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Abstract: The Standard Model, extended with three right-handed (RH) neutrinos, is
the simplest model that can explain light neutrino masses, the baryon asymmetry of the
Universe, and dark matter (DM). Models in which RH neutrinos are light are generally
easier to test in experiments. In this work, we show that, even if the RH neutrinos are super-
heavy (Mi=1,2,3 > 109 GeV)—close to the Grand Unification scale—the model can be tested
thanks to its distinct features on the stochastic Gravitational Wave (GW) background. We
consider an early Universe filled with ultralight primordial black holes (PBH) that produce
a super-heavy RH neutrino DM via Hawking radiation. The other pair of RH neutrinos
generates the baryon asymmetry via thermal leptogenesis, much before the PBHs evaporate.
GW interferometers can test this novel spectrum of masses thanks to the GWs induced by
the PBH density fluctuations. In a more refined version, wherein a U(1) gauge symmetry
breaking dynamically generates the seesaw scale, the PBHs also cause observable spectral
distortions on the GWs from the U(1)-breaking cosmic strings. Thence, a low-frequency GW
feature related to DM genesis and detectable with a pulsar-timing array must correspond
to a mid- or high-frequency GW signature related to baryogenesis at interferometer scales.
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1 Introduction

Neutrino oscillation data [1] suggests that the active neutrino masses are tiny, mi ∼ O(0.01)
eV. Type-I seesaw [2–5] is the simplest and the most elegant mechanism, wherein, owing
to the hierarchy between the Electroweak scale and the scale of Grand Unification (GUT)
[6–8], such small masses can be understood. Quantitatively, the Type-I seesaw mechanism
indicates that, if the Yukawa couplings are not strongly fine-tuned, then mi ' Λ2

EW/ΛGUT,
where ΛEW ' 100 GeV and ΛGUT ' 1015 GeV. In a renormalizable seesaw Lagrangian,
these two scales are introduced with the right-handed (RH) neutrino sterile fields (NR),
and via two mass terms: Lmass ∼ ΛEWLNR + ΛGUTN c

RNR, where L is the Standard Model
(SM) lepton doublet. The heavy fields, NR, besides generating light neutrino masses, also
decay CP-asymmetrically to produce the Baryon Asymmetry of the Universe (BAU) via
leptogenesis [9–12]. While a two-RH-neutrino extension of the SM suffices to address the
generation of light neutrino masses and the BAU, it is natural to complete the sterile
fermion family with a third RH neutrino, analogously to the other SM leptons. In this case,
if cosmologically stable, one of the RH neutrinos could be a Dark Matter (DM) candidate.
Therefore, a three-RH-neutrino extension of the SM model provides an elegant and unified
explanation of three “beyond the SM” problems. Many efforts have been made towards
such unifications, see, e.g., [13–22]. Because so far the energy reachable with colliders is
only up to a few TeV, in order to develop a testable unification model, we are mostly led to
consider light sterile fermions with masses much below ΛGUT.

In this article, we show that a testable unification model is possible even in keeping
with the original implementation of the seesaw, i.e., considering all three RH fermions
to be super-heavy, close to ΛGUT. The catch is that, contrary to the previous models,
here we propose to search for the signatures of such unification in Gravitational Waves
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(GW) experiments – an idea also entertained in refs. [23–28, 28–33] that aims to find GW
signatures of the high-scale seesaw within various cosmological context.

Suppose exotic objects such as ultralight primordial black holes (PBH) with initial
monochromatic mass MBH exist prior to the Big Bang Nucleosynthesis (BBN) (T & 5 MeV)
[34–36]. They could be abundant enough to dominate the Universe’s energy budget before
evaporating via Hawking radiation. A PBH-dominated Universe is associated with two
significant consequences. First, while evaporating, the PBHs produce entropy that dilutes
any pre-existing relics. Second, if the PBHs dominate, strong and sharply peaked GWs
are induced due to PBH density fluctuations [37–42]. For a fixed value of MBH, both the
amount of produced entropy and the amplitude of the GWs increase with the duration of
the PBH-domination epoch. Furthermore, since the Hawking radiation from a black hole is
a gravitational phenomenon, along with the SM particles, the PBHs must produce the DM,
independently of its non-gravitational interaction. In the case where the PBHs dominate at
relatively low temperatures close to the BBN, they produce super-heavy DM (MDM & 1010

GeV), constituting the observed DM abundance [43–46].
Consider now that the DM produced by the PBHs is one of the RH neutrinos (N3 ≡

NDM) in the seesaw. For a scale of leptogenesis, Tlepto ∼M1 & 109 GeV [47], irrespective of
whether the masses of N1,2 are hierarchical or quasi-degenerate [48], the BAU is overproduced
for a region in the Yukawa parameter space. The PBHs, which evaporate at much lower
temperatures, bring the overproduced asymmetry down to the observed value via entropy
dilution. Because a large Tlepto requires substantial entropy dilution, hence a longer duration
of PBH-domination, the amplitude of the induced GWs increases with Tlepto ∼ M1. In
this scenario the DM mass is related to MBH and it determines the peak frequency of
the induced GWs. As the RH neutrino masses approach ΛGUT, the mechanism naturally
predicts strong GWs with amplitudes within reach of LIGO [49, 50], ET [51], and CE [52].
Therefore, a PBH-dominated Universe provides a unique opportunity to test the origin of
ordinary matter and the DM in the seesaw, where the amplitude and the peak frequency of
the predicted GWs are determined by super-heavy RH neutrino masses.

In the following sections, we present the general framework of the model, discuss the
model’s technicalities and results, and model extensions, before summarising and concluding.

2 General framework and assumptions

We consider non-rotating PBHs with monochromatic initial mass MBH < 109 g, produced
in a radiation-dominated Universe. If the PBHs dominate the Universe’s energy density,
they produce only super-heavy DM with masses, e.g., MDM ' 1010 GeV − 1015 GeV at
temperatures TDM

eva ' TBBN − 100 GeV [43–46]. Such super-heavy DM is produced because,
as the PBHs evaporate, the Hawking temperature TBH = (8πGMBH)−1 continues to increase
and finally becomes larger than the MDM. If the PBH→ DM process makes up all the DM
that we observe today [53], the following relation holds:

MDM ' 4.5× 103
(
MBH
MPl

)−5/2
M2

Pl GeV−1, (2.1)

where MPl = 1.22× 1019 GeV is the Planck mass.
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Figure 1. A possible timeline for the proposed scenario.

First, we shall consider the simplest scenario where the DM (Ni=3,DM ) is strictly stable
and does not interact with any other particle. We then assume that [TBf ,Mi=1,2] < TRH,
where TRH and TBf are the reheating and PBH formation temperatures respectively. This
condition ensures that, once the Universe reheats after inflation, the PBHs form during
radiation domination. Thermal scatterings mediated by Yukawa interactions populate the
Nis, which seed baryogenesis via thermal leptogenesis [9]. Furthermore, even though the DM
does not have any interaction, the PBHs produce NDM via Hawking radiation.1 We shall
neglect any pre-existing DM relic [54–56], but the extension to that case is straightforward.
A possible timeline of the proposed mechanism is shown in figure 1.

Thus, in this paper, we consider non-thermal DM production from PBH evaporation
and matter generation via thermal leptogenesis. In principle, the mechanism could work also
if leptogenesis proceeds non-thermally, but thermal scatterings populate the DM density.
However, the PBH mass window for non-thermal leptogenesis, MBH ∈ [0.1 g − 10 g] [57],
would produce very high-frequency induced GWs—see eq. (3.10) below—which would be
beyond the reach of current and planned GW interferometers, making this scenario less
predictive and testable.

3 Black hole signatures for the origin of matter in the seesaw

The energy density of the black holes (ρBH) and radiation (ρR) evolve according to the
following Friedmann equations [57, 58]:

dρR
dz

+ 4
z
ρR = 0, (3.1)

dρBH
dz

+ 3
z

H

H̃
ρBH −

ṀBH
MBH

1
zH̃

ρBH = 0, (3.2)

where H is the Hubble parameter and z = TBf/T . The quantity H̃ and the scale factor a
evolve as

H̃ = (H +K) , da

dz
=
(

1− K
H̃

)
a

z
, (3.3)

where K = ṀBH
MBH

ρBH
4ρR . To derive eq. (3.1)-eq. (3.3), we assume the entropy (g∗s) as well as the

energy (g∗ρ) degrees of freedom are equal and constant. For a given value of β ≡ ρBH(TBf)
ρR(TBf) , the

1PBHs also produce N1,2. Nonetheless, the PBH evaporation temperature corresponding to the correct
dark matter relic is lower than the sphaleron freeze-out temperature. Therefore, the lepton asymmetry
produced by N1,2 will not be processed into a baryon asymmetry.
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Figure 2. Normalised energy densities as a function of inverse temperature (normalised to TBf ).
Because only the ratio of the total entropy S̃i ∝ a3

i /z
3
i are relevant, we have taken S̃(z = 1) = 1.

above equations can be solved to determine the duration of PBH domination and resulting
entropy production ∆ = S̃2/S̃1, where S̃1,2 ∝ a3

1,2/z
3
1,2 is the total entropy before (after)

the PBH evaporation. In figure 2, we show the evolution of the normalised energy densities,
ΩBH,rad = ρBH,rad/ρBH + ρrad, and consequent entropy production with MBH = 5 × 106

g for three benchmark values of β. From figure 2, it is evident that a larger value of β
corresponds to a longer period of PBH domination and larger entropy production. We find
an analytical expression for ∆ as2

∆ ' 233 β
(
MBH
MPl

)(
γ

g∗B(TBH)G

)1/2
, (3.4)

where γ ' 0.2 is the PBH formation efficiency, g∗B ' 100 being the relativistic particles
below TBH, and G ' 3.8 is the greybody factor. Eq. (3.4) matches the numerical solutions
with very good accuracy, as shown in figure 2 with the dashed horizontal lines.

Like any other pre-existing relics, the produced baryon asymmetry from N1 decays will
be diluted due to the entropy production. Therefore, once the PBHs evaporate, we have
the baryon-to-photon ratio:

ηB ' 10−2Nfinal
B−L = 10−2∆−1ε1κ1, (3.5)

where ε1 is the CP asymmetry parameter, κ1 is the efficiency of lepton asymmetry production,
Nfinal
B−L is the final B − L number, and the factor 10−2 accounts for the combined effects of

sphaleron conversion of the leptons to baryons plus the photon dilution [11]. We shall neglect
2The entropy production factor can be well approximated as ∆ ' 3

2
Tdom
Teva

, where Tdom ' βTBf is the
temperature at which the PBHs start to dominate, and 3/2 is a numerical fitting factor that takes into
account a finite duration of PBH evaporation.

– 4 –



J
H
E
P
0
3
(
2
0
2
3
)
1
2
7

the flavour effects [59–61] in the leptogenesis computation, use the maximum value of the
CP asymmetry parameter, and work in the strong-washout regime of leptogenesis [11, 12].
Therefore, we consider the CP asymmetry parameters and the efficiency factor as

ε1 = 3M1
√
|∆matm|2

8πv2 , κ1 ' 10−2, (3.6)

where v = 174 GeV is the vacuum expectation value of the SM Higgs, and |∆matm|2 '
2.4×10−3 eV [1] is the active neutrino atmospheric mass-squared difference. Using eq. (3.4),
eq. (3.6), and the observed value of ηB ' 6.3 × 10−10 in eq. (3.5), we obtain a simple
analytic relation between β and M1 as

β = 5.7× 10−12
(
MPl
MBH

)
M1 GeV−1, (3.7)

which we shall use in the computation of GWs from PBHs.
There are several ways ultralight PBHs involve in the production of GWs. For instance,

the primordial curvature perturbations that produce PBHs also induce GWs (see, e.g., [62–
64]), PBHs radiate gravitons that constitute high-frequency GWs [65], PBHs form mergers
that emit GWs [66], and finally, the inhomogeneous distribution of PBHs leading to density
fluctuations, induces GWs [39–41]. We shall focus on the last one in this work.

It has been recently pointed out in ref. [39] and further developed in refs. [40, 41], that
right after formation, PBHs are randomly distributed in space according to Poisson statistics.
Therefore, even though the PBH gas behaves as pressure-less dust on average, the spatially
inhomogeneous distribution leads to density fluctuations, which are isocurvature in nature.
Once the PBHs dominate the Universe’s energy density, the isocurvature component gets
converted to curvature perturbations that result in secondary GWs. Because the density
fluctuations are large at small scales (comparable to the mean separation of PBHs at TBf),
sizeable GWs are induced, which are further enhanced due to the almost instantaneous (see
figure 2) evaporation of PBHs [40, 42]. The present-day amplitude of such induced GWs is
given by3

ΩGW(t0, f) ' Ωpeak
GW

(
f

fpeak

)11/3
Θ
(
fpeak − f

)
, (3.8)

where
Ωpeak

GW ' 2× 10−6
(

β

10−8

)16/3 (MBH
107g

)34/9
, (3.9)

and
fpeak ' 1.7× 103Hz

(
MBH
104g

)−5/6
. (3.10)

3Notice that the amplitude of the induced GWs is highly sensitive to the PBH mass spectrum [40, 42, 67].
Therefore, the results presented in this paper can vary significantly for an extended mass function instead of
the monochromatic mass spectrum we use. Moreover, we consider only non-rotating Schwarzschild BHs.
However, the evaporation temperature of a BH with spin (a Kerr BH) changes only slightly compared to
a non-spinning BH [68, 69], so that our results would remain essentially unchanged for spinning PBHs.
In addition, let us mention that to derive eq. (3.8), we have used the most updated results presented in
refs. [40–42]. The initial version of ref. [40] did not consider the suppression factor due to the finite width of
the transition [37].
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Figure 3. Contours of Ωpeak
GW on the M1 −MDM plane. The red-shaded region is excluded because

otherwise the induced GWs would saturate the BBN bound on the effective number of neutrino
species. The sensitivity limits of various experiments are shown with the coloured lines. The white
line represents the PBH formation temperature, TBf ∼ f (MBH), expressed as a function of DM
mass (cf. eq. (2.1)).

The Θ-function in eq. (3.8) stipulates that the Poisson spectrum of density fluctuation
is subjected to an ultra-violet cut-off fUV ' fpeak, which is comparable to the frequency
corresponding to the comoving scale representing the mean separation of PBHs at the time
of formation. Intriguingly, Ωpeak

GW being dependent on β and MBH, can be expressed as a
function of M1 and MDM (cf. eq. (2.1) and eq. (3.7)) in this model. We derive the master
equation relating the DM and scale of leptogenesis as

Ωpeak
GW ' Ω0

GW

(
M1

1014 GeV

)16/3 ( MDM
1014 GeV

)28/45
, (3.11)

where Ω0
GW ' 2× 10−10. Similarly, fpeak can be expressed in terms of DM mass as

fpeak ' 15
(

MDM
1014 GeV

)1/3
Hz. (3.12)

Although the amplitude depends on both M1 and MDM, the peak frequency is determined
only by MDM. Before we present the numerical results relevant to the GW experiments, let
us point out a constraint that must be considered. Depending on MBH and β, the induced
GWs could be strong enough (eq. (3.9)) to saturate the BBN constraint on the effective
number of neutrino species which is bounded from above [70]. Ref. [40] derives an upper
bound on β as a function of MBH, which, using eq. (3.7) and eq. (2.1), we recast as

MBBN
1,max ' 4.6× 1014

(
MDM

1014 GeV

)−7/60
GeV. (3.13)
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In figure 3, we show the contours of Ωpeak
GW h2 on the MDM −M1 plane. The BBN

bound derived in eq. (3.13) excludes the red-shaded region. From this figure, we extract
the following key points: 1) In a PBH-dominated early Universe, figure 3 represents the
most general testable parameter space in the seesaw with three super-heavy RH neutrinos,
with one of them being the DM. The hierarchy in the masses could be in any order, i.e.,
M3,DM > Mi=1,2 as well as M3,DM < Mi=1,2. For the former (latter) case, one expects to
see a detectable GW signal at the higher (lower) frequencies. 2) Detectors such as CE,
ET, and DECIGO can probe the model if the scale of leptogenesis is sufficiently high;
M1 & 5× 1013 GeV, and at the same time, if fpeak & 0.6 Hz. The absolute lower bound
fpeak

min ' 0.6 Hz corresponds to the lowest value of the allowed DM mass (MDM ' 1010 GeV)
in the PBH→ DM mechanism.

The scenario becomes extremely predictive if the DM mass is known. In this model,
the DM being super-heavy, we do not expect any effects on conventional DM searches [71],
even if we switch on DM interactions.4 Recently, ref. [75] pointed out that if the DM
acquires mass by a U(1) gauge symmetry breaking, which also produces cosmic strings,
a PBH-dominated Universe offers a unique way to determine the super-heavy DM mass
from the spectral features of cosmic string-radiated GWs. An elegant UV completion of
the seesaw consists in promoting the difference between the lepton (L) and the baryon (B)
number to a new gauge symmetry U(1)B−L, which can be naturally embedded in GUT
[76–79] – one of our primary motivations as outlined in the introduction. In addition, a
three right-handed neutrino extension of the SM makes GSM×U(1)B−L anomaly free (GSM
is the SM gauge group). In the next section, we discuss the U(1)B−L version of the seesaw
in the presence of ultralight PBHs, namely the U(1)PBH

B−L model.

4 Gravitational waves signatures in the U(1)PBH
B−L model

Cosmic strings [80, 81] appear as topological defects once the U(1)B−L breaks and the RH
neutrinos become massive: Mi=1,2,3 = fivΦ, where fi and vΦ are the Yukawa coupling and
the VEV of the symmetry breaking scalar ΦB−L respectively. After their formation, strings
form closed loops and a network of horizon-size long strings [82]. When two segments of
the long-strings cross, they form loops. Long strings are characterized by a correlation
length L =

√
µ/ρ∞, where ρ∞ is the long-string energy density and µ is the string tension.

For a gauge coupling g and a scalar self-interaction coupling λ, the string tension µ is
defined as µ = πv2

ΦH
(
λ

2g2

)
. The quantity H varies slowly [83] with respect to its argument:

H
(
λ

2g2

)
' 1 for λ = 2g2. As in the previous section, let us consider N3 ≡ NDM, i.e.,

fi=3 ≡ fDM, so that MDM = fDMvΦ. Therefore, we can express the string tension in terms
of DM mass as µ = πM2

DMf
−2
DMH

(
λ

2g2

)
.

Generally, owing to the strong interaction with the thermal plasma [84], the motion of
a string network gets damped. Once the damping becomes inefficient, the network oscillates
to enter a scaling evolution phase, characterized by the fragmentation of the long strings
into loops and stretching of the correlation length due to the cosmic expansion. These loops
oscillate independently and produce GWs [85].

4An indirect way to measure super-heavy DM mass is to find the signatures in the cosmic rays [72–74].
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Cosmic string network simulations find evidence of scaling solutions (see refs. [86–89]),
which motivates us to consider the network in the scaling regime in our computation. The
size of a radiating loop at a cosmic time t is given by l(t) = αti − ΓGµ(t − ti), where
li = αti is the initial size of the loop, Γ ' 50 [90], and α ' 0.1 [91, 92]. The energy
loss from a loop is decomposed into a set of normal-mode oscillations with frequencies
fk = 2k/lk = a(t0)/a(t)f , where k = 1, 2, 3 . . .∞. The kth mode GW density parameter is
obtained as [91]

Ω(k)
GW (f) = 2kGµ2Γk

fρc

∫ t0

tosc

[
a(t)
a(t0)

]5
n (t, lk) dt, (4.1)

where n (t, lk) is the loop number density, and we calculate it using the Velocity-dependent-
One-Scale (VOS) model [93, 94]. The quantity Γj is given by Γj = Γj−δ

ζ(δ) , with δ = 4/3 for
loops containing cusps [95]. Eq. (4.1) is valid only for ti > lcrit/α, with lcrit the critical
length above which GW emission dominates the massive particle radiation [96, 97], and
ti > tosc = Max [tF , tfric], where tF (tfric) is network formation (end of damping) time.

Detectable GWs from the cosmic string loops come from the most recent cosmic epochs.
While the overall GW amplitude grows with µ [91], in presence of a matter-era before the
most recent radiation epoch at T = T∆, the GW spectrum at higher frequencies can be
described as Ω(1)

GW(f . f∆) ∼ f0 = const and Ω(1)
GW(f & f∆) ∼ f−1, with f∆ the frequency

of the spectral-break (see, e.g., refs. [98–103] for the importance of f∆ to probe various
cosmological models).

We now consider a simple scenario where TRH .MDM, so that the thermal bath does
not have sufficient energy to produce the dark matter, despite the latter having gauge
interaction, e.g., g ' 1. In this case, the U(1)B−L breaking must occur after the cosmic
inflation ends. Otherwise, the inflated string network re-enters the horizon at late times,
which may lead to other spectral breaks that can obfuscate the feature at f∆ [104].

Using the PBH evaporation temperature in the case where they dominate [57, 58] along
with eq. (2.1), we obtain T∆ ≡ TDM

eva = 2.1× 10−8 (MDM/GeV)3/5 GeV. Consequently, an
approximate analytical expression for f∆[75, 98] in our case looks like

f∆ ' f0
∆

√
50

zeqαΓGµ

(
µf2

DM
πH

)3/10

T−1
0 t−1

0 , (4.2)

where f0
∆ ' 2.1×10−8, t0 ' 4×1017 sec, T0 = 2.7K, zeq ' 3387. Because the dependence of

eq. (4.2) on H is weak and fDM .
√

4π, remarkably, a GW measurement at low frequencies
constrains µ while also robustly predicting an approximate upper bound on f∆.

In this context, a significant experimental result at low frequencies is the recent finding of
the NANOGrav pulsar-timing array experiment, which reports strong evidence of a stochastic
common-spectrum process across 47-millisecond pulsars with 12.5 years of data [105].
However, the data set does not show the required evidence for quadrupolar spatial correlation
described by Hellings-Downs curve [106]. Interestingly, such a common-spectrum process has
been confirmed recently by the PPTA [107], and the EPTA collaboration [108]. The signal,
if genuine, can be well explained in this model with MPTA

DM ' 3× 1013 GeV− 6× 1014 GeV
assuming the DM maximally coupled to ΦB−L and H ' 1. Therefore, if the pulsar timing
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arrays results are due to the existence of a super-heavy DM with MPTA
DM ' O(1014) GeV in

the U(1)PBH
B−L model, we forecast that DECIGO will observe a spectral break (f∆) in GWs as

shown in figure 4 (top) with the dashed red curve. The signature is unique compared to the
gravitational waves from cosmic strings always in radiation domination [24, 109, 110] and
compared to a cosmic string model in which there are other intermediate matter domination
epochs, e.g., see refs. [98–103]. For the former case, we do not expect any spectral break at
higher frequencies, whereas, for the latter, f∆ is generally not bounded.

Moving forward with a benchmark value MPTA
DM ' 4 × 1014 GeV, we now look for

the signature of leptogenesis by substituting eq. (3.11) and eq. (3.12) in eq. (3.8). The
results are shown with the coloured solid line for M1 'MPTA

DM /x, with x = 4 (red), x = 6
(blue), and x = 8 (green) in figure 4 (top).5 Note that the amplitude of the induced GWs
increases with M1. The reason being, a large M1 produces more baryon asymmetry, which
requires strong entropy dilution and hence large β–to be consistent with the observed
value. Consequently, the induced GWs are enhanced according to eq. (3.9). If Mi=1,2 are
quasi-degenerate, the amount of asymmetry is greatly enhanced by the resonant leptogenesis
mechanism [48]. In which case, even if M1 � ΛGUT, one can have induced GWs at the level
of LIGO-5. Thus, in this mechanism, any measurement of GWs at low frequencies not only
forecasts a spectral break in the string-radiated GWs but also robustly fixes the location of
the peak of the induced GWs whose amplitude is determined by the scale of leptogenesis.
Therefore, if timing array results are correct, in this model, we expect a signature of
high-scale leptogenesis at mid-frequency interferometer scales, with fpeak ' 23.8 Hz.

In figure 4 (bottom), we have reproduced the contours of Ωpeak
GW as in figure 3, but

now with three more exclusion regions and with the benchmarks shown in the left panel.
The green region is excluded because we consider MDM > TRH > M1,2. The blue region
is excluded because otherwise, TBf > TRH. In the less-stringent purple region, particle
production is dominant over the gravitational radiation, where we have assumed that the
string-loops contain only cusp-like structures [96] and µ ∼M2

DM.
A similar analysis for the TRH > MDM can be done straightforwardly. Nonetheless, in

this case, one needs to identify the domain of g for which dark matter production via gauge
boson-mediated interactions is suppressed. Otherwise, eq. (4.2), which accounts only for
PBH→ DM channel, will not be valid. For large values of g, which numerical simulations
of cosmic string network take into account [96], super-heavy dark matter will overclose the
Universe via a thermal freeze-out mechanism [111]. Therefore, a suitable domain of g, in
this case, is the freeze-in regime with small values of g [112]. In this regime, though the dark
matter never thermalizes, it can be produced via B − L gauge boson mediated scatterings:
ff ↔ NDMNDM, where f is an SM fermion. In figure 5, we show the evolution of the DM
yields for two benchmark masses. We find that for g . 10−6, the production channels in
the freeze-in regime remain subdominant compared to PBH→ DM for the entire range of
dark matter mass we are interested in. Therefore, for TRH > MDM, a predictive cosmic
string phenomenology requires g . 10−6.

5In figure 4 we show the GW spectrum radiated by cosmic strings for the k = 1 mode. When we sum
over an infinite number of modes, the spectrum behaves as ΩGW (f > f∆) ∼ f−1/3 for loops containing
cusps [57]. Therefore, MPTA

DM /M1 should be bounded from above in order for induced GWs to dominate over
GWs from cosmic strings beyond f∆. We find that for k →∞, this translates to MPTA

DM /M1 . 6.5.
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Figure 4. Top: GW signatures of U(1)B−L-seesaw in presence of ultralight PBHs. The
dashed red line shows GWs from cosmic strings for MDM = 4 × 1014 GeV. The slanted ver-
tical bars show GWs from PBH density fluctuation corresponding to M1 = MDM/x, where
x = 4 (red), 6 (blue) and 8 (green). The coloured regions represent the nominal sensitivities
of several current and planned GW detectors as well as the NANOGrav result. Bottom: contours of
Ωpeak

GW on the M1 −MDM plane, containing the benchmark cases shown on the left panel. See the
text for the explanation of the exclusion regions.
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Figure 5. Evolution of DM yield (normalised to entropy density) produced from freeze-in for
MDM = 1013 GeV (left panel) and MDM = 1010 GeV (right panel). The red (blue) dashed lines are
for g = 10−5 (g = 10−6). The orange contour denotes the yield required to get the observed DM
abundance. We have taken TRH = 1015 GeV and the symmetry breaking scale vΦ = 1013 GeV.

Let us outline the following important characteristics of this case. I) The green and blue
shaded exclusion regions are less important because TRH is the highest scale in the theory.
II) One can explore three limiting cases: λ = 2g2, λ � 2g2 and λ � 2g2. Taking into
account the results of numerical simulations with large coupling constants at face value, the
first choice would provide a similar phenomenology as in MDM > TRH case because H ' 1.
On the other hand, for the other two cases, one has H ' ln

(
λ

2g2

)
and H '

(
ln 2g2

λ

)−1
,

respectively [83]. Despite H having a logarithmic dependence on the parameters, these two
cases may be less appealing because in eq. (4.2) H appears as a free parameter. III) For
small values of λ, the string-width δω ∼ 1/

√
λvΦ might constitute a considerable fraction of

the horizon H(TF )−1 at initial times, assuming vΦ is of the order of the network formation
temperature, TF . In this case, it is questionable to treat the strings as Nambu-Goto-strings
(δω � H(T )−1) consistently throughout the evolution of the Universe. Notice that we
consider the effect of PBHs on the cosmic string network only at the level of the Universe’s
expansion. We have ignored the possible interactions of PBHs and strings [113] that might
cause further spectral distortions. This requires numerical simulations of a PBH-string
network, which is beyond the scope of this work.

5 Conclusion

We have shown that the presence of ultralight black holes (MBH < 109 g) in the early
Universe may open up new avenues to study the cosmological implications of seesaw models.
In most unified scenarios of dark matter and baryogenesis via leptogenesis the right-handed
neutrinos are light, so that the theory is predictive for particle physics experiments. In this

– 11 –



J
H
E
P
0
3
(
2
0
2
3
)
1
2
7

work, we showed that super-heavy right-handed neutrinos can be just as predictive. However,
in this case, the search strategy for signatures is different. The presence of black holes and a
super-high-scale phase transition that generates right-handed neutrino masses offer unique
gravitational wave signatures that are testable in the upcoming gravitational wave detectors.
In our model, ultralight black holes generate super-heavy right-handed neutrino dark matter
via Hawking radiation, whereas baryogenesis is realized via thermal leptogenesis through
the remaining pair of right-handed neutrinos. The amplitude of gravitational waves from
PBH density fluctuations correlates with super-heavy neutrino masses. The detectability of
such gravitational waves improves as the right-handed neutrino masses approach the grand
unification scale; ΛGUT. In a realistic version of the model, motivated by grand unified
theories, the presence of cosmic strings make the gravitational wave signatures distinct from
other realisations of this idea, therefore offering a unique avenue to test its properties.
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A Derivation of the particle production cut-off (lower bound on the
DM mass)

Gravitational waves production is dominant when tcrit >
lcrit
α , where for strings containing

cusps-like structures we have lcrit = µ−1/2

(ΓGµ)2 [96, 97]. For the spectral break to happen due
to PBH domination, the condition teva > tcrit must be satisfied. This translate to a lower
bound on Gµ:

Gµ > T 4/5
eva

(
2.9× 10−20

)4/5
. (A.1)

Given that Teva ' 2.8× 10−8
(
MDM
GeV

)3/5
, eq. (A.1) translates to

Gµ > 2.1× 10−22
(
MDM
GeV

)12/25
. (A.2)

Assuming µ ' πM2
DM, we obtain a lower bound (which we show as the MDM < Mmin

DM region
with purple color in figure 4) on the dark matter mass as

MDM & 3× 1010 GeV. (A.3)
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