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Abstract: We improve QCD calculations of the semileptonic Bd,s → π,K decay form
factors at large hadronic recoil by implementing the next-to-leading-logarithmic resummation
for the obtained leading-power light-cone sum rules in the soft-collinear effective theory
(SCET) framework and by computing for the first time the non-vanishing spectator-quark
mass correction dictating the SU(3)-flavour symmetry breaking effects between these
fundamental quantities at the one-loop accuracy. Additionally, we endeavour to investigate
a variety of the subleading-power contributions to these heavy-to-light form factors at
O(α0

s) with the same methodology, by including the higher-order terms in the heavy-quark
expansion of the hard-collinear quark propagator, by evaluating the desired effective matrix
element of the next-to-leading-order term (ξ̄hcWhc) γµ

[
i /D>/ (2mb)

]
hv in the SCETI

representation of the weak transition current, by taking into account the off-light-cone
contributions of the two-body heavy-quark effective theory (HQET) matrix elements as well
as the three-particle higher-twist corrections from the subleading bottom-meson light-cone
distribution amplitudes (LCDAs), and by computing the twist-five and twist-six four-
body higher-twist effects with the aid of the factorization approximation. Having at our
disposal the SCET sum rules for the exclusive B-meson decay form factors under discussion,
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we further explore in detail numerical implications of the newly computed subleading-
power corrections by employing the three-parameter model for both the leading-twist and
higher-twist B-meson distribution amplitudes. Taking advantage of the customary Bourrely-
Caprini-Lellouch (BCL) parametrization for the complete set of the semileptonic Bd,s → π,K

form factors, we then determine the correlated numerical results for the interesting series
coefficients, by carrying out the simultaneous fit of the exclusive B-meson decay form factors
to both the achieved SCET sum rule predictions at small momentum transfer (q2) and the
available lattice QCD results at large momentum transfer. Subsequently, we perform a
comprehensive phenomenological analysis of the full angular observables, the lepton-flavour
university ratios and the lepton polarization asymmetries for the flavour-changing charged-
current B → π`ν̄` and Bs → K`ν̄` decays (with ` = µ, τ) together with the differential
q2-distribution for the exclusive rare B → Kν`ν̄` decays in the Standard Model.

Keywords: Bottom Quarks, Effective Field Theories of QCD, Factorization, Renormaliza-
tion Group, Semi-Leptonic Decays
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1 Introduction

Precision calculations of the semileptonic Bd,s → π,K decay form factors are of paramount
importance for exploring the celebrated Cabibbo-Kobayashi-Maskawa (CKM) mechanism
in the Standard Model (SM) and for sharpening our understanding towards diverse facets
of the strong interaction dynamics encoded in the exclusive heavy-hadron decay processes.
Particularly, the longstanding discrepancy between the dedicated |Vub| determinations
from the exclusive B → π`ν̄` decays and the inclusive B → Xu`ν̄` processes [1] has been
continually triggering the enormous theoretical efforts of determining such heavy-to-light
B-meson form factors with an ever-increasing accuracy. In the small hadronic recoil region,
the first-principles calculations for a rich variety of the non-perturbative matrix elements
appearing in the theory descriptions of the semileptonic heavy-meson decays B → π`ν̄` [2–7]
and Bs → K`ν̄` decays [4, 8–12] and of the exclusive electroweak penguin B → Kν`ν̄`
transitions [13–15] have been pursued with the numerical lattice gauge theory by different
groups (see also [16–18] for an overview). Moreover, numerous analytical QCD frameworks
with distinct approximations have been constructed to address the semileptonic B-meson
decay form factors at large hadronic recoil systematically based upon the heavy quark
expansion techniques.
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Employing the perturbative QCD factorization theorem for the vacuum-to-pseudoscalar-
meson correlation function and implementing further the parton-hadron duality ansätz en-
ables us to derive the desired light-cone sum rules (LCSR) for the heavy-to-light Bd,s → π,K

form factors at the leading-order (LO) accuracy [19, 20] and in the next-to-leading-order
(NLO) approximation [21–25] (see also [26] for the twist-two O(α2

s β0) correction to the
vector form factor f+

B→π(q2)), taking advantage of the light-meson light-cone distribution am-
plitudes (LCDAs) with definite collinear twists [27, 28] as the fundamental non-perturbative
ingredients. Alternatively, the light-cone QCD sum rules for the exclusive bottom-meson
decay form factors can be derived from the vacuum-to-B-meson correlation function with
the pseudoscalar meson state interpolated by an appropriate partonic current [29, 30]
(see [31, 32] for an equivalent and independent formulation in the soft-collinear effective
theory (SCET) framework), following the analogous theory prescriptions as described above.
An attractive advantage of this alternative version of QCD sum rules on the light-cone
consists in the very appearance of the universal B-meson distribution amplitudes in heavy
quark effective theory (HQET) for the obtained expressions of all the bottom-meson de-
cay form factors, independent of the particular light-hadron in the final states. Along
the same vein, both the higher-order perturbative corrections and the subleading-power
contributions to the heavy-to-light B-meson decay form factors [33–38], the heavy-to-heavy
B-meson decay form factors [36, 39, 40], as well as the semileptonic heavy-baryon decay
form factors [41–43] have been computed from the LCSR method with the heavy-hadron
distribution amplitudes.

Yet another theory framework to evaluate the exclusive heavy-hadron decay matrix
elements has been developed to regularize the emerged end-point divergences in the conven-
tional collinear factorization formalism by introducing the intrinsic transverse momenta
of the associated soft and collinear partons participating the short-distance scattering
process [44–46] (see, however, [47] for additional discussions), motivated from the theory of
the on-shell Sudakov form factor [48] and the asymptotic behaviour of elastic meson-meson
scattering at high energy [49]. Applying such transverse-momentum-dependent (TMD)
factorization approach further allows for the higher-order QCD computations of a large
number of exclusive hadronic matrix elements [50–58] including both the leading-twist and
higher-twist contributions simultaneously. We mention in passing that constructing the
factorization-compatible definitions of the TMD wavefunctions free of both the rapidity
divergence and the pinch singularity becomes tremendously delicate, demanding the intro-
duction of an intricate soft substraction function defined with the non-dipolar off-light-cone
Wilson lines [59–61].

Inspired by the encouraging experimental progresses on measuring the differential
B → π`ν decay rates from the BaBar [62, 63], Belle [64, 65] and Belle II [66] Collaborations,
on the first observation of the semileptonic Bs → K`ν̄` decays at the LHCb experiment [67],
and on the anticipated discovery of the flavour-changing neutral current (FCNC) B → Kν`ν̄`
decay process at Belle II [68], we aim at improving further theory predictions for the
semileptonic Bd,s → π,K decay form factors from the LCSR technique with the HQET
B-meson distribution amplitudes as previously achieved in [33, 35], by incorporating a
various types of newly computed subleading-power contributions into the next-to-leading-
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logarithmic (NLL) resummation improved leading-power effects in the heavy quark expansion.
More specifically, the major new ingredients of the present paper can be summarized in
the following.

• Applying the method of the SCET sum rules we evaluate the non-vanishing spectator-
quark mass corrections to the exclusive Bd,s → π,K transition form factors at large
hadronic recoil at O(αs), which will be demonstrated to generate the SU(3)-flavour
symmetry breaking effect not suppressed in the heavy quark expansion and to preserve
the large-recoil symmetry relations for the soft contributions to the heavy-to-light
bottom-meson decay form factors. We then proceed to perform the complete NLL
summation of the enhanced logarithms of mb/ΛQCD appearing in the leading-power
factorization formulae for the vacuum-to-B-meson correlation functions defined with
an interpolating current for the energetic pseudoscalar meson, by employing the
standard renormalization-group (RG) formalism.

• We compute for the first time the subleading-power terms from the heavy quark
expansion of the hard-collinear quark propagator including further two distinct sources
of the light-quark mass corrections at tree level by taking advantage of the classical
equations of motion for both the soft light quark and the effective heavy quark as well
as the two-particle and three-particle light-cone bottom-meson distribution amplitudes
in HQET. Moreover, we will verify explicitly that such particular power-suppressed
contributions can bring about the notable symmetry-breaking corrections to the
semileptonic Bd,s → π,K form factors.

• We construct the SCET sum rules for the subleading matrix element of the effective
heavy-to-light current 〈M(p)|(ξ̄hcWhc) γµ

[
i /D>/ (2mb)

]
hv|B̄q′(v)〉 from the SCETI

expansion of the flavour-changing weak current q̄ Γi b at the LO accuracy, by employing
the established relations between the relevant light-ray HQET operators [69–71].

• We derive the tree-level sum rules for the twist-five and twist-six four-body higher-
twist corrections to the exclusive Bd,s → π,K form factors with the factorization
ansätz, which allows for expressing these subleading-twist distribution amplitudes in
terms of the quark condensate and the appropriate two-particle HQET distribution
amplitudes (see for instance [72, 73] for further discussions).

• We update the previous theory predictions for the complete set of the semileptonic
Bd,s → π,K form factors in the entire kinematic regime by interpolating between
the improved SCET sum rule computations at small momentum transfer and the
numerical lattice QCD determinations at large momentum transfer with the con-
ventional Bourrely-Caprini-Lellouch (BCL) parametrization [74–76]. Our numerical
explorations will evidently reveal that implementing the obtained LCSR constraints of
the heavy-to-light bottom-meson form factors in the theory analysis is indeed beneficial
for pinning down the yielding uncertainties of the extracted series coefficients.

The remainder of this paper is structured as follows. We will set up the computa-
tional framework in section 2 by defining the exclusive heavy-to-light B-meson decay form
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factors of our interest, by summarizing the general strategies of constructing the desired
SCET sum rules with the bottom-meson distribution amplitudes, and by presenting the
manifest expressions of the short-distance matching coefficients entering the perturbative
factorization formulae for the considered vacuum-to-B-meson correlation functions at the
leading-power accuracy. In particular, we derive the spectator-quark mass corrections to the
perturbative hard-collinear functions at O(αs) and demonstrate further the factorization-
scale independence of the obtained expressions for the correlation functions. Applying
the RG evolution equations for both the hard matching coefficients and the two-particle
twist-two and twist-three B-meson distribution amplitudes enables us to carry out the NLL
summation of the parametrically enhanced logarithms in the factorized expressions of the
vacuum-to-B-meson correlation functions. We turn to investigate four different classes of
the next-to-leading-power (NLP) corrections to the exclusive Bd,s → π,K transition form
factors at tree level on the basis of the SCET sum rules in section 3, by invoking the appro-
priate operator identities between the two-body and three-body light-cone HQET operators
and by employing the higher-twist B-meson distribution amplitudes up to the twist-six
accuracy. Numerical explorations of the resulting SCET sum rules for the Bd,s → π,K form
factors at large hadronic recoil including both the updated leading-power contributions in
the ΛQCD/mb expansion with the non-vanishing light-quark masses and the newly derived
subleading power corrections will be displayed in section 4. We then proceed to perform the
simultaneous fit of the customary BCL parametrization for these transition form factors to
the obtained LCSR predictions and the available lattice QCD results, yielding the correlated
numerical values of the nonperturbative form-factor parameters. Taking advantage of the
improved determinations of the bottom-meson decay form factors in the full kinematic
region, we also provide the SM predictions for a variety of phenomenologically interesting
observables for the semileptonic B → π`ν̄` and Bs → K`ν̄` decay processes, such as the
differential branching fractions, the lepton-flavour universality ratios the forward-backward
asymmetries as well as the lepton polarization asymmetries, and for the theoretically cleanest
electroweak penguin B → Kν`ν̄` decays in this section. We will conclude in section 5 with
a summary of our major observations and perspectives on the future developments.

2 The NLL LCSR for the exclusive Bd,s → π,K form factors at
leading power

We employ the standard definitions of the semileptonic heavy-to-light decay form fac-
tors according to the Lorentz decompositions of the following bilinear quark current
matrix elements

〈M(p)|q̄γµb|B̄(pB)〉 = f+
BM (q2)

[
pB + p− m2

B −m2
M

q2 q

]
µ

+ f0
BM (q2) m

2
B −m2

M

q2 qµ ,

〈M(p)|q̄σµνqνb|B̄(pB)〉 = i fTBM (q2)
mB +mM

[
q2 (2 p+ q)µ −

(
m2
B −m2

M

)
qµ
]
, (2.1)

where mM and p correspond to the mass and the four-momentum of the light pseudoscalar
meson, and q stands for the transfer momentum of the flavour-changing weak current.
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Applying the procedure displayed in [31–33, 35], the SCET sum rules for these form factors
can be constructed with the vacuum-to-B-meson correlation function

Πµ(n · p, n̄ · p) =
∫
d4x eip·x〈0|T

{
q̄′(x) /nγ5 q(x), q̄(0) Γµ b(0)

}
|B̄(pB)〉

=


Π(n · p, n̄ · p)nµ + Π̃(n · p, n̄ · p) n̄µ, Γµ = γµ(
− i

2

)
ΠT(n · p, n̄ · p) [n̄ · q nµ − n · q n̄µ] , Γµ = σµνq

ν

(2.2)

where the local QCD current q̄′(x) /nγ5 q(x) interpolates the pseudoscalar meson. We further
introduce the two light-cone vectors nµ and n̄µ satisfying the constraints n2 = n̄2 = 0 and
n · n̄ = 2, which allow us to write down the four-velocity vector of the heavy bottom-meson
vµ = pB/mB = (nµ + n̄µ)/2. In order to facilitate the derivation of the soft-collinear
factorization formulae for the three emerged invariant functions Π, Π̃ and ΠT, we adopt
the following power counting scheme for the interpolating-current momentum and the
light-quark masses

n · p ∼ O(mb) , n̄ · p ∼ O(ΛQCD) , mq ∼ mq′ ∼ O(ΛQCD) . (2.3)

Performing the two-step matching program QCD→ SCETI → SCETII for the correlation
function (2.2) in sequence leads to the familiar factorization formulae at leading power in
the heavy quark expansion [33, 35]

Π = FB(µ)mB

∑
k=±
C(k)(n · p, µ)

∫ ∞
0

dω

ω − n̄ · p− i0 J
(k)
(

µ2

n · pω
,
ω

n̄ · p

)
φkB(ω, µ) ,

Π̃ = FB(µ)mB

∑
k=±
C̃(k)(n · p, µ)

∫ ∞
0

dω

ω − n̄ · p− i0 J̃
(k)
(

µ2

n · pω
,
ω

n̄ · p

)
φkB(ω, µ) ,

ΠT = FB(µ)mB

∑
k=±
C(k)

T (n · p, µ, ν)
∫ ∞

0

dω

ω − n̄ · p− i0 J
(k)
T

(
µ2

n · pω
,
ω

n̄ · p

)
φkB(ω, µ) .

(2.4)
Including the light spectator-quark mass corrections in the factorized expressions apparently
cannot affect the hard coefficients from the first-step matching QCD → SCETI in the
leading-power approximation, which can be actually determined from the perturbative
matching of the heavy-to-light current by integrating out the hard fluctuation modes with
virtualities of order m2

b [77, 78]. However, the non-vanishing spectator-quark mass can
indeed result in the leading-power contributions to the hard-collinear functions from the
SCETI → SCETII matching with the adopted power-counting scheme (2.3)

J̃ (+) = αsCF
4π

{[
r

(
1− n̄·p

ω

)
+mq+2mq′

ω

]
ln
(

1− ω

n̄·p

)
−
mq′

ω
ln2
(

1− ω

n̄·p

)
ω−n̄·p
ω

−
mq′

ω

[
2 ln µ2

n·p(ω−n̄·p) +5
] [

ln
(

1− ω

n̄·p

)
ω−n̄·p
ω

−1
]}

,

J (+)
T = αsCF

4π

{[
−
(

1− n̄·p
ω

)
+mq+2mq′

ω

]
ln
(

1− ω

n̄·p

)
−
mq′

ω
ln2
(

1− ω

n̄·p

)
ω−n̄·p
ω

−
mq′

ω

[
2 ln µ2

n·p(ω−n̄·p) +5
] [

ln
(

1− ω

n̄·p

)
ω−n̄·p
ω

−1
]}

, (2.5)
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where we have introduced the dimensionless kinematic variable r = n ·p/mb. It is straightfor-
ward to verify the factorization-scale independence of the derived factorization formulae by
employing the RG evolution equation for the twist-three Bq′-meson distribution amplitude
φ−B(ω, µ) in the absence of the three-particle LCDA contribution at one loop [79]

d

d lnµφ
−
B(ω, µ) = −αs4π

∫ ∞
0

dω′
[
γ

(1)
+ (ω, ω′, µ)− Γ(0)

cusp
θ(ω′ − ω)

ω′

]
φ−B(ω, µ)

− αs
4π

∫ ∞
0

dω′ Γ(0)
cusp

[
mq′ θ(ω′ − ω)

ω′2

]
⊕
φ+
B(ω, µ) +O(α2

s) , (2.6)

where the perturbative kernel γ(1)
+ and the cusp anomalous dimension Γ(0)

cusp can be written as

γ
(1)
+ =

{(
Γ(0)

cusp ln µ
ω
− 2

)
δ(ω − ω′)− Γ(0)

cusp

[
ω θ(ω′ − ω)
ω′ (ω′ − ω) + θ(ω − ω′)

(ω − ω′)

]
⊕

}
CF ,

Γ(0)
cusp = 4CF , (2.7)

with the ⊕-function defined by∫ ∞
0

dω′
[
f(ω, ω′)

]
⊕ g(ω′) =

∫ ∞
0

dω′ f(ω, ω′)
[
g(ω′)− g(ω)

]
. (2.8)

Importantly, the yielding spectator-quark mass corrections to the hard-collinear matching
coefficients appear to be universal for the two vacuum-to-B-meson correlation functions with
distinct weak transition currents. This interesting pattern can be attributed to the very fact
that only the one-loop correction to the light-pseudoscalar-meson vertex diagram can bring
about the non-vanishing spectator-quark mass effect at leading power, thus validating the
earlier speculation on the differences between the heavy-to-light form factors for exclusive
B-meson and Bs-meson decays [80]. The remaining short-distance functions in the factorized
correlation functions (2.4) have been determined in [35] at the one-loop accuracy.

Inspecting the obtained soft-collinear factorization formulae for the considered invariant
functions indicates that there is no common choice of the factorization scale to get rid of
the parametrically large logarithms of mb/ΛQCD. Adopting the factorization scale of order√
mb ΛQCD, we are then required to perform an all-order summation of such enhanced

logarithms entering in both the hard matching coefficients and the two-particle bottom-
meson distribution amplitudes. Taking advantage of the momentum-space RG equations
for C̃(−), C(−)

T and the HQET decay constant FB (expressible in terms of the QCD decay
constant fB and the matching coefficient K(µ) [81]) allows us to derive the desired scale
dependence of these quantities in the following form

FB(µ) = Û2(µh2, µ) FB(µh2) , C̃(−)(n·p,µ) = Û1(n·p, µh1, µ) C̃(−)(n·p,µh1) ,

C(−)
T (n·p,µ,ν) =U1(n·p, µh1, µ) Û3(νh,ν)C(−)

T (n·p,µh1,νh) . (2.9)

The manifest expressions of the QCD evolution function Û1(n·p, µh1, µ) can be obtained from
the expanded result of U1(Eγ , µh, µ) presented in [82] with the replacement Eγ → n · p/2.

– 6 –
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The two additional RG functions Û2 and Û3 at the NLL accuracy are given by

Û2(µh2, µ) = z
−
γ

(0)
K

2 β0
2

[
1 + αs(µh2)

4π

(
γ

(1)
K

2β0
− γ

(0)
K β1
2β2

0

)
(1− z2) +O(α2

s)
]
,

Û3(νh, ν) = z
−
γ

(0)
T

2 β0
3

[
1 + αs(νh)

4π

(
γ

(1)
T

2β0
− γ

(0)
T β1
2β2

0

)
(1− z3) +O(α2

s)
]
, (2.10)

where the necessary anomalous dimensions for the HQET heavy-to-light current and for
the QCD tensor current are [83–85]

γ
(0)
K = 3CF , γ

(1)
K = CF

[
127
6 + 14π4

9 − 5
3 nf

]
,

γ
(0)
T = −2CF , γ

(1)
T = CF

[
19CF −

257
9 CA + 26

9 nf

]
, (2.11)

with the conventions z2 = αs(µ)/αs(µh2) and z3 = αs(ν)/αs(νh). Applying the dual-space
representations for the B-meson distribution amplitudes constructed in [86, 87]

φ+
B(ω, µ) =

∫ +∞

0
ds
√
ω s J1(2

√
ω s) η+(s, µ) ,

φ−B(ω, µ) =
∫ +∞

0
ds
√
ω s J0(2

√
ω s)

[
η+(s, µ) + η

(0)
3 (s, µ)

]
, (2.12)

both the twist-two and twist-three coefficient functions η+(s, µ) and η(0)
3 (s, µ) are observed

to possess the autonomous scale dependence [88]

η+(s, µ) = U tw2
φ (s, µ, µ0) η+(s, µ0) ,

η
(0)
3 (s, µ) = U tw3

φ (s, µ, µ0) η(0)
3 (s, µ0) . (2.13)

The analytical results of the two evolution factors U tw2
φ (s, µ, µ0) and U tw3

φ (s, µ, µ0) can be
further written as [71, 88]

U tw2
φ (s,µ,µ0) = exp

{
−Γ(0)

cusp
4β2

0

[
lnz0−1+ 1

z0

]
− β1

2β2
0

ln2 z0+
(

Γ(1)
cusp

Γ(0)
cusp
− β1

2β0

)
[z0−1−lnz0]

}

×
(
se2γE µ0

)Γ(0)
cusp lnz0/(2β0)

z
γ

(0)
tw2/(2β0)

0 ,

U tw3
φ (s,µ,µ0) = z

γ
(0)
tw3/(2β0)

0 U tw2
φ (s,µ,µ0) , (2.14)

where the dimensionless quantity z0 = αs(µ)/αs(µ0) and the newly appeared anomalous
dimensions Γ(0)

cusp, Γ(1)
cusp, γ(0)

tw2 and γ(0)
tw3 are explicitly given by

Γ(0)
cusp = 4CF , Γ(1)

cusp =CF

[268
3 −4π2− 40

9 nf

]
, γ

(0)
tw2 =−2CF , γ

(0)
tw3 = 2Nc .

(2.15)
In order to construct the SCET sum rules for the exclusive heavy-to-light form factors,

we proceed to derive the hadronic dispersion relations for the vacuum-to-B-meson correlation
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functions with the aid of the conventional parameterizations for the bottom-meson decay
matrix elements collected in (2.1)

Πµ,V(n · p, n̄ · p) =
(1

2

)
fP mB

m2
M/n · p− n̄ · p

{
n̄µ

[
n · p
mB

f+
BM(q2) + f0

BM(q2)
]

+ nµ
mB

n · p−mB

[
n · p
mB

f+
BM(q2)− f0

BM (q2)
]}

+
∫ +∞

ωs

dω′

ω′ − n̄ · p− i0
[
ρhV,1(ω′, n · p)nµ + ρhV,2(ω′, n · p) n̄µ

]
,

Πµ,T(n · p, n̄ · p) =
(
− i2

)
[n̄ · q nµ − n · q n̄µ]

{
fM n · p

m2
M/n · p− n̄ · p

[
mB

mB +mM
fTBM (q2)

]
+
∫ +∞

ωs

dω′

ω′ − n̄ · p− i0 ρhT(ω′, n · p)
}
, (2.16)

where we adopt the standard definition for the decay constant of the pseudoscalar meson [89]

〈0|q̄′ /nγ5 q|M(p)〉 = i n · p fM . (2.17)

Evidently, Πµ,V and Πµ,T correspond to Γµ = γµ and Γµ = σµνq
ν for the particular spin

structure of the weak current q̄(0) Γµ b(0) in the definition (2.2), respectively. Matching
the spectral representations of the NLL resummation improved factorization formulae
with the obtained hadronic dispersion relation (2.16) and implementing further the Borel
transformation in the variable n̄ · p→ ωM , we can readily derive the NLL sum rules for the
semileptonic Bd,s → π,K decay form factors in the leading-power approximation

fM exp
[
− m2

M

n · p ωM

] {
n · p
mB

f+
BM,LP(q2) , f0

BM,LP(q2)
}

(2.18)

=
[
Û2(µh2, µ)FB(µh2)

] ∫ ωs

0
dω′ e−ω

′/ωM

×
{

Φ̃+
B, eff(ω′, µ) +

[
Û1(n · p, µh1, µ) C̃(−)(n · p, µh1)

]
Φ̃−B, eff(ω′, µ)

± n · p−mB

mB

[
Φ+
B, eff(ω′, µ) + C(−)(n · p, µh1) Φ−B, eff(ω′, µ)

]}
,

fM exp
[
− m2

M

n · p ωM

]
n · p

mB +mM
fTBM,LP(q2) (2.19)

=
[
Û2(µh2, µ)FB(µh2)

] ∫ ωs

0
dω′ e−ω

′/ωM

×
{

Φ̂+
B, eff(ω′, µ) +

[
Û1(n · p, µh1, µ) Û3(νh, ν) C(−)

T (n · p, µh1, νh)
]

Φ̃−B, eff(ω′, µ)
}
.

For brevity we have introduced the effective bottom-meson “distribution amplitudes” absorb-
ing the hard-collinear strong interaction dynamics into the standard HQET soft functions

Φ̃+
B,eff = αsCF

4π

{
r

∫ ∞
ω′

dω
φ+
B(ω,µ)
ω

−
(
mq+2mq′

) ∫ ∞
ω′

dω ln
(
ω−ω′

ω′

)
d

dω

φ+
B(ω,µ)
ω

− 2mq′

∫ ∞
0

dω

ω

[
θ(ω−ω′)

(
ln µ2

n·pω′
+ 5

2

)
+θ(ω′−ω) ln

(
ω′−ω
ω′

)]
dφ+

B(ω,µ)
dω

}
,
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Φ̃−B,eff =φ−B(ω′,µ)+αsCF
4π

{∫ ω′

0
dω

[
2

ω−ω′

(
ln µ2

n·pω′
−2 ln ω

′−ω
ω′

)]
⊕
φ−B(ω,µ)

−
∫ ∞
ω′

dω

[
ln2 µ2

n·pω′
−
(

2 ln µ2

n·pω′
+3
)

ln ω−ω
′

ω′
+ 2 ln ω

ω′
+π2

6 −1
]
dφ−B(ω,µ)

dω

}
,

Φ+
B,eff = αsCF

4π

∫ ∞
ω′

dω
φ+
B(ω,µ)
ω

, Φ−B,eff =φ−B(ω,µ), (2.20)

Φ̂+
B,eff = αsCF

4π

{
−
∫ ∞
ω′

dω
φ+
B(ω,µ)
ω

−
(
mq+2mq′

) ∫ ∞
ω′

dω ln
(
ω−ω′

ω′

)
d

dω

φ+
B(ω,µ)
ω

− 2mq′

∫ ∞
0

dω

ω

[
θ(ω−ω′)

(
ln µ2

n·pω′
+ 5

2

)
+θ(ω′−ω) ln

(
ω′−ω
ω′

)]
dφ+

B(ω,µ)
dω

}
.

It remains interesting to point out that the newly computed spectator-quark mass cor-
rections preserve the so-called large-recoil symmetry relations for the soft contributions
to the exclusive Bd,s → π,K form factors at leading power in the heavy quark expansion
(see [90] for further discussions). The leading-power quark mass corrections to the exclusive
heavy-to-light form factors have been already investigated directly in the soft-collinear
factorization framework [91], yielding the same observation on the preservation of large-
recoil symmetries by the light-quark mass contributions and introducing a new SCETII
operator Om. Establishing the precise connection of the determined mass corrections from
these two distinct methodologies with the parton-hadron duality ansätz will definitely be
an interesting topic for future exploration. Bearing in mind the scaling behaviour of the
light-cone variable ω′ ∼ ωs ∼ O(Λ2

QCD/mb) in the established sum rules (2.18) and (2.19),
we can immediately observe that ln [(ω − ω′)/ω′] entering in the nonperturbative functions
Φ̃+
B, eff and Φ̂+

B, eff must be counted as the large logarithm ln (mb/ΛQCD) in the heavy quark
limit. The very appearance of such logarithmic term in the yielding SCET sum rules further
implies that evaluating the spectator-quark mass contribution with the perturbative factor-
ization technique straightforwardly will give rise to the soft-collinear convolution integrals
with unwanted end-point singularities (see [92–97] for the interesting progress on exploring
the end-point dynamics and tackling the rapidity logarithms in the different contexts).

3 The LCSR for the exclusive Bd,s → π,K form factors beyond
leading power

We are now in a position to investigate the power-suppressed corrections to the exclusive
bottom-meson decay form factors from a variety of distinct sources by applying the LCSR
method with the higher-twist HQET distribution amplitudes. To this end, we will need
to construct the subleading-power factorization formulae for the vacuum-to-B-meson cor-
relation functions and take advantage of the non-trivial identities for the two-body and
three-body light-ray HQET operators due to the classical equations of motion [69–71].

3.1 The NLP contribution form the hard-collinear propagator

The first class of the subleading power contribution arises from retaining the higher-order
terms in the heavy quark expansion of the hard-collinear quark propagator as depicted
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Figure 1. The subleading power two-particle and three-particle corrections to the vacuum-to-
bottom-meson correlation function (2.2) at the tree-level accuracy, where the square box indicates
an insertion of the weak vertex q̄ Γµ b and the waveline stands for the interpolating current q̄′ /n γ5 q

for the light pseudoscalar meson.

in figure 1. Applying the computational strategy discussed in [98, 99], we proceed to
write down the two-particle contribution to the QCD correlation function (2.2) at the
tree-level accuracy

Πhc
µ,V,NLP(n · p, n̄ · p) = i

∫
d4x

∫
d4k

(2π)4 exp (i k · x) 1
(p− k)2 −m2

q + i0

×
〈

0
∣∣∣q′(x) /n γ5 (/p− /k +mq) γµ hv(0)

∣∣∣ B̄(pB)
〉
. (3.1)

Implementing an expansion in powers of ΛQCD/mb for the hard-collinear quark propagator
in (3.1) immediately leads to

(/p− /k) +mq

(p− k)2 −m2
q + i0 = 1

n̄ · (p− k)
/̄n

2︸ ︷︷ ︸+ 1
(p− k)2

[
n̄ · p /n2 −

/k + n · k n̄ · p
n̄ · (p− k)

/̄n

2

]
︸ ︷︷ ︸

LP NLP

+ 1
(p− k)2

[
mq +

m2
q −m2

q′

n̄ · (p− k)
/̄n

2

]
︸ ︷︷ ︸+ . . . ,

mq(′) NLP (3.2)

where the abbreviation “LP” represents the leading-power effect discussed in section 2. We
can further cast the subleading-power terms displayed in the first line of (3.2) in the form

Πhc, I
µ,V,NLP(n · p, n̄ · p) =

∫
d4x

∫
d4k

(2π)4 exp (i k · x) 1
(p− k)2 + i0

×
{
∂

∂xρ

〈
0
∣∣q′(x) /n γ5 γρ γµ hv(0)

∣∣ B̄(pB)
〉

− n̄ · p
n̄ · (p− k) (2 vρ − n̄ρ)

∂

∂xρ

〈
0
∣∣∣∣∣q′(x) /n γ5

/̄n

2 γµ hv(0)
∣∣∣∣∣ B̄(pB)

〉}
,

(3.3)
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by employing the standard technique of the integration by parts (IBP) as well as the precise
relation between the four-vectors nα = 2 vα − n̄α. Taking advantage of the well-known
operator identities due to the HQET equations of motion

vρ
∂

∂xρ

[
q̄′(x)Γhv(0)

]
= i

∫ 1

0
duū q̄′(x)gsGαβ(ux)xα vβ Γhv(0)+(v ·∂)

[
q̄′(x)Γhv(0)

]
,

(3.4)
∂

∂xρ
q̄′(x)γρΓhv(0) =−i

∫ 1

0
duu q̄′(x)gsGλρ(ux)xλ γρΓhv(0)+imq′ q̄

′(x)Γhv(0) ,

(3.5)

where the total translation operator ∂ρ acting on an arbitrary composite operator
O(x1, . . . , xn) with n space-time arguments is defined by

∂ρO(x1, . . . , xn) = ∂

∂yρ
O(x1 + y, . . . , xn + y)

∣∣∣∣
y=0

, (3.6)

we can then readily derive the factorized expressions for the effective NLP matrix elements
of our interest at tree level

Πhc, I
NLP =

[2FB(µ)mB

n · p

] { ∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

uΦ4(ω1, ω2, µ) + Ψ4(ω1, ω2, µ)
[n̄ · p− ω1 − uω2]2

+
∫ ∞

0
dω

(
Λ̄− ω +mq′

2

)
φ+
B(ω, µ)

[n̄ · p− ω]

}
+O(αs) , (3.7)

Π̃hc, I
NLP =

[
−2FB(µ)mB

n · p

] { ∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

ū (n̄ · p+ ω1 + uω2)
[n̄ · p− ω1 − uω2]3

Ψ5(ω1, ω2, µ)

+
∫ ∞

0
dω

(
Λ̄− ω

2

)
ω φ+

B(ω, µ)
[n̄ · p− ω]2

}
+O(αs) . (3.8)

The hadronic parameter Λ̄ characterizing the “effective mass” of the bottom-meson state in
HQET can be defined in an explicitly covariant and gauge invariant manner [100]

Λ̄ ≡ 〈0|q̄ i v ·
←−
D Γhv|B̄q(v)〉

〈0|q̄ Γhv|B̄q(v)〉
. (3.9)

Additionally, we have adopted the systematic parametrization of the three-body light-cone
HQET matrix element at the twist-six accuracy [71]

〈0|q̄α(τ1 n̄) gsGµν(τ2 n̄)hv β(0)|B̄v〉

= FB(µ)mB

4

[
(1 + /v)

{
(vµγν − vνγµ)

[
Ψ̂A(τ1, τ2, µ)− Ψ̂V (τ1, τ2, µ)

]
− i σµν Ψ̂V (τ1, τ2, µ)

− (n̄µ vν − n̄ν vµ) X̂A(τ1, τ2, µ) + (n̄µ γν − n̄ν γµ)
[
Ŵ (τ1, τ2, µ) + ŶA(τ1, τ2, µ)

]
+ i εµναβ n̄

α vβ γ5
ˆ̃XA(τ1, τ2, µ)− i εµναβ n̄

α γβ γ5
ˆ̃YA(τ1, τ2, µ)

− (n̄µ vν − n̄ν vµ) /̄n Ŵ (τ1, τ2, µ) + (n̄µ γν − n̄ν γµ) /̄n Ẑ(τ1, τ2, µ)
}
γ5

]
β α

. (3.10)
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The momentum-space distribution amplitudes can be obtained by carrying out the Fourier
transformation in the two light-cone variables τ1,2 [71, 101]

ΨX(ω1,ω2,µ) =
∫ +∞

−∞

dτ1
2π

∫ +∞

−∞

dτ2
2π exp[i(ω1 τ1+ω2 τ2)] Ψ̂X(τ1−i0, τ2−i0,µ) ,

ΨX ∈
{

ΨV ,ΨA, XA, YA, X̃A, ỸA, W, Z
}
, Ψ̂X ∈

{
Ψ̂V , Ψ̂A, X̂A, ŶA,

ˆ̃XA,
ˆ̃YA, Ŵ , Ẑ

}
.

(3.11)

To facilitate the construction of the perturbative factorization formulae, it turns out to
be more advantageous to introduce the three-particle HQET distribution amplitudes with
the definite collinear twist by virtue of the appearing invariant functions (see [102, 103] for
further discussions on the comparison between dynamical twist and geometric twist)

Φ3 = ΦA − ΦV , Φ4 = ΦA + ΦV ,

Ψ4 = ΨA +XA , Ψ̃4 = ΨV − X̃A ,

Φ̃5 = ΨA + ΨV + 2YA − 2 ỸA + 2W , Ψ5 = −ΨA +XA − 2YA ,
Ψ̃5 = −ΨV − X̃A + 2 ỸA , Φ6 = ΦA − ΦV + 2YA + 2W + 2 ỸA − 4Z .

(3.12)

Applying the standard factorization method, we can compute the power-suppressed
contributions presented in the second line of (3.2) due to the non-vanishing quark masses

Πhc, II
NLP =

[
−FB(µ)mB

n · p

] ∫ ∞
0

dω
mq

n̄ · p− ω
φ−B(ω, µ) +O(αs) , (3.13)

Π̃hc, II
NLP =

[
−FB(µ)mB

n · p

] ∫ ∞
0

dω

(
m2
q −m2

q′

)
[n̄ · p− ω]2

φ−B(ω, µ) +O(αs) . (3.14)

In contrast to the NLP active-quark mass corrections, the newly identified spectator-quark
mass contributions cannot generate the large-recoil symmetry breaking effects at O(α0

s).
Along the same vein, we can derive the soft-collinear factorization formulae for the

particular subleading-power corrections to the correlation function Πµ,T from the higher-
order terms in the heavy quark expansion of the hard-collinear quark propagator

Πhc, I
T,NLP =

(
Π̃hc, I

NLP −Πhc, I
NLP

)
+O(αs) , Πhc, II

T,NLP =
(
Π̃hc, II

NLP −Πhc, II
NLP

)
+O(αs) . (3.15)

These interesting constraints can be attributed to the classical HQET equation of motion

(σµν qν) 1hv = (σµν qν) /v hv =
(
− i2

)
[n̄ · q nµ − n · q n̄µ]

(
/n

2 −
/̄n

2

)
hv . (3.16)

Including the non-Eikonal gluonic interaction with the bottom-quark field in the higher-order
corrections to the vacuum-to-bottom-meson correlation functions will generally invalidate
such symmetry relations.

Expressing the established NLP factorization formulae in the dispersion forms and
equating the achieved spectral representations for the correlation functions with the corre-
sponding hadronic dispersion relations (2.16) allows us to construct the desired LCSR for
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the power-suppressed contributions from the expanded hard-collinear quark propagator

fM exp
[
− m2

M

n · p ωM

] {
n · p
mB

f+, hc
BM,NLP(q2) , f0, hc

BM,NLP(q2) , n · p
mB +mM

fT, hc
BM,NLP(q2)

}
= FB(µ)

n · p

[ ∫ ωs

0
dω1

∫ ∞
0

dω2
ω2

{
e
−ω1+ω2

ωM %hc, I
NLP(ω1, ω2, µ) θ(ωs − ω1 − ω2)

+
[(
e
− ω1
ωM − e−

ωs
ωM

)
θ(ω1 + ω2 − ωs) +

(
e
− ω1
ωM − e−

ω1+ω2
ωM

)
θ(ωs − ω1 − ω2)

]
× %hc, II

NLP (ω1, ω2, µ) + e
− ω1
ωM %hc, III

NLP (ω1, ω2, µ)
}

+
∫ ωs

0
dω e

− ω
ωM %̃hc

NLP(ω, µ)
]

+O(αs) .

(3.17)

The yielding expressions for the emerged coefficient functions %hc, (I,II,III)
NLP and %̃hc

NLP can be
explicitly written as

%hc, I
NLP = 2

{
ω1 + ω2
ω2

Ψ5(ω1, ω2, µ) − κi (Φ4 + Ψ4)(ω1, ω2, µ)
}
, (3.18)

%hc, II
NLP = −2

(
ωM
ω2

)
[Ψ5(ω1, ω2, µ) + κi Φ4(ω1, ω2, µ)] , (3.19)

%hc, III
NLP = 2

{(
d

dω1
− 1
ω2

)
[ω1 Ψ5(ω1, ω2, µ)] − κi Φ4(ω1, ω2, µ)

}
, (3.20)

%̃hc
NLP =

[
1−

(
ωs − ω
ω

) m2
q −m2

q′

ωs ωM
+
(
ω − 2 Λ̄−

m2
q −m2

q′

ωs

)
d

dω

] [
ω φ−B(ω, µ)

]
+ κi

[(
ω − 2 Λ̄

)
φ+
B(ω, µ) +

(
mq +mq′

)
φ−B(ω, µ)

]
, (3.21)

where the non-universal κi-factors are responsible for the symmetry-breaking effects

κ+ = −κ0 = (n · p−mB)/mB , κT = −1 . (3.22)

Importantly, we have further verified that the newly derived sum rules (3.17) for the light-
quark-mass insensitive NLP corrections from the heavy quark expansion of the hard-collinear
propagator are consistent with the previous computations for the semileptonic B → D`ν̄`
form factors accomplished in [40].

3.2 The NLP contribution from the subleading effective current

We now proceed to determine the second class of the subleading-power correction to the
exclusive Bd,s → π,K form factors arising from the peculiar higher-order term in the SCETI
representation of the heavy-to-light transition current q̄ Γµ b [104]

J (A2) ⊃ (ξ̄hcWhc) Γ

 i−→/D>
2mb

 hv + . . . , Dµ
> ≡ D

µ − (v ·D) vµ , (3.23)

which corresponds to the standard QCD→ HQET matching for the bottom-quark field

b(x) = exp (−imb v · x)

1 + i
−→
/D>

2mb
+ (v · −→D)

−→
/D>

4m2
b

−
−→
/D>
−→
/D>

8m2
b

+O
(

1
m3
b

) hv(x) . (3.24)
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It is then straightforward to express the resulting NLP contribution to the vacuum-to-B-
meson correlation function (2.2) in the following form

Π(A2)
µ,V,NLP(n · p, n̄ · p) = −

(
n · p
4mb

) ∫
d4x

∫
d4k

(2π)4 exp (i k · x) 1
(p− k)2 −m2

q + i0

×
〈

0
∣∣∣∣q′(x) /n γ5 /̄n γµ

−→
/D> hv(0)

∣∣∣∣ B̄(pB)
〉

= −
(
n · p
2mb

) ∫
d4x

∫
d4k

(2π)4 exp (i k · x) n̄µ
(p− k)2 −m2

q + i0

×
〈

0
∣∣∣∣q′(x)

(−→
/D> /n + 2 n̄ · −→D>

)
γ5 hv(0)

∣∣∣∣ B̄(pB)
〉
, (3.25)

where we have employed the lowest-order equation of motion of the effective heavy-quark field

i v ·
−→
D hv = 0 . (3.26)

This evidently permits the replacement i
−→
/D> hv → i

−→
/D hv in the effective weak current at

the NLP accuracy. Taking advantage of an additional HQET operator identity [69–71]

q̄′(x) Γ−→Dρ hv(0) = ∂ρ
[
q̄′(x) Γhv(0)

]
+ i

∫ 1

0
du ū q̄′(x) gsGλρ(ux)xλ Γhv(0)

− ∂

∂xρ
q̄′(x) Γhv(0) , (3.27)

in combination with the two operator relations displayed in (3.4) and (3.5), we can construct
the perturbative factorization formula for the non-local hadronic matrix element in (3.25)

Π(A2)
NLP = O(αs) , (3.28)

Π̃(A2)
NLP =

[FB(µ)mB

2mb

] { ∫ ∞
0

dω1

∫ ∞
0

dω2
2 (Ψ4 + Φ4)(ω1, ω2, µ)

(ω1 − n̄ · p) (ω1 + ω2 − n̄ · p)

+
∫ ∞

0

dω

ω − n̄ · p

[(
ω − 2 Λ̄

)
φ+
B(ω, µ) +

(
ω − Λ̄ +mq′

)
φ−B(ω, µ)

]}
+O(αs) .

(3.29)

Applying the analogous computational strategy, we can further compute the yielding NLP
correction to the correlation function Πµ,T at tree level

Π(A2)
T,NLP = −

(
Π̃(A2)

NLP −Π(A2)
NLP

)
+O(αs) . (3.30)

We remark in passing that such an interesting constraint (3.30) differs from the previously
established relations (3.15) for the NLP corrections from the HQET expansion of the
hard-collinear quark propagator by an overall factor of “−1”. This observation can be
traced back to the anti-commutation relation

{
/v,
−→
/D>

}
hv = 0, thus ensuring an exact

algebraic identity

(σµν qν)

 i−→/D>
2mb

 hv =
(
i

2

)
[n̄ · q nµ − n · q n̄µ]

(
/n

2 −
/̄n

2

)  i−→/D>
2mb

 hv . (3.31)
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Matching the spectral representations for the established soft-collinear factorization
formulae (3.29) and (3.30) with the corresponding hadronic dispersion relations (2.16)
enables us to derive the final expressions for the NLP sum rules of the Bd,s → π,K decay
form factors

fM exp
[
− m2

M

n · p ωM

] {
n · p
mB

f
+, (A2)
BM,NLP(q2) , f0, (A2)

BM,NLP(q2) ,
[
− n · p
mB +mM

]
f
T, (A2)
BM,NLP(q2)

}
= FB(µ)

n · p

[ ∫ ωs

0
dω1

∫ ∞
0

dω2
ω2

{
e
−ω1+ω2

ωM %
(A2), I
NLP (ω1, ω2, µ) θ(ωs − ω1 − ω2)

+ e
− ω1
ωM %

(A2), II
NLP (ω1, ω2, µ)

}
+
∫ ωs

0
dω e

− ω
ωM %̃

(A2)
NLP(ω, µ)

]
+O(αs) . (3.32)

The non-perturbative coefficient functions %(A2), (I,II)
NLP and %̃(A2)

NLP can be expressed in terms of
the two-particle and three-particle HQET distribution amplitudes

%
(A2), I
NLP =−n·p

mb
[(Φ4+Ψ4)(ω1,ω2,µ)] , %

(A2), II
NLP = n·p

mb
(Φ4+Ψ4)(ω1,ω2,µ) , (3.33)

%̃
(A2)
NLP = n·p

2mb

[(
ω−2Λ̄

)
φ+
B(ω,µ)+

(
ω−Λ̄+mq′

)
φ−B(ω,µ)

]
. (3.34)

Remarkably, the considered NLP corrections to the heavy-to-light form factors from the
effective matrix elements of the subleading SCETI current J (A2) preserve the well-known
symmetry relation between the vector and scalar form factors, but violate the large-recoil
symmetry of the vector and tensor form factors already at O(α0

s).

3.3 The NLP contribution form the higher-twist two-particle and
three-particle LCDAs

As emphasized repeatedly in [105, 106], the systematic and consistent description of the
higher-twist corrections to exclusive hard reactions in QCD will require us to simultaneously
take into account the transverse-momentum dependence of the valence (anti)-quarks in
the leading Fock-state wavefunction and the subleading distribution amplitudes of the
non-minimal partonic configuration with additional gluons and/or quark-antiquark pairs.
Including the off-light-cone corrections to the renormalized two-body non-local HQET
matrix element at the O(x2) accuracy discussed in [71]

〈0|
(
q̄′ Ys

)
β (x)

(
Y †s hv

)
α

(0)|B̄(v)〉

= − iFB(µ)mB

4

∫ ∞
0

dω exp [−i ω v · x]
{1 + /v

2

[
2
(
φ+
B(ω, µ) + x2 g+

B(ω, µ)
)

− 1
v · x

[(
φ+
B(ω, µ)− φ−B(ω, µ)

)
+ x2

(
g+
B(ω, µ)− g−B(ω, µ)

)]
/x

]
γ5

}
αβ

, (3.35)

– 15 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
0

we can proceed to construct the tree-level factorization formulae for the two-particle higher-
twist corrections to the three invariant functions Π, Π̃ and ΠT [35]

Π2PHT
NLP = O(αs) , (3.36)

Π̃2PHT
NLP =

[2FB(µ)mB

n · p

] { ∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

ūΨ5(ω1, ω2, µ)
[n̄ · p− ω1 − uω2]2

− 2
∫ ∞

0
dω

ĝ−B(ω, µ)
[n̄ · p− ω]2

}
+O(αs) , (3.37)

Π2PHT
T,NLP =

(
Π̃2PHT

NLP −Π2PHT
NLP

)
+O(αs) . (3.38)

In the above derivation we have employed the nontrivial constraint on the momentum-space
distribution amplitudes due to the HQET equations of motion

−2 d
2g−B(ω, µ)
dω2 =

[3
2 + (ω − Λ̄) d

dω

]
φ−B(ω, µ)−

(1
2

)
φ+
B(ω, µ)

+
∫ ∞

0

dω2
ω2

(
d

dω
− 1
ω2

)
Ψ5(ω, ω2, µ) +

∫ ω

0

dω2
ω2

2
Ψ5(ω − ω2, ω2, µ) .

(3.39)

This allows us to decompose the higher-twist LCDA g−B(ω, µ) into the “genuine” twist-five
three-particle distribution amplitude Ψ5(ω1, ω2, µ) and the lower-twist “Wandzura-Wilczek”
contribution labelled as ĝ−B(ω, µ), which can be explicitly expressed in terms of the customary
two-particle B-meson distribution amplitudes

ĝ−B(ω, µ) =
(1

4

) ∫ ∞
ω

dρ
{

(ρ− ω)
[
φ+
B(ρ)− φ−B(ρ)

]
− 2 (Λ̄− ρ)φ−B(ρ)

}
. (3.40)

Applying further the light-cone expansion for the massive-quark propagator in the
background gluon field up to the gluon field strength terms without the covariant deriva-
tives [20, 107] (see also [108, 109] for an alternative representation)

S(x,0,mq)≡〈0|T{q(x), q̄(0)}|0〉

⊃ igs
∫ +∞

−∞

d4`

(2π)4 exp[−i`·x]
∫ 1

0
du

[
uxµ γν
`2−m2

q

− (/̀+mq)σµν
2(`2−m2

q)2

]
Gµν(ux) , (3.41)

we can continue to write down the tree-level factorized expressions for the yielding three-
particle higher-twist corrections to the vacuum-to-B-meson correlation functions (2.2)
displayed in figure 1(b) [35]

Π3PHT
NLP =

[FB(µ)mB

n · p

] ∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1
[n̄ · p− ω1 − uω2]2

×
{

2 ūΦ4(ω1, ω2, µ) + mq

n · p

(
Ψ5 − Ψ̃5

)
(ω1, ω2, µ)

}
+O(αs) , (3.42)

Π̃3PHT
NLP =

[FB(µ)mB

n · p

] ∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1
[n̄ · p− ω1 − uω2]2

×
{[

(2u− 1) Ψ5 − Ψ̃5
]

(ω1, ω2, µ)− 2mq

n · p
Φ6(ω1, ω2, µ)

}
+O(αs) , (3.43)
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Π3PHT
T,NLP =

(
Π̃3PHT

NLP −Π3PHT
NLP

)
+O(αs) . (3.44)

Adding together the obtained two-particle and three-particle subleading twist corrections
in the dispersion form and implementing the standard continuum subtraction procedure with
the parton-hadron duality ansätz leads to the following sum rules for the NLP contributions
to the semileptonic Bd,s → π,K form factors

fM exp
[
− m2

M

n · p ωM

] {
n · p
mB

f+,HT
BM,NLP(q2) , f0,HT

BM,NLP(q2) , n · p
mB +mM

fT,HT
BM,NLP(q2)

}
= FB(µ)

n · p

[ ∫ ωs

0
dω1

∫ ∞
0

dω2
ω2

{
e
−ω1+ω2

ωM %HT, I
NLP (ω1, ω2, µ) θ(ωs − ω1 − ω2)

+
[(
e
− ω1
ωM − e−

ωs
ωM

)
θ(ω1 + ω2 − ωs) +

(
e
− ω1
ωM − e−

ω1+ω2
ωM

)
θ(ωs − ω1 − ω2)

]
× %HT, II

NLP (ω1, ω2, µ) + e
− ω1
ωM %HT, III

NLP (ω1, ω2, µ)
}

+
∫ ωs

0
dω e

− ω
ωM %̃HT

NLP(ω, µ)
]

+O(αs) .

(3.45)

The explicit expressions for the coefficient functions %HT, (I,II,III)
NLP and %̃HT

NLP are given by

%HT, I
NLP =

[
−
(

1+ mq

n·p
κi

) (
Ψ5−Ψ̃5

)
(ω1,ω2,µ)

]
+ 2mq

n·p
Φ6(ω1,ω2,µ), (3.46)

%HT, III
NLP =

[
2κiΦ4(ω1,ω2,µ)+

(
1+ mq

n·p
κi

) (
Ψ5−Ψ̃5

)
(ω1,ω2,µ)

]
− 2mq

n·p
Φ6(ω1,ω2,µ),

(3.47)

%HT, II
NLP =−2

(
ωM
ω2

)
κiΦ4(ω1,ω2,µ) , %̃HT

NLP =−4 dĝ
−
B(ω,µ)
dω

. (3.48)

Interestingly, the obtained tree-level sum rules for the two-particle higher-twist contributions
are independent of the non-universal κi-factors, thus maintaining the large-recoil symmetry
relations of the considered bottom-meson decay form factors. According to our power-
counting scheme for the intrinsic LCSR parameters ωs ∼ ωM ∼ O(Λ2

QCD/mb), we can
immediately determine the desired scaling behaviours of the two-particle and three-particle
higher-twist corrections at O(α0

s) in the heavy quark limit [35]

f+,HT
BM,NLP ∼ f

0,HT
BM,NLP ∼ f

T,HT
BM,NLP ∼ O((ΛQCD/mb)5/2) , (3.49)

which turn out to be suppressed by one power of ΛQCD/mb in comparison with the
leading-power SCET sum rules (2.18) and (2.19). It is however important to emphasize
that evaluating the (currently unknown) higher-order radiative corrections to the three-
particle twist-three B-meson LCDA contributions can actually bring about the unsuppressed
symmetry-preserving effects for the exclusive Bd,s → π,K form factors in the heavy quark
expansion. This observation can be understood from the very fact that the two-particle twist-
three distribution amplitude φ−B(ω, µ) appearing in the tree-level sum rules can be generated
by the one-loop renormalization of the three-particle B-meson LCDA Φ3(ω1, ω2, µ) [88, 110]
(see [111] for further discussions in the SCET framework).
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(a) (b) (c)

(d) (e) (f)

Figure 2. Diagrammatic representations of the twist-five and twist-six four-particle corrections to
the considered vacuum-to-bottom-meson correlation functions (2.2) at the O(αs) accuracy.

3.4 The NLP contribution form the higher-twist four-particle effects

We are now in a position to compute the NLP corrections to the heavy-to-light bottom-
meson decay form factors from the twist-five and twist-six four-particle LCDA contributions
in the factorization approximation, following the computational prescriptions for the elec-
tromagnetic pion form factor at intermediate momentum transfer [112], the exclusive
photon-pion transition form factor γ∗γ → π [72] and the radiative leptonic B → γ`ν̄` decay
amplitude [73]. Evaluating the lowest-order Feynman diagrams in figure 2 straightforwardly
leads to the factorized expressions for such non-leading Fock-state corrections

Π4P
NLP = O(α2

s) (3.50)

Π̃4P
NLP = 2π

3
αs(µ)CF 〈q̄′q′〉
n · p n̄ · p

FB(µ)mB

∫ ∞
0

dω

ω − n̄ · p
φ+
B(ω, µ)
ω

×
{2 n̄ · p

ω

[
1 + n̄ · p− ω

ω
ln n̄ · p− ω

n̄ · p

]
− 1 + 〈q̄q〉

〈q̄′q′〉
ω

ω − n̄ · p

}
+O(α2

s) ,

(3.51)

Π4P
T,NLP =

(
Π̃4P

NLP −Π4P
NLP

)
+O(α2

s) . (3.52)

It is perhaps worth mentioning that the determined four-particle contributions to the
vacuum-to-bottom-meson correlation functions (2.2) from the particular diagram (e) in
figure 2 can be most conveniently computed with the familiar background-field expansion
of the quark propagator on the light-cone [107]

〈0|T{q(x), q̄(0)}|0〉⊃ Γ(d/2−1)
8πd/2 (−x2)d/2−1

∫ 1

0
duuū /xxνD

µ gsG
µν(ux)

+ Γ(d/2−2)
16πd/2 (−x2)d/2−2

∫ 1

0
du

(
uū− 1

2

)
Dµ gsG

µν(ux)γν , (3.53)
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together with the classical equation of motion in QCD

DµGaµν = −i gs
∑
q

q̄ γν T
a q. (3.54)

Additionally, our explicit calculations of the three diagrams (a), (b) and (c) in figure 2
indicate that they can only generate the yet higher-power corrections in the heavy quark
expansion when compared with the dominating contributions from the diagrams (d) and (e).
These enlightening pattern differs drastically from the counterpart NLP contributions to
the two helicity form factors of B → γ`ν̄`, due to the longitudinally polarized pseudoscalar-
meson current in the former and the transversely polarized on-shell photon state in the
latter. Moreover, the remaining diagram (f) in figure 2 turns out to be insensitive to both
the hard and hard-collinear QCD dynamics.

We can proceed to work out the dispersion representations for the four-particle correc-
tions to the invariant functions Π, Π̃ and ΠT at O(αs) and further derive the NLP sum
rules for the yielding twist-five and twist-six contributions with the standard strategy

fM exp
[
− m2

M

n·p ωM

] {
n·p
mB

f+,4P
BM,NLP(q2) , f0,4P

BM,NLP(q2) , n·p
mB+mM

fT,4P
BM,NLP(q2)

}
= 2π

3
αs(µ)CF 〈q̄′q′〉

n·p
FB(µ)

{∫ +∞

ωs

dω

ω2

[2ωM
ω

(
exp

(
− ωs
ωM

)
−1
)

+1− 〈q̄q〉
〈q̄′q′〉

]
φ+
B(ω,µ)

+
∫ ωs

0

dω

ω2

[(
1− 2ωM

ω
− 〈q̄q〉
〈q̄′q′〉

)
+
(

1+ 2ωM
ω

+ 〈q̄q〉
〈q̄′q′〉

(
1+ ω

ωM

))
exp

(
− ω

ωM

)]
×φ+

B(ω,µ) + 〈q̄q〉
〈q̄′q′〉

[
exp

(
− ωs
ωM

)
φ+
B(ωs,µ)
ωs

]}
+O(α2

s) . (3.55)

In contrast with the previously determined subleading-twist corrections to the exclusive
B → γ`ν̄` decay form factors [73], these non-valence Fock-state contributions appear to
preserve the (classical) large-recoil symmetry relations between the semileptonic Bd,s → π,K

form factors, according to the newly established LCSR (3.55). It needs to be stressed
that the resulting expressions for the higher-twist four-particle corrections to the heavy-
to-light form factors are derived with the factorization approximation by expressing the
(currently unknown) genuine four-particle distribution amplitudes in terms of the quark
condensates and the two-particle distribution amplitudes. Since justifying this factorization
ansätz in the field-theoretical framework is conceptually difficult, our numerical predictions
for the higher-twist four-particle contributions displayed in section 4 could suffer from
the sizeable systematic uncertainties potentially. We plan to revisit this peculiar NLP
contribution in the LCSR framework by implementing the systematic parametrization of
the desirable four-body light-cone HQET matrix element and further by constructing the
phenomenologically acceptable models for the emerged bottom-meson soft functions from
the method of QCD sum rules in combination with the appropriate perturbative constraints
in our forthcoming work.

Collecting the different pieces together, we can now summarize the eventual NLP sum
rules for the exclusive bottom-meson decay form factors at small momentum transfer

f iBM,NLP = f i, hc
BM,NLP + f

i, (A2)
BM,NLP + f i,HT

BM,NLP + f i, 4P
BM,NLP , (i = +, −, T ) (3.56)
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where the analytical expressions for the individual terms on the right-handed side have been
displayed in (3.17), (3.32), (3.45) and (3.55), respectively. We remark in passing that (3.56)
represents the compete set of the NLP corrections to the heavy-to-light bottom-meson
form factors in the LCSR framework at the O(α0

s) accuracy to the best of our knowledge.
Apparently, it would be of interest to extend the current analysis further by including the
NLO QCD corrections to power-suppressed contributions of the semileptonic Bd,s → π,K

form factors.

4 Numerical analysis

Having at our disposal the improved sum rules for the exclusive Bd,s → π,K form factors at
large hadronic recoil including both the leading-power spectator-quark mass corrections at
O(αs) and the newly derived NLP contributions from four distinct dynamical sources, we are
now prepared to explore their numerical implications on a variety of the phenomenological
observables for the semileptonic B → π`ν̄` and Bs → K`ν̄` decays (with ` = µ, τ) as well
as the theoretically cleanest electroweak penguin B → Kν`ν̄` decay processes. To achieve
this goal, we will first specify the essential theory inputs (for instance, the electroweak
SM parameters, the bottom-quark mass, the pseudoscalar-meson decay constants, both
the leading-twist and higher-twist HQET distribution amplitudes, the intrinsic sum rule
parameters) appearing in the obtained expressions for the heavy-to-light bottom-meson form
factors. In particular, we will extrapolate the updated LCSR predictions of the considered
form factors to the entire kinematic region by performing the numerical fits of the series
coefficients in the conventional BCL expansions [74–76], taking into account further the
available lattice QCD results at large momentum transfer. An emphasis will be placed
on the very impacts of the newly achieved LCSR predictions on pinning down the theory
uncertainties of the exclusive Bd,s → π,K form factors by carrying out the analogous BCL
fits merely to the numerical lattice QCD determinations in the lower-recoil region.

4.1 Theory inputs

We summarize explicitly the numerical values of the necessary SM inputs and the hadronic
parameters in table 1. We will adopt the three-loop evolution of the strong coupling
constant αs(µ) in the MS scheme by taking the determined interval α(5)

s (mZ) from [89]
and employing the perturbative matching scales µ4 = 4.8 GeV and µ4 = 1.3 GeV for
crossing nf = 4 and nf = 3, respectively [98, 115]. In addition, the bottom-quark mass
entering the short-distance coefficient functions of the obtained SCET sum rules is generally
understood to be the pole mass on account of the on-shell kinematics. Converting the
precisely known MS mass to the counterpart pole scheme will, however, bring about the
numerical results sensitive to the truncation order of the perturbative matching relation due
to the existence of an infrared renormalon [118, 119]. Consequently, we will take advantage
of the potential-subtracted (PS) renormalization scheme [120] for the bottom-quark mass
(see [121] for an overview of several popular definitions for the heavy-quark mass) and
then perform the scheme conversion of the hard functions from the pole mass to the PS
mass scheme. In addition, we will employ the four-flavour lattice-computation results [16]
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Parameter Value Ref. Parameter Value Ref.

GF 1.166379× 10−5 GeV−2 [89] α
(5)
s (mZ) 0.1179± 0.0009 [89]

mµ 105.658MeV [89] mτ 1776.86± 0.12MeV [89]

mb(mb) 4.203± 0.011 GeV [89] mPS
b (2 GeV) 4.532+0.013

−0.039 GeV [113]

mBd 5279.66± 0.12MeV [89] τBd (1.519± 0.004) ps [89]

mBs 5366.92± 0.10MeV [89] τBs (1.527± 0.011) ps [89]

fBd |Nf=2+1+1 190.0± 1.3MeV [16] fBs |Nf=2+1+1 230.3± 1.3MeV [16]

mB∗(1−) 5324.70± 0.21MeV [89] mB∗s (0+) 5415.4+1.8
−1.5 MeV [89]

mB∗(0+) 5627± 35MeV [114] mB∗s (0+) 5718± 35MeV [114]

mu(2 GeV) 2.20± 0.08 MeV [89] md(2 GeV) 4.69± 0.05 MeV [89]

ms(2 GeV) 93.1± 0.6 MeV [89]

mπ 139.57 MeV [89] fπ 130.2± 1.2 MeV [89]

mK 493.677 MeV [89] fK 155.7± 0.3 MeV [89]

λBd(µ0) (350± 150)MeV [99, 115] {0.7, 6.0}

λ2
E(µ0)/λ2

H(µ0) 0.50± 0.10 [73] {σ̂(1)
Bd,s

(µ0), σ̂(2)
Bd,s

(µ0)} {0.0, π2/6} [115]

2λ2
E(µ0) + λ2

H(µ0) (0.25± 0.15) GeV2 [73] {−0.7, −6.0}

λBs(µ0) (400± 150)MeV [115]

λ 0.2250± 0.0006 [89] A 0.826+0.018
−0.015 [89]

ρ̄ 0.159± 0.010 [89] η̄ 0.348± 0.01 [89]

sπ0
{
(0.70± 0.05) GeV2} [30, 35] M2 (1.25± 0.25) GeV2 [30, 35]

sK0
{
(1.05± 0.05) GeV2} [30, 35]

〈q̄q〉(2 GeV) −(286± 23 MeV)3 [16] 〈s̄s〉 : 〈q̄q〉 0.8± 0.1 [116, 117]

Table 1. Numerical values of the theory input parameters employed in the LCSR determinations of
the exclusive Bd,s → π,K form factors as well as the subsequent phenomenological analysis for the
semileptonic bottom-meson decay observables.
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for the leptonic decay constants of bottom mesons in the SU(2) isospin-symmetric limit
(see [122] for additional discussions on the strong-isospin breaking corrections). Following
the theory prescription displayed in [89], the adopted pion decay constant fπ corresponds
to the three-flavour FLAG 2021 average [16] with the uncertainty increased by including
the 0.7 % charm sea-quark contribution.

We now turn to discuss the acceptable phenomenological models for the two-particle
and three-particle bottom-meson distribution amplitudes in HQET, fulfilling the nontrivial
constraints from the classical equations of motion and the expected asymptotic behaviours
at small quark and gluon momenta from the conformal symmetry analysis. For definiteness,
we will employ the newly proposed three-parameter ansätz for the two-particle distribution
amplitudes in coordinate space [73] (see [123] for an alternative parametrization in terms of
an expansion in associated Laguerre polynomials)

η+(s, µ0) = 1F1(α;β;−s ω0) , η
(0)
3 (s, µ0) = −λ

2
E − λ2

H

18 s2 [1F1(α+ 2;β + 2;−s ω0)] ,
(4.1)

which allows us to construct the analytical solutions to the Lange-Neubert evolution
equations in the one-loop approximation [40]

φ+
B(ω,µ) = Û tw2

φ (µ,µ0) 1
ωκs+1

Γ(β)
Γ(α) G(ω,α,β;0,2,1) , (4.2)

φ−B(ω,µ) = Û tw2
φ (µ,µ0) 1

ωκs+1
Γ(β)
Γ(α) G(ω,α,β;0,1,1)

+ Û tw3
φ (µ,µ0)

[
−λ

2
E(µ)−λ2

H(µ)
18

]
1

ωκs+3
Γ(β+2)
Γ(α+2)

{
G(ω,α,β;0,3,3) (4.3)

+ (β−α)
[
ω

ω0
G(ω,α,β;0,2,2)−β ω

ω0
G(ω,α,β;1,2,2)−G(ω,α,β;1,3,3)

]}
.

The manifest expressions for the two evolution functions Û tw2
φ and Û tw3

φ in momentum
space can be further written as

Û tw2
φ (µ,µ0) = exp

{
−Γ(0)

cusp
4β2

0

[ 4π
αs(µ0)

(
lnz0−1+ 1

z0

)
− β1

2β2
0

ln2 z0

+
(

Γ(1)
cusp

Γ(0)
cusp
− β1

2β0

)
[z0−1−lnz0]

]} (
e2γE µ0

)Γ(0)
cusp lnz0/(2β0)

z
γ

(0)
tw2/(2β0)

0 , (4.4)

Û tw3
φ (µ,µ0) = z

γ
(0)
tw3/(2β0)

0 Û tw2
φ (µ,µ0) . (4.5)

Moreover, we have introduced the following conventions for the expansion coefficient κs as
well as the Meijer G-function [124]

κs = Γ(0)
cusp

2β0
ln αs(µ)
αs(µ0) , G(ω, α, β; l,m, n) = G21

23

(
1, β+l
κs+m,α, κs+n

∣∣∣∣ ωω0

)
. (4.6)
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The appearing HQET parameters λ2
E and λ2

H can be defined by the effective matrix elements
of the chromo-electric and chromo-magnetic operators [125]

〈0|q̄′(0) gsGµν Γhv(0)|B̄(v)〉

= −FB(µ)mB

6 Tr
{
γ5 Γ

(1 + /v

2

) [
λ2
H (i σµν) + (λ2

H − λ2
E) (vµ γν − vν γµ)

]}
. (4.7)

Solving the RG evolution equations for these two hadronic quantities λ2
E and λ2

H at one
loop

d

d lnµ

(
λ2
E(µ)
λ2
H(µ)

)
+ αs(µ)

4π γ
(0)
EH

(
λ2
E(µ)
λ2
H(µ)

)
= 0 , (4.8)

with the available anomalous dimension matrix from [126, 127]

γ
(0)
EH =

(
8
3 CF + 3

2 Nc
4
3 CF −

3
2 Nc

4
3 CF −

3
2 Nc

8
3 CF + 5

2 Nc

)
, (4.9)

we can readily determine their renormalization-scale dependencies by diagonalizing the
renormalization kernel at the leading-logarithmic accuracy. The method of two-point
QCD sum rules has been applied to estimate these HQET parameters repeatedly, yielding
the numerical predictions significantly different each other even with the sizeable theory
uncertainties

{
λ2
E(1 GeV), λ2

H(1 GeV)
}

=



{
(0.11± 0.06) GeV2, (0.18± 0.07) GeV2} , [125]

{
(0.03± 0.02) GeV2, (0.06± 0.03) GeV2} , [127]

{
(0.01± 0.01) GeV2, (0.15± 0.05) GeV2} . [128]

(4.10)
The substantial discrepancies of the obtained numerical results between [125] and [127] can
be traced back to the remarkable perturbative corrections to the short-distance Wilson
coefficients for the dimension-five quark-gluon mixed condensate 〈q̄ σµν Gµνq〉 and to the
further inclusion of the particular higher-order power corrections at tree level from the
dimension-six vacuum condensates in the factorization approximation in the latter. On the
other hand, the authors of [128] proposed to employ an alternative diagonal correlation
function of the two three-body HQET currents (instead of the non-diagonal current-current
correlator implemented in [125, 127]) for constructing the desired sum rules of the essential
ingredients λ2

E and λ2
H , in an attempt to pin down the systematic uncertainty from the

parton-hadron duality. However, such attractive benefits are unfortunately achieved at
the price of worsening the operator-product-expansion (OPE) convergence in the partonic
computation of the new correlation function and enhancing the intricate contributions from
the continuum and higher excited states (see [128] for more detailed discussions). In the
absence of the satisfactory determinations of these two HQET quantities, we will therefore
take the numerical intervals for the two combinations 2λ2

E + λ2
H and λ2

E/λ
2
H displayed in

table 1, covering the allowed ranges of the previously obtained results from [125, 127] and
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simultaneously satisfying the derived (conservative) upper bounds from [128] due to the
positive definite spectral densities.

Applying the customary definitions of the inverse logarithmic moments for the leading-
twist bottom-meson distribution amplitude [73, 98, 115]

1
λB(µ) =

∫ ∞
0

dω

ω
φ+
B(ω, µ) , σ̂

(n)
B (µ)
λB(µ) =

∫ ∞
0

dω

ω

[
ln
(
λB(µ0)
ω

)
− γE

]n
φ+
B(ω, µ) ,

(4.11)
we can immediately determine these fundamental nonperturbative quantities in terms of
the three shape parameters in our model (4.1)

λB(µ0) =
(
α− 1
β − 1

)
ω0 , σ̂

(1)
B (µ0) = ψ(β − 1)− ψ(α− 1) + ln

(
α− 1
β − 1

)
,

σ̂
(2)
B (µ0) =

[
σ̂

(1)
B (µ0)

]2
+ ψ(1)(α− 1)− ψ(1)(β − 1) + π2

6 , (4.12)

where ψ(z) stands for the digamma function defined by the logarithmic derivative of
the Γ-function. Adopting the one-loop RG equation for the twist-two bottom-meson
distribution amplitude enables us to derive the leading-logarithmic evolutions for the first
few momentums

λB(µ) =λB(µ0)
{

1+αs(µ0)CF
π

ln µ

µ0

[
σ̂

(1)
B (µ0)+ln

√
µµ0 e

γE

λB(µ0) −
(1

2

)]}
+O(α2

s) ,

(4.13)

σ̂
(1)
B (µ) = σ̂

(1)
B (µ0)

{
1+αs(µ0)CF

π
ln µ

µ0

[
σ̂

(1)
B (µ0)− σ̂

(2)
B (µ0)
σ̂

(1)
B (µ0)

]}
+O(α2

s) , (4.14)

σ̂
(2)
B (µ) = σ̂

(2)
B (µ0)

{
1+αs(µ0)CF

π
ln µ

µ0

[
σ̂

(1)
B (µ0)− σ̂

(3)
B (µ0)−4ζ3

σ̂
(2)
B (µ0)

]}
+O(α2

s) . (4.15)

In spite of the enormous efforts undertaken to determine the first inverse moment λ−1
B (µ)

with different theory prescriptions, we are still unable to accomplish the robust computations
of this fundamental parameter from the first field-theoretical principles at present (see how-
ever [129, 130] for interesting discussions from the lattice QCD perspectives). Consequently,
we prefer to employ the conservative interval λBd(µ0) = (350± 150) MeV accommodating
the indirect extractions from the radiative leptonic B → γ`ν̄ decay rates [131–133] in the
subsequent numerical analysis and assign further O(15 %) SU(3)-flavour symmetry breaking
effect for the ratio λBs/λBd (characterizing the typical splitting between the constituent
down-quark and strange-quark masses). We mention in passing that these two HQET
parameters have been recently computed from the traditional QCD sum rule approach by
investigating the appropriate correlation function of an effective light-cone heavy-to-light
current and an interpolating current for the pseudoscalar heavy-meson state [134], following
closely the theory strategy suggested in [101, 125]. The yielding numerical predictions
λBd(µ0) = (383 ± 153) MeV and λBs/λBd = 1.19 ± 0.14 [134] are apparently in the same
ballpark as the corresponding intervals displayed in table 1.
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The general ansätz for the higher twist distribution amplitudes incorporating both the
anticipated low-momentum behaviour and the tree-level equations-of-motion constraints
can be constructed by introducing a unique profile function [73, 98, 99]

Φ3(ω1, ω2, µ0) = −
(1

2

)
κ(µ0)

[
λ2
E(µ0)− λ2

H(µ0)
]
ω1 ω

2
2 f
′(ω1 + ω2) , (4.16)

Φ4(ω1, ω2, µ0) =
(1

2

)
κ(µ0)

[
λ2
E(µ0) + λ2

H(µ0)
]
ω2

2 f(ω1 + ω2) , (4.17)

Ψ4(ω1, ω2, µ0) = κ(µ0)λ2
E(µ0)ω1 ω2 f(ω1 + ω2) , (4.18)

Ψ̃4(ω1, ω2, µ0) = κ(µ0)λ2
H(µ0)ω1 ω2 f(ω1 + ω2) , (4.19)

Ψ5(ω1, ω2, µ0) = −κ(µ0)λ2
E(µ0)ω2

∫ ∞
ω1+ω2

dη f(η), (4.20)

Φ6(ω1, ω2, µ0) = κ(µ0)
[
λ2
E(µ0)− λ2

H(µ0)
] ∫ ∞

ω1+ω2
dη1

∫ ∞
η1

dη2 f(η2) . (4.21)

We further collect the explicit expressions of the two-particle subleading-twist HQET
distribution amplitudes from the off-light-cone corrections for completeness

g+
B(ω, µ) = ĝ+

B(ω, µ)− 1
2

∫ ω

0
dω1

∫ 1

0
du

ū

u
ψ4

(
ω,
ω − ω1
u

, µ

)
,

g−B(ω, µ) = ĝ−B(ω, µ)− 1
2

∫ ω

0
dω1

∫ 1

0
du

ū

u
ψ5

(
ω,
ω − ω1
u

, µ

)
, (4.22)

where the twist-five “Wandzura-Wilczek” term ĝ−B(ω, µ) has been presented in (3.40) and

ĝ−B(ω, µ) =
(1

4

) ∫ ∞
ω

dρ
{

(ρ− ω)
[
φ−B(ρ)− φ+

B(ρ)
]
− 2 (Λ̄− ρ)φ+

B(ρ)
}
. (4.23)

The particular three-parameter model for the twist-two coordinate-space LCDA η+(s, µ0)
in (4.1) implies the following nonperturbative function f(ω) and the normalization con-
stant κ(µ0)

f(ω) = Γ(β)
Γ(α) U

(
β − α, 3− α, ω

ω0

) 1
ω2

0
exp

(
− ω

ω0

)
,

κ−1(µ0) =
(1

2

) ∫ ∞
0

dω ω3 f(ω) =
[3α (α+ 1)
β (β + 1)

]
ω2

0 . (4.24)

Furthermore, we will take the “effective mass” of the bottom-meson state entering the NLP
sum rules (3.17) and (3.32) as Λ̄ = mBq −mb +O(Λ2

QCD/mb) with mb = (4.8± 0.1) GeV
numerically (see [135] for the yet higher-order correction to this essential mass relation
and [136, 137] for further discussions on the scheme dependence of this hadronic quantity).

Additionally, we will vary the hard-matching scales µh1 and µh2 appearing in the
NLL SCET sum rules for the heavy-to-light bottom-meson transition form factors (2.18)
and (2.19) in the interval [mb/2, 2mb] with the central value mb, as widely implemented in
the exclusive heavy-hadron decay phenomenologies [73, 98, 115]. The renormalization scale
ν of the QCD tensor current will be taken as the hard scale of order of the b-quark mass.
By contrast, the factorization scale µ will be treated as the hard-collinear scale in the range
of (1.5± 0.5) GeV.
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Following the standard procedure outlined in [33], the determinations of two intrinsic
LCSR parameters ωM and ωs can be routinely achieved by imposing the necessary constraints
on the smallness of the continuum contributions in the dispersion integrals of the three
invariant functions Π, Π̃ and ΠT and on the stability of the obtained sum rules against the
variation of the Borel mass ωM . Proceeding with this practical prescription leads to the
following intervals

M2 = n · pωM = (1.25± 0.25) GeV2 , sπ0 = n · pωs = (0.70± 0.05) GeV2 ,

sK0 = n · pωs = (1.05± 0.05) GeV2 , (4.25)

which are in excellent agreement with the numerical results employed in the LCSR com-
putations of the pion-photon form factor [138] as well as the pion electromagnetic form
factor [112], and in the two-point QCD sum rules for the K-meson decay constant [139].

4.2 Numerical predictions for the Bd,s → π,K form factors

We are now ready to explore the phenomenological impacts of the NLL resummation
improved leading-power contributions (including further the light spectator-quark mass
effects) and the newly derived NLP corrections at the tree-level accuracy on the semileptonic
Bd,s → π,K decay form factors at large hadronic recoil. In order to develop a transparent
understanding of the dynamical patterns dictating these intricate form factors, we display
explicitly the yielding leading-power contributions to the complete set of the exclusive
bottom-meson decay form factors at the NLL accuracy, the NLP contribution from expanding
the hard-collinear quark propagator in the small parameter ΛQCD/mb, the NLP contribution
from the power suppressed term in the SCETI representation of the weak transition current,
the subleading-twist contribution from the two-particle and three-particle HQET distribution
amplitudes, together with the twist-five and twist-six four-particle bottom-meson distribution
amplitudes in figures 3 and 4 in the kinematic range 0 ≤ q2 ≤ 8 GeV2. In particular, we
have included the perturbative uncertainties for the individual pieces under discussion from
varying both the hard and hard-collinear matching scales as indicated by the separate error
bands. The NLL resummation improved sum rules on the light-cone are indeed beneficial
for pinning down the obtained theory uncertainties when compared with the counterpart
leading-logarithmic computations. Generally, the perturbative QCD corrections to the
short-distance matching coefficients in the SCET sum rules can shift the corresponding
leading-power contributions by an amount of O(30 %) numerically. It is evident from
figures 3 and 4 that the most prominent subleading-power corrections to the heavy-to-light
bottom-meson decay form factors arise from the peculiar higher-twist contributions of the
two-particle and three-particle HQET distribution amplitudes at O(α0

s) (more precisely from
the two-particle twist-five off-light-cone correction as already noticed in [37, 40]) yielding
consistently (25− 30) % reduction of the corresponding leading-power LCSR predictions
at NLL for q2 ∈ [0, 8] GeV2. By contrast, the estimated four-particle twist-five and
twist-six corrections in the factorization approximation can only bring about insignificant
impacts on the leading-power contributions to the exclusive Bd,s → π,K form factors:
(2−4) % numerically, which can be attributed to the smallness of the normalization constant

– 26 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
0

|〈q̄q〉 : (λB s0)| ' 10 % in the tree-level sum rules (3.55). This interesting observation
indicates that the higher-twist four-particle contributions will actually be suppressed by
an extra power of Λ2

QCD/s0 (rather than the additional powers of ΛQCD/mb in the heavy
quark expansion) in analogy to the previous discussions [72, 131] in different contexts.
Moreover, the newly determined subleading-power contributions from the hard-collinear
quark propagator shown in (3.17) can further generate the sizeable destructive interferences
(as large as O(20 %) numerically) with the counterpart leading-power contributions. It
remains important to emphasize that the obtained hierarchy relations for the exclusive
bottom-meson decay form factors at maximal recoil

f+
BK(0) > f+

BsK
(0) > f+

Bπ(0) , fTBK(0) > fTBsK(0) > fTBπ(0) , (4.26)

coincide precisely with the emerged patterns predicted by the two independent LCSR
computations with the final-state pseudoscalar-meson distribution amplitudes [140, 141]
(see [142] for the alternative estimates with the TMD factorization approach and [143] for
the quantitative analysis in the framework of Dyson-Schwinger equations).

We are now in a position to investigate the SU(3)-flavour symmetry breaking effects
between the exclusive B → π and B → K form factors, on the basis of the established SCET
sum rules with the bottom-meson distribution amplitudes up to the twist-six accuracy, by
introducing further the following quantities [35, 37]

RiSU(3)(q2) =
[
f iB→K(q2)

]
:
[
f iB→π(q2)

]
, (with i = +, 0, T ) . (4.27)

In our theoretical framework such flavour-symmetry violations arise from the apparent
discrepancies in the light-quark masses, in the light-flavour hadron masses, in the leptonic
decay constants fπ and fK , in the threshold parameters for the pion and kaon channels, and
finally in the nonperturbative quark-condensate densities 〈ūu〉 and 〈s̄s〉. It can be observed
from figure 5 that the leading-power LCSR predictions for the SU(3)-flavour symmetry
breaking effects give rise to numerically O(30 %) for the two ratios R+, 0

SU(3) and O(40 %)
for the tensor-form-factor ratio RTSU(3) in the large recoil region. In particular, the newly
determined subleading-power contributions from the same LCSR method can only bring
about the insignificant numerical impacts on the SU(3)-flavour symmetry violating effects
(see [37] for the analogous observation for the exclusive semileptonic B → V `ν̄` form factors).
We further present the resulting SU(3)-flavour symmetry violation effects Ri,mqSU(3)(q

2) (with
i = +, 0, T ) merely from the light-quark mass corrections at the leading-power accuracy.
The yielding numerical predictions displayed in figure 5 indicates that the very discrepancy
between the up-quark mass and the strange-quark mass can only bring about the minor
contributions to the observed SU(3)-flavour symmetry breaking effects: numerically at the
level of (2− 6)% for q2 ∈ [0, 8] GeV2. This interesting pattern can be readily understood
from the fact that the leading-power quark mass corrections to the semileptonic B → π,K

form factors turn out to be suppressed by a factor of (αs/π) (mq/λB). We further note that
our power-counting scheme for the light-quark mass displayed in (2.3) is in fact appropriate
only for the strange-quark case numerically and we are then required to introduce one
additional small parameter δ ∼ O(mu/ΛQCD) for the theory description of the up-quark
mass effects. Applying this modified power-counting scheme indicates that the up-quark
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Figure 3. Breakdown of the distinct dynamical mechanisms contributing to the semileptonic
B → π`ν̄` form factors (left panel) and to the electroweak penguin B → Kν`ν̄` decay form factors
(right panel) in the kinematic region 0 ≤ q2 ≤ 8 GeV2 from the updated LCSR computations with
the HQET bottom-meson distribution amplitudes, where the perturbative uncertainties due to
the variations of both the hard and hard-collinear matching scales are indicated by the individual
error bands.
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Figure 4. Breakdown of the distinct dynamical mechanisms contributing to the semileptonic
Bs → K`ν̄` form factors in the kinematic region 0 ≤ q2 ≤ 8 GeV2 from the updated LCSR
computations with the HQET bottom-meson distribution amplitudes, where the perturbative
uncertainties due to the variations of both the hard and hard-collinear matching scales are indicated
by the individual error bands.

mass corrections to the B → π form factors will be suppressed by one power of δ in the chiral
expansion (but unsuppressed in the heavy quark expansion). Our numerical investigations
of the constructed SCET sum rules for the bottom-meson decay form factors are, however,
not affected by this updated power-counting scheme apparently. It is worthwhile mentioning
that we have not taken into account the remaining sources of the SU(3)-flavour symmetry
breaking effects due to the electromagnetic corrections and the systematic uncertainties
owing to the parton-hadron duality approximation.

We proceed to explore the celebrated large-recoil symmetry breaking effects between
the exclusive heavy-to-light bottom-meson decay form factors due to the higher-order
perturbative corrections and the intricate subleading-power corrections in the ΛQCD/mb

expansion. In order to facilitate the straightforward comparison with the theory predictions
from the QCD factorization approach, it proves convenient to investigate the two particular
form-factor ratios for the semileptonic B → π`ν̄` and B → π`¯̀ decay processes [35, 90]

R0+
Bπ(q2) =

(
mB

n · p

)
f0
Bπ(q2)
f+
Bπ(q2)

, RT+
Bπ (q2) =

(
mB

mB +mπ

)
fTBπ(q2)
f+
Bπ(q2)

. (4.28)
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Figure 5. Theory predictions for the SU(3)-flavour symmetry breaking effects between the semilep-
tonic B → π and B → K form factors from the updated SCET sum rules with the bottom-meson
distribution amplitudes at the twist-six accuracy, where the perturbative uncertainties due to the
variations of both the hard and hard-collinear matching scales are indicated by the individual
error bands. We further present the resulting SU(3)-flavour symmetry violation effects Ri,mq

SU(3)(q2)
(with i = +, 0, T ) merely from the light-quark mass corrections at the leading-power accuracy
(green bands).

It is interesting to notice that the NLL resummation improved LCSR predictions for the
two quantities R0+

Bπ and RT+
Bπ are in reasonable agreement with the QCD factorization

computations at the leading-power accuracy. On the contrary, confronting our numerical
results for the form-factor ratio RT+

Bπ from the bottom-meson LCSR method including
four different classes of the NLP corrections with the counterpart predictions from QCD
factorization reveal an intriguing tension on both the magnitude and sign of the large-recoil
symmetry breaking corrections as displayed in figure 6. Inspecting the individual terms in the
obtained subleading-power sum rules (3.56) indicates that the emerged discrepancies between
the two different QCD calculations stem from the newly determined NLP contribution of
the power-suppressed SCETI current J (A2) with the LCSR method as collected in (3.32)
explicitly, which has not been included in the numerical exploration of the current QCD
factorization framework [90]. As a consequence, it becomes more and more demanding to
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Figure 6. Theory predictions for the large-recoil symmetry breaking corrections between the
exclusive B → π form factors from the updated SCET sum rules with the bottom-meson distribution
amplitudes at the twist-six accuracy. For a comparison, we further display the numerical results
from the QCD factorization approach with the so-called physical form factor scheme [90] by taking
the light-meson LCSR computation of the vector form factor f+

Bπ(q2) [141] as the fundamental
theory input.

construct the appropriate perturbative factorization formula for this NLP matrix element
directly with the modern effective-field-theory technique.

Apparently, we can only establish the soft-collinear factorization formulae for the
desired vacuum-to-B-meson correlation functions (2.2) at small and intermediate momentum
transfers, 0 ≤ q2 ≤ q2

cut, where the practical choice of q2
cut varies between 8 GeV2 and 10 GeV2

numerically. We are therefore required to extrapolate the bottom-meson LCSR computations
of the semileptonic Bd,s → π,K form factors towards the large momentum transfer q2 by
applying the z-series parametrization based upon the positivity and analyticity properties
of these transition form factors [144–146]. Adopting the conformal transformation [74–76]

z(q2, t0) =
√
t+ − q2 −

√
t+ − t0√

t+ − q2 +√t+ − t0
, (4.29)

with the threshold parameter t+ ≡
[
mB +mπ(K)

]2
for the exclusive semileptonic b→ u(s)

transitions, enables us to map the complex cut q2-plane onto the unit disk |z(q2, t0)| ≤ 1.
On the other hand, the free parameter t0 < t+ corresponds to the value of q2 mapping onto
the origin in the z-plane, namely z(t0, t0) = 0. In order to maximally reduce the interval of
z obtained after mapping (4.29) of the semileptonic domain q2 ∈

[
0, (mBq′ −mM )2

]
, the

auxiliary parameter t0 can be customarily taken as

t0 = t+ −
√
t+ (t+ − t−) , t− = (mBq′ −mM )2 , (4.30)

following closely the comprehensive discussions presented in [16]. Taking into account
further the asymptotic behaviours of the vector form factors near threshold due to the
angular momentum conservation implies the simplified series expansion originally proposed
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in [76] (see [147, 148] for an alternative parametrization)

f+
Bq′M

(q2) = 1
1− q2/m2

B∗q

N−1∑
k=0

b+k

[
z(q2, t0)k − (−1)k−N k

N
z(q2, t0)N

]
, (4.31)

where the lowest bottom-meson B∗d (B∗s ) is expected to be the only resonance of the
JP = 1− channel below the Bπ (BK) production region. It is evident from the BCL
parametrization (4.31) that the well-known scaling behaviour f+

Bq′M
(q2) ∼ 1/q2 at |q2| → ∞

from the perturbative QCD analysis [149] is indeed fulfilled. For the practical purpose, we
will truncate the z-series expansion at N = 3 in the subsequent fitting program.

Along the same vein, we can proceed to parameterize the remaining form factors by
adjusting the overall pole functions appropriately and by dropping out the near-threshold
constraints for the scalar transition form factors

f0
B(s)π(K)(q2) =

N−1∑
k=0

b0k z(q2, t0)k , f0
BK(q2) = 1

1− q2/m2
B∗s (0+)

N−1∑
k=0

b0k z(q2, t0)k ,

fTBq′M (q2) = 1
1− q2/m2

B∗q

N−1∑
k=0

bTk

[
z(q2, t0)k − (−1)k−N k

N
z(q2, t0)N

]
. (4.32)

The very disappearance of the pole factors in the above-mentioned parameterizations
of the two particular form factors f0

Bπ(q2) and f0
BsK

(q2) can be attributed to the fact
that the low-lying bottom-resonance in the JP = 0+ channel with the predicted mass
mB∗(0+) = (5627±35) MeV [114] turns out to be located above the Bπ production threshold
mB +mπ = (5419± 0.12) MeV [89]. By contrast, the low-lying bottom-meson resonance
in the BCL parametrization (4.32) for the scalar form factor f0

BK(q2), with the estimated
mass mB∗s (0+) = (5718± 35) MeV from the heavy-hadron chiral perturbation theory [114],
appears to be somewhat below the particle-pair production threshold mB +mK = (5773±
0.12) MeV [89]. For convenience, we have also summarized the relevant resonance masses
employed in our z-parametrization fits in table 1.

We are now prepared to determine the BCL series coefficients b+, 0, Tk by performing the
binned χ2 fit of the updated LCSR predictions for the bottom-meson decay form factors
at three distinct kinematic points, namely q2 = {−4.0, 0, 4.0} GeV2, in combination with
the available lattice data points in the higher-q2 region. Enforcing the kinematic constraint
between the vector and scalar form factors f+

BM (0) = f0
BM(0) allows us further to derive

the following exact relations between the expansion coefficients of our interest

b02 = 12.78
(
b+0 − b

0
0

)
+ 3.482 b+1 + 1.186 b+2 − 3.575 b01 , (for B → π)

b02 = 24.06
(
b+0 − b

0
0

)
+ 4.837 b+1 + 1.136 b+2 − 4.905 b01 , (for Bs → K)

b02 = 48.59
(
b+0 − b

0
0

)
+ 6.923 b+1 + 1.096 b+2 − 6.971 b01 . (for B → K) (4.33)

With regard to the lattice QCD results for the semileptonic B → π form factors, we
can straightforwardly employ the synthetic data points of f+

Bπ(q2) and f0
Bπ(q2) at three

representative values of q2 = {19.0, 22.6, 25.1} GeV2 with the full correlation matrices from

– 32 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
0

B → π Form Factors Correlation Matrix

Parameters Values b+0 b+1 b+2 b00 b01 bT0 bT1 bT2

b+0 0.404(13) 1 0.276 −0.446 0.291 0.164 0.583 0.266 −0.24

b+1 −0.618(63) 1 −0.374 0.067 0.485 0.234 0.693 −0.193

b+2 −0.473(215) 1 0.108 0.157 −0.185 −0.185 0.592

b00 0.496(19) 1 −0.226 0.318 0.06 0.018

b01 −1.537(56) 1 0.04 0.431 0.165

bT0 0.396(15) 1 0.178 −0.423

bT1 −0.553(73) 1 −0.307

bT2 −0.248(235) 1

Table 2. Theory predictions for the correlated z-series coefficients in the vector, scalar and tensor
B → π form factors determined by fitting the BGL parametrization simultaneously against our
LCSR results including a variety of the subleading-power corrections and the available lattice QCD
data points from [3, 4, 7] with the preferred truncation N = 3.

the RBC/UKQCD Collaboration [4], by adopting Nf = 2 + 1-flavour gauge-field ensembles
with the domain-wall fermion action and Iwasaki gluon action. However, the FNAL/MILC
Collaboration do not provide the yielding data points for the exclusive B → π form factors
explicitly in their publications [3, 7], which present the outcome of the combined BCL fit to
their data points with the truncation N = 3 instead. Consequently, we will take advantage of
the BCL fit results to generate the correlated synthetic data points of the three B → π form
factors in the kinematic region 19.0 GeV2 ≤ q2 ≤ 26.4 GeV2. Carrying out the simultaneous
fit of the conventional BCL parameterizations (4.31) and (4.32) to our LCSR pseudo data
points as well as the lattice QCD data points gives rise to the desired intervals of the z-series
coefficients and their correlation matrix for the semileptonic B → π form factors displayed
in table 2. Furthermore, we observe that this numerical fit yields a minimal χ2 = 7.93 for
14 degrees of freedom in the fitting program, which corresponds to an excellent p-value of
89 % in turn. It has been verified manifestly that the fitted BCL coefficients fulfill the very
dispersive bounds [76, 150] derived from the correlation functions of two flavour-changing
currents with the aid of unitarity and crossing symmetry (see [151] for further discussions
on the scaling behaviour of the sum of coefficients ∑N

k=0

(
b+k

)2
in the heavy quark limit). In

order to develop a transparent understanding towards the eventually predicted momentum-
transfer dependence from interpolating the LCSR and lattice QCD results, we display the
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Figure 7. Theory predictions for the complete set of the semileptonic B → π form factors versus z
(left panel) and versus q2 (right panel) in the entire kinematic region obtained by carrying out the
combined BCL z-fit of the updated LCSR (from this work) and lattice QCD (from [3, 4, 7]) data
points. We further display the yielding numerical results of these form factors by performing an
alternative z-series fit against the “only lattice QCD” data points [3, 4, 7] exclusively for a comparison.

obtained numerical predictions for the three exclusive B → π form factors versus z (left
panel) and versus q2 (right panel) in the entire kinematic region in figure 7, where the
counterpart predictions of these form factors from implementing an alternative z-expansion
fit of the “only lattice QCD” data points [3, 4, 7] exclusively are further shown for the
convenience. It is evident from this comparative exploration that including the newly
derived LCSR data points at small momentum transfer in our fitting procedure will indeed
be highly beneficial for improving the theory precision for all three B → π form factors in
the kinematic regime 0.10 ≤ z ≤ 0.31 (namely, q2 ∈ [−4.0, 15.5] GeV2) significantly. This
interesting observation can be actually understood from the very fact that extrapolating
the current lattice QCD results towards the lower q2 region solely will bring about the more
pronounced uncertainties for the form-factor shapes in comparison with the direct LCSR
computations as already discussed in [3, 4, 7].

Additionally, it is instructive to compare our form-factor predictions from the combined
BCL fit with the theoretical expectations from the heavy quark spin symmetry and the
current algebra method. In the zero-recoil limit we can derive an interesting relation between
the vector and scalar form factors up to the accuracy of O(Λ2

QCD/m
2
b) [152]

lim
q2→m2

Bq′

f+
Bq′M

(q2)
f0
Bq′M

(q2) =
(
fB∗q
fBq′

) 1− m2
M

m2
Bq′

  ĝeff
1− q2/m2

B∗q

 , (4.34)
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Figure 8. Theory predictions of the particular form-factor ratio
[(

1− q2/m2
B∗q

)
f+
Bq′M

(q2)
]

:[
f0
Bq′M

(q2)
]
for the exclusive semileptonic Bd,s → π,K decays determined from the combined

z-expansion fit against the LCSR and lattice QCD data points (blue bands) and from the theoretical
expectations of the heavy quark spin symmetry and the current algebra technique at NLO in the
Λ/mb expansion [152] (grey bands).

where the static coupling ĝeff entering the Lagrangian density of the heavy-hadron chiral
perturbation theory is independent of the heavy quark mass [135]. We will adopt the non-
perturbative determination of this low-energy constant from the NLO LCSR computations
with the pion distribution amplitudes ĝeff = 0.30 ± 0.02 [153] (see also [154, 155] for the
earlier analyses in the same framework). Moreover, we will employ the updated numerical
results for the leptonic decay constants of the heavy-light vector mesons [117]

fB∗ = 210+10
−12 MeV , fB∗s = 251+14

−16 MeV , (4.35)

based upon the standard method of the two-point QCD sum rules. We present the obtained
numerical predictions for the form-factor ratio

[(
1− q2/m2

B∗q

)
f+
Bq′M

(q2)
]

:
[
f0
Bq′M

(q2)
]

from the combined z-expansion fitting program in the lower-recoil region in figure 8, where
the complementary predictions with uncertainties from the combination of heavy quark
and chiral symmetries are further displayed explicitly for a comparison.

The heavy quark spin symmetry relation between the vector and tensor form factors in
the low recoil region can be derived by exploring an exact operator identity on account of
the QCD equations of motion for the quark fields

i ∂ν (q̄ i σµν b) = i ∂µ (q̄ b) − (mb +mq) q̄ γµ b − 2
(
q̄ i
←−
Dµ b

)
, (4.36)
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and by employing the Lorentz decomposition for the subleading heavy-to-light HQET
matrix element of the dimension-four operator [156, 157]

〈M(p)|q̄ i←−Dµ hv|B̄(pB)〉 = δ+(q2) (2 p+ q)µ + δ−(q2) qµ . (4.37)

Performing the conventional matching procedure QCD→ HQET for the emerged flavour-
changing weak currents in the previous identity (4.36)

q̄ γµ b→ C
(v)
0 (µ) q̄ γµ hv + C

(v)
1 (µ) q̄ vµ hv +

( 1
2mb

)
q̄ γµ i /D hv + . . . ,

q̄ i
←−
Dµ b→ D

(v)
0 (µ)mb(µ) q̄ γµ hv +D

(v)
1 (µ)mb(µ) q̄ vµ hv + q̄ i

←−
Dµ hv + . . . , (4.38)

we can readily derive an improved Isgur-Wise relation between the semileptonic bottom-
meson decay form factors in the small recoil region [156, 158]

fTBq′M (q2)
f+
Bq′M

(q2)
=
mBq′ (mBq′ +mM )

q2

CT+(µ) +
(

2
mB′q

)
δ+(q2)

f+
Bq′M

(q2)

+O
((ΛQCD

mb

)2)
.

(4.39)
The short-distance matching function CT+ can be evidently expressed in terms of the Wilson
coefficients of the HQET currents [157]

CT+(µ) =
[
1 + 2D(v)

0 (µ)
C

(v)
0 (µ)

]
mb(µ)
mBq′

, (4.40)

where the analytical expressions of C(v)
0 and D(v)

0 at the one-loop accuracy can be written as

C
(v)
0 (µ) = 1− αs(µ)CF

4π

(
3 ln µ

mb
+ 4

)
+O(α2

s) ,

D
(v)
0 (µ) = 0 + αs(µ)CF

4π

(
2 ln µ

mb
+ 2

)
+O(α2

s) . (4.41)

Applying further the HQET equation of motion for the effective field hv enables us to derive
an important constraint between the two subleading form factors [156]

(mBq′ + v · p) δ+(q2) + (mBq′ − v · p) δ−(q2) = 0 . (4.42)

Evaluating the effective matrix element (4.37) with the aid of the heavy-hadron chiral
perturbation theory at the lowest order in the v ·p/ΛCSB expansion (with the notation ΛCSB
characterizing the chiral-symmetry-breaking scale) leads to the model-independent prediction

δ+(q2)− δ−(q2) =
2 Λ̄ fBq′

3 fM

 ĝeff
1− q2/m2

B∗q

 , (4.43)

where the hadronic parameter Λ̄ stands for the “effective mass” of the bottom-meson state
as previously defined in (3.9). It is then straightforward to determine the desired soft
function δ+(q2) dictating the considered form-factor ratio (4.39)

δ+(q2) =
Λ̄ fBq′
3 fM

m2
B′q

+ q2

2m2
B′q

  ĝeff
1− q2/m2

B∗q

 . (4.44)
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Figure 9. The low-recoil theory predictions for the intriguing form-factor ratio
[
q2 fTBq′M

(q2)
]

:[
mBq′ (mBq′ +mM ) f+

Bq′M
(q2)

]
for the exclusive semileptonic Bd,s → π,K decay processes de-

termined from the combined BCL z-series expansion fitting against both the LCSR and lattice
QCD data points (blue bands) and from the theoretical expectations of the improved Isgur-Wise
relation (4.39) at the NLP accuracy due to the combination of heavy quark and chiral symmetries
(grey bands) [156, 157].

We present the yielding theory predictions for the very form-factor ratio
[
q2 fTBq′M (q2)

]
:[

mBq′ (mBq′ +mM ) f+
Bq′M

(q2)
]
from fitting the BCL z-series expansion against the LCSR

and lattice QCD data points in the lower-recoil region in figure 9, where the theoretical
expectations from the improved Isgur-Wise relation (4.39) in the soft final-state meson
approximation in virtue of the heavy quark spin symmetry are further shown for a numeri-
cal comparison.

Subsequently, we proceed to carry out the combined BCL z-expansion fitting of the
semileptonic B → K form factors against the newly determined LCSR data points at three
representative values of q2 = {−4.0, 0, 4.0} GeV2, in combination with the small-recoil
lattice QCD results achieved with the three-flavor gauge-field ensembles generated by the
MILC Collaboration [14] (employing further the Sheikholeslami-Wohlert (SW) action with
the Fermilab interpretation for the bottom quark) as well as obtained for the first time with
Nf = 2 + 1 + 1 gluon field ensembles [15] (in the meanwhile adopting the highly improved
staggered quark (HISQ) formalism for all valence and sea quarks developed by the HPQCD
Collaboration). Since neither of these lattice collaborations provide explicitly the resulting
physical data points for the three exclusive B → K form factors in their publications, we
are then required to generate the correlated synthetic data points in the kinematic region
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16.8 GeV2 ≤ q2 ≤ 22.9 GeV2 from their BCL expansion fit results with the truncation N = 3
as documented in [14, 15]. We remark in passing that the HPQCD Collaboration actually
adopted the so-called “modified z-expansion” strategy by simultaneously extrapolate the
obtained lattice simulation data to the physical light-quark masses and zero lattice spacing,
and to interpolate their lattice results in the momentum transfer (see [16] for more technical
discussions on this alternative approach). Implementing now the binned χ2 fit for both
the LCSR and lattice simulation results with the standard BCL parametrization (4.31)
and (4.32) leads to our final numerical predictions of the eight form-factor parameters (with
their correlation matrix) indispensable for the theory description of the electroweak penguin
B → K`¯̀ decays [108, 109] as summarized in table 3. We further observe that our BCL
expansion fit brings about a minimal χ2 = 14.12 for 16 degrees of freedom in the fitting
procedure, thus corresponding to an encouraging p-value of 59 % numerically. Adopting the
tabulated z-series coefficients b+,0,Tk allows us to predict the desired momentum-transfer
dependence for the three semileptonic B → K form factors versus z (left panel) and versus
q2 (right panel) in the entire kinematic region in figure 10, where we also display the
corresponding theory predictions from performing an independent z-series fitting to the
“only lattice QCD” data points [14, 15] exclusively for the convenience. It turns out that the
rather remarkable precision for the whole lattice data points at high momentum transfer
from both the FNAL/MILC Collaboration [14] (with the total uncertainties, including both
statistical and systematic errors, less than 4.0 % for all the three B → K form factors)
and the HPQCD Collaboration [15] (with the uncertainties below {2.0 %, 4.0 %, 5.5 %} for
the three form factors {f+

BK , f
0
BK , f

T
BK} in consequence) makes it challenging to carry

out the combined BCL z-series fit with high quantity, by simultaneously accommodating
the achieved LCSR predictions at low momentum transfer within the individual 1.0σ
intervals (albeit with the very sizeable theory uncertainties of the order of 50 %). Actually,
this intriguing observation can be attributed to the very fact that our updated LCSR
computations with the bottom-meson distribution amplitudes will bring about the strongly
correlated numerical results for the exclusive B → K form factors at the different kinematic
points (despite of the quite uncertain central values as explained above) in the large
hadronic recoil region, which exhibit the delicacy tension with the extrapolated lattice QCD
predictions with the extraordinary high accuracy in the low recoil region. In this respect, it
would be in high demand to deepen further our understanding, on the one hand, towards
the momentum dependence of the HQET bottom-meson distribution amplitudes φ±B(ω, µ0)
at the renormalization scale µ0 = 1.0 GeV from the first field-theoretical principles on the
bottom-meson LCSR aspect, and on the other hand, towards the unquantified systematic
uncertainties of the lattice simulation method (for instance, several potential concerns with
the “modified z-expansion” proposal as previously discussed in [16]).

Furthermore, we confront the combined BCL expansion fit results for the two particular
form-factor ratios (4.34) and (4.39) at high momentum transfer with the counterpart
model-independent predictions from the combination of the heavy quark spin symmetry
and the current algebra technique in figures 8 and 9. Generally, the resulting BCL z-
fit predictions for the considered low-recoil symmetry breaking corrections appear to
be in reasonable agreement with the theoretical expectations from the HQET symmetry
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B → K Form Factors Correlation Matrix

Parameters Values b+0 b+1 b+2 b00 b01 bT0 bT1 bT2

b+0 0.465(8) 1 −0.035 −0.494 0.711 0.283 0.744 0.017 −0.281

b+1 −0.925(53) 1 −0.034 0.160 0.831 −0.111 0.691 −0.056

b+2 −0.355(257) 1 −0.038 0.166 −0.299 −0.099 0.533

b00 0.290(4) 1 0.422 0.594 0.061 −0.015

b01 0.246(38) 1 0.141 0.595 0.14

bT0 0.479(10) 1 −0.023 −0.283

bT1 −0.759(74) 1 0.305

bT2 −0.479(324) 1

Table 3. Theory predictions for the correlated z-series coefficients in the vector, scalar and tensor
B → K form factors determined by fitting the BGL parametrization simultaneously against our
LCSR results including a variety of the subleading-power corrections and the available lattice QCD
data points from [14, 15] with the preferred truncation N = 3.

relations at the unphysical kinematic point q2 = 27.9 GeV2 within the obtained uncertainties.
By contrast, our BCL fit result for the scalar form-factor ratio at the zero-recoil limit
differs from the counterpart prediction with the heavy quark symmetry and the soft-kaon
approximation by an enormous amount of O(50 %), thus confirming the previous lattice
simulation results from the FNAL/MILC Collaboration [14]. We are then led to conclude
immediately that employing the derived low-recoil symmetry relations for the exclusive
B → K`¯̀ phenomenological applications could result in the substantial derivations from
the direct QCD predictions due to the numerically pronounced NLP corrections in the
heavy quark expansion.

Along the same vein, we will continue to perform the combined BCL expansion fitting
of the semileptonic Bs → K form factors against our improved LCSR predictions and the
available lattice results for the vector and scalar form factors [4, 8, 11] simultaneously.
On account of the very absence of the lattice simulation results for the tensor form
factor, we prefer to take advantage of the determined LCSR data points for fTBsK(q2)
at five representative values of q2 = {−8.0, −4.0, 0, 4.0, 8.0} GeV2, while adopting the
large-recoil LCSR predictions for the vector and scalar form factors f+, 0

BsK
(q2) at three

distinct kinematic points of q2 = {−4.0, 0, 4.0} GeV2 as the same as before. While the
RBC/UKQCD Collaboration [4] provides explicitly the synthetic data points of f+

BsK
(q2) and

f0
BsK

(q2) at three representative values of q2 = {17.6, 20.8, 23.4} GeV2 with the normalized
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Figure 10. Theory predictions for the complete set of the semileptonic B → K form factors versus
z (left panel) and versus q2 (right panel) in the entire kinematic region obtained by carrying out the
combined BCL z-fit of the updated LCSR (from this work) and lattice simulation (from [14, 15])
data points. We further display the yielding numerical results of these essential form factors by
performing an independent z-series fit against the “only lattice QCD” data points [14, 15] exclusively
for an instructive comparison.

statistical and systematic correlation matrices, both the HPQCD Collaboration [8] and the
FNAL/MILC Collaboration [11] only provide their BCL z-fit results for the form-factor
shape parameters with the truncations N = 3 and N = 4, respectively. Consequently, we
are then required to produce the necessary lattice data points for f+, 0

BsK
(q2) in the kinematic

region 17.0 GeV2 ≤ q2 ≤ 23.7 GeV2 in order to utilize the complete information of the
lattice QCD fits from [8, 11]. Performing now the combined BCL fit against both our LCSR
predictions in the large recoil region and the yielding lattice simulation data points in the
low recoil region gives rise to the final predictions for the z-expansion coefficients (with
their correlation matrix) for the three semileptonic Bs → K form factors as collected in
table 4. In addition, our numerical fit leads to a slightly larger number of χ2 = 28.58 for
19 degrees of freedom in the fitting program. Unsurprisingly, the obtained BCL fit results
for the three coefficients bT0,1,2 in table 4 turn out to be more uncertain compared with the
corresponding predictions for the z-expansion parameters of the tensor B → π form factor
collected in table 2, due to the unavailable lattice data points for the form factor fTBsK(q2)
at large momentum transfer. Under such circumstance, achieving the lattice simulation
determination for the very tensor form factor fTBsK(q2) at high q2 will be evidently crucial
to pin down the current theory uncertainties from the BCL extrapolation of the LCSR
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results, thus providing the fundamental ingredient for the model-independent description of
the exclusive electroweak penguin B̄s → K̄0`¯̀ decays. Employing the tabulated z-series
coefficients b+,0,Tk further enables us to predict the desired momentum-transfer dependence
for the exclusive Bs → K form factors versus z (left panel) and versus q2 (right panel) in
the entire kinematic region in figure 11, where we also display the alternative BCL fit results
for the vector and scalar form factors with the “only lattice QCD” data points [4, 8, 11]
exclusively. In the light of the high-precision lattice data points for f+, 0

BsK
(q2) at small

hadronic recoil from the RBC/UKQCD Collaboration [4] (with the total uncertainties
below {6.2 %, 7.1 %} for the vector and scalar form factors, respectively), from HPQCD
Collaboration [8] (with the combined uncertainties below {5.0 %, 6.0 %} for the two form
factors {f+

BsK
, f0

BsK
} in consequence) and from the FNAL/MILC Collaboration [11] (with

the uncertainties less than 3.0 % for both the two form factors), the resulting theory benefits
from the combined BCL z-expansion fit to both the LCSR and lattice simulation results
consist in the rather moderate improvements (at the level of O(20 %) numerically) of the
large-recoil form factor predictions on the counterpart BCL fitting procedure with the “only
lattice QCD” data points.

We proceed to compare the combined BCL expansion fitting predictions for the two
form-factor ratios (4.34) and (4.39) in the low recoil region with the corresponding model-
independent computations based upon the combination of heavy quark and chiral symmetries
in figures 8 and 9. We can draw an analogous conclusion (as previously observed in the
context of the B → K form factors) that the derived HQET symmetry relations for the
exclusive Bs → K form factors appear to be well respected at the unphysical kinematic
point q2 = 28.8 GeV2 within the theory uncertainties. Apparently, our numerical result for
the particular form-factor ratio

[
q2 fTBsK(q2)

]
:
[
mBs(mBs +mK) f+

BsK
(q2)

]
suffers from the

more pronounced theory uncertainty as displayed in figure 9, due to the relatively less precise
BCL-fitting prediction for the tensor form factor f+

BsK
(q2). Moreover, the very low-recoil

symmetry breaking correction to the scalar form-factor ratio
[(

1− q2/m2
B∗
)
f+
BsK

(q2)
]

:[
f0
BsK

(q2)
]
at the maximal momentum transfer turns out to be even greater than the

counterpart theory predictions for both the semileptonic B → π,K decay form-factor ratios
as shown in figure 8.

4.3 Phenomenological analysis of the B(s) → π(K)`ν̄` observables

Having at our disposal the combined BCL z-fit results for the exclusive B → π,K form
factors, we are now prepared to explore their phenomenological implications on the semilep-
tonic B(s) → π(K)`ν̄` decay observables constructed from the corresponding full angular
distributions, such as the differential branching fractions, the normalized forward-backward
asymmetries, the new-physics (NP) sensitive “flat terms” (vanishing in the massless lep-
ton limit in the SM), and the lepton-flavour universality ratios, the lepton polarization
asymmetries. In particular, the ever-increasing precision measurements on the binned
q2 distributions for the golden exclusive B → π`ν̄` (with ` = e, µ) decay processes from
the BaBar Collaboration [62, 63], the Belle Collaboration [64, 65] as well as the Belle
II [66] Collaboration enable us to further extract the desired CKM matrix element |Vub|
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Bs → K Form Factors Correlation Matrix

Parameters Values b+0 b+1 b+2 b00 b01 bT0 bT1 bT2

b+0 0.373(10) 1 0.202 −0.294 0.653 0.135 0.422 −0.277 0.103

b+1 −0.731(41) 1 0.075 0.255 0.683 0.488 −0.301 0.092

b+2 −0.473(146) 1 0.099 0.366 0.215 −0.121 0.025

b00 0.443(10) 1 −0.024 0.407 −0.268 0.100

b01 −1.427(45) 1 0.433 −0.262 0.075

bT0 0.437(46) 1 −0.835 0.550

bT1 −0.900(167) 1 −0.914

bT2 0.091(172) 1

Table 4. Theory predictions for the correlated z-series coefficients in the vector, scalar and tensor
Bs → K form factors determined by fitting the BGL parametrization simultaneously against our
LCSR results including a variety of the subleading-power corrections and the available lattice QCD
data points from [4, 8, 11] with the preferred truncation N = 3.

straightforwardly in combination with our improved determination of the vector form factor
f+
Bπ(q2) in the entire kinematic regime. In order to achieve this goal, we first present the
explicit expression for the full differential decay distribution of Bq′ →M`ν̄` with respect to
the two kinematic variables q2 and cos θ` (dropping out the very intricate but numerically
subdominant electromagnetic correction)

d2Γ(Bq′ →M`ν̄`)
dq2 d cos θ`

= aθ`(q2) + bθ`(q2) cos θ` + cθ`(q2) cos2 θ` , (4.45)

where the three q2-dependent angular coefficient functions are given by [159]

aθ`(q2) =New λ
3/2
(

1−m
2
`

q2

)2
∣∣∣f+

Bq′M
(q2)

∣∣∣2+ 1
λ

m2
`

q2

1− m2
M

m2
Bq′

2 ∣∣∣f0
Bq′M

(q2)
∣∣∣2
 ,

(4.46)

bθ`(q2) = 2Newλ

(
1−m

2
`

q2

)2
m2
`

q2

1− m2
M

m2
Bq′

 Re
[
f+
Bq′M

(q2)f0∗
Bq′M

(q2)
]
, (4.47)

cθ`(q2) =−New λ
3/2
(

1−m
2
`

q2

)3 ∣∣∣f+
Bq′M

(q2)
∣∣∣2 , (4.48)
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Figure 11. Theory predictions for the complete set of the semileptonic Bs → K form factors versus
z (left panel) and versus q2 (right panel) in the entire kinematic region obtained by carrying out the
combined BCL z-fit of the updated LCSR (from this work) and lattice simulation (merely for the
two form factors f+, 0

BsK
(q2) from [4, 8, 11]) data points. We further display the yielding numerical

results for the vector and scalar form factors by performing an independent z-series fit against the
“only lattice QCD” data points [4, 8, 11] exclusively for the illustration purpose.

and we have introduced the following shorthand notations for convenience

New =
G2
F |Vub|2m3

Bq′

256π3 , λ ≡ λ

1, m
2
M

m2
Bq′

,
q2

m2
Bq′

 ,

λ(a, b, c) ≡ a2 + b2 + c2 − 2 (ab+ ac+ bc) . (4.49)

In addition, the helicity angle θ` is defined as the angle between the `− direction of flight and
the final-state meson momentum in the dilepton rest frame. We can immediately observe two
interesting algebra relations for the angular functions bθ`(q2) = 0 and aθ`(q2) + cθ`(q2) = 0
in the massless lepton limit.

Integrating over the helicity angle θ` allows for spelling out the expression for the
differential decay rate of Bq′ →M`ν̄` in the bottom-meson rest frame

dΓ(Bq′ →M`ν̄`)
dq2 =

∫ 1

−1
d cos θ`

d2Γ(Bq′ →M`ν̄`)
dq2 d cos θ`

= 2
[
aθ`(q2) + 1

3 cθ`(q
2)
]

=
G2
F |Vub|2m3

Bq′

192π3 λ3/2
(

1− m2
`

q2

)2 {(
1 + m2

`

2 q2

) ∣∣∣f+
Bq′M

(q2)
∣∣∣2

+ 1
λ

3m2
`

2 q2

1− m2
M

m2
Bq′

2 ∣∣∣f0
Bq′M

(q2)
∣∣∣2 } , (4.50)
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Parameters Values Correlation Matrix

b+0 0.409(12) 1 0.111 −0.452 0.298 0.119 −0.87

b+1 −0.507(42) 1 −0.793 −0.088 0.203 −0.298

b+2 −0.267(152) 1 0.008 −0.096 0.405

b00 0.507(18) 1 −0.445 −0.266

b01 −1.446(45) 1 −0.201

|Vub| 3.76(13)× 10−3 1

Table 5. Theory predictions for the B → π`ν̄` form-factor shape parameters and the CKM matrix
element |Vub| (with their correlation matrix) from carrying out the simultaneous fit against the
SCET sum rules, lattice QCD and experimental data points with the aid of the truncated BCL
z-parameterizations at N = 3.

which can be further employed to determine the measurable q2-binned branching fractions.
Following the strategy presented in [16, 160–162], we will turn to extract the magnitude of
the CKM matrix element |Vub| by carrying out a simultaneous fit to the SCET sum rules,
lattice QCD and experimental data points with the aid of the constrained BCL z-series
parameterizations, thus leaving their relative normalization |Vub| as a free parameter. As
emphasized previously in [16], this attractive fitting strategy combines the theoretical and
experimental inputs in a more efficient manner, yielding a somewhat smaller uncertainty
on |Vub| numerically. Taking advantage of the available state-of-the-art experimental data
sets from the three untagged measurements by the BaBar Collaboration [63] and the
Belle Collaboration [64] assuming isospin symmetry, from the two tagged measurements
of B̄0 → π+`ν̄` and B− → π0`ν̄` by the Belle Collaboration [65], and from the untagged
B0 → π−`ν̄` measurements by the Belle II Collaboration [66], we display the numerical
fit results for both the form-factor shape parameters with the truncation N = 3 for the
BCL z-expansion and |Vub| in table 5, including their correlation matrix. The quality of the
binned maximum-likelihood fit can be understood from the resulting chi-square per degree
of freedom χ2/dof = 86.79/(73− 6) ≈ 1.30. In particular, the newly achieved predictions
for the five BCL parameters b+, 0k entering in the vector and scalar B → π form factors are
compatible with the corresponding numerical results presented in table 2, at the 1.0σ level,
from fitting against only the LCSR and lattice simulation data points. Additionally, the
thus-far determined interval for |Vub| from our nominal fit model

|Vub|B→π`ν̄` = (3.76± 0.13)× 10−3 , (BCL fit with N = 3) (4.51)

appears to be in excellent agreement with the counterpart numerical result from the
analogous fitting strategy but with the LCSR input data points generated by the traditional
dispersive technique with the π-meson distribution amplitudes [160] and from the combined
BCL fit against the lattice and experimental results [16].
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Parameters Values Correlation Matrix

b+0 0.409(12) 1 0.095 −0.367 −0.028 0.214 0.075 0.031 −0.840

b+1 −0.477(52) 1 −0.109 −0.649 0.07 0.089 −0.075 −0.390

b+2 −0.127(211) 1 −0.565 0.219 −0.089 −0.202 0.153

b+3 −0.732(745) 1 −0.295 0.062 0.295 0.275

b00 0.506(22) 1 −0.579 −0.777 −0.234

b01 −1.341(172) 1 0.715 −0.126

b02 1.913(324) 1 −0.027

|Vub| 3.72(14)× 10−3 1

Table 6. Theory predictions for the B → π`ν̄` form-factor shape parameters and the CKM matrix
element |Vub| (with their correlation matrix) from carrying out the simultaneous fit against the
SCET sum rules, lattice QCD and experimental data points with the aid of the truncated BCL
z-parameterizations at N = 4.

For the sake of understanding quantitatively the systematic uncertainties from the
truncations of the BCL series expansions, we repeat our numerical fit procedure to the
simultaneous determinations of the vector and scalar form-factor shape parameters as well as
the CKM matrix element |Vub| with the different truncation N = 4, yielding the correlated
numerical predictions shown in table 6. Moreover, this particular BCL expansion fit turns
out to generate a minimal χ2 = 85.31 for 65 degrees of freedom, thus corresponding to the
equally good fit quantity when compared with the former case with the truncation N = 3.
Unsurprisingly, both the yielding central value and theory uncertainty for the numerical
result of |Vub|

|Vub|B→π`ν̄` = (3.72± 0.14)× 10−3 , (BCL fit with N = 4) (4.52)

coincide with the previous BCL fitting results with N = 3 perfectly. Apparently, the
combined BCL fit results for the z-series coefficients of the semileptonic B → π form factors
also stabilize at N = 3 and do not change notably by increasing the expansion order to
N = 4. We are therefore led to conclude that truncating the z-series expansions at the order
N = 3 in the numerical fit procedure will be indeed sufficient to provide us the reliable and
satisfactory theory predictions.

We further display our final theory predictions for the differential q2 distributions of
the semileptonic B(s) → π(K)`ν̄` (with ` = µ, τ) decay processes in the entire kinematic
region in figure 12, where the experimental measurements of the B → π`ν̄` decay rates
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Figure 12. Theory predictions for the differential q2 distributions of the exclusive semileptonic
B → π`ν̄` (left panel) and Bs → K`ν̄` (right panel) decay processes in the entire kinematic
region with the distinct BCL z-series fits of the form-factor shape parameters. The available
experimental measurements on the binned q2 distributions of the “golden” decay process B → πµν̄µ
from the BaBar [62, 63], Belle [64, 65] and Belle II [66] Collaborations are further displayed for an
exploratory comparison.

from the BaBar [62, 63], Belle [64, 65] and Belle II [66] Collaborations are further shown
for a numerical comparison. In addition, we collect simultaneously the obtained numerical
results from fitting the BCL z-series parameterizations with three distinct scenarios of the
input data points: i) only synthetic lattice data points, II) synthetic lattice data points ⊕
LCSR results, III) synthetic lattice data points ⊕ LCSR results ⊕ experimental data. We
can readily observe from figure 12 that employing our improved LCSR predictions at large
hadronic recoil in the BCL expansion fit program will be highly beneficial for pinning down
the theory uncertainties from the particular fitting strategy with only the synthetic lattice
data points. Moreover, we discover the slight tension of the predicted large-recoil B → πµν̄µ
decay distributions between the scenarios II) and III) fitting strategies with the BCL z-series
parameterizations. With regard to the counterpart exclusive Bs → K`ν̄` decay channels,
taking into account the newly obtained LCSR data points in the numerical fit will bring
about the moderate improvements on the resulting partial decay rates determined from
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Observables Lattice QCD Lattice QCD ⊕ LCSR LCSR This work

Rπ

0.69± 0.19 [4] 0.78± 0.10 [165] 0.69+0.03
−0.05 [25] 0.720± 0.027

∣∣
N=3

0.767± 0.145 [164] 0.699± 0.022 [160] 0.68+0.10
−0.09 [166]

0.838± 0.075 [164] 0.677± 0.010 [162] 0.65+0.13
−0.11 [166] 0.746± 0.039

∣∣
N=4

RK

0.77± 0.12 [4] − − 0.700± 0.016
∣∣
N=3

0.695± 0.050 [8]

0.836± 0.034 [11] − − 0.680± 0.019
∣∣
N=4

Table 7. Theory predictions for the LFU ratios of the exclusive semileptonic B(s) → π(K)`ν̄` decay
processes from the combined BCL expansion fitting against the synthetic lattice data points and the
newly obtained LCSR results.

fitting against only the synthetic lattice data points, as previously discussed in section 4.2.
For convenience, we also collect here our theory predictions for the total branching fractions
of Bs → K`ν̄` with the extracted interval of the CKM matrix element |Vub| shown in (4.51)

BR(Bs → Kµν̄µ) = (1.200± 0.128)× 10−4 ,

BR(Bs → Kτν̄τ ) = (0.847± 0.078)× 10−4 , (4.53)

the former of which coincides well with the first experimental measurement from the LHCb
Collaboration BR(Bs → Kµν̄µ) = [1.06± 0.05(stat)± 0.08(syst)]× 10−4 [67] by employing
the Cabibbo favored semileptonic Bs → Ds`ν̄` decay process as the normalization channel.
Unfortunately, both the two semitauonic bottom-meson decays B → πτ ν̄τ and Bs → Kτν̄τ
have not been observed in the high luminosity Belle II and LHCb experiments to date (see
however the upper limit of BR(B → πτ ν̄τ ) < 2.5× 10−4 at the 90 % confidence level from
the Belle Collaboration [163]).

In light of the increasing sensitivity of the semitauonic bottom-hadron decays to the
mysterious NP signature due to the very large τ -lepton mass, we proceed to investigate
two particular lepton-flavour-universality (LFU) probing observables for the exclusive
B(s) → π(K)`ν̄` decays independent of the CKM matrix element |Vub|

Rπ(K) =
Γ
(
B(s) → π(K)τ ν̄τ

)
Γ
(
B(s) → π(K)µν̄ν

) =
∫ q2

max
m2
τ

dq2 dΓ(B(s) → π(K)τ ν̄τ )/dq2∫ q2
max

m2
µ

dq2 dΓ(B(s) → π(K)µν̄µ)/dq2
. (4.54)

Apparently, precision predictions of such interesting LFU quantities would require a good
knowledge of both the vector and scalar form factors in the whole semileptonic regions.
Adopting the combined BCL z-series fit results with two distinct truncations N ∈ {3, 4}
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Figure 13. Theory predictions for the two interesting LFU ratios Rπ(K) of the differential
B(s) → π(K)`ν̄` decay distributions obtained from the combined BCL expansion fitting against the
synthetic lattice data points and the newly obtained bottom-meson LCSR results.

yields the desired numerical predictions for the two LFU observables as summarized in
table 7. Generally, our numerical results for Rπ(K) are compatible with the previous theory
determinations based upon the lattice simulation and LCSR methods. In addition, our BCL
expansion fit result of the LFU ratio Rπ can evidently accommodate the rather loose Belle
measurement of Rπ|Belle 2016 = 1.05±0.51 [163]. We further present the resulting predictions
for the two LFU ratios of the differential B(s) → π(K)`ν̄` decay distributions in figure 13,
which can be straightforwardly confronted with the counterpart numerical results from the
RBC/UKQCD Collaborations [4], HPQCD [8] and FNAL/MILC [11] Collaborations.

Applying the two-fold differential spectrum of the flavour-changing charged-current
Bq′ → M`ν̄` decay process displayed in (4.45), we can construct two angular observ-
ables sensitive to Beyond the Standard Model (BSM) physics associated with electroweak
symmetry breaking

AB(s)→π(K)`ν̄`
FB (q2) =

[
dΓ(B(s)→π(K)`ν̄`)

dq2

]−1 ∫ 1

−1
dcosθ` sgn(cosθ`)

d2Γ(B(s)→π(K)`ν̄`)
dq2 dcosθ`

,

=
[1

2 bθ`(q
2)
]

:
[
aθ`(q2)+ 1

3 cθ`(q
2)
]

(4.55)

FB(s)→π(K)`ν̄`
H (q2) = 1+ 2

3

[
dΓ(B(s)→π(K)`ν̄`)

dq2

]−1
d2

d(cosθ`)2
d2Γ(B(s)→π(K)`ν̄`)

dq2 dcosθ`

=
[
aθ`(q2)+cθ`(q2)

]
:
[
aθ`(q2)+ 1

3 cθ`(q
2)
]
. (4.56)

Evidently, both the normalized forward-backward asymmetries AB(s)→π(K)`ν̄`
FB and the q2

differential flat terms FB(s)→π(K)`ν̄`
H [158] will vanish in the massless lepton limit in the
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SM. Another appropriate candidate for the potential BSM probe can be introduced by
investigating the polarization asymmetry of the final-state lepton

AB(s)→π(K)`ν̄`
λ`

(q2) =
[
dΓ(B(s)→π(K)`ν̄`)

dq2

]−1 [
dΓλ`=−1/2

dq2 − dΓλ`=+1/2

dq2

](
B(s)→π(K)`ν̄`

)
= 1− 2

3

{[
3
(
aθ`(q2)+cθ`(q2)

)
+ 2m2

`

q2−m2
`

cθ`(q2)
]

:
[
aθ`(q2)+ 1

3 cθ`(q
2)
]}

,

(4.57)
which turns out to be sensitive to helicity-violating NP interactions. The analytic structure
of the above-mentioned expression of the lepton polarization fraction (4.57) can be actually
understood from the `-helicity conservation of the semileptonic b→ q`ν̄` transition in the
massless lepton approximation in the SM. In order to facilitate the numerical comparisons
with the future experimental measurements, we collect our theory predictions for the
three different classes of the angular observables AB(s)→π(K)`ν̄`

FB (q2), FB(s)→π(K)`ν̄`
H (q2) and

AB(s)→π(K)`ν̄`
λ`

(q2) in figure 14. It is perhaps worthwhile to mention that our predictions for
the normalized differential forward-backward asymmetries are in excellent agreement with
the available lattice QCD simulation results from both the RBC/UKQCD [4] and HPQCD
(without B → π`ν̄`) [8] Collaborations. On the other hand, the resulting predictions for the
lepton polarization fractions of Bs → K`ν̄` coincide well with the previous HPQCD [8] and
FNAL/MILC [11] determinations (see also [167] for the numerical predictions with the vector
and scalar Bs → K form factors computed with the TMD factorization approach). Moreover,
we summarize our numerical predictions for the aforementioned three distinct classes of
the integrated observables by employing the combined BCL expansion fit results of the
semileptonic heavy-to-light B(s) → π(K) form factors in table 8, where we further confront
our results with the previous determinations from the lattice QCD and LCSR techniques
for convenience. Generally, our newly obtained results of the integrated angular observables
for the semileptonic B(s) → π(K)`ν̄` decays are compatible with the available QCD
determinations within the theory uncertainties, but with the exceptions of the previously
extracted intervals of the flat terms FB→πµν̄µH and FB→πτν̄τH from [160], which turn out to
be approximately one fourth of our numerical predictions individually. In order to better
clarify such striking discrepancies, we can readily derive an exact but quite loose bound,
independent of the scalar form-factor ratio, for the q2 differential flat term by applying the
explicit definition (4.56) as well as the kinematic constraint q2 ∈

[
m2
` , (mB(s) −mπ(K))2

]
.

For definiteness, we obtain

FB(s)→π(K)`ν̄`
H (q2) ≥ 3

1 + 2 y`,max
, y`,max ≡

[mB(s) −mπ(K)

m`

]2
. (4.58)

Plugging the input values for the emerged hadron and lepton masses summarized in table 1
into (4.58) immediately leads to the desired numerical bounds

FB→πµν̄µH (q2) ≥ 6.337× 10−4, FB→πτν̄τH (q2) ≥ 0.169 ,

FBs→Kµν̄µH (q2) ≥ 7.049× 10−4, FBs→Kτν̄τH (q2) ≥ 0.187 , (4.59)

which are well respected by our combined BCL z-fit results for the corresponding four
observables as collected in table 8.
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Figure 14. Theory predictions for the three distinct classes of the angular observables
AB(s)→π(K)`ν̄`

FB (q2), FB(s)→π(K)`ν̄`

H (q2) and AB(s)→π(K)`ν̄`

λ`
(q2) obtained from the combined BCL

expansion fitting against the synthetic lattice data points and the newly obtained bottom-meson
LCSR results.

4.4 Phenomenological analysis of the B → Kν`ν̄` observables

We are now in a position to explore phenomenological implications of the newly determined
B → K form factors on the electroweak penguin B → Kν`ν̄` decays, which are expected
to be observed with first 10 ab−1 of the Belle II data [168] (see the earlier experimental
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Observables Lattice QCD Lattice QCD ⊕ LCSR This work

AB→πµν̄µFB

(3.99± 0.35)× 10−3∣∣
N=3

(4.4± 1.3)× 10−3 [4] (4.8± 0.3)× 10−3 [160]
(3.72± 0.51)× 10−3∣∣

N=4

AB→πτν̄τFB

0.248± 0.005
∣∣
N=3

0.252± 0.012 [4] 0.259± 0.004 [160]
0.244± 0.007

∣∣
N=4

ABs→Kµν̄µFB

(3.9± 1.1)× 10−3 [4] (4.49± 0.21)× 10−3∣∣
N=3

(6.6± 1.0)× 10−3 [8] −

(3.21± 0.97)× 10−3 [11] (5.14± 0.33)× 10−3∣∣
N=4

ABs→Kτν̄τFB

0.2650± 0.0079 [4] 0.267± 0.002
∣∣
N=3

0.284± 0.017 [8] −

0.2536± 0.0084 [11] 0.272± 0.003
∣∣
N=4

FB→πµν̄µH

(8.04± 0.72)× 10−3∣∣
N=3

− (2.4± 0.1)× 10−3 [160]
(7.52± 1.02)× 10−3∣∣

N=4

FB→πτν̄τH

0.514± 0.012
∣∣
N=3

− 0.134± 0.003 [160]
0.508± 0.014

∣∣
N=4

FBs→Kµν̄µH

(9.10± 0.43)× 10−3∣∣
N=3

− −

(10.36± 0.67)× 10−3∣∣
N=4

FBs→Kτν̄τH

0.555± 0.006
∣∣
N=3

− −

0.565± 0.007
∣∣
N=4

AB→πµν̄µλ`

0.988± 0.001
∣∣
N=3

− −

0.989± 0.002
∣∣
N=4

AB→πτν̄τλ`

0.266± 0.029
∣∣
N=3

− 0.21± 0.02 [160]
0.272± 0.032

∣∣
N=4

ABs→Kµν̄µλ`

0.987± 0.001
∣∣
N=3

0.982+0.018
−0.079 [8] −

0.985± 0.001
∣∣
N=4

ABs→Kτν̄τλ`

0.191± 0.014
∣∣
N=3

0.105± 0.063 [8] −

0.172± 0.017
∣∣
N=4

Table 8. Theory predictions for the three distinct classes of the integrated observables AB(s)→π(K)`ν̄`

FB ,
FB(s)→π(K)`ν̄`

H and AB(s)→π(K)`ν̄`

λ`
obtained from the combined BCL z-series expansion fitting of the

exclusive B(s) → π(K) form factors against the synthetic lattice data points and the newly obtained
bottom-meson LCSR results.
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searches by the BaBar [169], Belle [170] and Belle II [171] Collaborations). Importantly, the
expected sensitivity of the total branching fraction for B → Kν`ν̄` (summing over neutrino
flavours) with 50 ab−1 of integrated luminosity has been estimated to be at the level of 10 %,
thus comparable to the current theoretical uncertainties of the SM predictions [68]. It is
straightforward to derive the differential decay width formula for the theoretically cleanest
FCNC B0 → K0ν`ν̄` decay process of the neutral bottom meson [172, 173]

dΓ(B0 → K0ν`ν̄`)
dq2 = G2

F α
2
em

256π5
λ3/2(m2

B,m
2
K , q

2)
m3
B sin4 θW

|Vtb V ∗ts|2
[
Xt

(
m2
t

m2
W

,
m2
H

m2
W

, sin θW , µ
)]2

×
∣∣∣f+

BK(q2)
∣∣∣2 , (4.60)

where the CKM matrix elements |Vtb| and |V ∗ts| can be further evaluated from the four
Wolfenstein parameters collected in table 1 with the expanded matching relations at
the accuracy of O(λ9) [174]. The short-distance Wilson coefficient Xt can be expanded
perturbatively in terms of the SM gauge couplings

Xt = X
(0)
t + αs

4π X
QCD(1)
t + αem

4π X
EW(1)
t + . . . , (4.61)

where the LO contribution X(0)
t [175], the NLO QCD correction XQCD(1)

t [176–178] and the
two-loop electroweak correction XEW(1)

t [179] are already known analytically. By contrast,
there exists an additional long-distance contribution to the counterpart charged channel
B− → K−ν`ν̄` due to the double charged-current interaction B− → τ(→ K−ντ ) ν̄τ at
tree level as originally discussed in [180]. In the narrow τ -lepton width approximation
(Γτ ' 2.3× 10−3 eV [89]), we can readily derive the tree-level charged-current contribution
to the exclusive rare B− → K−ντ ν̄τ decay rate

dΓ(B−→K−ν`ν̄`)
dq2

∣∣∣∣
LD

= G4
F |VubV ∗us|2

64π2m3
B−

|fB− fK− |2
m3
τ

Γτ

[
(m2

B−−m
2
τ )(m2

τ−m2
K−)−m2

τ q
2
]
,

(4.62)
where the invariant mass distribution of the two invisible particles satisfies the constraint [89]

0 ≤ q2 ≤
(m2

B− −m
2
τ ) (m2

τ −m2
K−)

m2
τ

. (4.63)

At the first sight, this new mechanism will be suppressed by an extra factor of G2
F in

comparison with the customary penguin contribution presented in (4.60). However, the
very appearance of 1/Γτ on the right-handed side of (4.62), due to the on-shell τ -lepton
enhancement, will be counted as O(G−2

F ) parametrically, thus compensating the observed
suppression factor [181]. Moreover, the interference effect between the tree and penguin
amplitudes turns out to be numerically negligible (estimated to be at the order of 10−11 [180])
on account of the extremely small τ -lepton width. We display in figure 15 the yielding
results for the differential decay distributions of B0 → K0ν`ν̄` and B− → K−ν`ν̄` by
employing the form factors determined from fitting the BCL z-series parameterizations
with two distinct scenarios of the input data points: i) only synthetic lattice data points,
II) synthetic lattice data points ⊕ LCSR results.
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Figure 15. Theory predictions for the differential decay distributions of B0 → K0ν`ν̄` (left panel)
and B− → K−ν`ν̄` (right panel) by applying the form factors determined from the two distinct
scenarios of the BCL z-series expansion fitting strategies.

In order to confront our numerical predictions with the anticipated measurements
from the high-luminosity Belle II experiment, we introduce the following three q2-binned
observables for the semileptonic B → Kν`ν̄` decays [35]

∆BRB0→K0ν`ν̄`(q2
1, q

2
2) = τB0

∫ q2
2

q2
1

dq2 dΓ(B0 → K0ν`ν̄`)
dq2 ,

∆BRB−→K−ν`ν̄`(q2
1, q

2
2) = τB−

∫ q2
2

q2
1

dq2 dΓ(B− → K−ν`ν̄`)
dq2 ,

RKπ(q2
1, q

2
2) =

[∫ q2
2

q2
1

dq2 dΓ(B0 → K0ν`ν̄`)
dq2

]
:
[∫ q2

2

q2
1

dq2 dΓ(B0 → π−ν̄µνµ)
dq2

]
,

(4.64)

where the ratio of partially integrated differential branching fractions RKπ is expected to
suffer from the lower hadronic uncertainties due to the correlations between the exclusive
B → π and B → K form factors. We summarize our final predictions for these three
quantities with the choice of the q2 intervals following [68] in table 9, where we further
display the previous theoretical determinations with the lattice simulation and LCSR
methods for convenience.

5 Conclusions

In the current paper we have carried out the improved computations of the semileptonic
Bd,s → π,K decay form factors at large hadronic recoil, which evidently belong to the most
important hadronic quantities in heavy quark physics, by employing the method of light-cone
sum rules (LCSR) in soft-collinear effective theory (SCET) with both the leading-twist and
higher-twist bottom-meson distribution amplitudes. In particular, we have computed for the
first time the non-vanishing spectator-quark mass corrections to these form factors at NLO
in the strong coupling constant, which appeared to preserve the approximated large-recoil
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[q2
1, q

2
2] (in GeV2) 106 ×∆BRB0→K0ν`ν̄`(q2

1, q
2
2) 106 ×∆BRB−→K−ν`ν̄`(q2

1, q
2
2) 102 ×RKπ(q2

1, q
2
2)

[0.0, 1.0] 0.253+0.020
−0.019 0.324+0.023

−0.021 3.949± 0.319

[1.0, 2.5] 0.381+0.028
−0.027 0.482+0.033

−0.030 3.932± 0.303

[2.5, 4.0] 0.380+0.027
−0.025 0.476+0.031

−0.029 3.904± 0.289

[4.0, 6.0] 0.502+0.034
−0.032 0.622+0.039

−0.035 3.859± 0.278

[6.0, 8.0] 0.492+0.032
−0.030 0.602+0.037

−0.034 3.788± 0.270

[8.0, 12.0] 0.924+0.058
−0.053 1.112+0.066

−0.060 3.626± 0.262

[12.0, 16.0] 0.776+0.047
−0.043 0.916+0.053

−0.048 3.245± 0.238

[
16.0, (mB −mK)2] 0.607+0.036

−0.032 0.705+0.040
−0.036 1.918± 0.129

[
0.0, (mB −mK)2]

6.02+1.68
−1.76 [35] 5.10± 0.80 [172] −

4.01± 0.49 [181] 3.98± 0.47 [173] −

4.67± 0.35 [182] 4.94± 0.52 [181] −

4.1+1.3
−1.0 [183] 5.67± 0.38 [182] −

4.4± 1.5 [184] 4.53± 0.64 [185] −

− 4.65± 0.62 [186] −

− 5.67± 0.32 [187] −

4.315+0.271
−0.248 (this work) 5.239+0.311

−0.281 (this work) 3.240± 0.211 (this work)

Table 9. Theory predictions for the three partially integrated differential observables
∆BRB

0→K0ν`ν̄` , ∆BRB
−→K−ν`ν̄` , and RKπ (see (4.64) for their explicit definitions) obtained

from the combined BCL z-series expansion fitting of the exclusive B → π,K form factors against
the synthetic lattice data points and the newly obtained bottom-meson LCSR results.

symmetry relations for the heavy-to-light transition form factors and turned out to escape
from an extra suppression of the powers of ΛQCD/mb in heavy quark expansion. Our
explicit sum rules for these spectator-quark mass corrections further implied that evaluating
such SU(3)-flavour symmetry breaking effects directly with the perturbative factorization
technique would result in the soft-collinear convolution integrals with the notorious rapidity
singularities. Moreover, we have accomplished the complete NLL resummation for the
parametrically enhanced logarithms of mb/ΛQCD entering in the factorized expressions of
the leading-power contributions to the considered vacuum-to-bottom-meson correlation
functions displayed in (2.2) by taking advantage of the standard renormalization-group

– 54 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
0

formalism in momentum space. We then proceeded to explore the four distinct classes of the
NLP contributions to the exclusive Bd,s → π,K form factors with the same LCSR technique
at tree level: i) the higher-order terms from heavy quark expansion of the hard-collinear
quark propagator, II) the subleading power corrections from the effective matrix element
of the SCETI weak current (ξ̄hcWhc) γµ

[
i /D>/ (2mb)

]
hv, III) the higher-twist corrections

from the two-particle and three-particle heavy quark effective theory (HQET) distribution
amplitudes, IV) the four-particle twist-five and twist-six contributions in the factorization
approximation. We have extensively used the nontrivial operator identities between the
two-body and three-body light-cone HQET operators due to the classical equations of
motion in our constructions of the NLP sum rules. Interestingly, we observed that only
the particular class-I NLP contribution from the expanded hard-collinear propagator can
generate the large-recoil symmetry violation effect between the vector and scalar form
factors, while both the class-I and class-II NLP corrections can yield the symmetry breaking
effects between the vector and tensor form factors at large hadronic recoil.

Having at our disposal the updated SCET sum rules for the exclusive heavy-to-light
bottom-meson decay form factors, we turned to investigate the numerical implications of
the NLL resummation improved leading-power contributions and the newly obtained four
classes of the NLP corrections at tree level on the theory predictions for the semileptonic
Bd,s → π,K form factors of our interest, by employing the general three-parameter ansatz
for the necessary HQET distribution amplitudes. It has been explicitly shown that the
most prominent subleading power contribution arises from the two-particle twist-five off-
light-cone correction, which can reduce the corresponding leading-power LCSR predictions
in the kinematic region 0 ≤ q2 ≤ 8 GeV2 by an amount of (25− 30) % numerically. On the
contrary, the yielding impacts from the four-particle higher-twist bottom-meson distribution
amplitudes have been demonstrated to be numerically insignificant in the factorization
approximation owing to the smallness of the normalization constant |〈q̄q〉 : (λB s0)| ' 10 %
in the tree-level sum rules (3.55). In addition, the higher-order QCD corrections to the short-
distance matching coefficients appeared in the leading-power SCET sum rules can bring
about consistently O(30 %) reductions of the counterpart leading-order LCSR predictions. It
remains important to remark that our numerical results for the semileptonic bottom-meson
decay form factors indicate the following hierarchy relations f+ (T )

BK (0) > f
+ (T )
BsK

(0) > f
+ (T )
Bπ (0)

in the maximal recoil limit. Remarkably, we predicted very sizeable SU(3)-flavour symmetry
violating effects between the exclusive B → π and B → K form factors based upon the
established LCSR with the HQET distribution amplitudes: numerically O(30 %) for the
two form-factor ratios R+, 0

SU(3) and O(40 %) for the particular ratio RTSU(3).
Subsequently, we extrapolated the bottom-meson LCSR computations for the exclusive

Bd,s → π,K form factors towards the large momentum transfer q2 with the aid of the
Bourrely-Caprini-Lellouch (BCL) z-series parameterizations for these form factors. It is
interesting to note that including the newly obtained LCSR predictions at small momentum
transfer in our numerical fitting procedure turned out to be highly beneficial for pinning
down the theory uncertainties of all the three B → π form factors in the kinematic regime
0.10 ≤ z(q2) ≤ 0.31 significantly, due to the yet non-negligible errors of the lattice QCD
results from the RBC/UKQCD Collaboration [4] (numerically at the level of (8.4− 14.3) %
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for the vector form factor and (7.6 − 13.6) % for the scalar form factor). Furthermore,
we have confronted our combined BCL fit results of the B → π form factors with the
theoretical expectations from the particular low-recoil symmetry relations (4.34) and (4.39),
on account of the combination of the heavy quark spin symmetry and the so-called soft-pion
approximation, in figures 8 and 9 manifestly. Additionally, the available high-precision
lattice QCD results of the semileptonic B → K form factors from both the FNAL/MILC
Collaboration [14] and the HPQCD Collaboration [15] appeared to be in tension with the
strongly correlated predictions from the improved bottom-meson LCSR determinations,
when carrying out the numerical interpolations between the lattice simulation and LCSR
results with the standard BCL z-series expansions. With regard to the flavour-changing
charged-current Bs → K`ν̄` form factors, the yielding BCL fit results for the three coefficients
bT0,1,2 in table 4 became more uncertain in comparison with the counterpart results for the
z-expansion parameters of the tensor B → π form factor, due to the very absence of the
lattice data points for fTBsK(q2) in the lower recoil region. Importantly, we indeed benefited
from the combined BCL z-expansion fit to both the LCSR and lattice simulation results
by improving further the theory accuracy of the vector and scalar form factors f+, 0

BsK
(q2),

numerically at the level of O(20 %), when compared with the counterpart BCL fitting
procedure with the “only lattice QCD” data points. It has been verified that our BCL z-fit
predictions for the scalar form-factor ratios of both the exclusive B → K and Bs → K

form factors at the zero-recoil limit differ from the expected Isgur-Wise relations due to
the combined heavy quark and chiral symmetries enormously, thus supporting the previous
lattice simulation results from the FNAL/MILC Collaboration [14].

Performing the simultaneous BCL expansion fit to the SCET sum rules, lattice QCD
and experimental data points enabled us to extract the desired CKM matrix element |Vub|
from the “golden” exclusive process B → π`ν̄` with the two distinct truncations

|Vub|B→π`ν̄` = (3.76± 0.13)× 10−3 , (BCL fit with N = 3)
|Vub|B→π`ν̄` = (3.72± 0.14)× 10−3 . (BCL fit with N = 4) (5.1)

We are therefore led to conclude that truncating the z-series expansions at the order N = 3
in the numerical fit procedure can indeed be justified for the practical purpose due to the
apparent stability against the truncation order. Our numerical predictions for the two
particular lepton-flavour-universality (LFU) ratios for the exclusive B(s) → π(K)`ν̄` decays
have been collected in figure 13 and table 7, and we quote here the obtained results for such
gold-plated quantities

Rπ = 0.720± 0.027 , RK = 0.700± 0.016 , (BCL fit with N = 3)
Rπ = 0.746± 0.039 , RK = 0.680± 0.019 . (BCL fit with N = 4) (5.2)

The yielding results for the three different classes of the angular observables sensitive to
the potential Beyond the Standard Model (BSM) physics AB(s)→π(K)`ν̄`

FB , FB(s)→π(K)`ν̄`
H and

AB(s)→π(K)`ν̄`
λ`

have been explicitly displayed in figure 14 and table 8, where the previous
theory determinations from the lattice simulation and LCSR approaches were further shown
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for a comparison. We finally presented our numerical predictions for the three partially
integrated differential observables ∆BRB0→K0ν`ν̄` , ∆BRB−→K−ν`ν̄` , and RKπ (see (4.64)
for their explicit definitions) for the exclusive rare B → Kν`ν̄` decays in table 9.

Future developments of the theory predictions for the heavy-to-light bottom-meson
decays beyond our work can be pursued forward in a variety of directions. First, it would be
interesting to perform the full two-loop QCD computations of the semileptonic Bd,s → π,K

decay form factors at large hadronic recoil, by employing the SCET sum rules framework,
in order to reduce further the current perturbative uncertainties displayed in figures 3 and 4.
Actually, the desired hard matching coefficients in the SCETI representations of the flavour-
changing QCD currents q̄ Γi b have been already determined at the O(α2

s) accuracy. The only
missing ingredients for constructing the two-loop factorization formulae of the very vacuum-
to-bottom-meson correlation functions (2.2) consist in the yet unknown short-distance Wilson
coefficients in the second-step SCETI → SCETII matching procedure. Second, investigating
the subleading-power contributions to the exclusive Bd,s → π,K form factors systematically
with the effective field theory techniques and then evaluating the resulting (non)-local
soft-collinear matrix elements with the appropriate nonperturbative QCD methods will be
evidently in high demand from both the conceptual and phenomenological perspectives. As
a matter of fact, it would be of utmost importance to achieve the analytical regularization
of the unwanted end-point divergences entering in the factorized expressions of the SCETI
matrix elements for the two-body A-type currents. Third, advancing our knowledge of the
poorly constrained bottom-meson distribution amplitudes in HQET with model-independent
techniques (for instance, along the line of [129]) will be indispensable for enhancing further
our predictive power of the exclusive bottom-meson decay matrix elements in the theory
frameworks of both QCD factorization and light-cone sum rules. In particular the yielding
noticeable uncertainties due to the two-particle Bd,s-meson distribution amplitudes has
already become the major stumbling block for accomplishing precision calculations of a wide
range of the interesting physical observables accessible at the LHCb and Belle II experiments.
Fourth, the established strategies of evaluating the subleading-power Bd,s → π,K matrix
elements can be further extended to compute the NLP corrections to the analogous heavy-
to-light B → ρ, ω,K∗ decay form factors (thus going well beyond our previous work [37])
and to explore the delicate strong interaction mechanisms dictating the Cabibbo favored
semileptonic B(s) → D∗(s)`ν̄` decay processes.
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