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1 Introduction

Spinor-helicity formalism, see e.g. [1, 2], is a golden standard to write down the on-shell
amplitudes of massless particles with spin, the earliest illustration of its efficiency having
been the Parke-Taylor formula [3]. The effectiveness of the spinor-helicity approach is
also linked to twistor space techniques [4–9]. Spinor-helicity formalism is closely related
to the light-cone approach, the latter providing an off-shell extension of the former [10].
Therefore, it is natural to extend the spinor-helicity language to the curved setting, two
most important cases being dS4 and AdS4. While the two space-times are close relatives,
specific applications require slightly different approaches, see e.g. [11–13] for dS4 and e.g.
[14–16] for AdS4. We will develop further the AdS4-version of [17], see also [18–21], which is
applicable to dS4 as well. Our main motivation is to explore three-dimensional bosonization
duality [22–27].
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Ideally any reasonable CFT should be dual to a theory of quantum gravity in AdS. Here
‘being dual’ depends on whether or not both sides of the duality have a non-perturbative
description or we have to restrict ourselves to perturbation theory and usually it is the
latter. Therefore, an important question on the bulk side is: does the corresponding gravity
dual admit a tractable semi-classical expansion in some limit. Usually it is not, and the
CFT has to obey certain conditions for it to have a well-defined semi-classical local bulk
dual of field theory type, see e.g. [28]. Semi-classical is equivalent to having some sort
of large-N expansion. Field theory type can be phrased as having the large gap in the
spectrum with finitely many fields below the gap, i.e. in the first approximation the theory
has finitely many fields. Locality is more subtle, e.g. one can easily write down nontrivial
∇kφ4-type interactions for arbitrarily large k.1 One idea [29] is that bulk locality implies
certain additional singularities of CFT correlators.

It would be a great advantage to have simple toy models of quantum gravity, the require-
ments for them being to have the graviton in the spectrum2 and to be finite/renormalizable.
Of course, these features cannot come for free and one has to sacrifice something else, e.g.
unitarity. Putting unitarity aside we have a few rather simple theories: (i) conformal N = 4
supergravity3 coupled to four multiplets of N = 4 SYM [37]; (ii) various self-dual theories
ranging from self-dual (super) Yang-Mills theory (SDYM) to self-dual (super)gravities
(SDGR) and Chiral higher spin gravity [38–44] that admits an extension to (A)dS4 [45–48].
Self-dual theories have a number of attractive properties, e.g. integrability, finiteness,
relation to twistors and instantons. Self-dual theories have vanishing tree level amplitudes
in flat space, but this is not the case in curved backgrounds, e.g. in AdS4. Since self-dual
theories and Chiral higher spin gravity can be thought of as consistent truncations of their
unitary completions, all physical observables in these theories are unitary in the sense of
being parts of the unitary ones.

One more application of Chiral higher spin gravity is to three-dimensional bosonization
duality [46, 48]. Its existence proves that Chern-Simons vector models have two closed
subsectors of the correlation functions. The very existence of a one-parameter family of
CFT’s connecting various free/critical vector models via Chern-Simons extensions thereof
can be attributed [46] to existence of Chiral higher spin gravity. This idea is constructive and
leads to explicit formulas for the correlators, see [46] for the complete 3-point correlators,
which gives an independent proof of the results based on slightly-broken higher spin
symmetry [23] and extends the results of [49]. The main idea of [46] is to use the helicity
decomposition of bulk interactions/CFT correlators. As such it does not even require any
AdS4-realization and can be phrased on the CFT side. We elaborate more on this in section 5
up to four-point correlators as well as on the relation between the bulk spinor-helicity
formalism and bosonization, see also section 4.4.

To deal with theories in the AdS4/CFT3-context it is advantageous to have a fine-grained
decomposition of usual interactions/correlators with respect to their helicity structure, which

1If the stringy picture is available, then the strings’ length has to be much smaller then AdS radius.
2Some CFT’s do not have stress-tensor, e.g. long-range Ising model, and even this requirement can be

dropped. In this case one can consider all the usual renormalizable theories in (A)dS4, e.g. φ4 [30–34].
3It is a matter of opinion, of course, whether to call these theories simple given the complexity of the

action, which is, nevertheless known explicitly thanks to the remarkable efforts in [35, 36].
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is useful on its own. Helicity is a special feature of massless fields in four dimensions: all
massless fields with nonzero spin have two physical degrees of freedom, which greatly
simplifies the structure of amplitudes and is at the core of many important developments
starting from spinor-helicity. When properly treated massless fields have the same two
degrees of freedom on curved backgrounds, in particular, on AdS4 or dS4. The latter should
make it possible to extend the efficient flat space techniques to, at least, constant curvature
spaces. This idea has recently been put forward in a number of papers, see e.g. [50–53].

Once the concept of helicity is extended to AdS4, nothing prevents us from propagating
it further to CFT3 [46], see also [54–56] for very recent studies in the same vein. Not
surprisingly, the helicity decomposition of correlation functions provides a more fine-grained
split that makes a number of useful properties manifest. As a result, one gets a one-to-one
correspondence between 4d massless amplitudes in flat space, vertices/amplitudes in (A)dS4
and CFT3 structures

4d Minkowski
Amplitudes ⇐⇒

AdS4
Amplitudes ⇐⇒ CFT3

Correlators

This gives a bit more of conformally-invariant structures [46] as compared to the canonical
covariant approaches [57], e.g. stress-tensor three-point function can now be split into
+ + +, + +−, −−+ and −−− pieces whereas one usually observes only a sum of + +−
and − −+, which is similar to the spinor-helicity decomposition of the Einstein-Hilbert
cubic amplitude.

With the help of the fine-grained helicity decomposition of vertices/correlators the
three-dimensional bosonization duality can be understood [46] as a simple surgery: the
helicity decomposition of the correlators/vertices is followed by a simple phase, EM-duality,
rotation, after which they are sewed back to correlation functions of a unitary, but parity-
violating (in general) CFT, where the key point is that (anti)-chiral subsectors are rigid and
closed. An interpretation on the AdS4-side is exactly the same with correlators replaced by
the vertices. Helicity decomposition in [46] was done within the light-cone approach in AdS4
[45], which makes the helicity explicit from the very beginning, but at the cost of sacrificing
manifest Lorentz invariance. One of the results of the present paper is to construct a basis
of three-point amplitudes and correlators that exhibits the helicity decomposition while
maintaining Lorentz invariance. We have to admit, however, that the decomposition is not
perfect: in many cases the amplitudes have mixed structure. Nevertheless, this suffices for
applications to the bosonization duality.

After a brief review of an efficient approach [57] to CFT3 correlators in section 2 we
proceed to boundary-to-bulk propagators and spinor-helicity formalism of [19]. In section 3
we discuss the general structure of 3-point amplitudes. To give examples we elaborate on a
number of usual suspects in section 4: Yang-Mills theory with higher derivative corrections;
gravity with higher derivative corrections. As is clear from the previous studies, e.g. [11],
pure Einstein-Hilbert action does not lead to a three-point function of the stress-tensor
in any free CFT, instead it gives a linear combination of the free boson and free fermion
contributions. We also provide a higher spin example in section 4 and discuss the general
properties of the AdS/CFT dictionary. Applications to the bosonization duality are in
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section 5. There is a great number of technical appendices, where we explain our notation,
collect important, yet cumbersome, formulas and explain how to scalarize any n-point
contact interaction vertex in AdS4.

2 AdS/CFT dictionary

This section begins by reviewing the general structure of correlation functions of arbitrary
spin operators for any CFT3 [57] and proceeds by reviewing the construction of boundary-
to-bulk propagators for massless fields in AdS4, see e.g. [17, 21, 58]. In the last part we
generalize the results of [21] as to compute holographic correlation functions for any contact
interaction vertex in the bulk. The formalism makes the helicity structure manifest, as will
be explored in the next section.

2.1 General structure of correlators

In the CFT context we are interested in the general structure of conformally-invariant
correlation functions of operators that can carry a nontrivial representation of the Lorentz
algebra. A very useful observation [59] is that any correlation function can always be
expressed as a sum over a finite number of functions of cross-ratios, each of which is
multiplied by a monomial in certain conformally-invariant structures that takes care of the
Lorentz spin of the operators. For d = 3, on one hand, the structure of these conformally
invariant building blocks of (spin)-tensors can be greatly simplified [57] with the help of the
vector-spinor dictionary, which manifests so(2, 1) ∼ sl(2,R). On the other hand, there are
new features — parity odd structures enter the game early on: there can be parity breaking
contact contributions to two-points functions, which we ignore by working with point split
correlators; there can be also be parity odd structures in three-point functions, which are
important for the bosonization duality to take place [57, 60].

In 3d an irreducible tensor has to be totally symmetric, i.e. no mixed-symmetry option,
and traceless. Therefore, quasi-primary operators Oa1...as

∆ are required to be such, as well
as to have a certain conformal weight ∆. Thanks to so(1, 2) ∼ sl(2,R) we can replace xm,
m = 1, 2, 3 with a symmetric bispinor, xαβ = xβα. A traceless rank-s tensor is mapped into
a rank-2s symmetric spin-tensor. To save our eyes from seeing too many indices, we prefer
to contract them with an auxiliary polarization spinor η ≡ ηα, which leads to the following
transmutations

Oa1...as
∆ (x) −→ Oα1...α2s

∆ (xβγ) −→ O∆(x, η) = Oα1...α2s
∆ (x)ηα1 . . . ηα2s . (2.1)

It is clear that a correlation function of some operators O∆i
(xi, ηi), which are inserted at

points xi with all indices contracted with ηiα, is a conformally-invariant function of xi, ηi.
For example, the Lorentz transformations are represented by SL(2,R) matrices Aαβ that
acts as

xβδ → Aα
β Aγ

δ xαγ , ηiα → Aα
β ηiβ . (2.2)

The inversion map R plays an important role in what follows and is defined as

R~x = ~x
x2 , Rηα = xαβηβ

x2 . (2.3)
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A (over)complete set of conformal invariants that encodes the Lorentz properties of operators
is given [57] by

Pij = ηiαR[xi − xj ]αβηjβ , RPij = Pij , (2.4)

Qijk = ηiα (R[xj − xi]−R[xk − xi])αβ ηiβ , RQijk = Qijk , (2.5)

which are parity even, and by a parity-odd structure

Sijk =
ηkα(xki)αβ (xij)βγηjγ

xijxikxjk
, RSijk = −Sijk . (2.6)

Any three-point correlation function 〈O1(x1, η
1)O2(x2, η

2)O3(x3, η
3)〉 can be decomposed

into an obvious prefactor times a polynomial in Q,P, S structures:

〈O1(x1, η
1)O2(x2, η

2)O3(x3, η
3)〉 = 1

xτ1+τ2−τ3
12 xτ1+τ3−τ2

13 xτ2+τ3−τ1
23

f(P,Q, S) , (2.7)

where τ = ∆− s is the twist. Function f has to agree with the value of spin at every point,
which imposes simple restrictions. For spins high enough there is a lot of ambiguity hidden
in f due to algebraic identities among P , Q and S, [57]. We will deal with three-point
functions and it is convenient to introduce the following abbreviations

Q1 ≡ Q1
32 , Q2 ≡ Q2

13 , Q3 ≡ Q3
21 , S1 ≡ S1

32 , S2 ≡ S2
13 , S3 ≡ S3

21 , (2.8)

and we also add P3 ≡ P12, P1 ≡ P23, P2 ≡ P31. Altogether, the variables so defined go into
each other under the cyclic permutations of 123. For the algebraic relations among these
nine structures, see appendix A. The even structures P,Q appear in the simplest correlation
functions that are completely fixed by the conformal symmetry:

〈Js1(x1, η1)Js2(x2, η2)〉 ∼ 1
x2

12
δs1,s2(P12)s1+s2 , (2.9)

〈Js1(x1, η1)J0(x2)J0(x3)〉 ∼ 1
x12x23x31

(Q1)s1 , (2.10)

where Js is the spin-s conserved tensor and the weight of scalar operator J0 is ∆ = 1. The
conservation of Js, which is AdS/CFT dual to the masslessness in AdS, plays an important
role in the paper and can be checked/imposed with the help of

div = ∂2

∂ηα∂ηβ

∂

∂xαβ . (2.11)

Three-point functions and bosonization. The main kinematical statement about the
general structure of three-point functions of higher spin currents [22, 23, 57] is that4

〈Js1Js2Js3〉 = as1,s2,s3〈Js1Js2Js3〉F.B. + bs1,s2,s3〈Js1Js2Js3〉F.F. + cs1,s2,s3〈Js1Js2Js3〉odd ,

(2.12)
4The existence of the odd CFT3 structure was pointed out in [11].
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where the first two structures can be computed in the theories of free boson and free fermion.
The last one does not show up in any of the free theories and is parity violating. The
coefficients a, b, c, which are related to the OPE coefficients, can be spin-dependent and
encode the dynamical information about a given CFT. The free fermion and free boson
structures are conserved for every point. However, the parity odd structure is conserved for
every leg only for spins that satisfy triangle inequalities, i.e. one can draw a triangle with
edges of lengths s1,2,3. For spins that cannot form the edges of a triangle, e.g. s1 > s2 + s3,
the conservation can be imposed on Js2 and Js3 , but not on Js1 . This fact has a simple
explanation: in interacting theories higher spin currents must not be conserved, but the
non-conservation operator, which stays on the r.h.s. of ∂ ·J , has to be another quasi-primary
operator to the leading order in the large-N expansion. By counting spins and dimensions of
the operators that are available in vector models, it is easy to see that the non-conservation
is driven by the higher spin currents themselves. Schematically, one finds5

∂mJma(s−1) =
∑

s1,s2,...

Css1,s2 [Js1Js2 ] =
∑

s1,s2,...

Css1,s2 [∂a . . . ∂aJa(s1)∂a . . . ∂aJa(s2)] , (2.13)

where C are some structure constants containing the dynamical information, while various
terms in the brackets with same Js1 , Js2 but different arrangement of derivatives are
fixed by the representation theory in such a way that [Js1Js2 ] is quasi-primary. It is clear
that s1 > s2 + s3, which explains why the parity odd structure can (in fact, has to) be
non-conserved for spins outside the triangle inequality.

An important dynamical statement [23] is that the three-point functions are fixed by
the slightly-broken higher spin symmetry manifested via (2.13). In a certain normalization
for the building blocks in (2.12) the three-point functions must have the form (2.12) with

a = Ñ cos2 θ , b = Ñ sin2 θ , c = Ñ cos θ sin θ , (2.14)

where Ñ and θ are certain phenomenological parameters here. Large-N Chern-Simons matter
theories satisfy the assumptions to have slightly-broken higher spin symmetry via (2.13).
In particular, phenomenological parameters Ñ and θ can be related to the microscopical
ones, the number of fields N and Chern-Simons level k in concrete theories. Ñ is irrelevant
for us as it depends on the overall normalization of correlators. It is important that there
is one essential parameter θ and it enters in a very simple trigonometric way.6 There is a
similar statement for three-point functions involving one scalar operator. Kinematically
there are two independent conformally-invariant structures

〈Js1Js2J0〉 = as1,s2,0〈Js1Js2J0〉F.X. + cs1,s2,0〈Js1Js2J0〉odd , (2.15)

where J0 is either ∆ = 1 or ∆ = 2 scalar operator. In the former case, F.X. means F.B. and
in the latter F.X. = F.F. is meant. The odd structures can be extracted from the critical

5All a indices are to be symmetrized, traces projected out and a(k) ≡ a1 . . . ak denotes a group of
symmetric indices.

6Based on the realization of the slightly-broken higher spin symmetry via a certain strong homotopy
algebra [61, 62] it can be proved that all n-point correlation functions are made of several fixed struc-
tures multiplied by powers of e±iθ, i.e. cannot be any complicated dependence on the phenomenological
couplings [63].
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vector and Gross-Neveu models. Slightly-broken higher spin symmetry implies (again, with
a certain normalization of the building blocks)

a = Ñ cos θ , c = Ñ sin θ . (2.16)

The structure of three-point functions with two and three scalar operators is fixed by
conformal symmetry. For further convenience we collect several generating functions in
the free boson and free fermion theories. We will refer to them later when establishing the
dictionary between interactions in AdS4 and correlators on the boundary.

Generating functions for free boson. There is a simple generating function for the
correlators of higher spin currents in the free boson CFT [17, 18, 57, 58]:

〈JJJ〉F.B. = 1
x12x23x31

exp
(
i
2 (Q1 +Q2 +Q3)

)
cos (P1) cos (P2) cos (P3) . (2.17)

It is valid for s = 0 operator J0 = φ2 as well. Generating functions for all n-point correlators
can be found in [17].

Generating functions for free fermion. There are similar generating functions for the
free fermion CFT [18, 19, 57, 58], which are valid for s > 0 and those with ∆ = 2 operator
J̃0 have to be given separately:

〈JJJ〉F.F. = 1
x12x23x31

exp
(

1
2 i (Q1 +Q2 +Q3)

)
sin (P1) sin (P2) sin (P3) , (2.18)

〈J̃0JJ〉F.F. = 1
x2

12x2
31

exp
(

1
2 i (Q2 +Q3)

)
S1 sin (P1) . (2.19)

All n-point functions can be found in [19]. Let us also give several low spin examples that
will be relevant for AdS/CFT applications later on.

Currents’ three-point, 1 − 1 − 1. There are two parity even and one parity odd
structure, if we impose cyclic symmetry over the three legs. As a result, there is a definite
symmetry under the other permutations. In this case all structures are anti-symmetric
and read:7

〈J1J1J1〉even = a1P1P2P3 + a2Q1Q2Q3 , (2.20)
〈J1J1J1〉odd = a3(P1Q1S1 + P2Q2S2 + P3Q3S3) ∼ S1S2S3 . (2.21)

All the three structures are conserved, as can easily be checked. The first one, P1P2P3
comes from the free fermion CFT. The free boson CFT gives the l.h.s. of

2P 2
1Q1 + 2P 2

2Q2 + 2P 2
3Q3 +Q1Q2Q3 ≡ 3Q1Q2Q3 − 4P1P2P3 . (2.22)

With the help of the identities, see appendix B, it can be converted into the r.h.s. Similarly,
there are two equivalent forms of the odd structure.

7We omit the obvious 1/x prefactors that are present in (2.7).
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Stress-tensors’ three-point, 2 − 2 − 2. There are three independent conformally-
invariant structures: free fermion, free boson and an odd one that we choose to be

〈J2J2J2〉odd = (P1P2P3 +Q1Q2Q3) (P2P3S1 + P1P3S2 + P1P2S3) . (2.23)

2.2 Bulk-to-boundary propagators for (massless) fields

We will mostly deal with massless fields of arbitrary spins. They are AdS/CFT dual to
higher spin currents. They can be described by symmetric tensors Φm1...ms

(x) that obey
(in our units of cosmological constant) the Klein-Gordon equation

(� + 2(s2 − 2s− 2))Φa1...as = 0 , Φc
ca3...as = 0 , ∇cΦca2...as = 0 , (2.24)

together with the tracelesness and transversality constraints. The latter is a result of partial
gauge fixing of δΦa1...as = ∇(a1ξa2...as). The value of the mass-like term is determined by
the gauge invariance. To get a massive spin-s field one should replace the fixed mass of the
massless field in (2.24) with a free parameter m2. We will often use the dictionary between
world and fiber tensors established with the help of AdS4 vierbein ha ≡ ham dxm.

Taking advantage of the isomorphism sl(2,C)R ∼ so(1, 3), we can replace every vector
index m = 0, . . . , 3 with bi-spinor xαα̇ ≡ σαα̇m xm. Likewise, a traceless symmetric rank-s
tensor Φa1...as becomes Φα(s),α̇(s), where we introduced a shorthand α(s) for a group of
symmetric indices α1 . . . αs. Analogously, vierbein ha morphs into hαα̇, see appendix A for
more notation.

Complete basis of geometric structures for the boundary-to-bulk problem. We
would like to introduce a complete set of objects with a clear geometric interpretation
that allows us to express any structure relevant for the boundary-to-bulk problem in what
follows [17, 64]. Suppose there is an operator Oα(2s)

∆ (x) on the boundary and a spin-s field
Φα(s),α̇(s)(x), where the coordinates of the bulk point xαα̇ can be identified, as a two-by-two
matrix, with xαβ + iεαβz.

The first geometric object is Ka, which is an analog of the geodesic distance between
the bulk point (x, z) and boundary point xa (it can be understood as a limit of a function
of the geodesic distance d(x, y) whenever one point approaches the boundary):

Ka = z

(x − xa)2 + z2 . (2.25)

It is the same as the bulk-to-boundary propagator for the scalar field that is dual to ∆ = 1
scalar operator. The bulk/boundary translation invariance in the x-direction allows us to
set xa = 0 in this section for simplicity. The geodesic distance K can be used to define a
wave-vector Fαα̇ (it can be understood as a limit of the tangent vector to the geodesic):

dK = KFαα̇hαα̇ , (2.26)

where

Fαα̇ =
(

2z
x2 + z2 xαα̇ − x2 − z2

x2 + z2 iε
αα̇

)
. (2.27)
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To relate the tangent spaces at the bulk and boundary points we need the parallel-transport
bi-spinors Παβ and Π̄α̇β given by

Παβ = K

( 1√
z

xαβ +
√
z iεαβ

)
, Π̄α̇β = K

( 1√
z

xα̇β −
√
z iεα̇β

)
= (Παβ)† . (2.28)

They should be used to propagate the boundary polarization spinors ηα into the bulk:

ξα = Παβηβ e
+iπ4 , ξ̄α̇ = (ξα)† = Π̄α̇βηβ e

−iπ4 . (2.29)

This is the full set of the data that any geometric quantity, including the bulk-to-boundary
propagator, can depend on. The set is closed under covariant derivatives and algebraic
manipulations, see appendix B for various identities.

Propagators. With the help of the geometric objects just introduced, given the irre-
ducibility of Φα(s),α̇(s), there is a unique expression for the boundary-to-bulk propagator of
a massless field:

Φα(s),α̇(s) = bsKξα(s)ξ̄α̇(s) , (2.30)

where bs is an a priory arbitrary normalization and ξα(s) ≡ ξα1 . . . ξαs . We stick to bs = 1.
The only modification required to get the propagator for a massive spin-s field is to change
K to Kν for an appropriate relation between ν and m2.

In practice, most of the interactions involve a number of derivatives. It is not necessary
to know all possible derivatives of the on-shell fields as it turns out that the interactions can
always be written in such a form that derivatives form the maximal number of curls.8 A
specific feature of 4d is that any curl, being a covariant derivative that is anti-symmetrized
with an index of the field, e.g. Fµν = ∇mAn −∇nAm, can be decomposed into self-dual
and anti-self-dual components. This split can nicely be done in the spinorial language. For
example, the Maxwell tensor Fmn splits into Fαβ and Fα̇β̇ as

Fαβ = 1
2∇(α

ν̇ Aβ)ν̇ = 1
2Kξαξβ , Fα̇β̇ = 1

2∇
ν̇

(α̇Aν̇β̇) = 1
2Kξ̄α̇ξ̄β̇ , (2.31)

where Am = Aαα̇h
αα̇
m . According to the identities of appendix B, by taking curls one

generates a set of fields Φα(s+n),α̇(s−n) where the curls decrease/increase the number of ξ/ξ̄

Kξα(2s) Kξα(2s−1)ξ̄α̇ . . . Kξα(s)ξ̄α̇(s) . . . Kξαξ̄α̇(2s−1) Kξ̄α̇(2s) . (2.32)

In general, we have

Φα(s+n),α̇(s−n) = ∇αγ̇ . . .∇αγ̇ Φα(s),α̇(s−n)γ̇(n) . (2.33)

Taking the last curl makes Φ carry only dotted Φα̇(2s) or undotted Φα(2s) indices. For s = 1
we get the (anti)-self-dual components of the Maxwell tensor Fµν . For s = 2 one finds the

8This is a general statement valid for any spin and in any dimension, see e.g. [65], where this result is
formulated in terms of the minimal model of the jet extension of the BRST complex.
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(anti)-self-dual parts of the Weyl tensor. After s curls are taken, which is the maximal
number of curls, one can take gradients

Φα(2s+k),α̇(k) = ∇αα̇ . . .∇αα̇Φα(2s) , Φα(k),α̇(2s+k) = ∇αα̇ . . .∇αα̇Φα̇(2s) , (2.34)

where the indices denoted by the same letter are to be symmetrized. Going on-shell, each
∇αα̇ produces nothing else but Fαα̇ (2.27).

This simple picture is very similar to what one finds in Minkowski space. Indeed, the
plane-wave solution for a spin-s field can be written as

Φα(s),α̇(s)(p) = ξα1 . . . ξαs µ̄α̇1 . . . µ̄α̇s
(ξ̄µ̄)s

exp[±ixββ̇ξβ ξ̄β̇ ]Φ+s(ξ)+

+ µα1 . . . µαs ξ̄α̇1 . . . ξ̄α̇s
(ξµ)s exp[±ixββ̇ξβ ξ̄β̇ ]Φ−s(ξ) .

(2.35)

Here, the on-shell momentum pm, p2 = 0 is factorized into the product of spinors pαα̇ = ξαξ̄α̇,
as usual. The reference spinor is µ. Positive and negative helicity eigenstates are represented
by Φ±s. As is anticipated, Φα(s),α̇(s) carries both helicities. Let us take the first curl of it

∂α
γ̇ Φα(s),α̇(s−1)γ̇ ∼

ξα1 . . . ξαs+1 µ̄α̇1 . . . µ̄α̇s−1

(ξ̄µ̄)s−1 exp[±ixββ̇ξβ ξ̄β̇ ]Φ+s(ξ) . (2.36)

Taking the curl eliminates one of the helicities and the rest of the curls as well as the
corresponding infinite family in (2.34) contain a single helicity. An important conclusion
is that by looking at the vertex we can deduce its helicity structure, e.g. taking at least
one curl projects onto a definite helicity state, while the presence of Φα(s),α̇(s) results in the
mixed structure. The simplest example is the Yang-Mills vertex that decomposes into ++−
and −−+ due to the presence of A. Note, see also below, that this helicity separation is
less efficient in (A)dS4.

The spinor-helicity formalism of [14–16] preserves the bulk Lorentz symmetry explicitly
and is perfect for computing amplitudes in AdS4. However, to establish the holographic
dictionary one has to integrate the wave functions of [14–16] against appropriate wave-
packets (intertwining operators) whose one leg is on the boundary. Our formalism was
defined with the help of Poincare coordinates and does not maintain bulk Lorentz symmetry
on the first sight. Nevertheless, the composite objects K, ξα, ξ̄α̇, Fαα̇ obey a set of Lorentz
covariant relations. Therefore, the formalism incorporates both a close relation to the
boundary correlators as in [11] and bulk Lorentz invariance as in [14–16].

One important property that the present formalism cannot achieve, as we will see
later, is to separate positive and negative helicities for components in (2.33) with n 6=
±s. This is a consequence of the fact that (2.36) fails to be true in (A)dS4. Indeed,
[∇αα̇,∇ββ̇]ξν ∼ ξαεβνεα̇β̇ + ξβεανεα̇β̇, which implies that one can always go back from
Φα(s+k),α̇(s−k), 0 < k < s to any of Φα(s−i),α̇(s+i), −k ≤ i ≤ s. In other words, any of
Φα(s±k),α̇(s∓k) with 0 ≤ |k| < s can be used to recover the rest and, hence, contains both
helicities. Note, however, that all of (2.34), starting from Φα(2s) and Φα̇(2s) contain a
single helicity. On one hand this non-separability does not prevent us from getting all
the required interactions to make contact with the 3d bosonization duality, see also an
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explanation in section 5, but on the other hand it is possible to separate helicities within the
approach of [14–16] and it would be interesting to see how to improve the present approach
to achieve that. For example, this separation is clearly visible in [47, 48]. We should also
note that our AdS spinor-helicity expressions get mapped via AdS/CFT into correlators
in the usual spin-tensor language of [57], reviewed in section 2, and, hence, do not carry
over any spinor-helicity meaning to the CFT side. Therefore, comparison with the results
obtained via the CFT analog of the spinor-helicity language, e.g. [55, 66, 67], can done at
the level of final correlators only.

2.3 Holographic correlators

The goal of this section, which is mostly delegated to appendix C, is to review and generalize
the results of [21], which are themselves based on the old trick [68] of using the inversion
isometry of (anti)-de Sitter space. The main challenge is to scalarize the integrand. It is
obvious that all possible contact interaction vertices

Sn =
∫
Vn , Vn = f [Ki, ξi,Fi] =

∏
i

K∆i
i f [(ξiξj), (ξ̄iξ̄j), (ξiFj ξ̄i), (ξiFj ξ̄k)] (2.37)

can be expressed in terms of various singlet contractions

(ξiξj) ≡ ξαi ξjα , (ξiFj ξ̄k) ≡ ξiαFαα̇j ξkα̇ , (2.38)

where

Ki = K(x − xi, z) , Fαα̇i = Fαα̇(x − xi, z) , ξαi = ξα(x − xi, z; ηi) , ξ̄α̇i = ξ̄α̇(x − xi, z; ηi) ,

refer to the i-th boundary point. Not all of the structures are independent due to the
usual freedom to integrate by parts and also due to Fierz identities. In order to have
(an overcomplete) basis we can choose (ξiξj), i < j and complex conjugates thereof.
As for (ξiFj ξ̄k), we should have j 6= i, k (otherwise, we can use some of the algebraic
identities to reduce it to (ξiξk)-type, see appendix B). We should also have in mind that
(ξiFj ξ̄k)† = (ξkFj ξ̄i).

The three-point integrals, S3, are doable in principle due to the fact that one can always
‘scalarize’ the integrand by representing all xαα̇, which are hidden inside ξ’s and F’s, as
derivatives with respect to the boundary points xi. With the help of the 3d translation
invariance we set x1 = 0 and then use the inversion map. As a result all the building
blocks of the bulk vertices drastically simplify and we can scalarize any integrand (even for
n-point vertices, see appendix D). The integral is then trivially computed and the derivatives
resulted from the scalarization procedure are brought back. At the final step one recovers
the conformally invariant structures P , Q and S. The algorithm is explained in appendix C.
Let us present below some simple examples that recover all the basic conformally-invariant
structures from simple vertices in the bulk∫

d3xdz
z4 KiKjKk

(
ξjξk + ξ̄j ξ̄k

)
= π3

2
1

xijxjkxki
Pjk , (2.39a)∫

d3xdz
z4 KiKjKk

(
ξjξk − ξ̄j ξ̄k

)
= iπ2 1

xijxjkxki
Sikj , (2.39b)
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∫
d3xdz
z4 K2

iKjKk

(
ξjξk − ξ̄j ξ̄k

)
= iπ3

4
1

x2
ijx2

ki

Sikj , (2.39c)

∫
d3xdz
z4 KiKjKk

(
ξjFkξ̄j

)
= π3

8
1

xijxjkxki
Qjik , (2.39d)∫

d3xdz
z4 KiKjKk

(
ξiFj ξ̄k

)
= 0 , (2.39e)∫

d3xdz
z4 K2

iKjK
2
k

(
ξiFj ξ̄k

)
= iπ2

8
1

xijxjkx3
ki

Sjik , (2.39f)

where we assume that whenever three indices are present i, j, k, they are all different,
i 6= j 6= k 6= i. From the dictionary we constructed in appendix C it looks like the following
variables, which are eigen states of the parity operator, are more convenient:

ξ±ij = 1
2 [(ξiξj)± (ξ̄iξ̄j)] . (2.40)

There is nothing to scalarize for ξ+
ij and it gets mapped to Pij for any number of legs. More

examples will be given in due time.

3 General structure of amplitudes

Every CFT3 structure can be encoded in AdS4 as a certain vertex. As far as conserved
currents and tensors are the objects of interest, it will be clear that AdS4 vertices provide a
very economical way to encode CFT3 correlation functions, at least, at the 3-point level9

and, at least, for conserved tensors. Technically what happens is that correlation functions
of conserved currents/tensors correspond to nontrivial polynomials in P , Q, S, which is
due to the fact that the conservation condition does not have a simple solution in position
space.10 On the contrary, any gauge invariant vertex of massless fields in AdS4 automatically
leads to a correlation function that is conserved unless the contribution of boundary terms
is important. Indeed, in checking gauge invariance one has to integrate by parts and there
can be nonvanishing contributions from the boundary terms, which is what happens for
some vertices/correlators.

Vertices vs. correlators in the helicity base. A complete classification of AdS4 cubic
vertices of massless fields was obtained by Metsaev in [45] within the light-front approach
to dynamics. Due to the fact that light-cone gauge and spinor-helicity language are tightly
connected, the classification of three-point amplitudes within the latter [14–16] is perfectly
consistent with the former. A very special feature of four dimensions is that massless fields
with spin have two degrees of freedom that can be represented by two ‘scalars’ Φ±s that
are helicity eigen states and are each other’s complex conjugates. As a result, every vertex

9The AdS-duals of vector models do not have a large gap in the spectrum and, for this reason, have to
be very non-local [29, 69–71], more non-local than the field theory approach allows for.

10Various three-point amplitudes in the low spin theories were computed in a version of the spinor-helicity
formalism in momentum space, see e.g. [11, 72]. However, to the best of our knowledge neither the
computation in position space was performed, nor the relation to the bosonization duality uncovered, except
for [22, 73].
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in four dimensions can be decomposed into pieces, V λ1,...,λn , each having a definite helicity
structure, e.g. for cubic vertices we can have structures ranging from + + + to −−−.

One of the consequences of [45] is that there is one-to-one correspondence between
cubic vertices in flat M4 and AdS4 spaces. For this reason let us recall the classification of
cubic vertices of massless fields in Minkowski space [74], see also [38, 39, 75]. Given any
triplet of helicities h1, h2, h3 one can construct the following amplitudes11

h1 + h2 + h3 < 0 : V h1,h2,h3 ∼ 〈ξ1ξ2〉h1+h2−h3〈ξ2ξ3〉h2+h3−h1〈ξ3ξ1〉h3+h1−h2 , (3.1)

h1 + h2 + h3 > 0 : V h1,h2,h3 ∼ [ξ̄1ξ̄2]−(h1+h2−h3)[ξ̄2ξ̄3]−(h2+h3−h1)[ξ̄3ξ̄1]−(h3+h1−h2) .

(3.2)

The scalar cubic self-interaction is an exception to this rule and is a unique vertex for
h1,2,3 = 0. Therefore, cubic vertices/amplitudes can be identified unambiguously by their
helicity structure. The constraint for the sum of helicities to be positive/negative is a
consequence of locality. In the light-cone gauge the Hamiltonian has |h1 + h2 + h3| powers
of the transverse momenta:

V h1,h2,h3 ∼ (p⊥)|h1+h2+h3|Φh1Φh2Φh3 . (3.3)

The boost generators J i− should have one power less and it has to be non-negative, which
implies |h1 + h2 + h3| > 0, except for hi = 0 where J i− = 0.

As [45] shows, all vertices in Minkowski space M4 can be uplifted to AdS4. The
curvature effect is in that the leading terms of the vertices get corrected by a tail of lower
derivative terms.12 Yet another issue is that CPT, which is almost automatic in covariant
approaches, prescribes certain specific linear combinations of vertices, while in the helicity
base they all look independent. For example the Yang-Mills or Einstein-Hilbert cubic
vertices consist of a sum of V +s,+s,−s and V −s,−s,+s for s = 1, 2. It is this sum that can be
written in terms of Aµ or gµν , while we cannot isolate each of the two constituents as local
functions of Aµ and gµν .

A more fine-grained decomposition of interactions that allows one to isolate pieces with
definite helicity structure can be achieved by representing complete theories, e.g. Yang-Mills
and gravity, as perturbations of self-dual truncations thereof. Indeed, self-dual theories, e.g.
Yang-Mills and gravity in flat space, have only vertex of type V +s,+s,−s (or the opposite),
s = 1, 2, [77, 78]. This vertex, being ‘half’ of the Yang-Mills or Einstein-Hilbert vertex, can
be written in a manifestly Lorentz-invariant way, but with the help of other field variables
(as compared to Aµ and gµν).

11To ease the notation we are using the same variables ξi, ξ̄i for the spinors representing the on-shell
momentum at leg i, pαα̇i = ξαi ξ̄

α̇
i in flat space. The brackets mean the scalar product with the help of

εαβ , εα̇β̇ .
12It is important to stress that the classification reviewed above is complete. However, there are (can be)

other approaches where an unfortunate choice of covariant field variables may prevent one from realizing
all of the amplitudes by local vertices in spacetime, see e.g. discussion at the end of [47] for the summary
and [76] for the subtleties in flat space. Of course, this has to be true for n-point vertices as well. The
reason to stress that is due to a confusion in some old literature that claimed that certain vertices do not
exist in flat space and can only be constructed in anti-de Sitter, which already contradicts [38, 39, 74] and is
an outcome of some specific choice of covariant field variables.

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
2
0
4

To summarize the subtle difference between various approaches, depending on the
choice of covariant field variables, we have several options: (a) V λ1,λ2,λ3 can be written
down in a covariant form; (b) certain vertices V λ1,λ2,λ3 may turn out to be inaccessible,
i.e. cannot be covariantized with this choice; (c) certain specific linear combinations of
V λ1,λ2,λ3 with the same spins but different helicities can be accessible. We will see that the
spinorial variables introduced in section 2.2 give an access to some vertices (a), miss some
particular ones (b), but allow one to find all the interactions relevant for the bosonization
duality via (c). As it is well-known, see e.g. [23, 60, 79], there is an important difference
for V λ1,λ2,λ3 such that the spins si = |λi| can form a triangle, i.e. si < sj + sk for all ijk,
and those triplets where si > sj + sk for some ijk. It is for the latter condition (we call
‘outside triangle’) that the tensor operator dual to the highest spin field in the vertex may
not be conserved.

Three-point amplitudes in AdS4. It is obvious that any on-shell vertex can be ex-
pressed as a scalar function of ξ’s and F’s:

V3 = K1K2K3f [ξi,Fi] = K1K2K3f [(ξiξj), (ξ̄iξ̄j), (ξiFj ξ̄i), (ξiFj ξ̄k)] , (3.4)

where Ki to the first power indicate that we are dealing with massless fields. We usually
drop these factors below. Existence of field-redefinitions and total derivatives imply that
one and the same vertex can be written in (infinitely) many ways.13 Total derivatives are
given by a multiple of

∑
i Fiαα̇. There are also Fierz identities that may allow one to rewrite

the same vertex in several equivalent ways. Therefore, we would like to find at least one
representative of a vertex that corresponds to a given helicity configuration, the simplest
one obviously.

Abelian amplitudes inside triangle. Let us consider first the case of three spins s1, s2,
s3 that can form a triangle, i.e. si + sj − sk ≥ 0 for all triplets i 6= j 6= k 6= i. In this case we
do not have to employ F’s from (2.27), which represent derivatives. The actual derivatives
turn out to be hidden in the number of ξ’s as compared to ξ̄.14 For the abelian vertices we
find

V +s1,+s2,+s3 : (ξ1ξ2)s1+s2−s3(ξ2ξ3)s2+s3−s1(ξ3ξ1)s3+s1−s2 , (3.5a)
V −s1,−s2,−s3 : (ξ̄1ξ̄2)s1+s2−s3(ξ̄2ξ̄3)s2+s3−s1(ξ̄3ξ̄1)s3+s1−s2 , (3.5b)

which in terms of on-shell fields (2.33), (2.34) corresponds to15

L3 = Φα(s1+s3−s2)
β(s1+s2−s3) Φβ(s1+s2−s3)

γ(s2+s3−s1) Φγ(s2+s3−s1)
α(s1+s3−s2) , (3.6a)

L3 = Φα̇(s1+s3−s2)
β̇(s1+s2−s3) Φβ̇(s1+s2−s3)

γ̇(s2+s3−s1) Φγ̇(s2+s3−s1)
α̇(s1+s3−s2) . (3.6b)

Let us note that this class is the only one where we have a definite helicity on every leg in
our representation of amplitudes. Abelian vertices outside triangle, which are still + + + or

13Given some vertex, there are infinitely many higher and higher derivative clones, see e.g. [80, 81]. This
problem is not present on the CFT side.

14Note that ∇αα̇ξβ = Fβα̇ξα, while appendix B tells us that Fξ = ξ̄ when indices are contracted. Whenever
the derivatives form curls rather than symmetrized gradients, we do not see any F.

15A proposal for parity-odd structures inside the triangle made in [60] is equivalent to these amplitudes.
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−−−, cannot be made pure and contain an admixture of non-abelian vertices + +− or
−−+ in our approach and for that reason cease to be abelian.

Non-abelian amplitudes inside triangle. These set of vertices involves the usual
Yang-Mills and Einstein-Hilbert vertices. For any triplets s1,2,3 the corresponding am-
plitude can be extracted from [82]16

Ṽ
s1,s2,s3 : (ξ1ξ2)s1+s2−s3(ξ2ξ3)s2+s3−s1−1(ξ3ξ1)s3+s1−s2(ξ̄2ξ̄3) + . . . , (3.7)

where we indicated the leading term. Our notation Ṽ signals the failure to project onto a
single vertex with definite helicities on external lines. We use Ṽ instead of V to indicate
that the vertex is not pure and contains mixed helicity states. The complex conjugate of
this amplitude yields, in fact, the same correlation function. The vertex above is a linear
combination of all elementary vertices V λ1,λ2,λ3 without + + + and − − −, e.g. it gives
V +2,+2,−2 + V −2,−2,+2 for s1,2,3 = 2, see also below.

(Non)-Abelian amplitudes outside triangle. I. There is a clear problem with any of
the AdS4-formulas above once the spins cannot form a triangle. Surprisingly, the expressions
in the light-cone and spinor-helicity languages display no problem both in flat and (A)dS4,
see e.g. (3.1). The covariant approaches reveal certain subtleties in flat space as well, see
e.g. [76]. The last vertex that still makes sense even though the triangle degenerates into
an interval is

V3 = Φα(s1+s3−s2)β(s1+s2−s3)Φβ(s1+s2−s3)Φα(s1+s3−s2) , (3.8)

where s2 + s3 − s1 = 0. Beyond that they Weyl tensors of spin-s2,3 fields do not have
sufficiently many indices. Therefore, we need to involve derivatives. However, naive
expressions like

V3 = Φα(s1+s3−s2)β(s1+s2−s3)Φβ(s1+s2−s3+k),γ̇(k)Φα(s1+s3−s2+k),
γ̇(k) (3.9)

will vanish on-shell upon integration by parts. Here, Φα(2s+k),α̇(k) are just ∇αα̇ . . .∇αα̇Φα(2s).
The simplest way to increase the spin of one leg without affecting the others is to add
(ξiFj ξ̄i)-structures:

Ṽ 3 = (ξ1ξ2)2s2(ξ3ξ1)2s3(ξ1Fiξ1)s1−s2−s3 + . . . , (3.10)

where i = 2, 3, the two forms being equivalent. Therefore, the formally negative powers of
(ξ2ξ3) get resolved into (ξ1Fiξ1). Obviously, this is a general rule and can be applied to all
the vertices outside triangle, i.e. formally we can always think that the AdS4-vertices have

16The exact expression contains certain corrections induced by gauge invariance:∑
l

l!Γ(−s1+s2+s3)Γ(−l+2s2−1)Γ(−l+2s3−1)
Γ(2s2−1)Γ(2s3−1)Γ(−l−s1+s2+s3) (ξ1ξ2)s1+s2−s3 (ξ2ξ3)s2+s3−s1−1−l(ξ3ξ1)s3+s1−s2 (ξ̄2ξ̄3)1+l .

It can also be integrated by parts to eliminate (ξ̄2ξ̄3) in the l = 0 term, so that the leading term looks
exactly like in flat space.
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the same form on-shell as the corresponding amplitudes in the spinor-helicity language, but
need to replace negative powers of (ξkξj) with positive powers of (ξiFj,k ξ̄i) structure.

More rigorously, complete expressions for this class of vertices can be obtained by taking
currents from [83] and contracting them with Φα(s−k),α̇(s+k) for appropriate k. Without
going into details, given helicity eigen states Φα(2s1) and Φα(2s2) (or the complex conjugates
thereof), one can construct an infinite family of conserved currents

Jα(2s1+2s2+k),α̇(k) = Φα(2s1)∇αα̇ . . .∇αα̇︸ ︷︷ ︸
k

Φα(2s2) + . . . . (3.11)

These currents and the complex conjugates thereof allow us to write the usual Noether
current interaction

Ṽ
+s1,+s2,+s3 = Φα(2s1+2s2+k),α̇(k)Jα(2s1+2s2+k),α̇(k) , (3.12)

Ṽ
−s1,−s2,−s3 = Φα(k),α̇(2s1+2s2+k)Jα(k),α̇(2s1+2s2+k) , (3.13)

where s3 = s1 + s2 + k. These vertices have s1 + s2 + s3 derivatives. J is built either from
++ or −− helicities and s3 > s1 + s2. The vertices cannot be pure + + + or −−− since
they lead to nontrivial contributions to Ward identities (they are not conserved with respect
to the highest spin).

Non-abelian amplitudes outside triangle. II. Another family of conserved currents
from [83] can be used to construct the rest of the vertices. Given helicity eigen states Φα(2s1)
and Φα̇(2s2), i.e. with opposite helicities, one can build conserved tensors

Jα(2s1+k),α̇(2s2+k) = Φα(2s1)∇αα̇ . . .∇αα̇︸ ︷︷ ︸
k

Φα̇(2s2) + . . . . (3.14)

The corresponding vertex

Ṽ
±s1,∓s2,±s3 = Φα(2s1+k),α̇(2s2+k)Jα(2s1+k),α̇(2s2+k) , (3.15)

is not pure and contains various + + − and − − + combinations. The vertex has up to
s1 + s2 + k + |s1 − s2| = s3 + |s1 − s2| derivatives. The amplitude is

(ξ1ξ2)2s1(ξ̄3ξ̄1)2s2(ξ1Fiξ̄1)s3−s1−s2 + . . . . (3.16)

Ward identities and non-conservation. A well-established fact is that abelian amplitudes
(those resulting from higher derivative vertices) lead to trivial Ward identities. Indeed, since
checking conservation of a holographic correlation function amounts to a gauge variation of
the corresponding vertex in the bulk, abelian vertices are manifestly gauge invariant and,
hence, are conserved with respect to all legs. Non-abelian amplitudes (those originating
from the vertices that are not manifestly gauge invariant, e.g. Yang-Mills or Einstein-Hilbert
interactions) lead to nontrivial Ward identities. The non-zero contribution can result from
integration by parts in the process of checking gauge invariance and is given by a boundary
term. However, Ward identities are easier to analyze in momentum space rather than in
position space. In this regard it would be beneficial to establish the dictionary between
the position space approach of [57] and the momentum space results of [55, 66, 67, 84]
and [45, 46].
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4 Correlation functions

To get a feeling of what bulk vertices get mapped to on the CFT side we begin with a
number of simple examples, which we tabulate for everyone’s convenience. Even though
our formalism covers massive fields with spin, we will consider below massless fields only.
The scalar field has either ∆ = 1 or ∆ = 2. It is dual to a scalar operator we denote J0 for
∆ = 1 and J̃0 for ∆ = 2. Therefore, the bulk integrals are always of the form

S3 =
∫

volV3 , V3 = K1K2K3f [(ξiξj), (ξ̄iξ̄j), (ξiFj ξ̄i), (ξiFj ξ̄k)] , (4.1)

and it is the structure of V3 that we write down. The result of the integral is a correlation
function of the form

〈JJJ〉 = 1
x12x23x31

f(P,Q, S) , 〈J̃0JJ〉 = 1
x2

12x2
31
f(P,Q, S) , (4.2)

and it is f that we write down. In the J̃0-case we have (K1)2 in (4.1).

s − 0 − 0. Let us begin with the simplest series of vertices where a scalar field couples
to a massless spin-s field via a conserved tensor. After integration by parts and taking
advantage of the transverse-traceless gauge we end up with∫

Φa(s)(∇a . . .∇aΦ)Φ ∼
∫

Φα(s),α̇(s)(∇αα̇ . . .∇αα̇Φ)Φ . (4.3)

It is clear that the building block is (ξ1F2ξ̄1), which results in, cf. [85],

Ṽ
±s,0,0 = V +s,0,0 + V −s,0,0 : (ξ1F2ξ̄1)n :

2−n−1π3Γ
(
n+ 1

2

)
√
πn2Γ(n) (Q1)n . (4.4)

Using the canonical form of the interaction, as above, it is impossible to separate positive
and negative helicities. However, this is exactly the combination that is stable under the
correlation functions’ surgery [46] in the helicity basis that manifests the 3d bosonization
duality. Therefore, we do not attempt to decompose the vertex further, but it may be
interesting to see if it is possible to achieve that with the help of a certain seemingly trivial
representative, i.e. as a total derivative.

4.1 Yang-Mills theory with higher derivative corrections

Our next example offers the simplest possibility to test the spinor-helicity approach and
observe parity-odd structures via holographic correlators. The action we take reads

SYM = 1
2Tr

∫
vol

[
FααF

αα + Fα̇α̇F
α̇α̇
]
, (4.5)

where we define the (anti)-self-dual components of the field strength F = dA−AA as17

dA−AA = EααFαα + Eα̇α̇Fα̇α̇ . (4.6)
17For the ease of notation A is assumed to take values in some matrix algebra, so that AA ≡ dxm ∧

dxnAm
i
j An

j
k = 1

2dx
m ∧ dxn [Am, An]ik . It is the trace over these implicit matrix indices that is in front

of the action as Tr.
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Here eαα̇ is the (possibly, dynamical) vierbein and we define a basis of (anti)-self-dual
two-forms Eαα ≡ eαγ̇ ∧ eαγ̇ , Eα̇α̇ ≡ eγα̇ ∧ eγα̇. The volume form is Eαα ∧Eαα and we will
mostly use its background AdS4 value. The AdS4-vierbein is hαα̇, see appendix A for more
on our notation.

On top of (4.5) we would like to consider two possible higher derivative terms. Their
sum is parity even, but a disbalance in the two makes a parity-violating contribution to the
CFT correlators. They read

Tr
∫

volFαβ F βγ F γα , Tr
∫

volF α̇β̇ F β̇
γ̇ F γ̇

α̇ . (4.7)

Let us recall the structure of the boundary-to-bulk propagators from section 2.2. We find

Aαα̇ = Kξαξ̄α̇ , A = Khαα̇ξαξ̄α̇ , Fαα = 1
2Kξαξα , Fα̇α̇ = 1

2Kξ̄α̇ξ̄α̇ , (4.8)

where the expressions for F ’s are obtained from (4.6) restricted to free fields. The two
terms in the action (4.5) are equal modulo a topological term, which is the θ-term

Stop = 1
2Tr

∫
vol

[
FααF

αα − Fα̇α̇F α̇α̇
]
. (4.9)

Nevertheless, one should be careful about total derivative since they can affect the answer.
Let us work out the cubic amplitude based on the first of them

1
2Tr

∫
volFααFαα

∣∣∣
cubic

= −1
4 Ṽ
∓1,±1,±1

, (4.10)

where the partial amplitude is defined as18

Ṽ
∓1,±1,±1 = Tr

∫
volK1K2K3(ξ1ξ2)(ξ̄2ξ̄3)(ξ3ξ1) . (4.11)

This partial amplitude is anti-symmetric in (23) and does not have any other symmetries.
The second term leads simply to the complex conjugate of the above

1
2Tr

∫
volFα̇α̇F α̇α̇

∣∣∣
cubic

= −1
4 Ṽ
±1,∓1,∓1

, (4.12)

where the amplitude is

Ṽ
±1,∓1,∓1 = Tr

∫
volK1K2K3(ξ̄1ξ̄2)(ξ2ξ3)(ξ̄3ξ̄1) . (4.13)

It turns out that Ṽ
±1,∓1,∓1 = Ṽ

∓1,±1,±1. These two amplitudes correspond to the sum of
V −1,+1,+1 and V +1,−1,−1, which we cannot separate from each other. The higher derivative
terms lead to

Tr
∫

volFαβ F βγ F γα = 1
8V +1,+1,+1 , Tr

∫
volF α̇β̇ F β̇

γ̇ F γ̇
α̇ = 1

8V −1,−1,−1 , (4.14)

18The trace on the r.h.s. is somewhat superficial. It just implies the color factor and cyclic permutations.
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where

V +1,+1,+1 = Tr
∫

volK1K2K3(ξ1ξ2)(ξ2ξ3)(ξ3ξ1) , (4.15)

V −1,−1,−1 = Tr
∫

volK1K2K3(ξ̄1ξ̄2)(ξ̄2ξ̄3)(ξ̄3ξ̄1) . (4.16)

In this case, the amplitudes can be separated. Now, we are ready to compute the holographic
correlation functions. The basis to expand is chosen as

〈J1J1J1〉F.B. = 1
8

(
2P 2

1Q1 + 2P 2
2Q2 + 2P 2

3Q3 +Q1Q2Q3
)
, (4.17a)

〈J1J1J1〉F.F. = −P1P2P3 , (4.17b)
〈J1J1J1〉odd = S1S2S3 . (4.17c)

The final result can be written as 3× 3 matrix:19Ṽ
(±1,∓1,∓1)

V +1,+1,+1

V −1,−1,−1

 = π2

32

−π −π 0
π −π −2i
π −π 2i


〈J1J1J1〉F.B.
〈J1J1J1〉F.F.
〈J1J1J1〉odd

 . (4.18)

The inverse transformation is20

〈J1J1J1〉F.B.
〈J1J1J1〉F.F.
〈J1J1J1〉odd

 = 8
π3

−2 1 1
−2 −1 −1
0 πi −πi


Ṽ

(±1,∓1,∓1)

V +1,+1,+1

V −1,−1,−1

 , (4.19)

which clearly shows that the pure Yang-Mills vertex leads to the equal number of bosons and
fermions. On the other hand V +1,+1,+1+V −1,−1,−1 is parity even and results in the difference
X = 〈J1J1J1〉F.B. − 〈J1J1J1〉F.F.. Since these two vertices are abelian, i.e. trivially gauge
invariant, X satisfies the trivial Ward identities. The bulk difference V +1,+1,+1−V −1,−1,−1

is parity odd, i.e. leads to 〈J1J1J1〉odd, which again satisfies the trivial Ward identity. We
also note that the topological Pontryagin term does not induce anything.

4.2 Gravity with higher derivative corrections

We begin with the usual Einstein-Hilbert action with the cosmological constant, but written
in MacDowell-Mansouri form [86]:

SEH = 1
4

∫
Rαα ∧Rαα −Rα̇α̇ ∧Rα̇α̇ . (4.20)

19Our notation is that Ṽ
(±1,∓1,∓1) is the sum of Ṽ

±1,∓1,∓1 over all (3) cyclic permutations.
20Given that both in the bulk and on the boundary the normalization of the basis vectors is somewhat

arbitrary, one can ask what functions of matrix elements Ai,j are invariant under the rescaling of the two
basis sets. There are n2 − 2n+ 1 = (n− 1)2 such invariants (1 comes from the fact that rescaling by λ11 has
the same effect on both sides). Such invariants can be constructed via Ãi,j = Ai+1,jAi,j+1/(Ai,jAi+1,j+1).
This scale-invariant matrix has a remarkably simple form

(
−1 0
1 −1

)
, which is the same for all examples

below with s1,2,3 > 0.
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Here, Rαα ≡ Rαα − eαγ̇ ∧ eαγ̇ , where Rαα ≡ dωαα − ωαβ ∧ ωαβ is the Riemann two-form
provided spin-connection ωαβ satisfies the Torsion constraint, idem. for Rα̇α̇. Vierbein
eαα̇ and (anti)-self-dual components ωαβ, ωα̇β̇ of the spin-connection are considered as
independent fields in the action. The equations of motion imply the Torsion constraint

deαα̇ = ωαβ ∧ eβα̇ + ωα̇β̇ ∧ e
αβ̇ , (4.21)

and Einstein equations, which can be extracted either from Rαα or Rα̇α̇. We choose Rαα

and it is useful to write the equations as

Rαα = EββW
ααββ . (4.22)

We recall that Eαα ≡ eαγ̇ ∧ eαγ̇ . Here Wαβγδ parameterizes the self-dual component of
the Weyl tensor. For free gravitons we define the fluctuating vierbein eαα̇ (as opposite to
the background veirbein hαα̇) and call fluctuating spin-connections ωαβ , ωα̇β̇ by the same
names. The free equations read

∇eαα̇ = hαγ̇ ∧ ωα̇γ̇ + hγ
α̇ ∧ ωαγ ,

∇ωαβ = 2h(α
γ̇ ∧ eβ)γ̇ +HγδW

αβγδ ,

∇ωα̇β̇ = 2hγ(α̇ ∧ eγβ̇) +Hγ̇δ̇W
α̇β̇γ̇δ̇ ,

(4.23)

where ∇ is the Lorentz covariant derivative, see appendix A for more detail on our notation.
The boundary-to-bulk propagator (2.30) for the spin-s field immediately tells us that we can
define eαα̇ ≡ hββ̇Φαβ,α̇β̇ = Khββ̇ξβ ξ̄β̇ξ

αξ̄α̇. Likewise, from the equations of motion we find

ωαα = −2Khββ̇ξβ ξ̄β̇ξ
αξα , Wα(4) = −3Kξα(4) , (4.24)

and similarly for the conjugates thereof. Again, there is a topological invariant

Stop = 1
4

∫
RααRαα +Rα̇α̇Rα̇α̇ (4.25)

that can be used to eliminate any one of the two terms in the action. Now, the cubic vertex
can be extracted as follows21

1
2

∫
(RααRαα)

∣∣
3 =

∫
(Rαα)

∣∣
1 (Rαα)

∣∣
2 = −

∫
HββWααββ ∧ (ωαγ ∧ ωαγ + eαγ̇ ∧ eαγ̇) ,

(4.26)

where |i means the order in the fluctuating fields and in the last step we used the free
equations of motion to replace (Rαα)|1 with its free field value HββWααββ . Now, we plug
in the on-shell values for all these fields to get

1
2

∫
(RααRαα)

∣∣
3 = 1

2 Ṽ
±2,±2,∓2

, (4.27)

where the amplitude is

Ṽ
±2,±2,∓2 =

∫
volK1K2K3(ξ1ξ2)2(ξ3ξ1)2(ξ̄2ξ̄3)

[
4(ξ2ξ3) + (ξ̄2ξ̄3)

]
. (4.28)

21We use the fact that the MacDowell-Mansouri action is the Einstein action with all the necessary
holographic counterterms added [87]. In particular, its on-shell value is given by the Weyl gravity action [87].
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This corresponds to the sum of V −2,+2,+2 and V +2,−2,−2 of the Einstein-Hilbert vertex.
The second half arises from −Rα̇α̇Rα̇α̇ and results in the same amplitude, whose actual
expression is given by the complex conjugate of the Ṽ

±2,±2,∓2 with plus sign (note that
Hα̇α̇ ∧H α̇α̇ = −Hαα ∧Hαα, see appendix A). Finally,

SEH
∣∣∣
3

= 1
4

(
Ṽ
±2,±2,∓2 + Ṽ

∓2,∓2,±2) = 1
2 Ṽ
±2,±2,∓2

. (4.29)

As in the Yang-Mills case there are two higher derivative vertices. A generic linear
combination of them violates parity and they are also needed to get non-supersymmetric
correlation functions. We parameterize them as22

− 1
27a2

∫
volWαα

ββW ββ
γγW γγ

αα − 1
27a3

∫
volW α̇α̇

β̇β̇W β̇β̇
γ̇γ̇W γ̇γ̇

α̇α̇ . (4.30)

Their contribution to the amplitude is obvious:

a2V +2,+2,+2 + a3V −2,−2,−2 , (4.31)

where the elementary amplitudes are

V +2,+2,+2 =
∫

volK1K2K3(ξ1ξ2)2(ξ2ξ3)2(ξ3ξ1)2 , (4.32)

V −2,−2,−2 =
∫

volK1K2K3(ξ̄1ξ̄2)2(ξ̄2ξ̄3)2(ξ̄3ξ̄1)2 , (4.33)

and the separation between different helicity structures is possible. The basis of the CFT
correlators consists of

〈J2J2J2〉F.B. = − 5
32P1P2P3Q1Q2Q3 −

5
192

(
P 4

1Q
2
1 + P 4

2Q
2
2 + P 4

3Q
2
3
)

+ 1
4P

2
1 P

2
2 P

2
3 + 25

512Q
2
1Q

2
2Q

2
3 ,

〈J2J2J2〉F.F. = − 1
24P1P2P3 (5Q1Q2Q3 − 4P1P2P3) ,

〈J2J2J2〉odd = (P1P2P3 +Q1Q2Q3) (P2P3S1 + P1P3S2 + P1P2S3) ,

where we slightly simplified the free boson/fermion structures and made a particular choice
for the odd structure (it is unique up to the identities). The final result can be written as
3× 3 matrix: Ṽ

(±2,∓2,∓2)

V +2,+2,+2

V −2,−2,−2

 = 9π2

512

 π π 0
5π
3 −

5π
3 +10i

27
5π
3 −

5π
3 −

10i
27


〈J2J2J2〉F.B.
〈J2J2J2〉F.F.
〈J2J2J2〉odd

 . (4.34)

The inverse transformation is〈J2J2J2〉F.B.
〈J2J2J2〉F.F.
〈J2J2J2〉odd

 = 384
5π3


10
27

1
9

1
9

10
27 −

1
9 −

1
9

0 −πi πi


Ṽ

(±2,∓2,∓2)

V +2,+2,+2

V −2,−2,−2

 . (4.35)

Everything said about the spin-one self-interactions is valid for the spin-two case as well.
22The strange prefactor is due to the normalization of the Weyl tensor, which is −3.
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4.3 Mixed vertices

As to have more examples we also consider some mixed low-spin vertices below.

2−1−1. These are interactions between two Yang-Mills fields and the graviton. There are
two types of vertices: the usual gravitation coupling of the spin-one field’s stress-tensor to
metric and the higher derivative one. In the two-component spinor language the stress-tensor
is Tαα,α̇α̇ = FααFα̇α̇. We can start with the same action (4.5)

SYM = 1
2Tr

∫
Eαα ∧ Eαα

[
FααF

αα + Fα̇α̇F
α̇α̇
]
, (4.36)

but take into account that the volume form is built from Eαα ≡ eαγ̇ ∧ eαγ̇ where eαα̇ is
the full vierbein rather than its AdS4 value hαα̇. The two-derivative vertex is obtained by
varying the action once with respect to eαα̇ and twice with respect to A.23 As a result
we find

−8
∫
eαα̇ĥαα̇FααFα̇α̇ = 1

2 Ṽ
±2,±1,∓1

. (4.37)

This canonical gravitational coupling leads to the following amplitude24

Ṽ
±2,±1,∓1 =

∫
volK1K2K3(ξ1ξ2)2(ξ̄3ξ̄1)2 + c.c. , (4.38)

where we have added c.c. since the stress-tensor is diagonal in the spin-one fields (in case
we have several) and, hence, should be 2↔ 3 symmetric. This amplitude is not pure and is
equal to V +2,+1,−1 + V −2,+1,−1. We will also need the higher derivative couplings∫

volWααααFααFαα = −3
4V +2,+1,+1 ,

∫
volW α̇α̇α̇α̇Fα̇α̇Fα̇α̇ = −3

4V −2,−1,−1 ,

(4.39)

which leads to the following amplitudes

V +2,+1,+1 =
∫

volK1K2K3(ξ1ξ2)2(ξ3ξ1)2 , V −2,−1,−1 =
∫

volK1K2K3(ξ̄1ξ̄2)2(ξ̄3ξ̄1)2 .

(4.40)

The basis to expand is chosen as

〈J2J1J1〉F.B. = 1
32
(
4P 2

2Q1Q2 + 2P 2
1Q

2
1 + 4P 2

3Q1Q3 + 8P 2
3P

2
2 +Q2

1Q2Q3
)
, (4.41a)

〈J2J1J1〉F.F. = −1
2P1P2P3Q1 , (4.41b)

〈J2J1J1〉odd = Q1 (P2Q2S2 + P3Q3S3) . (4.41c)

23Note that F ’s definition, (4.6), depends on eαα̇. Therefore, when taking the variation with respect to
eαα̇ we need to take into account both explicit dependence on eαα̇ and the implicit one through F .

24If we subtract the complex conjugate below, i.e. anti-symmetrize over (23), we get a structure that is
odd, conserved with respect to both spin-one legs and is not conserved for the spin-two leg.
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The final result can be written asṼ
±2,±1,∓1

V +2,+1,+1

V −2,−1,−1

 = π2

128

 6π 6π 0
3π −3π 2i
3π −3π −2i


〈J2J1J1〉F.B.
〈J2J1J1〉F.F.
〈J2J1J1〉odd

 . (4.42)

The scale invariant matrix is the same as before. The inverse transformation reads〈J2J1J1〉F.B.
〈J2J1J1〉F.F.
〈J2J1J1〉odd

 = 32
3π3

 1 1 1
1 −1 −1
0 −3πi 3πi


Ṽ

±2,±1,∓1

V +2,+1,+1

V −2,−1,−1

 . (4.43)

2 − 2 − 1. Next, we consider all possible vertices between a Yang-Mills field and two
massless spin-two fields that can be reached. The latter have to be charged for the vertex
to exist [88] and, hence, the particles cannot be the graviton [89].25 According to the
classification there are three vertices: V +2,+2,+1 with 5 derivatives, V +2,+2,−1 with 3
derivatives and V +2,−2,+1 with 1 derivative. The latter vertex is present in the higher spin
extension [47] of SDYM and cannot be written in terms of Φα(s),α̇(s), see e.g. [76, 88]. We
cannot separate 1- and 3-derivative vertices. A specific linear combination can be written as

Tr
∫
FααHαα ∧

(
{ωββ , ωββ}+ {ωβ̇β̇ , ω

β̇β̇}+ 2{eββ̇ , e
ββ̇}

)
+ 2{A,ωαα} ∧WααααHαα ,

(4.44)

where in the last term the anti-symmetrization over the two ‘gravitons’ is understood (with
the usual normalization 1/2). The corresponding amplitude reads

Ṽ
±2,±2,∓1 =Tr

∫
vol K1K2K3

[
3(ξ1ξ2)3(ξ2ξ3)(ξ̄3ξ̄1)+3(ξ1ξ2)3(ξ3ξ1)(ξ̄2ξ̄3)+

+(ξ1ξ2)2(ξ̄1ξ̄2)(ξ2ξ3)(ξ3ξ1)+ 1
2(ξ1ξ2)(ξ̄1ξ̄2)2(ξ2ξ3)(ξ3ξ1)+(ξ̄1ξ̄2)3(ξ2ξ3)(ξ3ξ1)

]
.

(4.45)

The 5-derivative vertices are the usual abelian ones:

Tr
∫

volFααWαβββWα
βββ = 9

2V +2,+2,+1 , (4.46)

and its complex conjugate. The amplitude is

V +2,+2,+1 = Tr
∫

volK1K2K3 (ξ1ξ2)3 (ξ3ξ1) (ξ2ξ3) . (4.47)

The basis to expand is chosen as

〈J2J2J1〉F.B. = 1
384
(
12P 2

1Q1
(
4P 2

3 +Q1Q2
)
+12P 2

2Q2
(
4P 2

3 +Q1Q2
)
+Q3

(
24P 2

3Q1Q2+8P 4
3 +3Q2

1Q
2
2
))
,

〈J2J2J1〉F.F. = 1
36P1P2P3

(
−6P 2

3 −9Q1Q2
)
,

〈J2J2J1〉odd = 1
6
(
2P 3

3Q3S3+3P3Q1Q2Q3S3+P1Q
2
1Q2S1+P2Q1Q

2
2S2+4P1P2P

2
3 S3

)
.

25Note that such vertices do not appear in any of the theories we are aware of, except for the hypothetical
higher spin gravity since they are required to reproduce the right three-point functions.
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The final result can be written asṼ
±2,±2,∓1

V +2,+2,+1

V −2,−2,−1

 = π2

256

−9π −9π 0
6π −6π 4i
6π −6π −4i


〈J2J2J1〉F.B.
〈J2J2J1〉F.F.
〈J2J2J1〉odd

 . (4.48)

The inverse transformation reads〈J2J2J1〉F.B.
〈J2J2J1〉F.F.
〈J2J2J1〉odd

 = 32
9π3

−4 3 3
−4 −3 −3
0 −9πi 9πi


Ṽ

±2,±2,∓1

V +1,+1,+1

V −1,−1,−1

 . (4.49)

0 − 1 − 1. Let us also consider several examples involving one scalar field. There should
be two structures, which are easily seen to be

4
∫

volφFααFαα , 4
∫

volφFα̇α̇F α̇α̇ , (4.50)

and the corresponding amplitudes are

V 0,+1,+1 =
∫

volK∆
1 K2K3(ξ2ξ3)2 , V 0,−1,−1 =

∫
volK∆

1 K2K3(ξ̄2ξ̄3)2 , (4.51)

where ∆ = 1 or ∆ = 2. In the first case we have

〈J0J1J1〉F.B. = 1
4
(
2P 2

1 +Q2Q3
)
, 〈J0J1J1〉C.F. = 4P1S1

π
, (4.52)

where C.F. means critical fermion model. The dictionary is(
V 0,+1,+1

V 0,−1,−1

)
= π3

32

(
2 i

2 −i

)(
〈J0J1J1〉F.B.
〈J0J1J1〉C.F.

)
, (4.53)

and the scale-invariant, which is just a number, is trivially −1. For the case ∆ = 2 we have

〈J̃0J1J1〉F.F. = iP1S1 , 〈J̃0J1J1〉C.B. = 2Q2Q3
π

, (4.54)

where C.B. means critical vector model (critical boson). The dictionary is(
V 0,+1,+1

V 0,−1,−1

)
= π3

32

(
1 1
−1 1

)(
〈J̃0J1J1〉F.F.
〈J̃0J1J1〉C.B.

)
. (4.55)

0 − 2 − 2. Likewise, there should be two structures:

1
9

∫
volφWααααW

αααα , 1
9

∫
volφWα̇α̇α̇α̇W

α̇α̇α̇α̇ , (4.56)

and the corresponding amplitudes are

V 0,+2,+2 =
∫

volK∆
1 K2K3(ξ2ξ3)4 , V 0,−2,−2 =

∫
volK∆

1 K2K3(ξ̄2ξ̄3)4 , (4.57)

– 24 –



J
H
E
P
0
3
(
2
0
2
3
)
2
0
4

where ∆ = 1, 2. For ∆ = 1 we have

〈J0J2J2〉F.B. = 1
24

(
3P 2

1Q2Q3 + P 4
1 + 3

8Q
2
2Q

2
3

)
, (4.58)

〈J0J2J2〉C.F. = 4S1
(
P1Q2Q3 + 2P 3

1
)

9π , (4.59)

and the dictionary is (
V 0,+2,+2

V 0,−2,−2

)
= 3π3

256

(
2 i

2 −i

)(
〈J0J2J2〉F.B.
〈J0J2J2〉C.F.

)
. (4.60)

For ∆ = 2 we have

〈J̃0J2J2〉F.F. = 1
6 iP1S1

(
P 2

1 + 3Q2Q3
2

)
, (4.61a)

〈J̃0J2J2〉C.B. = 8P 2
1Q2Q3 − 4P 4

1 + 2Q2
2Q

2
3

9π , (4.61b)

(
V 0,+2,+2

V 0,−2,−2

)
= 3π3

256

(
1 1
−1 1

)(
〈J̃0J2J2〉F.F.
〈J̃0J2J2〉C.B.

)
. (4.62)

Correlation functions of type 0− s1 − s2 were studied in [21, 49].

0 − 1 − 2. This is another subtle example without higher spin fields (in addition to
1− 2− 2). The amplitude/light-cone/spinor-helicity analysis offers us V 0,+1,+2, V 0,−1,+2

and complex conjugates thereof. One cannot write the vertex with one derivative, V 0,−1,+2,
by invoking symmetric covariant fields Φα(s),α̇(s) or by extrapolating the light-cone results
from d > 4 to d = 4 [76, 88]. Instead, one can write down two ‘3-derivative’ vertices as∫

Φ(∇αα̇Fαα)(Φααα,α̇)⊕ c.c. , (4.63)

where we recall that Φααα,α̇ = ∇αβ̇ Φαα,α̇β̇ according to (2.33). The vertex is manifestly
gauge-invariant with respect to spin-one and, hence, is conserved on this leg. It is, however,
not conserved with respect to spin-two, as the CFT analysis also shows [57]. They lead to
two amplitudes

Ṽ
0,+1,+2 =

∫
volK∆

1 K2K3(ξ2ξ3)2(ξ3F2ξ̄3) , Ṽ
0,−1,−2 =

∫
volK∆

1 K2K3(ξ̄2ξ̄3)2(ξ3F2ξ̄3) .

(4.64)

For ∆ = 1 we have

〈J0J1J2〉F.B. = − 1
16
(
4P 2

1Q3 +Q2Q
2
3

)
, 〈J0J1J2〉C.F. = −4iP1Q3S1

3π , (4.65)

(
Ṽ

0,+1,+2

Ṽ
0,−1,−2

)
= π3

64

(
2 1
2 −1

)(
〈J0J1J2〉F.B.
〈J0J1J2〉C.F.

)
. (4.66)
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For ∆ = 2 we find

〈J̃0J1J2〉F.F. = −1
2 iP1Q3S1 , 〈J̃0J1J2〉C.B. = −2Q3

(
P 2

1 +Q2Q3
)

3π , (4.67)

(
Ṽ

0,+1,+2

Ṽ
0,−1,−2

)
= π3

64

(
1 1
−1 1

)(
〈J̃0J1J2〉F.F.
〈J̃0J1J2〉C.B.

)
. (4.68)

4.4 Higher spins

It is hard to explore correlation functions for spins outside the triangle as long as we do
not go beyond spin-two: 0− 0− 1, 0− 0− 2 have a very poor structure. One exception is
0− 1− 2, which was studied above. Here we also consider the example of 1− 1− 3, which
is 〈J1J1J3〉, see also a detailed discussion on the CFT side in [49]. Then, we generalize and
summarize the results for all spins.

1 − 1 − 3. In principle, one has V +1,+1,+3, V +1,−1,+3, V −1,−1,+3 at disposal and the
complex conjugates thereof. The lowest-derivative one, V −1,−1,+3, seems unreachable, but a
linear combination of V −1,−1,+3 with V +1,−1,+3 plus the complex conjugate is easily found
to be

Ṽ
±1,∓1,±3 =

∫
vol

[
(ξ3ξ1)2(ξ̄2ξ̄3)2(ξ3F1ξ̄3) + (ξ̄3ξ̄1)2(ξ2ξ3)2(ξ3F1ξ̄3)

]
. (4.69)

The highest-derivative vertices cannot be made pure as well: they are manifestly gauge-
invariant with respect to spin-one, but not for spin-three:

Ṽ
+1,+1,+3 =

∫
vol (ξ3ξ1)2(ξ2ξ3)2(ξ3F1ξ̄3) , (4.70)

Ṽ
−1,−1,−3 =

∫
vol (ξ̄3ξ̄1)2(ξ̄2ξ̄3)2(ξ3F1ξ̄3) , (4.71)

where we chose to have F1, but F2 would give the same expression via integration by parts.
The basis of conformal structures is chosen as

〈J1J1J3〉F.B. = 1
192Q3

(
6P 2

1
(
4P 2

2 +Q1Q3
)

+Q3
(
6P 2

2Q2 +Q3
(
2P 2

3 +Q1Q2
)))

,

〈J1J1J3〉F.F. = −1
8P1P2P3Q

2
3 ,

〈J1J1J3〉odd = 2Q2
3 (P1Q1S1 + P2Q2S2 + P1P2S3) .

The final result can be written as
Ṽ
±1,∓1,±3

Ṽ
+1,+1,+3

Ṽ
−1,−1,−3

 = 5π2

128

 2π 2π 0
π −π i

15
π −π − i

15


〈J1J1J3〉F.B.
〈J1J1J3〉F.F.
〈J1J1J3〉odd

 . (4.72)

It may also be convenient to choose the basis of interactions that have definite parity, for
which we find

Ṽ
±1,∓1,±3

Ṽ
+1,+1,+3 + Ṽ

−1,−1,−3

Ṽ
+1,+1,+3 − Ṽ

−1,−1,−3

 = 5π3

64

 1 1 0
1 −1 0
0 0 i

15π


〈J1J1J3〉F.B.
〈J1J1J3〉F.F.
〈J1J1J3〉odd

 . (4.73)
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All spins. Several simple facts can be pointed out for the most general cases. Suppose
that we are interested in 〈Js1Js2Js3〉 for generic spins, s1,2,3 > 0. In the bulk we find several
vertices, ranging from + + + to −−−. However, as it was already mentioned, not all of
them can be written with the help of totally symmetric gauge potentials Φa1...as . With the
latter we can detect only three types of vertices amplitudes: Ṽ

+s1,+s2,+s3 , Ṽ
−s1,−s2,−s3 and

Ṽ
(±s1,∓s2,∓s3), which are specific linear combinations of various + + +, + +−, −−+ and
−−− vertices. It makes sense to form parity-odd and parity-even combinations of + + +
and −−−. Then, the AdS/CFT dictionary we expect on general grounds is Ṽ

(±s1,∓s2,∓s3)

Ṽ
+s1,+s2,+s3 + Ṽ

−s1,−s2,−s3

Ṽ
+s1,+s2,+s3 − Ṽ

−s1,−s2,−s3

 =

 x x 0
y −y 0
0 0 z


〈Js1Js2Js3〉F.B.
〈Js1Js2Js3〉F.F.
〈Js1Js2Js3〉odd

 (4.74)

with zeros on their obvious places because of parity and the non-zero entries can, in principle,
be all different. It is a very special feature of AdS4/CFT3-correspondence that the free
parameters arrange themselves into this form: the non-abelian vertex is a sum of an equal
number of bosons and fermions; the abelian parity-even vertex is the difference of equal
number of bosons and fermions. If we allow for arbitrary rescalings of the basis on both
sides, there is still one scale-invariant number (−yx)/(xy) = −1. See also [23, 60, 79] for
earlier comments along these lines. The parity-odd/parity-even combinations of vertices
are abelian whenever the spins are within triangle, as is clear from (3.6). For the spins
outside triangle, the vertex is not identically gauge-invariant with respect to the highest
spin, which leads to its non-conservation. However, the non-conservation manifests itself
for the parity-odd part only, where the boundary terms coming from the two parts of the
vertex do not cancel each other. The inverse transform is〈Js1Js2Js3〉F.B.

〈Js1Js2Js3〉F.F.
〈Js1Js2Js3〉odd

 =


1

2x
1
2y 0

1
2x −

1
2y 0

0 0 1
z


 Ṽ

(±s1,∓s2,∓s3)

Ṽ
+s1,+s2,+s3 + Ṽ

−s1,−s2,−s3

Ṽ
+s1,+s2,+s3 − Ṽ

−s1,−s2,−s3

 . (4.75)

Similarly, for one scalar leg we have two vertices Ṽ
+s1,+s2,0 and Ṽ

−s1,−s2,0, which are again
specific linear combinations of various + + 0, +− 0 and −− 0. The dictionary is(

Ṽ
0,+s1,+s2 + Ṽ

0,−s1,−s2

Ṽ
0,+s1,+s2 − Ṽ

0,−s1,−s2

)
=
(
x′ 0
0 y′

)(
〈J0Js1Js2〉X.B.
〈J0Js1Js2〉odd

)
(4.76)

where for ∆ = 1 (∆ = 2) boundary conditions we have X.B. = F.B. (X.B. = C.B.) and
the odd part corresponds to C.F. (F.F.). The odd vertex is automatically outside triangle
(unless s1 = s2) and is not conserved with the respect to the leg carrying the highest spin.

Since 〈J0J0Js〉 is unique and corresponds to Ṽ
0,0,±s the dictionary is trivial here. There

is also a subtle vertex V 0,0,0 that should give zero for the critical vector model for ∆ = 2 and
〈J0J0J0〉F.B. for ∆ = 1. This is an example of an extremal correlator. It can be approached
via 4 + ε as in [90], via a careful treatment of the boundary conditions [91] or by an analytic
continuation in helicity [46].
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While the complete position/momentum space dictionary is missing at the moment,
one can try to make contact with the approach of [55, 66, 67]. Any correlation function
can be split into homogeneous (h) and non-homogeneous (nh) parts. Let us restrict to
the case where the spins satisfy the triangle inequality and ignore contact terms as we do
not have those under control in position space. The h-part satisfies trivial Ward identities
and can be obtained as the difference 〈JJJ〉F.B. − 〈JJJ〉F.F. between the free boson and
free fermion correlators. This is in accordance with the AdS/CFT dictionary established
in (4.74) where 〈JJJ〉F.B. − 〈JJJ〉F.F. is dual to the parity even abelian vertex, which is
V +++ + V −−−. The parity-odd h-part is the difference V +++ − V −−−. The nh-part is
given by 〈JJJ〉F.B. + 〈JJJ〉F.F. and, as is clear from (4.74), is dual to the non-abelian
vertex.

As is clear from the AdS/CFT dictionary, the bosonization duality demands the bulk
interaction to be

1
2x Ṽ

(±s1,∓s2,∓s3) + Ṽ
0,0,±s + εV 0,0,0+

+ 1
2y cos(2θ)

[
Ṽ

+s1,+s2,+s3 + Ṽ
−s1,−s2,−s3

]
+ 1

z sin(2θ)
[
Ṽ

+s1,+s2,+s3 − Ṽ
−s1,−s2,−s3

]
+

+ 1
y′ cos(θ)

[
Ṽ

0,+s1,+s2 + Ṽ
0,−s1,−s2

]
+ 1

x′ sin (θ) [Ṽ 0,+s1,+s2 − Ṽ
0,−s1,−s2 ] .

(4.77)

The lowest derivative non-abelian interactions, e.g. those of Yang-Mills and pure gravity,
are universally present with no dependence on θ (the first line). An interesting feature
noted in [92] is that θ = π/4 is somewhat special in that the highest derivative abelian
interaction vanishes and the theory is maximally parity-violating (the corresponding CFT
is at the mid point between its fermionic and bosonic dual formulations).

Lastly, let us stress an appealing feature of the bulk spinor-helicity formalism we employ:
while it does not allow us to separate vertices into the ones having definite helicity structure
in some of the cases, it is sufficient to capture the bosonization duality. In other words, it
picks the right linear combinations of the vertices with same spins but different helicities to
account for Chern-Simons matter theories.

5 (Spinor)-helicity and bosonization

Let us explain briefly the idea of [46] on how to prove the three-dimensional bosonization
duality with the help of helicity decomposition. The whole duality is due to existence of
a one-parameter family of correlation functions that interpolates between two theories,
one is built out of fermionic matter and another one out of the bosonic matter. In
particular, we will clarify the dictionary between the fine-grained helicity decomposition
of the amplitudes/vertices/correlators and the one we have in the paper which is more
coarse-grained but still suffices.

We begin with the basis of cubic vertices V λ1,λ2,λ3 that has definite helicities on external
legs. It is useful to set Λ = λ1 + λ2 + λ3. Now, the sectors with Λ > 0 and with Λ < 0 are
closed and self-consistent. They belong to (anti)-Chiral higher spin gravity [38–48, 93]. The
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importance of these two sectors is in that they are rigid, i.e. all relative couplings between
various vertices are completely fixed26 to be

gV 3 = g
∑
λ1,2,3

1
Γ[λ1 + λ2 + λ3]V

λ1,λ2,λ3 , ḡV̄ 3 = ḡ
∑
λ1,2,3

1
Γ[λ1 + λ2 + λ3] V̄

−λ1,−λ2,−λ3
,

(5.1)

where g and ḡ are two independent complex couplings. We also used V̄ with the bar in V̄ 3
to stress that Λ < 0 and the vertices are conjugate of those V with Λ > 0. The Γ-function
in the denominators restricts the sums to the (anti)-chiral sectors. Chiral and anti-chiral
interactions form a complete basis [45]. The spectrum of (anti)-Chiral theories matches
that of Chern-Simons matter theories. (Anti)-chiral cubic interactions are preceded by the
same free term:27

V 2 =
∑
λ

Φ−λ�Φ+λ . (5.2)

However, (anti)-Chiral theories obviously lack ‘half of the vertices’ at the cubic order.
Nevertheless, (anti)-Chiral theories are useful building blocks due to their rigidity. Any
candidate dual of Chern-Simons matter theories have to contain (anti)-Chiral theories
as closed subsectors, which is similar to how Yang-Mills theory and Gravity have the
corresponding self-dual theories as closed subsectors. Therefore, at the cubic order any
theory with the same spectrum can be obtained by gluing chiral and anti-chiral pieces
together.

The same idea can be articulated directly on the CFT side [46] where the light-cone
gauge reduces a conserved tensor Ja1...as to just two ‘scalars’ J±s that represent helicity
eigen-states.

V λ1,λ2,λ3 ⇐⇒ 〈Jλ1Jλ2Jλ3〉 (5.3)

We will use the bulk notation, but everything we say can be rephrased in the language of
〈Jλ1Jλ2Jλ3〉 without any changes.

An obviously (unique) consistent solution is to take a theory that is a direct sum of
chiral and anti-chiral interactions with the same shared free term:

V 2 + gV 3 + ḡV̄ 3 + . . . . (5.4)

26The assumptions that guaranteed uniqueness, see [38–40] for more detail, can include the presence of
an at least one field with spin s > 2 together with its nontrivial self-interaction, which leads to nontrivial
contribution to Ward identities, i.e. such structures are not conserved identically, featuring contact terms at
coincident points. This mild assumption forces all other spins (at least even ones, and there are variations of
the same statement that incorporate flavour symmetries [42]) to be present for consistency and fixes all
relative couplings.

27In the light-cone gauge a massless spin-s field is represented by two ‘scalars’ Φ±s, the helicity eigen
states, that are complex conjugate of each other. After some rescaling by a factor of the Poincare radius
z the free kinetic operator is simply the flat space D’Alambertian �, in particular, it is spin-independent,
see [45].
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For arbitrary complex couplings g and ḡ this theory is non-unitary, it violates CPT, as can
be seen by looking at its gravitational part

Φ−2�Φ+2 + gV +2,+2,−2 + gV +2,+2,+2 + ḡV̄
−2,−2,+2 + ḡV̄

−2,−2,−2 + . . . , (5.5)

where we see the two halves of the Einstein-Hilbert vertex and the two higher derivative
vertices. There is a simple unitary solution: g = ḡ = |g|, which corresponds to the
free/critical boson dual for ∆ = 1 / ∆ = 2 boundary conditions on the scalar field (indeed,
it does not violate neither unitarity nor parity). However, it is too restrictive and is not the
most general one. The most general CPT-invariant solution is obtained (i) by performing an
additional U(1) electromagnetic phase rotation Φλ → exp[iθ sign(λ)]Φλ (this transformation
is the most general one that does not affect the free kinetic terms); (ii) by taking g = |g|e−iθ

and ḡ = |g|e+iθ. As a result we find for the spin-two sector:

Φ−2�Φ+2 + |g|
(
V +2,+2,−2 + V̄

−2,−2,+2)+ |g|e+2iθV +2,+2,+2 + |g|e−2iθV̄
−2,−2,−2 + . . . ,

(5.6)

where the second term is the Einstein-Hilbert vertex and the last two can be represented as

|g| cos(2θ)
(
V +2,+2,+2 + V −2,−2,−2

)
+ i|g| sin(2θ)(V +2,+2,+2 − V −2,−2,−2) . (5.7)

This agrees with the desired (4.77). The same transformation does the job for all spins. To
operate with different helicity structures in a more efficient way we split various V λ1,λ2,λ3

parts of V 3 and V̄ 3 into V +++, V ++−, V +−−, V ++0, V +−0, V +00, and complex conju-
gates thereof with the helicities reversed. Note that whenever the structure has both + and
− the restriction Λ > 0 for V 3 (or Λ < 0 for V̄ 3) has to be satisfied. Now, the same surgery
as for s = 2 leads to the action (up to higher order terms) that is dual to Chern-Simons
vector models in the large-N [46]

V 2 +
|g|
(
e+2iθV +++ + e+iθV ++0 + (V ++− + V +00) + e−iθV +−0 + e−2iθV +−−

)
+

|g|
(
e−2iθV̄

−−− + e−iθV̄
−−0 + (V̄ −−+ + V̄

−00) + e+iθV̄
+−0 + e+2iθV̄

−++)
(5.8)

The bulk coupling |g| is of order Ñ−1/2, where Ñ is an effective number of degrees of
freedom, and comes as an overall factor for the three-point functions, so we drop it in what
follows. It is instructive to split the result according to the number of scalars in a vertex:

s1−0−0 : V +00+V̄
−00

,

s1−s2−0 : cos(θ)(V ++0+V̄
−−0+V +−0+V̄

+−0)+isin(θ)(V ++0−V̄
−−0−V +−0+V̄

+−0) ,

s1−s2−s3 : cos(2θ)(V ++++V +−−+V̄
−−−+V̄

−++)+V ++−+

+isin(2θ)(V +++−V +−−−V̄
−−−+V̄

−++)+V̄
−−+

.

The result for three non-zero spins can also be rewritten as

cos2(θ)(V +++ + V +−− + V̄
−−− + V̄

−++ + V ++− + V̄
−−+)+

sin2(θ)(−V +++ − V +−− − V̄
−−− − V̄

−++ + V ++− + V̄
−−+)+

+ i sin(2θ)(V +++ − V +−− − V̄
−−− + V̄

−++) .

(5.9)
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This structure is in perfect agreement with the results of [23] on the restrictions imposed
by the slightly-broken higher spin symmetry. In order to massage the result into a form
displaying conformal structures of the parity preserving theories we can consider the two
cases that are dual to the parity preserving theories, which correspond to θ = 0

(V +++ + V ++− + V +−− + V̄
−−− + V̄

−++ + V̄
−−+)+

+ i
(
V ++0 + V +−0 + V̄

−−0 + V̄
+−0)+ (V +00 + V̄

−00) ,
(5.10)

and to θ = π/2

(−V +++ + V ++− − V +−− − V̄
−−− − V̄

−++ + V̄
−−+)+

+ (V ++0 − V +−0 − V̄
−−0 + V̄

+−0) + (V +00 + V̄
−00) .

(5.11)

It is very enlightening to comparing these two pure cases with the general formula. For three
non-zero spins (5.10) and (5.11) correspond to the free boson and free fermion, respectively.
Therefore, we find (the three point functions are normalized as in [23] rather than to Ñ−1/2)

〈Js1Js2Js3〉 = Ñ
(
cos2 θ〈Js1Js2Js3〉F.B. + sin(2θ)〈Js1Js2Js3〉odd + sin2 θ〈Js1Js2Js3〉F.F.

)
,

where the free boson/fermion blocks were identified, the rest being called the odd part. For
the configuration s− 0− 0 the structure is unique and we have

〈Js1J0J0〉 = Ñ〈Js1J0J0〉F.B. = Ñ〈Js1J0J0〉F.F. ,

where different labels correspond to different boundary conditions, ∆ = 1 and ∆ = 2. Lastly,
for one scalar operator inserted we find

〈Js1Js2J0〉 = Ñ (cos θ〈Js1Js2J0〉X.B. + sin θ〈Js1Js2J0〉odd) , (5.12)

where ‘X.B.’ corresponds to free/critical scalar while ‘odd’ corresponds to critical/free
fermion for ∆ = 1 and ∆ = 2 boundary conditions, respectively. The elementary manipula-
tions above were omitted in [46].

Several comments are in order. (1) Since the cubic interaction (5.8) is the most general
one that maintains unitarity, but breaks parity, it proves the three-dimensional bosonization
duality at this order. The apparent simplicity of this result is deceptive since it crucially
relies on two nontrivial results: (a) chiral and anti-chiral interactions form a complete basis;
(b) chiral higher spin gravity has all of its coupling fixed in terms of just one effective
coupling g. As a result, the dual of Chern-Simons vector models (or of any other theory
with such a spectrum) can be obtained by gluing (anti)-chiral pieces together in a unitary
way. The bulk fields are insensitive to whether the currents they are dual to are built
out of bosons or fermions. Since we could fix the three-point correlation functions from
unitarity and higher spin symmetry all theories with such a spectrum should belong to this
one-parameter family of correlation functions.

(2) it is clear that the helicity decomposition allows one to build the correlation functions
for Chern-Simons vector models starting from any of the pure (parity preserving) theories.
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For example, we can take the dual of free/critical boson, perform the helicity decomposition
of the interactions. All possible V λ1,λ2,λ3 are at our disposal now. We can glue them back
into the most general three-point vertex/correlation function that has θ as a parameter.
This is a very intriguing result: all information about correlation function of Chern-Simons
vector models is already contained in any of the pure (parity preserving) theories, which
one finds at θ = 0 or θ = π/2. If a detailed helicity decomposition is not available, one still
extract a lot of information about the correlation functions by taking correlators of two
pure theories θ = 0 and θ = π/2.

(3) it also follows from these results that one does not need the full power of the helicity
decomposition to get the right interactions/correlation functions. Indeed, the complete
helicity decomposition allows us to deal with all possible theories, including non-unitary
ones, e.g. self-dual Yang-Mills and self-dual Gravity. This explains why our coarse-grained
amplitudes can still do the job and, in particular, allows us to identify all the elementary (in
terms of the helicity) constituents thereof. For example, it is clear that the ‘gravitational’
interactions of [82] are, in fact, the sums of the actual minimal gravitational interaction
V +s,−s,2 + V̄

+s,−s,−2 and of the higher derivative V +s,+s,−2 + V̄
−s,−s,+2 interaction.

The idea can be pushed to higher orders, as [46] suggests.28 It is important that one
does not have to invoke any bulk arguments at all. The existence of Chiral higher spin
gravity indicates that there is a closed subsector of Chern-Simons vector models. Then,
Chern-Simons vector models can be understood as an expansion over this subsector. The
general argument is that in the helicity basis one can perform a surgery on the correlation
functions by splitting them into (anti)-chiral parts and the rest, performing the U(1) EM-
duality rotation and assembling them back into correlation functions that depend on one
additional parameter [46, 48]. The appearance of this additional parameter can be traced
to the existence of the closed (anti)-Chiral subsectors, each having its own (in general
complex) coupling constant. This enlarges the number of free parameters from one for the
duals of free/critical boson to two (one of them |g| ∼ Ñ−1/2 simply counts the orders in
the weak field expansion) and proves the existence of a one-parameter family of correlators
connecting the parity preserving theories.

Let us illustrate this for four-point functions. Suppose we have an effective action that
computes correlation functions of any of the parity preserving theories.29 The best we can
assume is that it is a collection of cubic, quartic, etc. vertices

V = V2 + gV3 + g2V4 +O(g3) , (5.13)

28Higher order analysis in the bulk can be hard/impossible to do since the non-chiral vertices are known
to be more non-local than usual field theory methods allow for [29, 69–71]. While generally positive, earlier
steps [58, 94] also revealed some puzzles already at the three-point level, see [80] for the summary, the
conclusion being is that the dual of Chern-Simons vector models is not known in any form that is amenable
to calculation of correlation functions. Nevertheless, for the pure (parity preserving theories) one can use
the effective actions of [95, 96], treating them as actions for composite operators. Then, it is possible to
identify the chiral subsector for the arguments below to work.

29As it was discussed in the previous footnote, one can take an effective action for the composite operators’
interpretation of [95, 96]. In particular, the action of [97] is tightly linked to the light-cone gauge. This
interpretation does not require any subtle bulk picture.
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with an effective constant g being of order Ñ−1/2. This action satisfies the consistency
relations of the form30

g : δV3 = 0 , g2 : δV4 + [V3,V3] = 0 , . . . (5.14)

There is nothing more we can say about it, a priory. Now, the key point is that there are
two closed consistent subsectors that correspond to (anti)-Chiral higher spin gravities.31

Therefore, there is a more fine-grained structure for each of V:

V2 = V 2 , V3 = V 3 + V̄ 3 , V4 = V 4 + V̄ 4 + V̂ 4 , (5.15)

where the free terms are exactly the same for all the three theories. The cubic terms can be
decomposed into the chiral V 3 (sum of the helicities is positive) and anti-chiral V̄ 3 (sum
of the helicities is negative) components and this decomposition is complete. The quartic
component has the (anti)-chiral parts as well as a leftover V̂ 4. Now, the consistency of the
(anti)-chiral theories together with the consistency of the initial one imply

δV 3 = 0 ,
δV̄ 3 = 0 ,

δV 4 + [V 3,V 3] = 0 ,
δV̄ 4 + [V̄ 3, V̄ 3] = 0 ,
δV̂ 4 + [V 3, V̄ 3] = 0 .

(5.16)

Now, the fact that each of the chiral theories has its own (in general complex) coupling
constant, we call g and ḡ, implies that the following effective action is still consistent

Vg,ḡ = V 2 + gV 3 + g2V 4 + ḡV̄ 3 + ḡ2V̄ 4 + gḡV̂ 4 + . . . (5.17)

Already at the level of three-point functions we could see that there is a unique way to get a
unitary parity violating theory: U(1) electromagnetic phase rotation Φλ → exp[iθ sign(λ)]Φλ

combined with g = |g|e−iθ, ḡ = |g|e+iθ. To be more specific, let us consider the four-point
functions of higher spin currents (i.e. s > 0). We have the following helicity decomposition
of the quartic vertices:

V 4 = V ++++
4 + V +++−

4 + V ++−−
4 + V +−−−

4 , (5.18)

V̄ 4 = V̄
−−−−
4 + V̄

−−−+
4 + V̄

−−++
4 + V̄

−+++
4 , (5.19)

V̂ 4 = V̂
++++
4 + V̂

+++−
4 + V̂

++−−
4 + V̂

+−−−
4 + V̂

−−−−
4 , (5.20)

30Below is the usual (perturbatively expanded) master equation, which can be reduced slightly depending
on the approach. In the light-cone gauge and in flat space, the classical consistency conditions require
[H, J i−] = 0, which can be decomposed with respect to the number of fields, H = H2 + H3 + H4 + . . .,
J i− = J i−2 + J i−3 + J i−4 + . . .. Now, contracting H and J i− with anti-commuting ghosts c, ci, we can write
V = Hc + J i−ci and δ is the action of the free part H2c + J i−2 ci. Similarly, if we have a gauge invariant
action S = S2 + S3 + . . . with gauge transformations δg = δg0 + δg1 + . . ., we can construct the usual master
action S with δ = (S2, •). Since we follow [45, 46], which is in the light-cone gauge, eq. (5.14) should be
understood as expansion of [P−, J−1] = 0.

31Even though these theories are in AdS4, we can easily see that they define the corresponding closed
subsectors of Chern-Simons vector models since Chiral theories are local and present no problem to compute
the holographic correlation function.
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where we took into account the constraints on the sum of the helicities for the (anti)-chiral
parts. The surgery results in (we drop the overall |g|2-factor)

cos(2θ)
(
V̄
−−−−
4 + V̄

−−++
4 + V̂

−−−+
4 + V̂

−+++
4 + V ++−−

4 + V ++++
4

)
+

i sin(4θ)
(
V̄
−+++
4 − V̂

−−−−
4 − V +−−−

4 + V̂
++++
4

)
+

cos(4θ)
(
V̄
−+++
4 + V̂

−−−−
4 + V +−−−

4 + V̂
++++
4

)
+

−i sin(2θ)
(
V̄
−−−−
4 − V̄

−−++
4 + V̂

−−−+
4 − V̂

−+++
4 + V ++−−

4 − V ++++
4

)
+

V̄
−−−+
4 + V̂

−−++
4 + V +++−

4

In order to build the four-point function we also need to add the ‘exchanges’. Since
the surgery does not affect the free term, the exchanges due to the cubic vertices make
contributions to each of the structures, but do not produce any new type of θ-dependence.
The theories at θ = 0, π/2 preserve parity. To conclude, we could show that there exists
a one-parameter family of correlation functions that starts from one parity-preserving
theory and ends on another one. We should stress, however, that the uniqueness of the
one-parameter family of CFT’s does not follow immediately and has been shown up to the
three-point level only [46].

6 Conclusions and discussion

In this paper we elaborated on one of the spinor-helicity formalisms that are suitable for
(A)dS4 calculations. We developed a general technique to scalarize any contact interaction.
This was exemplified by a number of three-point vertices/amplitudes and the corresponding
three-point functions. A complete basis of interactions in this approach was used in each of
the cases to capture the three-dimensional bosonization duality.

In the last part we elaborated on the light-front bootstrap suggested in [46]. The
fine-grained helicity decomposition combined with the rigidity of Chiral higher spin gravity
makes it easy to fix the most general unitary but parity-violating cubic interactions and,
hence, the three-point correlation functions. Remarkably, once the helicity decomposition is
available one can build the three-point functions of Chern-Simons vector models out of any
of the pure (parity preserving) limits thereof. This indicates that the large-N Chern-Simons
vector models are free theories in disguise in the sense that they contain exactly the same
information but repackaged in a different way (the correlation functions do not coincide
with any of the free theories, but can be built from such).

Several approaches to prove the bosonization duality look promising. One proof [63, 98,
99] relies on the study of the slightly-broken higher spin symmetry [23]. It has already been
shown [62, 63] that the slightly-broken higher spin symmetry admits unique invariants that
deform those of the unbroken higher spin symmetry. The latter were computed in [17–20]
and shown to given the correct correlation functions of higher spin currents of the parity-
preserving large-N CFT’s. What remains to be done is to actually compute the deformed
invariants. The second promising approach is again based on the slightly-broken higher spin
symmetry and amounts to analyzing the its constraints with many positive results already
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available [55, 66, 67, 84, 100–103], especially the very recent [104]. The third approach,
which makes the proof elementary, is via Chiral higher spin gravity AdS4 [46, 48], whose
mere existence proves that Chern-Simons vector models have two closed subsectors. This
observation allows one to introduce one more coupling constant and show that there is a
one-parameter family of correlators interpolating between the parity preserving theories (it
does not prove yet that there cannot be other free parameters, in principle). It would be
beneficial to relate all these approaches to each other.
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A Notation and conventions

We adopt the mostly plus convention for the metric ηmn = (− + ++), which makes the
Euclidean rotation easier to implement. Choosing xm = (~x, z) to be Poincaré coordinates
with z being the radial coordinate and ~x the three coordinates along the boundary, the
AdS4-background can be described by vierbein hαα̇m and spin-connection that splits into
(anti) self-dual parts $m

αβ and $̄m
α̇β̇ :

hαα̇ = 1
2zσ

αα̇
m dxm , $αβ = i

2z~σ
αβ · d~x , $̄α̇β̇ = − i

2z~σ
αβ · d~x . (A.1)

The matrices σαα̇m are constant and in our convention they are given by σαβ̇m = (~σαβ , iεαβ).
We have the relations32

xαβ = ~σαβ · ~x , x2 = −1
2xαβxαβ , σαα̇m σnαα̇ = −2ηmn , (A.2)

xαα̇ = xαα̇ + izεαα̇ , x2 = x2 + z2 , xij = |xi − xj | . (A.3)

The inverse vierbein hmαα̇ = −zσmαα̇ obeys the relations

hαα̇m h
n
αα̇ = δnm , hαα̇m h

m

ββ̇
= δαβ δ

α̇
β̇
, (A.4)

32The bulk Lorentz algebra, sl(2,C), is not manifest in the Poincaré coordinates. The boundary Lorentz
algebra, sl(2,R), is still manifest. A possible source of confusion is the existence of εαα̇ that allows us to
translate between dotted and undotted indices. As a result the 3d coordinates x can carry different types of
indices xαβ , xαβ̇ or xα̇β̇ , all representing exactly the same two-by-two matrix.
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and the AdS4 metric tensor is given by

gmndx
mdxn = −hαα̇m hnαα̇dx

mdxn = 1
2z2 ηmndx

mdxn . (A.5)

We use the raising and lowering conventions: Xα = εαβXβ and Xα = Xβεβα with
εαγε

βγ = δβα, and similar conventions for the dotted indices. We define ε12 = −ε21 = 1. It is
sometimes convenient to define ∇αα̇ as ∇ = ∇αα̇hαα̇m dxm. The Lorentz covariant derivative
is defined as

∇V αα̇ ≡ dV αα̇ −$α
β V

βα̇ − $̄α̇
β̇ V

αβ̇ . (A.6)

Vierbein. Background vierbein hαα̇ can be used to define the basis of two-, three- and
four-forms:

H α̇α̇ = hν
α̇ ∧ hνα̇ , Hαα = hαν̇ ∧ hαν̇ , hαν̇ ∧H β̇ν̇ = ĥαβ̇ , (A.7)

which obey certain useful identities:

hαα̇ ∧ hββ̇ = 1
2H

αβεα̇β̇ + 1
2H

α̇β̇εαβ , Hαα ∧H α̇α̇ = 0 ,

hαα̇ ∧Hββ = −2
3ε

αβĥβα̇ , hαα̇ ∧ H̄ β̇β̇ = +2
3ε

α̇β̇ĥαβ̇ ,

hαα̇ ∧ ĥββ̇ = −1
4ε

αβεα̇β̇Hαα ∧Hαα ,

Hαα ∧Hαα = −Hα̇α̇ ∧H α̇α̇ , Hαα ∧Hαα = −hαα̇ ∧ ĥαα̇ ,

Hαβ ∧Hγδ = 1
6(εαγεβδ + εβγεαδ)Hνν ∧Hνν .

(A.8)

The volume form is defined to be vol = Hνν ∧Hνν . In the Poincare coordinates we have

Hαβ = 1
4z2 (dxαν̇ ∧ dxβν̇ + 2idxαβ ∧ dz) , (A.9)

vol = i

2z4d
3xdz , (A.10)

ĥαα̇
∣∣
dz=0 = 1

8z3 ε
αα̇d3x . (A.11)

We also define |vol | = i/2 as a factor of difference between the simplest AdS4 invariant
volume d3xdz/z4 and vol . The i will go away in Euclidian signature. We will ignore this
1/2 in the main text.

B Identities, relations

Identities between P, Q, S. As explained in [57], three points plus three polarization
spinors make 15 free parameters in total. The conformal group has dimension 10 and, hence,
there should be only 5 truly free parameters. On the other hand, we have nine structures
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P,Q, S. The even power of any odd structure is even, which is manifested by [57]

S2
1 +Q2Q3 − P 2

1 ≡ 0 ,
S2

2 +Q1Q3 − P 2
2 ≡ 0 ,

S2
3 +Q1Q2 − P 2

3 ≡ 0 ,
P2Q2 + P3P1 + S1S3 ≡ 0 ,
P3Q3 + P1P2 + S1S2 ≡ 0 ,
P1Q1 + P3P2 + S2S3 ≡ 0 .

(B.1)

There is also another relation [57]

P 2
3Q3 + P 2

1Q1 + P 2
2Q2 + 2P1P2P3 −Q1Q2Q3 ≡ 0 . (B.2)

All these relations, which are consequences of the Fierz (or Schouten) identities, bring a lot
of ambiguity in how any correlation function can be written.

Differential relations. The relations below prove that K, Fαα̇, ξα and ξ̄α̇ form a closed
set under all reasonable differential and algebraic manipulations. We begin with

∇Fαα̇ = hαα̇ + Fαγ̇ hδγ̇Fδα̇ = 0 , (B.3)

and the parallel transported spinors obey

∇ξα − Fαγ̇ ξδhδγ̇ = 0 , ∇ξ̄α̇ − Fδα̇ ξ̄γ̇hδγ̇ = 0 . (B.4)

In practice it is useful to rewrite the Lorentz-covariant derivatives with all indices being
explicit:

∇αα̇K = KFαα̇ , ∇αα̇ξβ = Fβα̇ξα , ∇αα̇ξ̄β̇ = Fαβ̇ ξ̄α̇ , ∇αα̇Fββ̇ = 2εαβεα̇β̇ + Fαα̇Fββ̇ .
(B.5)

As a consequence of the differential constraints above one also finds

(�− 4)K = 0 , (�− 6)Fαα̇ = 0 , (�− 4)ξα = 0 , (�− 4)ξ̄α̇ = 0 . (B.6)

K is a boundary-to-bulk propagator for a scalar field that is dual to a ∆ = 1 operator on
the boundary. The first eq. determines our normalization of the cosmological constant:
m2 = Λ∆(∆− d) = 2Λ = −4.

Algebraic identities. The algebraic relations begin with

Fαα̇Fβα̇ = εαβ , Fαα̇Fαβ̇ = εα̇β̇ , (B.7)

and continue as

Fαγ̇ Π̄γ̇β = iΠαβ , Fγα̇ Πγβ = −iΠ̄α̇β , Πα
γ Π̄α̇γ = −iKFαα̇ , (B.8)

ξα = Fαα̇ ξ̄α̇ , ξ̄α̇ = ξαFαα̇ . (B.9)
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The parallel-transport bi-spinors Παβ and Π̄α̇β satisfy identities similar to (B.7):

ΠαβΠγ
β = Kεαγ , Π̄α̇βΠ̄γ̇

β = Kεα̇γ̇ , (B.10)

ΠβαΠβ
γ = Kεαγ , Π̄β̇αΠ̄β̇

γ = Kεαγ . (B.11)

There are also useful identities involving the one-form hαα̇ = dxmhαα̇m :

(F · h)Fαα̇ + hαα̇ = Fαβ̇ h
ββ̇Fβα̇ , (B.12)

(F · h)ξα + (Fαγ̇ hβγ̇ − Fβγ̇hαγ̇)ξβ = 0 , (B.13)

which are due to the Fierz identities.

Inversion map. In addition to (2.3) we need the action of inversion R on the bulk
coordinates

Rxαα̇ = xαα̇

x2 = xαα̇ + izεαα̇

x2 + z2 . (B.14)

Together with (2.3) we can now derive the action of R on K, F, ξ and ξ̄:

K(R(x, z);Rxi) = x2
iK(x, z; xi) ,

Παβ(R(x, z);R(xi)) = −Jαγ̇ Π̄γ̇
δ (x, z; xi)xδβi ,

ξα(R(x, z);R(xi, ηi)) = +iJαγ̇ ξ̄γ̇(x, z; xi, ηi) ,

ξ̄α̇(R(x, z);R(xi, ηi)) = −iJγα̇ ξγ(x, z; xi, ηi) ,

Fαα̇(R(x, z);R(xi)) = Jαβ̇ Jβ
α̇ Fββ̇(x, z; xi) ,

(B.15)

where we defined Jαα̇ as

Jαα̇ = xαα̇√
x2

= xαα̇ + izεαα̇√
x2 + z2

, Jαγ̇ J
βγ̇ = −εαβ . (B.16)

C Three-point functions

We confine the algorithm of computing the correlation functions in the appendix for the
reason of its being conceptually simple but a bit technical. However, as far as we know
the general algorithm of how to scalarize any AdS-integrand has not been given yet. We
concentrate on the AdS4 case, where the spinorial language can be used, but the procedure
can be used for any d. Continuing the discussion of section 2.3 we apply the inversion map
R both to the boundary and bulk data, see appendix B for the action of R. The resulting
dictionary reads:

d3xdz
z4 → d3xdz

z4 , (C.1a)

K1 → z , (C.1b)
K2,3 → x2

2,3K2,3 , (C.1c)
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(ξ1F2ξ̄1)→ 2zK2[η1(x − x2)η1] = −2zK2T
2
11 , (C.1d)

(ξ1F3ξ̄1)→ 2zK3[η1(x − x3)η1] = −2zK3T
3
11 , (C.1e)

(ξ2F1ξ̄2)→ 2K2
2 [η2(x − x2)η2] = −2K2

2T
2
22 , (C.1f)

(ξ3F1ξ̄3)→ 2K2
3 [η3(x − x3)η3] = −2K2

3T
3
33 , (C.1g)(

ξ2F3ξ̄2
)
→ 2K2K3

(
(x23)2

z
K2 [η2 (x − x2) η2] + [η2 (x2 − x3) η2]

)
, (C.1h)

(ξ1ξ2) + (ξ̄1ξ̄2)→ 2zK2(η1η2) , (C.1i)
(ξ1ξ3) + (ξ̄1ξ̄3)→ 2zK3(η1η3) , (C.1j)
(ξ1ξ2)− (ξ̄1ξ̄2)→ −2iK2[η1(x − x2)η2] = 2iK2T

2
12 , (C.1k)

(ξ1ξ3)− (ξ̄1ξ̄3)→ −2iK3[η1(x − x3)η3] = 2iK3T
3
13 , (C.1l)

(ξ2ξ3) +
(
ξ̄2ξ̄3

)
→ 2K2K3 [η2x23η3] , (C.1m)

(ξ2ξ3)−
(
ξ̄2ξ̄3

)
→ 2K2K3η2αη3β

[ 1
iz

(x − x2)αγ (x − x3)γ
β − izεαβ

]
, (C.1n)

where we defined

T lij = −[ηiα(x − xl)αβηjβ ] . (C.2)

We presented the complete list of the structures that are relevant for any bosonic theory in
the bulk. In theories with fermions one can also find few more structures, e.g.

(
ξ2F1ξ̄3

)
,

see appendix E, which can be treated in the same way.
Now it is obvious how to rewrite the integrand in terms of simple differential operators

acting on a scalar integrand of type∫
d3xdz
z4 za(K2)b(K3)c = (x23)a−b−cIa,b,c , (C.3)

where

Ia,b,c =
π3/2Γ

(
1
2(a+ b− c)

)
Γ
(

1
2(a− b+ c)

)
Γ
(

1
2(−a+ b+ c)

)
Γ
(

1
2(a+ b+ c− 3)

)
2Γ(a)Γ(b)Γ(c) .

(C.4)
To scalarize the integrand we define Olij ≡ (ηi∂lηj) ≡ ηiα∂αβxl η

j
β. The main property of Okij

is that it generates the corresponding T lij from Kl, l = 2, 3:

Olijf(Kl) = (Kl)2

z

∂

∂Kl
f(Kl)T lij . (C.5)

However, after several applications of the formula operators Olij can hit T li′j′ as well, which
is manifested by

Oabc T
a′
b′c′ = δaa

′ 1
2 [(ηbηb′)(ηcηc′) + (ηbηc′)(ηcηb′)] . (C.6)

As is clear from the last relation, the extra terms, which are various purely boundary
quantities (ηaηb), are of lower order in T ’s. Therefore, one can subtract them by adding
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a polynomial in O’s of a lower order as well, and so on. In the bulk, we have the
following structures:

T 2
11 , T

2
22 , T

2
12 , T

3
11 , T

3
33 , T

3
13 , Y ≡ η2αη3β(x − x2)αγ(x − x3)γβ . (C.7)

All T ’s can be scalarized by the procedure just described. In principle, one can introduce a
new second order operator to generate Y from K2K3, but there is a simpler way. Let us
introduce two auxiliary polarization spinors η4 and η5 and apply the identity

∂νη4∂
η5
ν (T 2

24T
3
35) = Y . (C.8)

As a result, Y gets replaced with (T 2
24T

3
35), the latter can be treated as all the other T ’s. At

the end one has to perform contractions of η4,5. Now, the integrand is reduced to

V3 =
∑
I
gI [(ηiηj), (ηix23ηj), Okij ] (zaIKbI

2 KcI
3 ) , (C.9)

where (ηix23ηj) ≡ ηiα(x2 − x3)αβηjβ and the sum contains a finite number of terms. It is
important that O’s act on x2,3 in K2, K3 and not on (ηix23ηj). In appendix F we outline
an even simpler procedure to scalarize integrands.

Back to P, Q, S. The integral can now be done term by term in (C.9), after which the
operators O should be applied. Technically, it is convenient to use the same notation Tij
for the corresponding structures on the boundary Tij = [ηix23ηj ] since they arise under the
action of O2

ij on x23 resulting from the integral

O2
ijf(x23) = 1

x23
T 2
ij

∂

∂x23
f(x23) . (C.10)

Note that O3
ij gives exactly the same but with the minus sign. Afterwards, one should

apply the following dictionary to recover the conformally invariant structures:

x2,3 →
1

x2,3
,

x23 →
x23

x2x3
,

P12 → (η1η2) ,

P23 → + [η2x23η3] 1
x2

23
,

P31 → (η3η1) ,

Q1 → −[η1x23η1] ,

Q2 → + [η2x23η2] 1
x2

23
,

Q3 → + [η3x23η3] 1
x2

23
,

S1 →
(η2η3)

x23
,

S2 → + [η1x23η3] 1
x23

,

S3 → + [η1x23η2] 1
x23

.

(C.11a)

D Beyond three-point

The scalarization algorithm we described in appendix C works for any number of legs
(obviously, there is one leg, say x1, on which we play the inversion map, all the others make
no difference). Therefore, we can compute a contribution to an n-point function from any
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contact interaction vertex in the bulk. By ‘computing’ we mean to express it in terms of
the scalar bulk star integral. For n = 4 this is known as D-function [105], which denotes
(up to some self-evident prefactor) the integral with ∆i boundary-to-bulk propagators as
D∆1,∆2,∆3,∆4 . For example [106],

D1,1,1,1(z, z̄) = 1
z − z̄

(
2Li2(1

z̄ )− 2Li2(1
z ) + log(zz̄) log z̄(z − 1)

z(z̄ − 1)

)
, (D.1)

where z, z̄ are related to the two cross-ratios, zz̄ = u, (1− z)(1− z̄) = v. It is clear that
any function of ξ+

ij , where

ξ±ij = 1
2 [(ξiξj)± (ξ̄iξ̄j)] , (D.2)

reduces to the overall factor with ξ+
ij replaced by Pij . For other cases, scalarization results

in derivatives of D-function. One can use various relations that D obeys as well as its series
expansion, [105, 106]. For example, the Seagul vertex φ†AmAmφ in the scalar QED leads to∫

volφ†Aαα̇Aαα̇φ =
∫

volK1K2K3K4(ξ2ξ3)(ξ̄2ξ̄3) . (D.3)

The quartic vertex of Yang-Mills theory looks very simple in the spinor helicity formalism:

Tr
∫

volAαν̇Aαν̇ Aαµ̇Aαµ̇ =
∫

volK1K2K3K4(ξ̄2ξ̄1)(ξ̄4ξ̄3)(ξ3ξ1)(ξ4ξ2) + perm.(12)(34)

(D.4)

Likewise, for gravity we find (for the holomorphic part)∫
QααQ

αα = 1
48

∫
vol [(ξ2ξ1)+(ξ̄2ξ̄1)][(ξ4ξ3)+(ξ̄4ξ̄3)][(ξ4ξ2)(ξ3ξ1)+(ξ4ξ1)(ξ3ξ2)]×

×
{

(ξ̄2ξ̄1)(ξ̄4ξ̄3)[(ξ4ξ2)(ξ3ξ1)+(ξ4ξ1)(ξ3ξ2)]+(ξ2ξ1)(ξ4ξ3)[(ξ̄4ξ̄2)(ξ̄3ξ̄1)+(ξ̄4ξ̄1)(ξ̄3ξ̄2)]
}
,

where Qαα = eαγ̇ ∧ eαγ̇ + ωαβ ∧ ωαβ. The problem of star integrals becomes simpler in
momentum space and in the light-cone gauge. For example, for d = 3 a spin-s field is
represented by a pair of complex scalars Φ±s(p, z), which are conjugate to each other,
see e.g. [45]. The simplest case is ∆ = 1, for which the boundary-to-bulk propagator
is |p|−1 exp (−|p|z]) (after some rescaling of Φ by a factor of z). The bulk integral is
then trivial.

E Exotic structures

Due to integration by parts and Fierz identities there can be more than one way to present
any given interaction. In the main text we tabulated the structures that are sufficient for
any bosonic theory. In theories with fermionic fields one can find two more(
ξ2F1ξ̄3

)
→K2K3

( 1
iz
η2α (x−x2)αγ (x−x3)γ

βη3β+[η2 (x−x2)η3]+[η2 (x−x3)η3]−iz (η2η3)
)

(
ξ1F3ξ̄2

)
→K2K3η1αη2β

{ 1
iz

(x−x3)2 (x−x2)αβ−(x−x3)αγ [(x−x2)−(x2−x3)]γ
β

−iz [(x−x3)+(x2−x3)]αβ−z2εαβ
}
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(
ξα1 F2α

γ̇
)(
ξβ1 F3βγ̇

)
→ η1αη1β

[
−4z2K2K3 (x2−x3)αβ−4izK2K3 (x−x2)αγ (x−x3)γ

β

−2zK2 (x−x2)αβ+2zK3 (x−x3)αβ
]

and the last one can sometimes appear, but it can be simplified via integration by parts.
All of these structures can be taken into account by using the same techniques as in the
main part.

F Scalarize once again

For any number of point the bulk integrand can be understood as a function of T lij =
−[ηiα(x − xl)αβηjβ ], ηixklηj , ηiηj , z and sl = z/Kl:

∫
d3xdz
z4 F (ηiηj , ηixklηj , T lij , sl, z) . (F.1)

It is understood that ηi may include some auxiliary polarization spinors as to factorize Y
structures (C.8). All ηixklηj and ηiηj immediately factor out and we omit (but do not forget
about) them in what follows. We want to trade all T ’s for Olij ≡ (ηi∂lηj) ≡ ηiα∂αβxl η

j
β . Let us

introduce label (l, A) instead of l, ij on T lij and Olij . The starting point for scalarization is

OA,l f(si, TB,j) = −TA,l
∂

∂sl
f + C lA|B

∂

∂TB,l
f , (F.2)

where ‘structure constants’ C lA|B depend on ηiηj according to

Oabc T
a′
b′c′ = δaa

′ 1
2 [(ηbηb′)(ηcηc′) + (ηbηc′)(ηcηb′)] . (F.3)

Therefore, CA|B = CB|A. Also note that different points xl do not ‘see each other’ since O’s
commute for different l. Therefore, we drop label l as well and scalarize with respect to
each point separately. It is useful to consider

∏
A

exp[tAOA]f(s) = f

s−∑
A

tATA − 1
2
∑
A,B

CA|BtAtB

 , (F.4)

which can be computed with the help of eAeB = eA+B+ 1
2C where C = [A,B] and commutes

with A, B. Indeed, OA behaves like a translation operator in s, TA. Now, we can extract
the l.h.s of

sa
∏
A

(TA)bA −→
(
s−

∑
A

tATA

)a+
∑

C
bC ∣∣∣∏

M
t
bN
N

(F.5)

as the coefficient of the r.h.s. The latter can be represented as

∏
A

exp[tAOA] exp[ 1
2
∑
A,B

CA|BtAtB∂s]sa+
∑

C
bC =

∏
A

exp[tAOA]
(
s+ 1

2
∑
A,B

CA|BtAtB

)a+
∑

C
bC

.
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The last expression can be Taylor expanded as to isolate the coefficient of
∏
M tbNN . For

example, for just one variable T (omitting index A) we have

(s− tT )a+b
∣∣∣
tb

= Γ[a+ 2b]
b!Γ[a+ b] (−)bsaT b ,

(s− tT )a+b = exp[tO] exp[ 1
2Ct

2∂s]sa+b = exp[tO](s+ 1
2Ct

2)a+b =

=
∑
n

tn
∑
j

Γ[a+ b+ j]
2j(n− 2j)!j!Γ[a+ b]C

jOn−2jsa+b−j ,

which allows us to derive

saT b =
∑
j

Γ[a+ b+ j]
2j(b− 2j)!j!Γ[a+ b]C

jOb−2jsa+b−j . (F.6)

We can also extract the scalarized integrand f̃(O, s) for any function f(s, T ) as

f̃(O, s) = rest
1
t
etOf

(
s+ 1

2Ct
2, 1

t

(
s+ 1

2Ct
2
))

. (F.7)

For three-point correlators the bulk integral gives xν23 with various ν’s and applying O’s
follows the same formula as in the bulk (F.2) for O2 and produces (−) of (F.2) for O3. For
more points on the boundary the action of Olij on each xli is captured by the same (F.2):

OA,l f(x2
li, tB,lj) = −tA,li

∂

∂x2
li

f + C lA|B
∂

∂tB,lj
f , (F.8)

where tBlj ≡ ηnxljηm for B = (mn).
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