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Abstract: Charged lepton flavor violation (CLFV) represents a transition between
charged leptons of different generations that violates lepton flavor conservation, which
is a clear signature of possible new physics beyond the standard model. By exploiting a
typical example model of extra Z′ gauge boson, we perform a detailed comparative study
on CLFV searches at several future lepton colliders, including a 240GeV electron-positron
collider and a TeV scale muon collider. Based on detailed signal and background Monte-
Carlo studies with fast detector simulations, we derive the potentials in searching for Z′

mediated CLFV couplings with eµ, eτ and µτ of different future colliders. The results are
compared with the current and prospect limits set by either low-energy experiments or the
high-energy LHC experiments. The sensitivity of the τ related CLFV coupling strength
at future lepton colliders will be significantly improved in comparison to the current best
constraints and the prospect constraints for the µτ channel.
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1 Introduction

The standard model (SM) has been proved to be a theory with great success during the
past decades, especially after the discovery of Higgs boson, the last piece of the puzzle.
The lepton flavor is supposed to be conserved during interactions within the SM, which
allows the charged lepton flavor violation (CLFV) neither at tree-level nor at one-loop
level. However, the discovery of neutrino mass and neutrino oscillations enable the loop
level CLFV within the SM, although it is highly suppressed by a factor of (∆mij/MW )4

due to the tiny mass of neutrinos, e.g., the branching ratio of µ→ eγ decay reads:

B(µ→ eγ) = 3α
32π

∣∣∣∣∣∣
∑
i=2,3

U∗µiUei
∆m2

i1
M2
W

∣∣∣∣∣∣
2

∼ 10−54 , (1.1)

where α denotes the fine structure constant, Uµi is the element of the neutrino mixing
matrix, ∆m2

i1 is the difference of the squared neutrino masses, and MW is the mass of the
W boson. This branching ratio is obviously a value far away from what can be measured
experimentally, which means any observed signature of µ → eγ is definitely a discovery
of new physics beyond the SM (BSM). In addition to the µ → eγ channel, muon related
CLFV is also performed in µ− + N → e− + N and µ → 3e channels, the history of the
CLFV searches are summarized in refs. [1–3].

The search for CLFV has attracted long standing interest since it has great potential
to probe new physics indirectly at energy scales much higher than what is going to be
accessible by the colliders in the foreseeable future. Various searches have been performed
at several different approaches [4], including the muon-based experiments (such as µ→ eγ

at MEG-II [5, 6], µ→ eee at Mu3e [7, 8] and µ−N → e−N at Mu2e [9] and COMET [10]),
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B factories, and high energy colliders such as LEP and LHC, targeting at the CLFV decays
of meson [11–14], µ, τ , Z [15–17] and Higgs boson [18–20].

In the next decades, the LHC and the High-Luminosity LHC (HL-LHC), together with
other future colliders in design, will further explore the SM and search for BSM physics.
The majority of the proposed future machines are lepton colliders, designed primarily
for Higgs-boson precision measurements. The most promising proposals include linear or
circular electron-positron colliders [21–24] and muon colliders [25]. In this study, we are
interested in searching for CLFV at those future lepton colliders. Similar studies [26–28]
exist in literature but either only for electron positron colliders or being performed with
models (e.g., effective operators) different from this study.

Many BSM models enhancing CLFV effects up to a detectable level have been pro-
posed, including supersymmetry [29], heavy Z′ [30–33] and scalar neutrinos in R-parity-
violating [37]. A new U(1) gauge symmetry resulting in a massive neutral vector boson
known as a Z′ boson is one of the common extensions of the SM [30, 31, 34, 35], and Z′

can have interaction with a pair of W bosons [36].
The search presented in this paper assumes a Z′ boson with the same quark couplings

and chiral structure as the SM Z boson [38–41], but with different mass and allowing CLFV
couplings, similarly as done previously in an ATLAS study [42]. Such Z′ interacts with
charged leptons, of which the coupling strengths can be described phenomenologically by
the coupling matrix as shown in equation (1.2), in which λij is the CLFV coupling of
lepton i and lepton j. Only one CLFV coupling λij(i 6= j) is assumed to be non-zero
(set as 1) at any time for the purpose of setting the upper limits, while the diagonal
couplings λll(l = e, µ, τ ) are always set as 1.

λij =

λee λeµ λeτ
λµe λµµ λµτ
λτe λτµ λττ

 . (1.2)

Below we also compare our results with the theoretical constraints from low energy
muon based experiments. Take the µ − e conversion as an example, the CLFV coupling
λeµ can be transformed from the branching ratio R for µ− e conversion in nuclei [43]

λ2
eµ = 2π2ΓcaptureZR

G2
Fα

3m5
µZ

4
eff |F (q)|2

M4
Z′

M4
Z

× 1

s4
W +

(
s2
W −

1
2

)2

× 1[
(2Z +N)

(
1
2 −

4
3s

2
W

)
+ (Z + 2N)

(
−1

2 + 2
3s

2
W

) ]2 . (1.3)

The branching ratio R is normalized to the total nuclear muon capture rate Γcapture mea-
sured experimentally with good precision, the limit R is taken from PDG by SINDRUMII
experiment corresponding to the experiment using 197

79 Au or 48
22Ti as the target [44]. Γcapture

is calculated by the muon captured lifetime τ on target, GF is the Fermi constant, α is the
fine structure constant, mµ is the rest mass of muon, Zeff and F(q) are nuclear parame-
ters [45], Z is the atomic number, N is the number of neutrons in the nucleus, and sW is
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Target R τ Zeff F(q) Z N
Ti < 4.3× 10−12 [47] 329.3 ns 17.60 0.54 22 26
Au < 7× 10−13 [44] 72.6 ns 33.64 0.13 79 118
Al < 2.9× 10−17(prospect) [9] 864 ns 11.48 0.67 13 14

Table 1. The parameters for different targets in µ− e conversion equation (1.3).

Figure 1. Example Feynman diagrams at CEPC and muon colliders for CLFV s-channel (a) and
t-channel (b) processes, mediated by Z′.

the sine of the weak mixing angle, the values are listed in table 1. Using equation (1.3), the
constraints on the CLFV coupling from µ−e conversion can be obtained. Other low energy
limits, such as those from µ → eγ and µ → eee, are taken from ref. [46]. For comparison
with the next generation µ− e conversion experiments, the prospect upper limit with 27

13Al
target in Mu2e [9] or COMET [10] experiment is also listed. For the τ channel, assuming
that τ → eγ is similar to µ → eγ, we use the same method to get the limits, except for
replacing µ with τ and using the approximation that mτ � me.

2 Sample and analysis

In this paper, we focus on CLFV searches at a 240GeV circular electron positron collider
(CEPC), and a 6 or 14TeV muon collider.

2.1 Signal and background processes

Possible signal processes include ee → eµ, ee → eτ , µµ → eµ and µµ → µτ . Figure 1
shows example Feynman diagrams for CLFV processes mediated through a Z′ boson as
mentioned above. The main background processes are summarized in table 2. Simulated
events are generated corresponding to CEPC with a collision energy at 240GeV and an
integrated luminosity of 5 ab−1, or a muon collider with collision energies of 14 (6)TeV and
an integrated luminosity of 4 ab−1.

2.2 Event generation and simulation

Both signal and background events are generated with MADGRAPH5_aMC@NLO [48]
(MG5aMC) version 3.1.1, then showered and hadronized by Pythia8 [49]. Specially for the
CEPC, the initial-state radiation (ISR) effect [50] is included as well. The detector effects
are simulated using Delphes [51] version 3.5 with the default cards for the corresponding
collider detectors.
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Signal process Selected background
ee→ eµ WW,Hνν̄(H→ ττ), Hνν̄(H→ WW), ττ
ee→ eτ WW,WWνν̄, Hνν̄(H→ ττ), ττ
µµ→ eµ WW,WWνν̄, Hνν̄(H→ ττ), Hνν̄(H→WW), ττ
µµ→ µτ WW,WWνν̄, Hνν̄(H→ ττ), Hνν̄(H→WW), ττ

Table 2. Summary of the main background processes.

Conditions Efficiency
|η| ≤ 2.0 and 0.5GeV < pT ≤ 1GeV 95%

|η| ≤ 2.0 and pT > 1GeV 99%
2.0 < |η| < 2.5 and 0.5GeV < pT ≤ 1GeV 90%

2.0 < |η| < 2.5 and pT > 1GeV 95%
|η| > 2.5 0%

Table 3. Summary of µ tracking efficiency at the muon collider.

We describe the selection criteria as below. First, the events must include exactly two
leptons with transverse momentum pT > 10GeV and absolute pseudo-rapidity |η| < 2.5,
and satisfy the requirements of lepton flavor and charge conversation from the Z′ boson
decay, i.e., for e+e− → e+µ−(e−µ+), all signal and background events are required to have
only one e+(e−) and one µ−(µ+). For the final state containing τ which is reconstructed
within the jet collection in Delphes, the requirements of the jets are pT > 20GeV and
|η| < 5.

The µ tracking efficiency is assumed to be 100% for CEPC with 0.1 < |η| ≤ 3, and 0%
for the rest area. At the muon collider, the µ tracking efficiency is listed in table 3. For
the τ channel, the τ tagging efficiency is 40% for the CEPC and 80% for the muon collider
with pT > 10GeV, as defined in Delphes cards [51].

Furthermore, we exploit various physical quantities to separate the signal from the
backgrounds. Figure 2 shows the invariant mass distributions of final state di-leptons of
signal, in comparison with all backgrounds. Compared with the eµ channel, the invarint
masses distribution shape of τ signal channel is relatively widely peaked around the Z′ signal
mass, which is due to lower efficiency and larger energy smear of τ lepton reconstruction.
The invariant masses cut is selected at the maximum S/

√
S +B as the filtering condition,

where S denotes the signal events and B denotes the background events. The invariant
masses of eµ (figure 2a) and eτ (figure 2c) at CEPC, eµ (figure 2b) and µτ (figure 2d)
at 6TeV muon collider, as well as the cases at 14TeV muon collider, are then optimized
and required to be greater than 220GeV, 160GeV, 5.2TeV, 4TeV, 10TeV and 9.5TeV,
respectively, to maximize signal sensitivities from the backgrounds.

– 4 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
0

0 50 100 150 200 250 300
 (GeV)µem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
.U

.

-1, lumi = 5 abµ e→ee 

ww

ττ→hvlvl,h

ww→hvlvl,h

ττ

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
 (GeV)

µem

0

0.2

0.4

0.6

0.8

1

A
.U

.

-1, lumi = 4 abµ e→µµ

ww
wwvlvl

ττ→hvlvl,h
ww→hvlvl,h

ττ

(b)

0 50 100 150 200 250
 (GeV)

τem

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2A
.U

.

-1, lumi = 5 abτ e→ee 

ww

ττ→hvlvl,h

ττ

(c)

0 1000 2000 3000 4000 5000 6000 7000 8000

 (GeV)τµm

0

0.2

0.4

0.6

0.8

1

A
.U

.

-1, lumi = 4 abτµ →µµ

ww
wwvlvl

ττ→hvlvl,h
ww→hvlvl,h

ττ

(d)

Figure 2. Invariant mass distributions of the eµ channel at CEPC (a) and a 6TeV muon collider
(b), eτ at CEPC (c) and µτ at a 6TeV muon collider (d), where the solid red histograms are signals
representing Z′ CLFV mediated processes with the couplings of eµ, eτ and µτ .

2.3 Analysis framework

After applying all the event selections as mentioned above, we get binned histograms on
the final state lepton pT distributions, which will be exploited to set the upper limits on
CLFV couplings.

The per-event weight is applied to account for the cross-section difference between the
processes, the weight is defined by nLX

= σXL/NX , where σX denotes the cross-section
of a process X, L denotes the default target integrated luminosity in this study, which is
5 ab−1 for CEPC and 4 ab−1 for a muon collider, and NX denotes the number of generated
events. The signal yields and backgrounds are reweighted to get matched.

The test statistics Z is defined as in equation (2.1), for both 95% CL exclusion limit
and 5σ discovery limit, where i refers to the bin number, b is the SM background, n := s+b
is the total yields containing both signal and background, s is the beyond SM signal. Both
Z statistics subject to χ2 distribution with the number of degrees of freedom corresponding
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Figure 3. 95% C.L. exclusion lines of CLFV on the couplings λeµ (a) and λeτ (b) products the
diagonal coupling λll at CEPC ((red line) and ATLAS experiment (black line). The curves are
plotted as functions of MZ′ from the cross-section times branching ratio limits. The exclusion lines
with the current low-energy experiments (dashed lines) and future experiments (dash-dotted lines)
are also plotted.

to the number of bins [52].

Z =
bins∑
i=1

Zi,Zi := 2 [ni − bi + bi ln(bi/ni)] 95% C.L. Exclusion
Zi := 2 [bi − ni + ni ln(ni/bi)] 5σ Discovery.

(2.1)

The corresponding signal and background yields are calculated, and the corresponding
Z statistics are constructed for each case following equation (2.1). The Z statistic subjects
to a χ2 distribution with 1 degree of freedom.

3 Results

3.1 CLFV study at CEPC

The 95% confidence level (C.L.) exclusion lines at CEPC and ATLAS, as well as the current
and prospect experimental limits from low-energy µ and τ experiments, are converted to
the coupling limits λeµ × λll and λeτ × λll using the formula in ref. [46] respectively for
comparison. The results are shown in figure 3, where the curve trend obtained from
the current and prospect experimental limits are similar to the results of the low-energy
experiments.

The most stringent current coupling limits for the eµ channel are from µ-e conversion
and µ → eee in low-energy experiments, and from the ATLAS 13TeV collision result for
the eτ channel. With the future experiments included, the most stringent coupling will be
µ-e conversion from COMET and Mu2e for the eµ channel, and τ decays from Belle II [53]
for the eτ channel.
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Figure 4. 95% C.L. exclusion lines on the couplings λeµ (a) and λµτ (b) products the diagonal
coupling λll at a 6TeV (red line) and 14TeV (blue line) muon collider, as well as ATLAS experiment
(black line). The curves are plotted as functions of MZ′ from the cross-section times branching
ratio limits. The exclusion lines with the current low-energy experiments (dashed lines) and future
experiments (dash-dotted lines) are also plotted.

3.2 CLFV study at a muon collider

Muon collider could be more powerful than CPEC with cleaner environment and higher
center of mass. The 95% C.L. exclusion lines from the µµ→ eµ and µµ→ µτ processes at
6 and 14TeV muon collider are converted to coupling limits λeµ×λll and λµτ×λll using the
formula in ref. [46] respectively, as shown in figure 4. The constraints from the current and
prospect experimental limits from the low-energy µ and τ experiments are also included
for comparison.

The current most stringent coupling limits for the eµ channel are from µ-e conversion
in the low-energy experiments, but our results also have stringent constraints at larger Z′

masses. When the mass of Z′ is 14TeV on the 14TeV Muon collider, the constraints are
more stringent than other existing results except for µ-e conversion.

In comparison to the current results, the two coupling limits of the µτ channel in this
work are the most stringent, and when Z′ mass is greater than 10TeV, the upper limit on
the 14TeV Muon collider is more stringent. Including the prospects, the most stringent
coupling will be µ-e conversion from COMET and Mu2e for the eµ channel. While for the
µτ channel, the two coupling limits in this work are still the most stringent when the mass
of Z′ is greater than 1.5TeV.

The strongest constraint on µτ coupling is from the 6TeV Muon collider, which reaches
the magnitude of 10−3 when the mass of Z′ is 6TeV, and is stronger than all the existing
and most of the prospect CLFV limits.
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4 Outlook and conclusion

By exploiting a typical example model of extra Z′ gauge boson, we perform a detailed
comparative study on CLFV searches at several future colliders, including a 6 (14)TeV
scale muon collider and a 240GeV electron-positron collider. Based on the event generator
software MadGraph, PHTHIA and fast detector simulation implemented with the Delphes
framework, we compare the potentials for future lepton colliders to probe Z′ CLFV cou-
plings with either eµ, eτ or µτ , through the processes of ee→ eµ, ee→ eτ , µµ→ eµ and
µµ → µτ . The upper limits at the 95% C.L. are set at different Z′ masses. We find that
the sensitivity on the τ related CLFV coupling strength can be significantly improved in
comparison to the current best constraints. For the µτ channel at heavy Z′ region, the
constraints from the muon collider will be even better than the prospect Belle II results,
which shows clear advantages of the future lepton colliders on CLFV searches.
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