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1 Introduction

Extension of thermodynamics and statistical mechanics into nonequilibrium regime is not at
all straightforward, even into a nonequilibrium steady state (NESS) which is a natural and
simple extension of equilibrium states.1 In a NESS, a net current and the force acting on it,
such as an electric current and electric field in a conducting system, are new macroscopic
quantities compared to an equilibrium state. Therefore, it is natural to expect that they
play a crucial role in the description of the macroscopic physics of nonequilibrium systems.
In general, phase transitions are important to investigate the macroscopic quantities of the
systems. In particular, critical phenomena associated with a second-order phase transition
are of great interest since their universal behavior is common for a large class of systems
without depending on the microscopic details. Therefore, we believe that investigating the
dependence of nonequilibrium phase transitions on current and the force acting on it would
be very useful in revealing the detail-independent macroscopic nature of NESSs.

With the above motivation, we study the nonequilibrium phase transition driven by
the electric field and its critical phenomena in this paper. The corresponding phase tran-
sition driven by the electric field, for example, has been experimentally observed in the
organic conductor, θ-(BEDT-TTF)2CsCo(SCN)4 [5]. The authors of [5] observed that the
conductivity of the system discontinuously changes when the electric field acting on the
system continuously varies (see, figure 1a in [5]). However, as far as the authors know,
any detailed investigation of this “nonequilibrium phase transition” has not been done yet.
In particular, the observed transition is discontinuous in conductivity which we categorize

1An extension of thermodynamics into NESSs has been discussed, for example, in [1, 2]. An recent
proposal along this direction with a constant heat current is found in [3, 4].
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as a first-order phase transition. A natural question is whether any second-order phase
transition can be observed, and if yes, what is the universality class?

To address this issue, we employ the D3/D7 model [6] that is studied in the frame-
work of the AdS/CFT correspondence (or holography). The AdS/CFT correspondence is
the equivalence between a classical gravity theory and a strongly coupled quantum gauge
theory [7–9], and enables us to study nonequilibrium physics (see, for example, [10, 11] and
the references therein). The dual description of the D3/D7 model is the N = 4 supersym-
metric Yang-Mills theory with N = 2 hypermultiplets. The NESS with a constant electric
current in the dual field theory can be realized by considering the corresponding solutions
in the bulk theory in the presence of an external electric field [12].

The reason to employ the D3/D7 model is as follows. This model has the same dimen-
sionality (namely, three spatial dimensions) as the systems investigated in [5]. Furthermore,
the model shows negative differential conductivity [13] that is qualitatively similar to the
J-E characteristics observed in [5] (see, the inset of figure 1b in [5]).

The purpose of this paper is to study the nonequilibrium phase transition driven by
the electric field in the D3/D7 model. A current-driven nonequilibrium second-order phase
transition has been found in this model [14] and has been investigated in [14, 15]. However,
electric-field-driven nonequilibrium phase transitions have not yet been studied in detail
in this model. As we shall show later, we find that the system undergoes a second-order
phase transition at finite charge density at a finite temperature2 at a finite electric field.
We investigate the critical phenomena at the critical point and determine the values of the
critical exponents. In this paper, we focus on the static critical exponents (β, δ, γ) defined
later because they can be defined straightforwardly in analogy with equilibrium phase
transitions. We define the order parameter by using the chiral condensate. However, we also
exhibit critical phenomena for the case we regard the conductivity as the order parameter
since the conductivity is easier than the chiral condensate to observe experimentally. We
numerically determine the critical exponents for each definition of the order parameter.

The rest of the paper is organized as follows. In section 2, we present our setup of the
D3/D7 model. In section 3, we show the nonlinear J-E characteristics where the electric-
field driven first-order phase transition, the electric-field driven second-order phase transi-
tion, and crossover appear. In section 4, we show the phase diagram of the nonequilibrium
phase transition. We determine the transition points of the first-order phase transitions
by considering a natural extrapolation of the equilibrium free energy to the NESS. In sec-
tion 5, we numerically determine the values of the critical exponents. We devote section 6
to conclusion and discussions. We make a comment on our computation of the current
density in appendix A.

2 Setup

In this section, we briefly present the D3/D7 model at finite temperature in the presence of
the charge density and electric field [12]. We consider a (3+1)-dimensional SU(Nc) N = 4

2Here, the temperature means the temperature of the heat bath attached to the NESS.
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supersymmetric Yang-Mills (SYM) theory with N = 2 hypermultiplet (HM) in the large-
Nc limit with a large ’t Hooft coupling λ = g2

YMNc. At finite temperatures, the degrees of
freedom of the SYM sector are O(N2

c ) whereas that of the HM sector is O(Nc): the SYM
sector plays the role of heat bath against the possible perturbations of the HM sector by
virtue of the large-Nc limit.

In this paper, we apply a constant (and homogeneous) external electric field acting
on the U(1) global charge in the HM sector. Since the charges are interacting with the
heat bath made of the SYM sector, we can realize a NESS where we have a constant flow
of the current along the constant external electric field. The particles in the HM sector
have a finite mass that plays the role of the mass gap of the charged particles. Therefore,
the system can be either an insulator or a conductor depending on the magnitude of
the mass gap. Even with a finite value of the mass gap, the system exhibits a finite
conductivity for a large enough electric field owing to the pair creation of the positive and
the negative charges. In this sense, the system is understood as a field-theory model of
strongly correlated insulators. In our analyses, we introduce a chemical potential of the
charge in order to realize a finite charge density.

This theory is conjectured to be dual to the D3/D7 model [6], whose geometry at finite
temperature is the five-dimensional AdS-Schwarzschild black hole times S5. The metric of
the geometry is explicitly given by

ds2 = L2

u2

(
−f(u)dt2 + d~x2 + du2

f(u)

)
+ L2dΩ2

5, (2.1)

with
dΩ2

5 = dθ2 + sin2 θdψ2 + cos2 θdΩ2
3, (2.2)

where f(u) = 1 − u4/u4
H. (t, ~x) are (3+1)-dimensional spacetime coordinates in the field

theory and u is the radial coordinate. The boundary and the black hole horizon are located
at u = 0 and u = uH, respectively. The Hawking temperature T = 1/πuH gives the heat
bath temperature.

The dynamics of the D7-brane is given by the Dirac-Born-Infeld (DBI) action:

SD7 = −TD7

∫
d8ξ

√
− det (g̃ab + 2πl2sFab)

= −TD7L
8
∫

d8ξ
√
− det (gab + 2πl2sL−2Fab), (2.3)

where TD7 is the tension of the D7-brane given by TD7 = (2π)−7l−8
s g−1

s with the string
length ls and the string coupling gs. g̃ab = L2gab is the induced metric of the D7-brane,
and Fab ≡ ∂aAb − ∂bAa is the field strength of the U(1) gauge field on the D7-brane. The
indices a and b label the worldvolume coordinates ξa. In the following, we set 2πl2sL−2 = 1
so that λ = (2π)2/2.

For our purposes, we employ the following ansatz of the fields,

θ = θ(u), At = At(u), Ax = −Et+ h(u), (2.4)
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where E corresponds to the external electric field. Then, the induced metric is explicitly
given by

ds2
D7 = 1

u2

(
−f(u)dt2 + d~x2

)
+
( 1
u2f(u) + θ′(u)2

)
du2 + dΩ2

3, (2.5)

where the prime denotes the derivative with respect to u. Thus, the DBI action becomes

SD7 = −NV4

∫
du cos3 θgxx

√
−gttgxxguu −

(
gxxA′2t + guuE2 + gtth′2

)
, (2.6)

where V4 =
∫

dtdxdydz and
N = TD7(2π2)L8 = Nc

λ
. (2.7)

Here, the ’t Hooft coupling is given by λ = 2πgsNc in our convention.3 Now, we set N = 1,
for simplicity, and Nc = λ = (2π)2/2 in the rest of this paper.

Since the action contains the only derivative terms of the gauge fields, the following
quantities are conserved along u direction,

ρ ≡ δSD7
δA′t

= −g2
xxA

′
t cos3 θ√

ξguu − gtth′2 − gxxA′2t
, (2.8)

J ≡ δSD7
δA′x

= −gttgxxh′ cos3 θ√
ξguu − gtth′2 − gxxA′2t

, (2.9)

where ξ = −gttgxx − E2. Here, ρ and J are the charge density and the current density
along the x direction, respectively. There is a location u = u∗ in the range of 0 ≤ u ≤ uH
that satisfies ξ = 0 because −gtt monotonically decreases toward the horizon. ρ and J are
given by functions of A′t and h′. However, one finds that gxxJ2 + gttρ

2 is independent of
A′t and h′ at u = u∗. Hence, we obtain

J2 = − gtt
gxx

ρ2 − gttg2
xx cos6 θ(u∗), (2.10)

where all the metric components are evaluated at u = u∗.4 The location u∗ is referred
to as the effective horizon because it forms the causal boundary for the dynamics on the
D7-brane [18, 19].

From the equations of motion, each field can be expanded near the boundary as

θ(u) = mu+ θ2u
3 + · · · , (2.11)

At(u) = µ− ρ

2u
2 + · · · , (2.12)

h(u) = b+ J

2 u
2 + · · · , (2.13)

where m and µ correspond to the mass of the charged particles in the HM sector and the
chemical potential, respectively. We assume that the source term b for h(u) vanishes. The

3We employ a convention of g2
YM = 2πgs and λ = g2

YMNc.
4Note that our derivation of J for finite ρ here is an extension of the method in [16, 17] for ρ = 0. The

details are given in appendix A.
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normalizable mode of θ(u) is related to the chiral condensate via

〈q̄q〉 = −
(
−2θ2 + m3

3

)
. (2.14)

The normalizable modes of At(u) and h(u) are corresponding to the conserved quantities
ρ and J mentioned above.

For convenience, we perform the Legendre transformation with respect to the gauge
fields At and Ax. The transformed DBI action is given by

S̃D7 = SD7 −
∫

du
(
δSD7
δA′t

A′t + δSD7
δA′x

A′x

)
= −V4

∫
duL̃D7, (2.15)

where

L̃D7 = cos3 θ

√
−guu
gttgxx

√
(gttgxx + E2) (gttg3

xx cos6 θ + gttρ2 + gxxJ2). (2.16)

Since the action is written by the variables (θ, θ′, ρ, J), we can obtain the equation of motion
for θ(u) with ρ and J fixed from the transformed action. We will not present the explicit
form of the equation of motion because it is cumbersome and not very illuminating.

3 Nonlinear characteristics

In this section, we study the J-E characteristics obtained from the solutions to the equation
of motion. There are three different types of solutions depending on the configuration of
the D7-brane. The solutions that do not reach the black hole horizon are referred to as the
Minkowski embeddings, whereas the solutions that fall into the black hole are called the
black hole embeddings. The D7-brane in the black hole embedding goes across the effective
horizon in the presence of the electric field. The other type of solution is called the critical
embedding. The critical embedding is between the Minkowski embedding and the black hole
embedding, and forms a conical singularity at the effective horizon. In the dual field theory,
the Minkowski embedding and the black hole embedding are in the insulating phase and
the conducting phase, respectively. Since we are interested in the nonequilibrium steady
state with a constant current, we focus only on the black hole embeddings.

For this purpose, we numerically solve the equation of motion for θ(u) with given
(T, ρ,E) under the following boundary conditions specified at the effective horizon. First,
we specify the value of θ(u∗), which corresponds to choosing the value of J . The other
boundary condition that constrains the value of θ′(u∗) is obtained from the equation of
motion at the effective horizon. Here, we employ the shooting method for the numerical
calculation. After we obtain the numerical solution, we can read off the mass of the charge
carriers from the asymptotic form of θ(u) near the AdS boundary from (2.11). The system
is invariant under the scale transformation,

(t, ~x, u)→ (at, a~x, au), m→ m/a, θ2 → θ2/a
3, (3.1)

E → E/a2, J → J/a3, µ→ µ/a, ρ→ ρ/a3, (3.2)
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Figure 1. J-E characteristics for several ρ/m3 with T fixed.

where a is an arbitrary constant. Using this scale invariance, the scale-free parameters
which characterize the system are given by (T/m, ρ/m3, E/m2).

If we specify the parameters (T/m, ρ/m3, E/m2), we obtain the value of J/m3 by
solving the equations of motion. Collecting the solutions for various values of E/m2

with the other parameters fixed, we obtain the J-E characteristics for the given value
of (T/m, ρ/m). Figure 1 shows typical plots of the J-E characteristics for several values of
ρ/m3 with πT/m = 1.073. As indicated there, J/m3 is a multi-valued function of E/m2

for ρ/m3 = 0.00218. Since only one of the multiple values of J/m3 should be realized at a
given E/m2 in the physical systems, the value of J/m3 must jump somewhere in the multi-
valued region when we vary E/m2. We regard this discontinuous jump as the first-order
phase transition of the systems driven by the electric field. The method of determining
the transition point is described in the next section. We also find that J/m3 becomes a
single-valued function when ρ/m3 is large enough along with T/m fixed: the first-order
phase transition changes into the second-order phase transition and then into the crossover
if we increase ρ/m3 with T/m fixed.

The emergence of the critical point, the point where the foregoing second-order phase
transition occurs, can be understood as follows. The charge density created by the presence
of a chemical potential contributes to the positive differential conductivity, characterized
by ∂J

∂E > 0, that gives a monotonically increasing current when we increase the electric field.
On the other hand, the current is also carried by the particles that are produced through
the pair creation of the positive and the negative charge carriers induced by the electric
field. It has been discussed in [20] that they provide the negative differential conductivity,5

characterized by ∂J
∂E < 0, at small current density. As a result of the competition of these

two contributions, the critical point where ∂E
∂J = 0 (hence ∂J

∂E is divergent) emerges at the
critical values of (T/m, ρ/m3).

5The negative differential conductivity has been observed in the D3/D7 model in [13] at zero charge
density.
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4 Phase diagram

In holography, the free energy of an equilibrium system is given as the Hamiltonian in
the gravity dual. This idea has been extended to the systems of NESS in the previous
studies [14, 15, 21, 22]. In these studies, the authors considered the ρ = 0 case and employed
a Legendre-transformed Hamiltonian in such a way that J is a control parameter. To be
concrete, the corresponding Hamiltonian (per unit volume) is given by

H̃ =
∫ u∗

0
duH̃ =

∫ u∗

0
du

[
E
∂L̄D7
∂E

− L̄D7

]
, (4.1)

where
L̄D7 = LD7 + ∂LD7

∂A′x
A′x (4.2)

is the Legendre-transformed Lagrangian density that is a function of (∂tAx = E, J, θ, θ′).
The integral is evaluated from the boundary to the effective horizon. In this case, H̃ is not
a function of E, but of J . This Hamiltonian has been used to define the location of the
first-order phase transitions on the phase diagram in NESS. The definition of the first-order
phase transition line affects the obtained value of the critical exponent β since it is defined
as how the order parameter scales when the control parameter approaches the critical point
along the first-order phase transition line. The critical exponents, including β, obtained in
the previous works showed a consistent behavior exhibiting the mean-field theory values.6

Let us extend the above idea to the present system and see how it works. In this study,
we use E, but not J , as a control parameter because we are dealing with the electric-field
driven phase transition. We also introduce the charge density ρ as a control parameter.
Thus, we employ the following quantity as the free energy of the NESS.

F = −
∫ u∗

0
du

(
LD7 + ∂LD7

∂A′t
A′t

)
, (4.3)

where the integral is evaluated from the boundary u = 0 to the effective horizon u = u∗.
Note that we removed the Legendre transformation that makes J a control parameter
from (4.1), and performed the Legendre transformation that makes ρ = −∂LD7

∂A′t
a control

parameter. Here, the Lagrangian must be renormalized because the integral with respect
to u is divergent at the boundary. According to the holographic renormalization in the
probe brane model [12, 23], we introduce the following counterterms,

Lcount ≡ L1 + L2 + Lf + LF , (4.4)

where ε is the cutoff near the boundary and each counterterm is given by

L1 = 1
4
√
−γ, L2 = −1

2
√
−γθ(ε)2, (4.5)

Lf = 5
12
√
−γθ(ε)4, LF = 1

2
√
−γE2 log Λε, (4.6)

6See also a more precise statement in section 6.
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Figure 2. The three-dimensional phase diagram for the nonequilibrium phase transition. The red
solid curve denotes the second-order phase transition points. The blue dashed curve denotes the
first-order phase transition points at ρ = 0. The gray surface between them denotes the first-order
phase transition points.

where γ = det γij and γij is the induced metric at the boundary u = ε. The factor
Λ is introduced so that Λε becomes dimensionless and gives a finite contribution to F

depending on the choice of Λ. However, the ambiguity of Λ does not contribute to our
analysis since LF drops from the difference of F at a common E. Adding the counterterm
to the Lagrangian, we obtain the renormalized free energy for the NESS,

Fren = −
[∫ u∗

ε
du

(
LD7 + ∂LD7

∂A′t
A′t

)
+ Lcount

]
. (4.7)

Evaluating the free energy for each parameter (T, ρ,E), we obtain the phase diagram
for our nonequilibrium phase transition as shown in figure 2. The red solid curve denotes
the second-order phase transition points. We refer to this curve as the critical line in
this paper. The blue dashed curve denotes the first-order phase transition points at zero
charge density, corresponding to the phase diagram shown in [17]. The gray-shaded surface
denotes the first-order phase transition points. We find that the critical line ends at some
point of the (T, ρ) plane in the limit of E → 0. This means that the differential conductivity
is divergent at zero electric field, ∂J/∂E|E=0 →∞ at this point since ∂J/∂E is divergent
at the critical point. (See figure 1.) We also find that the critical line approaches the
critical value of the electric field Ecrit/m

2 ≈ 0.57 in the limit of T → 0. Here, Ecrit is
the value of E where the D7-brane barely touches the effective horizon.7 This behavior
can be understood from the fact that the second-order phase transition emerges due to

7Note that Ecrit is different from Ec, which we will use in section 5, defined as the critical value of the
electric field for the second-order nonequilibrium phase transitions.
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the competition between the positive differential conductivity and the negative differential
conductivity. Since the negative differential conductivity appears for E . Ecrit [13], we
expect to find the phase transitions occur only at E . Ecrit.

5 Critical phenomena

In this section, we study the critical phenomena at the critical points on the critical line.
For this purpose, we define the critical exponents β, δ and γ as follows:

∆φ ∝ |κ− κc|β , |φ− φc| ∝ |E − Ec|1/δ, χ ∝ |κ− κc|−γ , (5.1)

where κ is a control parameter such as T or ρ. The choice of the control parameter κ
depends on the path along which we approach the critical point on the three-dimensional
phase diagram figure 2. In this paper, we consider two cases where κ = T with ρ fixed and
κ = ρ with T fixed. φ is a quantity from which we define the order parameter ∆φ, where
∆φ is the difference of φ between the two phases when the first-order phase transition
occurs. χ is the susceptibility defined by χ = ∂φ/∂E. The subscript c denotes the values
of each parameter at the critical point. Note that the critical exponent δ is defined at
κ = κc and γ can be evaluated both in κ > κc and κ < κc.

In our study, we choose the chiral condensate 〈q̄q〉 as φ. However, we also study
the critical phenomena by employing conductivity σ = J/E for φ in place of the chiral
condensate. The reason is that we can observe the conductivity in experiments easier than
the chiral condensate. As we shall see, we find the critical phenomena and the critical
exponents are well detected by using conductivity as well as the chiral condensate.

Note that we have chosen the electric field as the external field that plays the role of the
magnetic field in the Ising model. The reason is that we want to compare our result with
the phase transition observed in [5] where hysteresis appears in the continuous variation of
the electric field.

In figure 3, we show the critical behaviors of ∆φ with respect to |κ−κc| for each choice
of parameters. Note that all the data are normalized by using m. (This normalization
follows in other figures as well.) In the upper and lower panels of figure 3, we choose the
conductivity and chiral condensate as the order parameter, respectively. In the left and
right panels of figure 3, we choose κ = T/m with ρ/m3 = 0.00218 fixed and κ = ρ/m3

with T/m = 1.073 fixed, respectively. From the fittings, we find β ≈ 0.495 (upper left),
β ≈ 0.494 (upper right), β ≈ 0.503 (lower left), and β ≈ 0.503 (lower right), respectively.
All of these results agree with the values of β in the Landau theory, that is, β = 1/2.

In figure 4, we show the critical behaviors of the order parameter with respect to the
external field at the critical point. The left and right panels in figure 4 show the critical
behaviors of the conductivity and chiral condensate with respect to the electric field at
the critical point, respectively. From the fittings, we find that 1/δ ≈ 0.337 (left panel)
and 1/δ ≈ 0.343 (right panel), respectively. These values of δ also agree with those in the
Landau theory, that is, δ = 3.
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Figure 3. The critical behaviors of the order parameter. We show the results with the conductivity
in the upper panels and those with the chiral condensate in the lower panels. The left (right) panels
show the results with κ = T (κ = ρ). The open circles and the solid lines denote the numerical
plots and the fitting results, respectively. All the plots are shown in a log-log scale.
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Figure 5. The critical behaviors of the susceptibilities in the first-order phase transition region. The
left (right) panels show the results with the susceptibility of the conductivity (the chiral condensate).
The open circles and the solid lines denote the numerical plots and the fitting results, respectively.

The critical exponent γ can be determined by the divergent behaviors of the suscepti-
bilities. We define the two different susceptibilities by

χσ = ∂σ

∂E
= 1
E

(
∂J

∂E
− J

E

)
, χq = ∂ 〈q̄q〉

∂E
. (5.2)

We study the critical behaviors of the susceptibilities in κ > κc and κ < κc, corresponding
to the first-order phase transition and the crossover region. In figure 5, we show the
critical behaviors of the susceptibilities in the first-order phase transitions region. From
the fitting, we find γ ≈ 1.020 (upper left), γ ≈ 0.985 (upper right), γ ≈ 0.960 (lower left),
and γ ≈ 0.986 (lower right) respectively. We find that the values of γ in the first-order
phase transition region agree with those in the Landau theory, that is γ = 1.

In figure 6, we show the critical behaviors of the susceptibilities in the crossover region.
From the fitting, we find γ ≈ 1.003 (upper left), γ ≈ 1.034 (upper right), γ ≈ 0.996 (lower
left), and γ ≈ 1.016 (lower right) respectively. We find that the values of γ in the crossover
region also agree with those in the Landau theory.

In summary, we numerically obtain the critical exponents (β, δ, γ) in the electric-field
driven nonequilibrium phase transitions as shown in table 1.
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Figure 6. The critical behaviors of the susceptibilities in the crossover region. The left (right)
panels show the results with the susceptibility of the conductivity (the chiral condensate). The
open circles and the solid lines denote the numerical plots and the fitting results, respectively.

T -fixed ρ-fixed
σ 〈q̄q〉 σ 〈q̄q〉

β 0.495 0.503 0.494 0.503
δ 2.967 2.915 2.967 2.915
γ1st 1.020 0.960 0.985 0.986
γcross 1.003 0.996 1.034 1.016

Table 1. Critical exponents.

6 Conclusion and discussions

In this paper, we studied the nonequilibrium phase transition driven by the electric field
in the framework of the AdS/CFT correspondence. We employed the D3/D7 model at
finite charge densities and finite temperatures in the presence of the external electric field.
Our results show that the system undergoes the nonequilibrium phase transition due to
the non-linear J-E characteristics. We found that there are regions of the first-order phase
transition and crossover, and the critical line in between where the second-order phase
transition occurs in the parameter space in the phase diagram (figure 2). We investigated
the critical phenomena at the critical points and found that the obtained values of the
critical exponents (β, δ, γ) agree with those in the Landau theory.
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The agreement of the critical exponents with those in the Landau theory of equilibrium
systems implies that our nonequilibrium phase transition can be described by an effective
theory that has the same structure as the Landau theory. The observation that the critical
phenomena in the D3/D7 model agree with those of the Landau theory has been given
in [22] for thermal equilibrium and in [14, 15, 21] for nonequilibrium circumstances. This
agreement may be understood as the suppression of fluctuations near the critical point
owing to the large-Nc limit. However, deviations from the mean-field values of the critical
exponents have been observed in the current-driven tricritical point [24]. It would be
interesting to see whether we have a tricritical point for the electric-field driven systems
and study the critical phenomena there if it is the case.

Let us make a comment on a possible connection between our results and experiments.
We have shown that the present model provides a concrete theoretical example that repro-
duces an electric-field driven first-order phase transition similar to that has been observed
in the organic conductor [5]. Although we employ N = 4 supersymmetric Yang-Mills
theory with N = 2 hypermultiplets in the large-Nc limit as our microscopic theory, the
difference of the microscopic details between our theory and those in the experimental
setups may not affect the description of the critical phenomena, if the idea of universality
holds there. The first-order phase transition observed in [5] is qualitatively similar to our
first-order phase transitions shown in figure 1 in the small ρ region. Then, we expect that
the second-order phase transition we have seen in the present work may be experimentally
observed in the organic conductor in the region of higher carrier density, corresponding to
the regime with a large ρ in our system. The large-Nc condition may be relaxed in the ex-
perimental setups and the critical exponents can differ from the mean-field values if it is the
case. It is interesting to experimentally search the electric-field-driven second-order phase
transitions and determine the values of the critical exponents to study the universality in
the nonequilibrium phase transitions.
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A Relationship between J and ρ

The Lagrangian density is given by

LD7 = −
√
− det (gab + Fab)

= −
√
−g

(
1 + gxxguuh′2 + gttgxxE2 + gttguuA′2t

)1/2
, (A.1)
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where g = det gab. As defined in the main text, we obtain the two conserved quantities

ρ = ∂LD7
∂A′t

= −
√
−ggttguuA′t√

1 + gxxguuh′2 + gttgxxE2 + gttguuA′2t

, (A.2)

J = ∂LD7
∂h′

= −
√
−ggxxguuh′√

1 + gxxguuh′2 + gttgxxE2 + gttguuA′2t

, (A.3)

corresponding to the charge density and current density, respectively. Combining them,
we obtain the following relation

JgttA′t − ρgxxh′ = 0, (A.4)

which indicates that A′t and h′ are not independent of each other. By eliminating A′t with
this relation in (A.3), we find

J = −
√
−ggxxguuh′√

1 + gttgxxE2 + gxxguuh′2
(
1 + gxx

gtt
ρ2

J2

) . (A.5)

If we evaluate this at the effective horizon, namely 1 + gttgxxE2 = 0, the gauge field h′ no
longer appears in the expression and we obtain

J = −
√
−g
√√√√ gxxguu

1 + gxx

gtt
ρ2

J2

∣∣∣∣∣∣∣
u=u∗

, (A.6)

corresponding to the relationship between the current density and the charge density, i.e.
eq. (2.10) in the main text.
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