, while the Ω pole (star) moves down along the imaginary axes.

In addition to the scalar critical modes, there is a non-hydrodynamic mode that
corresponds to damped charge diffusion. Here, charge fluctuations are damped (rather
than diffusing) because of the effects of dynamical electromagnetism (see [53, 108]), i.e.,
ω = −iσ̃ = −iσ0 λ. At the critical temperature, T = Tc, the two critical modes approach
the origin. However, differently from the case of the superfluid, the mode corresponding
to the fluctuations of charge does not go to the origin at the critical point as it remains
overdamped. As a consequence, just below the critical temperature, no massless propagating
degree of freedom appears (cfr. second sound in superfluids), but rather one observes three
different modes with a purely imaginary frequency which we denote as Ω, ω(+), ω(−).
Decreasing further the temperature, two of these three modes, ω(+) and ω(−), collide on the
imaginary axes and create a pair of complex modes which move towards the real axes and
become underdamped. We will refer to those (complex) modes as ω(C). The other third
mode, Ω, remains on the imaginary axes, and its (negative) imaginary part increases by
decreasing temperature.

Notice that, at zero wave-vector, the dynamics of the pair of modes ω(±) is the same
as in the transverse sector (e.g. figure 5). This simply reflects the fact that, when the
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Figure 11. Dispersion relation of the low-energy modes in the longitudinal
spectrum. From top left to bottom right, the temperature decreases, T/Tc =
1.00141, 0.999438, 0.998946, 0.996497, 0.991633, 0.982048. Each panel is associated to the
corresponding imaginary part located below it.

momentum is zero, the equations of motion for the longitudinal fluctuations, eq. (3.13), can
be decomposed into two decoupled sectors: i) (δσ, δη, δat); ii) δax. Then, the equation for
δax is exactly the same as the one in the transverse sector, eq. (3.18).

We now move to the case of finite wave-vector, k 6= 0. The dynamics is more complicated
as all the fluctuations are now coupled. Phenomenologically, at least in the limit of small
wave-vector, k/T � 1, we find that the lowest quasi-normal modes are well approximated
by the following equations with six phenomenological parameters (σ̃, ω̃A,V,Γ,Ω, DΩ):

ω
(
ω + i σ̃ + iΓ k2

)
= V2 k2 + ω̃2

A , ω + iΩ + iDΩ k
2 = 0 . (6.1)

Solving the two equations above gives the dispersion of the modes in the limit of small

– 25 –



J
H
E
P
0
3
(
2
0
2
3
)
2
0
6

wave-vector,

ω = ±1
2

√
4 ω̃2

A − σ̃2 − i

2 σ̃ +

± 2V2 − Γσ̃
2
√

4 ω̃2
A − σ̃2

− i

2Γ

 k2 , (6.2)

ω = −iΩ− iDΩ k
2 . (6.3)

As we will see shortly, eq. (6.2) is related to the second sound in the superfluid case and
reduces to ω = ω(±) or ω(C) at k = 0. The eq. (6.3) is related to the “Higgs” mode.

Let us stress that the first equation of (6.1) is not derived from a formal effective
description (e.g., hydrodynamics) but just an educated guess from two limiting cases. i)
for k = 0, the transverse mode is equivalent to the longitudinal mode ii) for λ = 0, the
dispersion relation of the superfluid (σ̃ = ω̃A = 0) is recovered. The second equation of (6.1)
is the same as the superfulid case because it is supposed to be the Higgs mode, which
is λ independent. We will come back to these points in the following paragraph. More
generally, we do expect the above two modes (eqs. (6.1)) to couple. Nevertheless, as we will
see, at least in the limit of small wave-vector, the decoupling results become a reasonable
approximation. This indicates that the coupling between the two equations above generates
corrections to the dispersion relations which are higher-order in k.

Before continuing with our analysis, let us pause and discuss first the superfluid limit in
which the gauge field is not dynamical at the boundary. For superfluids (see e.g. [75]), one
finds the second sound waves and the damped charge diffusive mode or amplitude mode.
This corresponds to assume that (I) our parameters (σ̃, ω̃A) vanish in eq. (6.1) and (II)
that Γ and V are exactly the attenuation constant and the speed of propagation of second
sound in the superfluid. As we will see, this is indeed the case. In the superfluid limit, the
ω(±) modes combine into second sound and the Ω mode becomes the Higgs mode.

The dispersion relation of the lowest QNMs in the longitudinal spectrum is shown in
figure 11 from high temperature (top left), in the normal phase, to the lowest temperature
accessible (bottom right).12 In solid/dashed lines, we display the fitting formulas using
eqs. (6.2)–(6.3). In what follows, we discuss in detail the coefficients, (σ̃, ω̃A,V,Γ,Ω, DΩ)
appearing in eqs. (6.1). Finally, we will discuss the similarities and differences with the GL
picture presented in section 2.

6.2 The fate of second sound

Let us first analyze the dynamics of the second sound in our holographic superconductor.
Its dispersion relation at low k is given by eq. (6.2). The temperature dependence of the
coefficients (σ̃, ω̃A,V,Γ) is presented in figure 12. Interestingly, the coefficients (σ̃, ω̃A) are
exactly the same as the ones appearing in the dispersion relation for EM waves in the
transverse sector (cfr. eqs. (5.9)–(5.12)). At the same time, as perhaps expected, the speed
of sound V and the attenuation constant Γ coincide with those of second sound in the
holographic superfluid model [75]. Notice how the speed of propagation approaches the
conformal sound speed V2 = 1/2 at low temperature and vanishes at the critical point.

12Let us remind that the probe limit approximation ceases to be trustable at low temperature.
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Figure 12. Coefficients appearing in the dispersion relation, eq. (6.2). Solid black lines are drawn
using eq. (5.9) for σ̃ and eq. (5.11) for ω̃A. The red dashed line near Tc is eq. (5.12). The speed
of propagation V and the attenuation constant Γ coincide exactly with those reported for second
sound in the holographic superfluid [75].

Also notice that as T → Tc, both ω̃A and V vanish. As a consequence, the dispersion
relation therein becomes

ω = −iσ̃ − iΓ k2 , (6.4)

which is the damped charge diffusion mode at T ≥ Tc. In other words, the attenuation
constant Γ, in the limit T → Tc, becomes the charge diffusion constant in the normal phase,
DcT = 3/(4π) ∼ 0.238. This is consistent with our data in figure 12.

Let us also notice that the dynamics of this mode is completely missing in the GL
formalism presented in section 2 since we have not considered the coupling to the conserved
charge density nor the corresponding charge fluctuations. In order to include this mode
into the EFT framework, one should extend the GL theory and promote it as in model F
in the Hoenberg-Halperin classification [99] for superfluids. In the context of holographic
superfluids, the matching with model F has been proved explicitly in [87]. It would
be interesting to repeat this analysis in the case of a superconductor with dynamical
Coulomb interactions.

Finally, we want to discuss the effects of the EM coupling on the coefficients appearing in
the dispersion relations. The behavior of the various coefficients as a function of temperature
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Figure 13. Coefficients appearing in the dispersion relation (6.2) as a function of the reduce
temperature for λ = 0.1, 0.2, 0.3 (red, orange, yellow). Solid lines represent eq. (5.9) for σ̃ and
eq. (5.11) for ω̃A. The dashed lines are eq. (5.12).

for different values of the EM coupling is shown in figure 13. Interestingly, we find that the
velocity V and the attenuation constant Γ are independent of the EM coupling λ. On the
contrary, as expected, the dissipative coefficient σ̃ and the mass ω̃A depends on the EM
coupling λ. Their dependence is shown in figure 14 for a value of the temperature close to
the critical point. The first shows a linear behavior, while the mass shows a square root
behavior with λ.

6.3 The “Higgs” mode and its mass

Higgs mode at zero wave-vector. Next, we discuss the fate of the damped diffusive
mode in eq. (6.3), the Higgs mode. In particular, we focus on its dynamics at zero wave-
vector, as shown in figure 15. Near the critical point, we find that the Higgs mode is well
approximated by a dispersion relation as in eq. (6.3). We find numerically that:

Ω ∼ (1− T/Tc) . (6.5)

This mode corresponds to the fluctuations of the amplitude of the order parameter. Its
behavior is in perfect agreement with the expectation from GL theory, eq. (2.40), i.e.,

Ω ↔ ω2
H

2γ , (6.6)
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Figure 15. The dynamics of the Higgs mode as a function of the reduced temperature. The black
dots encode the fluctuations of the amplitude of the order parameter close to the critical point.

and also with the holographic results for superfluids in [75] and the analysis of [84] (see
also [100, 101]).

Interestingly, by decreasing the temperature, this mode collides with a first non-
hydrodynamic higher pole (indicated with blue color in figure 15). This collision produces a
pair of complex modes, with a finite real part which are displayed in red color in figure 15.
This behavior is, once more, well described qualitatively by GL theory, see eq. (2.38). To be
precise, the complete dynamics is more complicated than an interactions between two modes
as assumed in eq. (2.38). Indeed, the first non-hydrodynamic mode interacts as well with a
second higher order non-hydrodynamic pole (green dots in figure 15) which is not included
in eq. (2.38). Nevertheless, this mode does not strongly affect the low-energy dynamics.

We have also studied the behavior of the Higgs mode in eq. (6.3) and found that its
dynamics is independent of the value of the EM coupling λ. In other words, figure 15
does not change with λ.13 This is consistent with the properties of the Higgs mode as
derived in the GL framework. In particular, the amplitude mode remains unaffected by

13We have explicitly checked for λ/T = 0.1, 0.2, 0.3.
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Figure 16. The phenomenological parameters of GL theory, (ω̃H , γ̃). The Higgs frequency ω̃H and
the Higgs attenuation constant γ̃ at λ/T = 0.1.

Coulomb interactions. Importantly, this also implies that the position of the collision, and
the temperature at which the Higgs mode acquires a real gap, do not depend on the value
of the EM coupling λ.

Higgs mode at finite wave-vector. Considering the finite wave-vector case, we can
try to push the comparison with GL theory further. For that purpose, we use the data
in figure 15 with the dispersion relation in eq. (2.37) obtained from GL theory. Although,
eq. (2.37) cannot completely capture the dynamics of our Higgs mode near T = Tc, we can
still use this approximation in the lower T regime, i.e, for the red mode in figure 15 up to
near the collision point between the blue and black modes, T/Tc ∼ 0.6.

From GL theory, eq. (2.37), we expect a dispersion relation of the form

ω = ±

√ω̃2
H − γ̃2 + ṽ2

2
√
ω̃2
H − γ̃2

k2

− iγ̃ , (6.7)

where ω̃H is the mass of the Higgs mode and γ̃ its attenuation constant. Here, as done for
the transverse sector before, we use the tilde variables for the holographic quantities:

ω̃H ↔ ωH , ṽ ↔ v , γ̃ ↔ γ . (6.8)

Performing this analysis, we find that the velocity v coincides exactly with the velocity ṽ,
eq. (5.3), appearing in the dispersion of the gauge fluctuations mode in eq. (5.1). This is
not surprising, and it is indeed expected from the GL theory (see eq. (2.20) and eq. (2.37)).

Therefore, we have two fitting parameters (ω̃H , γ̃) which can be extracted from the zero
wave-vector analysis. Their temperature behavior for λ/T = 0.1 is shown in figure 16. At low
temperature, we find that ω̃H > γ̃, which is consistent with the GL framework. Additionally,
we find the two parameters are of the same order around T ∗/Tc ≈ 0.6. This signals the
crossover between the overdamped regime at large temperature and the underdamped one
at low temperature and it is consistent with the results presented in figure 15. Finally,
the dissipative parameter γ̃ does not seem to vanish towards zero temperature. This point
deserves further investigation in the model with backreaction.
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After describing the dynamics of the Higgs mode at zero wave-vector, we can extend
the analysis for k 6= 0, i.e., once we know (ω̃H , γ̃) together with ṽ2 = 1 − λχBB, we can
study the dispersion relation at finite wave-vector (6.7). We show the real and imaginary
parts of the dispersion relation of the Higgs mode at low temperature in figure 17.

Interestingly, we see that the GL prediction fits very well the numerical data at low
temperature. This is yet another confirmation that the holographic results are in perfect
agreement with the Ginzburg-Landau effective description.

Further comments on Higgs energy gap. Before closing this section, we discuss
another feature related to the Higgs energy gap, ω̃H . In (s-wave) BCS-type superconductors,
under certain specific approximations, the Higgs mode energy gap ω̃H obeys the following
expression [112]:

ω̃H = 2∆ , (6.9)

where ∆ is the superconducting energy gap related to the order parameter as 2∆ =
√
〈O2〉 [9].

Using our data in figure 2, we estimate
√
〈O2〉 = 2∆ ≈ 8Tc at T/Tc = 0.15, which implies

2∆/T ≈ 53 at T/Tc = 0.15. This result is not consistent with the value of the Higgs gap
ω̃H reported in figure 16 which is ω̃H/T ≈ 8.6 at approximately the same temperature
T/Tc = 0.15. Combining these outcomes, we find:

ω̃H
2∆

∣∣∣
T≈0.15Tc

≈ 0.162 , (6.10)

which is much smaller than the expected value in eq. (6.9).
We speculate about the origin of this discrepancy. First, from a practical perspective,

working in the probe limit does not guarantee complete control on the low-temperature
dynamics. Second, to the best of our knowledge, the result in eq. (6.9) is not of universal
validity but rather limited to weakly coupled BCS-type superconductors. As explicitly
shown recently in [113, 114], holographic superconductors do not fall into that simple class.
It is tempting to attribute this novel outcome to the peculiar strongly-coupled and quantum
critical nature of holographic superconductors. Further investigation is needed to ascertain
the validity of such a statement.

Let us also discuss the GL parameter κGL in (2.22), which is also associated with Higgs
energy gap via:

ω̃H
ω̃A

=
√

2κGL , κGL ≈
1√
λ
. (6.11)

This parameter was studied recently in [26]. Using our numerical data (ω̃H , ω̃A), we can
discuss the behavior of κGL. In figure 18, we examine the ratio between ω̃H and ω̃A as a
function of the temperature for different values of the EM coupling. We find a power law
dependence of the type κGL = ζ1 + ζ2T/Tc. This has to be contrasted with the logarithmic
behavior found in higher dimensions in [26], which reflects the different nature of the EM
coupling in different dimensions. Moreover, as expected from eq. (6.11), the ratio decreases
at larger λ (e.g., from red to yellow in figure 18). This is consistent with the fact that
the λ-dependence in the GL parameter κGL comes entirely from the propagation length
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Figure 17. The dispersion relation of the Higgs mode at low temperature: T/Tc = (0.15, 0.21, 0.25)
(blue, green, red). Left: Re[ω] vs. k. Right: Im[ω] vs. k. The solid lines are the predictions from GL
theory, eq. (6.7).

λGL ∝ 1/
√
λ. Finally, let us comment on the temperature dependence of the GL parameter

κGL. In AdS5 [26], the GL parameter decreases with temperature. Here, it increases. The
difference between the two scenarios is rooted in the dimension of the U(1) coupling λ

in 2D and 3D and could be possibly understood analytically by performing holographic
perturbative computations near the critical point.

So far, we have focused our analysis on the weak-coupling regime, λ/T � 1. In figure 19,
we also discuss the λ-dependence on the energy gaps (ω̃A, ω̃H) at fixed temperature and for
larger values of the U(1) coupling λ. In the left panel, we display ω̃A for different values of
λ at T/Tc = 0.15. We find that (I) ω̃A is monotonically increasing as we enhance λ; (II)
ω̃A deviates from the plasma frequency value, eq. (5.11), for large λ. Furthermore, dialing
the value of λ/T up to λ/T = 50 at the same temperature T/Tc = 0.15, we also checked
that the other energy gap, ω̃H , is independent of λ/T , which implies that the ratio between
ω̃H and ω̃A is decreasing with λ (see the right panel in figure 19). Our observation (II)
also implies that κGL does not follow ≈ 1/

√
λ in the limit of λ→∞. On the contrary, we

numerically find that ω̃H/ω̃A = (λ/T )−0.34. This is another distinct feature from the higher
dimensional case discussed in [26], where κGL remains finite even in the strong EM coupling
limit λ→∞. It would be interesting to understand the large λ limit better. We plan to
revisit this question in the near future. Finally, let us comment about the validity of the
probe limit and the expectations in presence of backreaction. In general, we do not expect
a qualitative difference in the nature of the low-energy modes, whose structure is mostly
dictated by symmetries. Nevertheless, we do expect that the quantitative results, especially
in the limit of small temperature, could radically change in presence of backreaction. This
is also the reason why all our data are cut around T ≈ 0.2Tc, where we do expect such
effects to become important. We leave the investigation of the backreacted model for the
near future.
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Figure 19. The λ-dependence of the energy gaps (ω̃A, ω̃H) at T/Tc = 0.15. Left: ω̃A/T vs. λ/T .
The solid line is the plasma frequency value, eq. (5.11). Right: The ratio ω̃H/ω̃A vs. λ/T . The solid
line is the fitting curve at large λ: ω̃H/ω̃A = (λ/T )−0.34.

7 Outlook

All previous studies on collective dynamics in holographic models with spontaneously broken
U(1) symmetry (e.g., [75, 80]) have been focused on the case where the U(1) symmetry is
global and the dual field theory describes a superfluid rather than a superconductor. In
this work, we have studied the low-energy collective dynamics of a bona fide holographic
superconductor model in which the gauge field in the boundary field theory is dynamical
and the broken U(1) symmetry gauged. We have revealed the characteristic features of
the Anderson-Higgs mechanism and showed evidence for the presence of a Higgs mode
presenting a real mass gap at low temperature. Interestingly, the pattern that gives rise to
this mode seems to follow the GL logic. On the contrary, in holographic superfluids, the
emergence of a pair of complex underdamped modes at low temperature has been observed
to follow a very distinct dynamics [90].

Using a phenomenological attitude, and guided by the predictions of a simple Ginzburg-
Landau approach, we have described the dispersion relations of the collective modes in
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both the transverse and longitudinal sector as a function of the temperature and the
electromagnetic coupling. The agreement between the GL effective description and our
holographic results is excellent. Our work proves that a holographic superconductor,
following all the rules of superconductivity, including the characteristic dynamical excitations,
can be constructed using mixed boundary conditions for the bulk gauge field.

There are several directions which are worth it investigating in the future.

• First and foremost, we have not presented a complete and formal effective description
of the low-energy dynamics. This task can be performed using two slightly different
approaches. From one side, one could try to gauge the model F of Hoenberg and
Halperin [99] and perform an analysis similar to that of [87] for the case of holographic
superfluids. An alternative approach would be to combine magnetohydrodynamics and
superfluid hydrodynamics to construct a hydrodynamic framework for superconductors.
This would need an extension of standard hydrodynamics in order to incorporate
the dynamics of slowly relaxing non-hydrodynamic modes. Indeed, as emphasized
above, ignoring the fluctuations of energy and momentum, a superconductor does not
present any hydrodynamic gapless modes in the spectrum. This is very different from
the case of superfluids which present a gapless propagating second sound mode easily
described within “standard” hydrodynamics.

• It would be interesting to study in more detail the transport properties of a holographic
superconductor. In particular, one would like to understand if any signature of the
massive Higgs mode can be observed in the optical conductivity spectrum below
the superconducting gap. Naively, one would expect that an underdamped Higgs
mode with gap below the SC gap ∆ should leave a clear signature in σ(ω). Here, one
must deal with the subtleties regarding the electric response in presence of Coulomb
interactions, see, e.g., [47, 48].

• Quenches in our holographic superconductor model could be useful tools to explore
the collective dynamics beyond linear approximation. In particular, one might think
of extending the analysis of [100, 101] to this case and use GL theory to interpret
the numerical results. Nonlinear response is expected to be an excellent probe for
the dynamics of the Higgs mode which is usually undetectable in the linear response
regime [115].

• One could generalize our study to the case of multiband superconductors where a
hydrodynamic mode, known as Leggett mode, should be present [116, 117]. It would
be fascinating to study the dynamics of the Leggett mode using holography.

• A different way to promote the gauge field at the boundary as dynamical is by using
the dual higher-form description in the bulk [55]. It would be interesting to construct
a holographic superconductor model without advocating for any U(1) vector gauge
field in the bulk.

• The dynamics and possible observation of the Higgs mode in superconductors has
been topic of a long-standing debate in the condensed matter community [118–124].
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In this work, we found very distinct features in the emergence of the Higgs mode in
holographic superconductors with respect to the previous observations in holographic
superfluids [90]. In particular, we see that the Higgs mode arises, as expected
from the Ginzburg Landau arguments, from the dynamics of the amplitude of the
order parameter. On the contrary, in holographic superfluids, ref. [90] observed the
emergence of an underdamped massive mode at low temperature from the spectrum
of microscopic modes. It would be interesting to understand this difference further.

• It has been recently demonstrated that, in presence of a non-zero superflow, the finger-
prints of the Higgs mode could be visible already in the linear response regime [125].
One could introduce a non-zero condensate flow (supercurrent) in the holographic
model and investigate the dynamics of the amplitude mode therein.

We plan to return to some of these issues in the near future.
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A The speed of transverse excitations in the normal phase

Let us remind the reader about the spectrum of transverse excitations in the normal phase.
Since we are working in the probe limit, the dynamics of the transverse momentum is kept
frozen. Because of this reason, in the normal phase, the shear diffusion mode will not appear
and the whole low-energy dynamics will be controlled by the transverse fluctuations of the
gauge field. Those follow the so-called telegrapher equation:

ω

(
ω + i

σ

εe

)
= k2

εe µm
(A.1)
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where εe, µm are respectively the electric permittivity and the magnetic permeability.
Because of the modified b.c.s. and the dynamical gauge field in the boundary description,
the normal phase displays a transverse massless mode with diffusive dispersion, ω = −i k2

σµm
,

which can be thought as the diffusion of magnetic lines. A detailed check of this dynamics
has been recently reported in [53].

Furthermore, from standard electrodynamics, we have that ṽ2 = 1/(εeµm), with εe, µm
respectively the electric permittivity and the magnetic permeability. In general, the latter
is related to the electric and magnetic susceptibilities via

χEE = εe −
1
λ
, χBB = 1

λ
− 1
µm

. (A.2)

In [53], we found that, at least in the limit of small EM coupling λ/T � 1, χEE = 0 to a
good approximation. Then, using eq. (A.2) in such a limit, we immediately find:

ṽ2 = 1− λχBB for λ/T � 1 . (A.3)

Moreover, as shown in [53], for our simple holographic model we have

χBB = −zh = −3/(4πT ) . (A.4)
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