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1 Introduction

The discovery of a Standard-Model-like Higgs boson at the LHC [1, 2] completed the
Standard Model (SM) of electroweak and strong interactions. The existence of the Higgs
boson [3–9] is inherently related to the mechanism of spontaneous symmetry breaking
while preserving the full gauge symmetry and the renormalizability of the SM [10, 11].
The measured Higgs boson mass of (125.09 ± 0.24)GeV [12–14] ranks at the weak scale.
The existence of the Higgs boson allows the SM particles to be weakly interacting up
to high-energy scales [15–18]. This, however, is only possible for particular Higgs-boson
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couplings to all other particles, so that the knowledge of the Higgs-boson mass fixes all its
properties uniquely. The massive gauge bosons and fermions acquire mass through their
interaction with the Higgs field that develops a vacuum expectation value in its ground
state. The minimal model requires the introduction of one isospin Higgs doublet and leads
after spontaneous symmetry breaking to the existence of one scalar Higgs boson. The SM
itself, however, leaves several fundamental questions open as e.g. the nature of Dark Matter,
the baryon asymmetry of the universe or the stability of the electroweak against the Planck
or grand unification scale. If the SM is extended to a Grand Unified Theory (GUT) scale,
radiative corrections to the Higgs-boson mass tend to push it towards the GUT scale, if
the Higgs boson couples to particles of that mass order. In order to obtain a Higgs mass
at the electroweak scale the Higgs-mass counterterm has to be fine-tuned to cancel these
large corrections thus establishing an unnatural situation that asks for a solution. This is
known as the hierarchy problem [19–22]. These open questions call for extensions of the
minimal model. To increase the experimental sensitivity to effects beyond the SM (BSM),
the SM and BSM parts of measured relevant observables need to be known as precisely as
possible in order to allow for a reliable interpretation of potential deviations and effects
beyond the SM.

The open problems of the SM motivate extensions of the minimal model which cover
e.g. the Two-Higgs-Doublet model (2HDM) [23–25] or the minimal supersymmetric extension
(MSSM) [26–32] as prominent and highly motivated examples. Supersymmetric extensions
of the SM provide a solution to the hierarchy problem if the supersymmetric particle masses
rank at scales up to a few TeV [33]. Supersymmetry relates fermionic and bosonic degrees
of freedom and thus links internal and external symmetries. The MSSM, if embedded in
a Grand Unified Theory, predicts a value of the Weinberg angle in excellent agreement
with experimental measurements of electroweak precision observables [34, 35]. Moreover, it
contains a Dark Matter candidate if R-parity is conserved [36, 37] and allows for generating
electroweak symmetry breaking radiatively, since the top mass ranks in the proper region
for that mechanism to work [38]. The MSSM introduces two isospin Higgs doublets due to
the analyticity of the superpotential, requiring two different doublets for the generation of
the up- and down-type fermion masses and the anomaly-freedom with respect to the gauge
symmetries [26, 28, 39–43], since the higgsino states as the supersymmetric partners of the
Higgs bosons contribute to the Adler-Bell-Jackiw anomaly [44, 45]. Due to this, the MSSM
Higgs sector is a 2HDM of type II at leading order (LO). There are a light (h) and heavy
(H) scalar, a pseudoscalar (A) and two charged (H±) states as the corresponding mass
eigenstates. Since the self-interactions of the Higgs fields, as defined by the corresponding
Higgs potential, are entirely fixed by the electroweak gauge couplings, this induces an
upper bound on the light scalar Higgs mass that has to be smaller than the Z-boson mass
MZ at LO. However, radiative corrections, which are dominated by top-quark-induced
contributions, strongly increase this upper bound to about 130GeV in general [46]. The
Higgs sector is uniquely fixed at LO by the value of the pseudoscalar mass MA and the
parameter tgβ, defined as the ratio of the two vacuum expectation values of the scalar
Higgs fields.

In this work, we will describe the calculation of the full SUSY-QCD corrections at NLO
to pseudoscalar Higgs production via the gluon-fusion mechanism gg → A within the real
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Figure 1. Typical diagram contributing to gg → A at lowest order.

MSSM. This process belongs to the dominant MSSM Higgs-boson production processes at
the LHC and thus contributes to the present bounds on the so far negative searches for the
heavy MSSM Higgs bosons at the LHC. In order to make the predictions for this process
reliable, the full NLO corrections within SUSY-QCD have to be computed. The paper is
organized as follows. In section 2, we will summarize the present status of the gluon-fusion
cross section. In section 3, we briefly discuss pseudoscalar Higgs decays to gluons and
photons. In section 4 we will describe our implementation of the stop and sbottom sector
followed by the detailed description of our NLO calculation in section 5. In the latter we
also include a discussion of effective Yukawa couplings and the relation of the considered
process to the Adler-Bardeen theorem [47]. In section 6, we discuss numerical results for a
few representative benchmark points. We close the paper with our conclusions in section 7.

2 Gluon fusion

The dominant channels for pseudoscalar production at a hadron collider are given by gluon
fusion, gg → A, and production in association with bottom quarks, qq̄, gg → Abb̄, with
their relative importance depending on the value of tgβ. For large tgβ, Abb̄ production
dominates, with the gluon fusion contribution amounting to up to about 30% close to the
present exclusion bounds, depending on the region in the MA − tgβ plane [48–50].

2.1 Leading order

The gluon-fusion mechanism [51]
pp→ gg → A

dominates the pseudoscalar MSSM Higgs boson production at the LHC in the phenomeno-
logically relevant Higgs mass ranges for small and moderate values of tgβ. Only for large tgβ
the associated Abb̄ production channel develops a larger cross section due to the enhanced
Higgs couplings to bottom quarks [52–57]. The gluon coupling to pseudoscalar Higgs bosons
in the MSSM is built up by loops involving top and bottom quarks, see figure 1. The
partonic cross section is given at lowest order by1 [58, 59]:

σ̂ALO(gg → A) = σA0 δ(1− z)

σA0 = GFα
2
s(µR)

128
√

2π

∣∣∣∣∣∣
∑
Q

gAQA
A
Q(τQ)

∣∣∣∣∣∣
2

, (2.1)

1The are no squark-loop contributions at leading order.
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where GF denotes the Fermi constant, αs the strong coupling, and µR the renormalization
scale. The scaling variables are defined as z = M2

A/ŝ, τQ = 4M2
Q/M

2
A (Q = t, b), and ŝ

denotes the partonic c.m. energy squared. The amplitudes AAQ(τQ) are obtained as

AAQ(τ) = τf(τ)

f(τ) =


arcsin2 1√

τ
τ ≥ 1

−1
4

[
log 1 +

√
1− τ

1−
√

1− τ
− iπ

]2

τ < 1
(2.2)

and the MSSM coupling factors gAQ are determined as gAt = 1/tgβ, gAb = tgβ. In the
narrow-width approximation the hadronic cross section is given by

σLO(pp→ A) = σA0 τA
dLgg

dτA
(2.3)

with the scaling variable τA = M2
A/s, where s specifies the total hadronic c.m. energy

squared, and the gluon luminosity

dLgg

dτ
=
∫ 1

τ

dx

x
g(x, µ2

F )g(τ/x, µ2
F ) (2.4)

at the factorization scale µF . For small tgβ the top-loop contribution is dominant, while
for large values of tgβ the bottom-quark contribution is strongly enhanced.

2.2 QCD corrections

The full two-loop QCD corrections to the gluon-fusion cross section were calculated in
the past [59–63]. In complete analogy to the SM case, they consist of virtual two-loop
corrections to the basic gg → A process and real one-loop corrections due to the associated
production of the pseudoscalar Higgs boson with massless quarks and gluons. The final
result for the hadronic cross section at NLO can be decomposed as

σ(pp→ A+X) = σA0

[
1 + CA

αs
π

]
τA
dLgg

dτA
+ ∆σAgg + ∆σAgq + ∆σAqq̄ . (2.5)

The analytical expressions for arbitrary Higgs boson and quark masses at NLO are
rather involved [59, 61–63]. As in the SM case, the quark-loop masses have been identified
with the pole mass mQ (Q = t, b), while the QCD coupling and the parton distribution
functions (PDFs) of the proton are treated in the MS scheme with five active flavours.
The axial γ5 coupling can be regularized in the ’t Hooft-Veltman scheme [11, 64] or its
extension by Larin [65], which preserve the chiral symmetry in the massless quark limit by
the addition of supplementary counterterms and fulfill the non-renormalization theorem [47]
of the Adler-Bell-Jackiw (ABJ) anomaly [44, 45] at vanishing momentum transfer. The
same result can also be obtained with the scheme of refs. [66, 67] that gives up the cyclicity
of the traces involving Clifford matrices. The next-to-next-to-leading order (NNLO) QCD
corrections have been obtained in the limit of heavy top quarks (HTL) [68–70] supplemented
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by a soft-gluon resummation at the NNLL level [71]. The QCD corrections are positive and
large in total, increasing the MSSM Higgs production cross sections at the LHC by up to
about 100%. For the top-loop contributions alone, the (moderate) NNLO corrections in
the heavy-top limit (HTL) can be used consistently. Electroweak corrections are unknown
so far.

The leading terms of the relative QCD corrections in the HTL provide a reasonable
approximation for small tgβ up to pseudoscalar Higgs masses of ∼ 1TeV with a maximal
deviation of ∼ 25% for tgβ <∼ 5 at NLO in the intermediate mass range [72]. The genuine
SUSY-QCD corrections are only known in the limit of heavy SUSY particles [73–75]. For
large values of tgβ they can be large and approximated by the ∆b terms. This work improves
this incomplete status by calculating the full SUSY-QCD corrections with full virtual quark-,
squark- and gluino-mass dependence, which will contribute to the virtual corrections as

CA = CAQCD + CASQCD (2.6)

where CAQCD is the virtual part of the pure QCD corrections. We will compare the full results
for CASQCD with the approximate calculations in the following sections. For the SUSY-QCD
corrections we implement the stop and sbottom sector at the NLO level, although the
squarks do not contribute at LO, and therefore the definition of a renormalization scheme
for their parameters is not required. However, to be in line with the treatment of scalar
Higgs production in a future work, where stops and sbottoms contribute at LO already, we
choose the same framework. The NLO implementation of the stop and sbottom sectors will
be discussed in section 4.

In the opposite limit, where the pseudoscalar Higgs mass is much larger than the quark
mass, the analytical results of the relative QCD corrections coincide with the SM expressions
at the leading and subleading logarithmic level for both the scalar and pseudoscalar Higgs
bosons up to NLO where the results for small quark masses are known [59]. This coincidence
is due to the restoration of the chiral symmetry in the massless quark limit. The leading
double and subleading logarithms have been resummed recently [76–79].

3 Pseudoscalar Higgs decays

Although pseudoscalar Higgs decays into gluons and photons do not play a prominent
role as for the SM-like light scalar Higgs particle, they can still reach sizeable branching
ratios for smaller values of tgβ so that they might be accessible at future high-energy e+e−

colliders as e.g. the ILC or CLIC.

3.1 A → gg

The decay of pseudoscalar Higgs bosons into gluons is loop-induced, see figure 2. The
dominant contributions originate from top and bottom loops, while lighter quarks as
e.g. the charm quark yield contributions at the per-cent or sub-per-cent level only. The LO
expression of the gluonic pseudoscalar Higgs decay reads [58, 59]

ΓLO(A→ gg) = GFα
2
sM

3
A

16
√

2π3

∣∣∣∣∣∣
∑
Q

gAQA
A
Q(τQ)

∣∣∣∣∣∣
2

, (3.1)
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A t, b

g

g

Figure 2. Typical diagrams contributing to A→ gg at lowest order.

A t, b, χ̃±

γ

γ

Figure 3. Generic diagrams contributing to A→ γγ at LO.

where we adopted the same notation as in eq. (2.1) using the same quark form factors as
given in eq. (2.2). The NLO QCD and SUSY-QCD corrections can be cast into the form

Γ(A→ gg) = ΓLO
{

1 + EA
αs
π

}
, (3.2)

with the NLO coefficient EA splitting into pure QCD corrections and genuine SUSY-QCD
corrections,

EA = EAQCD + EASQCD . (3.3)

The QCD part can be expressed as [59, 80]

EAQCD = 97
4 −

7
6NF + ∆m , (3.4)

where ∆m denotes finite mass effects at NLO [59], and NF is the number of active light
flavors included as final-state quarks as well. For e.g. tgβ = 1 the mass effects amount to
∆m ≈ 1.3, if the quark masses are defined as pole masses, but are larger for increasing
values of tgβ due to the rising significance of the bottom contributions. The expression
without ∆m corresponds to the heavy-quark limit of the relative QCD corrections. The
coefficient EASQCD coincides with the one for the gluon-fusion cross section of eq. (2.6),

EASQCD = CASQCD . (3.5)

3.2 A → γγ

As for the gluonic pseudoscalar Higgs decay, its decay into photon pairs is a loop-induced
process with top and bottom quarks providing the dominant contributions, but also
charginos, see figure 3. At LO, the pseudoscalar decay width into photon pairs reads [58, 59]

ΓLO(A→ γγ) = GFα
2M3

A

32
√

2π3

∣∣∣∣∣∣
∑
f

Ncfe
2
fg
A
f A

A
f (τf ) +

∑
χ̃±

gAχ̃±A
A
χ̃±(τχ̃±)

∣∣∣∣∣∣
2

, (3.6)
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where χ̃± denotes the two chargino mass eigenstates, Ncf is the color factor of the fermions
of charge ef contributing to the loops. The LO form factors AAi (τi) (i = t, b, χ̃±) follow the
expressions of eq. (2.2). The chargino-coupling factors are given by

gχ̃±i
= −2MW

mχ̃±i

(Sii cosβ +Qii sin β) , (3.7)

with the charge factors Qii, Sii(i = 1, 2) given in refs. [32, 58]. They are related to the
mixing angles between the chargino states χ̃±1,2. The NLO QCD and SUSY-QCD corrections
can be defined as a shift of the corresponding LO quark-form factors,

AAQ(τQ)→ AAQ(τQ)
{

1 +
[
DAQ,QCD +DAQ,SQCD

] αs
π

}
, (3.8)

where the pure QCD corrections DQ,QCD to the quark form factor vanish in the heavy-quark
limit due to the Adler-Bardeen [47] theorem for these leading contributions. This means they
are induced by pure quark-mass effects [59]. The implementation of the QCD corrections
DAQ,QCD follows ref. [59], i.e. the running quark masses

m̂Q(µ) = κ(mQ)mQ(µ)

κ(mQ) = 1 + 4
3
αs(mQ)

π
+KQ

(
αs(mQ)

π

)2
+O(α3

s)

mQ (µ) = mQ (mQ) c [αs (µ)/π]
c [αs (mQ)/π]

c(x) =
(7

2 x
) 4

7
[1 + 1.398x+ 1.793x2 − 0.6834x3] for mt < µ

=
(23

6 x

) 12
23

[1 + 1.175x+ 1.501x2 + 0.1725x3] for mb < µ < mt , (3.9)

where mQ (µ) denotes the MS mass [81–84] and Kb = 12.4,Kt = 10.9 [85], are used for
the loop-quark masses at the scale µ = MA/2 such that the relations MA = 2m̂Q(mQ) =
2mQ (Q = t, b) define the virtual quark thresholds in terms of the quark pole masses
mQ. The genuine SUSY-QCD corrections, represented by the coefficient DAQ,SQCD, will be
discussed in section 6.3.

4 Squark masses and couplings

In the following the parametrization of the stop and sbottom sectors will be described in
detail at LO and at NLO starting from the soft SUSY-breaking parameters, where the
extension to NLO requires a dedicated scheme choice for our gluon-fusion calculation. We
will follow the set-ups described in refs. [86–90] with corresponding modifications.

4.1 Sfermion masses and couplings at LO

Since the scalar sfermion current-eigenstates f̃L,R, the super-partners of the left- and right-
handed fermions, mix with each other, the corresponding mass eigenstates f̃1,2 are related
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to the current eigenstates by a rotation involving the mixing angles θf ,

f̃1 = f̃L cos θf + f̃R sin θf
f̃2 = −f̃L sin θf + f̃R cos θf . (4.1)

These mixing angles grow with the Yukawa couplings of the corresponding SM fermions,
i.e. mixing effects are in general only relevant for the third-generation sfermions t̃, b̃, τ̃ . The
mass matrix in the current-eigenstate basis is given by

Mf̃ =

 M̃2
f̃L

+m2
f mf (Af − µrf )

mf (Af − µrf ) M̃2
f̃R

+m2
f

 , (4.2)

where rb = rτ = 1/rt = tgβ. Af is the trilinear sfermion coupling of the soft SUSY-breaking
part of the Lagrangian, while µ denotes the higgsino mass parameter and mf the fermion
mass. The parameters M̃f̃L/R

absorb the corresponding D-terms,

M̃2
f̃L/R

= M2
f̃L/R

+Df̃L/R

Df̃L
= M2

Z

(
If3L − ef sin2 θW

)
cos 2β

Df̃R
= M2

Zef sin2 θW cos 2β , (4.3)

with ef being the electric charge of the sfermion, and I3L its third isospin component,
θW denotes the Weinberg angle and Mf̃L/R

are the sfermion mass parameters of the soft
SUSY-breaking part of the Lagrangian. Hence, the mixing angles are determined from

sin 2θf = 2mf (Af − µrf )
m2
f̃1
−m2

f̃2

, cos 2θf =
M̃2
f̃L
− M̃2

f̃R

m2
f̃1
−m2

f̃2

(4.4)

and the squark-eigenstate masses acquire the form

m2
f̃1,2

= m2
f + 1

2

[
M̃2
f̃L

+ M̃2
f̃R
∓
√

(M̃2
f̃L
− M̃2

f̃R
)2 + 4m2

f (Af − µrf )2
]
. (4.5)

In the current-eigenstate basis, the neutral Higgs couplings to sfermions are given by

gΦ
f̃Lf̃L

= m2
fg

Φ
1 +M2

Z

(
I3f − ef sin2 θW

)
gΦ

2

gΦ
f̃Rf̃R

= m2
fg

Φ
1 +M2

Zef sin2 θW g
Φ
2

gΦ
f̃Lf̃R

= mf

2
(
µgΦ

3 −AfgΦ
4

)
, (4.6)

where the couplings gΦ
i (i = 1, . . . , 4) are specified in table 1. In case of the scalar Higgs

bosons h,H the couplings to sfermions are symmetric, i.e. gh,H
f̃Rf̃L

= gh,H
f̃Lf̃R

, while for the
pseudoscalar Higgs boson A the diagonal couplings gA

f̃Lf̃L
and gA

f̃Rf̃R
vanish and the off-

diagonal couplings are antisymmetric, gA
f̃Rf̃L

= −gA
f̃Lf̃R

. The physical Higgs couplings to the
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f̃ Φ gΦ
1 gΦ

2 gΦ
3 gΦ

4

h cosα/ sin β − sin(α+ β) − sinα/ sin β cosα/ sin β
ũ H sinα/ sin β cos(α+ β) cosα/ sin β sinα/ sin β

A 0 0 1 −1/tgβ
h − sinα/ cosβ − sin(α+ β) cosα/ cosβ − sinα/ cosβ

d̃ H cosα/ cosβ cos(α+ β) sinα/ cosβ cosα/ cosβ
A 0 0 1 −tgβ

Table 1. Coefficients of the neutral MSSM Higgs couplings to sfermion pairs. The symbols ũ, d̃
denote up- and down-type sfermions.

sfermion mass eigenstates f̃1,2 read

gh,H
f̃1f̃1

= gh,H
f̃Lf̃L

cos2 θf + gh,H
f̃Rf̃R

sin2 θf + gh,H
f̃Lf̃R

sin 2θf

gh,H
f̃2f̃2

= gh,H
f̃Lf̃L

sin2 θf + gh,H
f̃Rf̃R

cos2 θf − gh,Hf̃Lf̃R
sin 2θf

gh,H
f̃1f̃2

= gh,H
f̃2f̃1

= 1
2
(
gh,H
f̃Rf̃R

− gh,H
f̃Lf̃L

)
sin 2θf + gh,H

f̃Lf̃R
cos 2θf

gA
f̃1f̃1

= gA
f̃2f̃2

= 0

gA
f̃1f̃2

= −gA
f̃2f̃1

= gA
f̃Lf̃R

. (4.7)

Next, we will discuss the extension of the stop and sbottom sectors to the NLO SUSY-
QCD level.

4.2 Stops and sbottoms at NLO

At NLO, we will introduce the soft SUSY-breaking parameters in the MS scheme, i.e. we
will start from the soft supersymmetry-breaking parameters M Q̃L,R

(Q0) and AQ(Q0) at the
input scale Q0 which will in general be the SUSY scale, i.e. the average size of the left- and
right-handed soft SUSY-breaking mass parameters. The benchmark scenarios of ref. [50],
however, are defined in the on-shell scheme of all involved input parameters. Thus, we will
describe how we are implementing the relation between the MS and the on-shell parameters.

The bottom and top masses involved in the sbottom and stop mass matrices have to be
chosen such that large higher-order corrections to their entries are avoided. We have chosen
the top pole mass and a derived bottom mass for the sbottom mass matrix according to
refs. [87–90]. At LO, the stop/sbottom mass matrix is then given by (q = t, b)

MQ̃ =

 M̃
2
Q̃L

(Q0) +m2
Q mQ[ĀQ(Q0)− µrQ]

mQ[ĀQ(Q0)− µrQ] M̃
2
Q̃R

(Q0) +m2
Q

 , (4.8)

where mt is the top pole mass and mb is the derived bottom mass as will be discussed in
the following. The D-terms DQ̃L/R

have again been absorbed in the soft SUSY-breaking
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parameters, M̃ Q̃L/R
(Q0),

M̃
2
Q̃L/R

(Q0) = M
2
Q̃L/R

(Q0) +DQ̃L/R
. (4.9)

The diagonal and off-diagonal entries of the stop/sbottom mass matrix are corrected at
higher orders. We absorb the radiative corrections to the diagonal matrix elements in
shifted soft mass parameters, MQ̃L/R

,

M2
Q̃L/R

= M
2
Q̃L/R

(Q0) + ∆M2
Q̃L/R

, M̃2
Q̃L/R

= M̃
2
Q̃L/R

(Q0) + ∆M2
Q̃L/R

, (4.10)

while the corrections to the off-diagonal entries will be absorbed in shifted soft trilinear
couplings,

AQ = AQ(Q0) + ∆AQ . (4.11)

The shifted parameters are related to the radiative corrections to the mixing angles and
stop/sbottom masses in order to arrive at simple tree-level like expressions at NLO for the
stop/sbottom parameters. On the other hand, these shifted parameters correspond to the
on-shell scheme introduced in refs. [87–90] and thus have to coincide with the input values
of the chosen benchmark scenario.

4.2.1 Stops

Starting from the on-shell parameters the treatment of the stop sector is identical to the
LO level discussed before. The relation of the on-shell to the MS parameters, however, is
affected by the NLO corrections.

At tree-level, the mixing angle θ̃Q is derived from

sin 2θ̃Q = 2mQ[AQ(Q0)− µrQ]
m2
Q̃1
−m2

Q̃2

, cos 2θ̃Q =
M̃

2
Q̃L

(Q0)− M̃
2
Q̃R

(Q0)
m2
Q̃1
−m2

Q̃2

, (4.12)

where the tree-level squark masses mq̃1/2 according to eq. (4.5) have been used.2

The masses of the stop/sbottom mass eigenstates acquire radiative corrections,

m2
Q̃1/2

= m2
Q + 1

2

M̃2
Q̃L

(Q0) + M̃
2
Q̃R

(Q0)

∓

√[
M̃

2
Q̃L

(Q0)− M̃
2
Q̃R

(Q0)
]2

+ 4m2
Q

[
AQ(Q0)− µrQ

]2+ ∆m2
Q̃1/2

∆m2
Q̃1/2

= Σ11/22

(
m2
Q̃1/2

)
+ δm̂2

Q̃1/2
. (4.13)

The self-energies Σ11/22 of the stops/sbottoms can be derived from the diagrams in figure 4,

2The standard range for the squark mixing angle is chosen between 0 and π.
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Q
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Q̃

Q̃j

Figure 4. One-loop contributions to the squark self-energies.

Σ11/22

(
m2
Q̃1/2

)
= CF

αs
π

1
4

{
− (1 + cos2 2θ̃Q)A0

(
mQ̃1/2

)
− sin2 2θ̃QA0

(
mQ̃2/1

)
+ 2A0(Mg̃) + 2A0(mQ) + 4m2

Q̃1/2
B0

(
m2
Q̃1/2

; 0,mQ̃1/2

)

+2
[
M2
g̃ +m2

Q −m2
Q̃1/2
∓ 2Mg̃mQ sin 2θ̃Q

]
B0

(
m2
Q̃1/2

;Mg̃,mQ

)}
,

(4.14)

where Mg̃ denotes the gluino mass and the scalar one-loop integrals are defined as
(n = 4− 2ε) [91, 92]

A0(m) =
∫

dnk

(2π)n
−i(4π)2µ̄2ε

k2 −m2

B0(p2;m1,m2) =
∫

dnk

(2π)n
−i(4π)2µ̄2ε

[k2 −m2
1][(k + p)2 −m2

2]

B1(p2;m1,m2) = 1
2p2

{
A0(m1)−A0(m2)− (p2 +m2

1 −m2
2)B0(p2;m1,m2)

}
. (4.15)

The scale µ̄ denotes the ’t Hooft mass of dimensional regularization. The mass counterterms
δm̂2

Q̃1,2
of eq. (4.13) are related to the counterterms of the input parameters,

δm̂2
Q̃1/2

= 2mQδmQ + 1
2

{
δM

2
Q̃L

+ δM
2
Q̃R
±
[(
δM

2
Q̃L
− δM2

Q̃R

)
cos 2θ̃Q

+
(
δmQ

mQ
+ δAQ

AQ(Q0)− µrQ

)(
m2
Q̃1
−m2

Q̃2

)
sin2 2θ̃Q

]}

= −CF
αs
π

Γ(1 + ε)(4π)ε
{

1
ε

+ log µ̄2

Q2
0

}{
M2
g̃ ∓Mg̃mQ sin 2θ̃Q

}
+ δmQ

mQ

{
2m2

Q ∓
1
2(m2

Q̃2
−m2

Q̃1
) sin2 2θ̃Q

}
, (4.16)

using the tree-level mixing angle θ̃Q of eq. (4.12), and CF = 4/3. The counterterms of the
parameters M2

Q̃L/R
(Q0) and AQ(Q0) are defined in the MS scheme,

δM
2
Q̃L/R

= −CF
αs
π

Γ(1 + ε)(4π)εM2
g̃

{
1
ε

+ log µ̄2

Q2
0

}

δAQ = CF
αs
π

Γ(1 + ε)(4π)εMg̃

{
1
ε

+ log µ̄2

Q2
0

}
. (4.17)
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The counterterm of the pole quark mass mq is given by

δmQ

mQ
=−CF

αs
4π

A0 (mQ)
m2
Q

+2B0
(
m2
Q;0,mQ

)
−1+B1

(
m2
Q;Mg̃,mQ̃1

)
+B1

(
m2
Q;Mg̃,mQ̃2

)

+δSUSY+2Mg̃ (AQ−µrQ)
B0
(
m2
Q;Mg̃,mQ̃1

)
−B0

(
m2
Q;Mg̃,mQ̃2

)
m2
Q̃1
−m2

Q̃2

 ,

(4.18)

where δSUSY = 1/3 is a finite counterterm required to restore the supersymmetric relation
between the Higgs-boson couplings to quarks and squarks within dimensional regulariza-
tion [93]. The definition of the mixing angle θ̃Q in eq. (4.12) corresponds to the following
counterterm at NLO,

δθ̃Q = tg 2θ̃Q
2

δmQ

mQ
+ δAQ

AQ(Q0)− µrQ
−
δm2

Q̃1
− δm2

Q̃2

m2
Q̃1
−m2

Q̃2


δm2

Q̃1/2
= −Σ11/22

(
m2
Q̃1/2

)
. (4.19)

However, this mixing angle definition induces artificial singularities in physical observables
for stop/sbottom masses mq̃1,2 close to each other [94–96]. To avoid such singularities, the
mixing angle of the squark fields has been renormalized via the anti-Hermitian (on-shell)
counterterm [94–96],

δθQ = −1
2

Re Σ12
(
m2
Q̃1

)
− Re Σ12

(
m2
Q̃2

)
m2
Q̃1
−m2

Q̃2

, (4.20)

with the off-diagonal part Σ12 of the stop/sbottom self-energy (see figure 4) describing
transitions from the first to the second mass eigenstate or vice versa,

Σ12(m2) = −CF
αs
π

{
Mg̃mQB0(m2;Mg̃,mQ) + sin 2θ̃Q

4
[
A0(mQ̃2

)−A0(mQ̃1
)
]}

cos 2θ̃Q .

(4.21)
For the mixing angle θ̃Q of eq. (4.12), this implies a finite shift ∆θ̃Q,

θQ = θ̃Q + ∆θ̃Q , ∆θ̃Q = δθ̃Q − δθQ (4.22)

that will be absorbed in the shifted AQ value of eq. (4.11). This shift defines the relation
between the on-shell coupling AQ and the MS one AQ(Q0).

Using the NLO corrected squark pole masses of eq. (4.13) and the radiatively corrected
mixing angle θq, the shifted (on-shell) squared soft SUSY-breaking squark mass parameters
M̃2
Q̃L/R

= M̃
2
Q̃L/R

(Q0) + ∆M2
Q̃L/R

can be obtained from the sum rules,

M̃2
Q̃L

= M2
Q̃L

+DQ̃L
= m2

Q̃1
cos2 θQ +m2

Q̃2
sin2 θQ −m2

Q

M̃2
Q̃R

= M2
Q̃R

+DQ̃R
= m2

Q̃1
sin2 θQ +m2

Q̃2
cos2 θQ −m2

Q , (4.23)
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while the shifted (on-shell) trilinear couplings AQ are derived from the relation

AQ =
m2
Q̃1
−m2

Q̃2

2mQ
sin 2θQ + µrQ . (4.24)

In terms of these shifted (on-shell) parameters the radiatively corrected squark masses and
mixing angles are given by LO-like expressions,

m2
Q̃1/2

= m2
Q + 1

2

[
M̃2
Q̃L

+ M̃2
Q̃R
∓
√(

M̃2
Q̃L
− M̃2

Q̃R

)2
+ 4m2

Q(AQ − µrQ)2

]

sin 2θQ = 2mQ(AQ − µrQ)
m2
Q̃1
−m2

Q̃2

, cos 2θQ =
M̃2
Q̃L
− M̃2

Q̃R

m2
Q̃1
−m2

Q̃2

. (4.25)

The scale of the strong coupling constants αs in eqs. ((4.14), (4.16), (4.17), (4.18), (4.21))
has been identified with the input scale Q0.

These relations have been used for the determination of the MS parameters M̃
2
Q̃L/R

(Q0)
and Aq(Q0) iteratively until the on-shell parameters agreed with the input value of the
chosen benchmark scenario.

4.2.2 Sbottoms

The procedure described for the stops is necessary to obtain the MS parameter M t̃L
(Q0)

that by virtue of the SU(2) gauge symmetry is identified with the MS parameter M b̃L
(Q0),

M t̃L
(Q0) = M b̃L

(Q0) . (4.26)

Due to potentially large tgβ-enhanced contributions in the sbottom sector the procedure
has to be modified. This modification addresses the treatment and renormalization of
the bottom mass mb and of the trilinear coupling Ab. Therefore, the bottom mass is not
introduced as the pole mass, but as a derived quantity, since it represents the contribution
of the bottom Yukawa coupling to the sbottom sector. To achieve a working scheme, we
are starting from eq. (4.25) for the mixing angle that at NLO is still defined via the anti-
Hermitian counterterm of eq. (4.20). The trilinear coupling Ab, however, is now defined from
the proper Ab̃1b̃2 vertex [87–90]. This definition avoids large tgβ-enhanced contributions in
the renormalization of Ab. The bottom mass mb entering the sbottom mixing matrix is
then treated as a derived quantity. This leads to the explicit counterterms,

δAb = −sβcβ
µ

(Ab − µtgβ)
(
Ab + µ

tgβ

){
F − 2c2θb

s2θb

δθb −
δm2

b̃1
− δm2

b̃2

m2
b̃1
−m2

b̃2

}
(4.27)

δm̂b

mb
=
{

1 + sβcβ
µ

(Ab − µtgβ)
}
F − sβcβ

µ
(Ab − µtgβ)

{
2c2θb

s2θb

δθb +
δm2

b̃1
− δm2

b̃2

m2
b̃1
−m2

b̃2

}
,

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
1
2
4

where the term F is defined as [97]

F = f
(
m2
b̃1
,m2

b̃2

)
+ f

(
m2
b̃2
,m2

b̃1

)
f(m2

1,m
2
2) = −CF2

αs
π

{
− Mg̃

Ab + µ cotβB0(m2
1;Mg̃,mb)

+ m2
1

m2
1 −m2

2

[
2B0(m2

1; 0,m1)−
m2

1 −M2
g̃ −m2

b

m2
1

B0(m2
1;Mg̃,mb)

]}
. (4.28)

The derived bottom mass m̂b is then determined as3

m̂b = mb(Q0)− δm̂b + δmb , (4.29)

where mb(Q0) denotes the MS bottom mass at the input scale Q0, δm̂b the counterterm of
eq. (4.27) and δmb the MS counterterm of the bottom mass,

δmb

mb
= −CF

αs
π

Γ(1 + ε)(4π)ε 34

{
1
ε

+ log µ̄2

Q2
0

+ δSUSY

}

− CF
αs
4π

B1
[
m2
b ;Mg̃,mb̃1

]
+B1

[
m2
b ;Mg̃,mb̃2

]

+2Mg̃ (Ab − µtgβ)
B0
[
m2
b ;Mg̃,mb̃1

]
−B0

[
m2
b ;Mg̃,mb̃2

]
m2
b̃1
−m2

b̃2

 , (4.30)

where δSUSY = 1/3 is a SUSY-restoring counterterm. This MS counterterm defines the
running bottom mass with decoupled SUSY contributions, i.e. the running bottom mass
of the SM. The derived bottom mass m̂b is then used for the sbottom mixing matrix
throughout. In the analogous way we determine the MS value Ab(Q0) of the trilinear
coupling, but this will not be used in our analysis.

The shifted (on-shell) sbottom mass parameters M̃b̃L/R
are finally determined from

the corresponding sum rules of eq. (4.23). This set-up of the sbottom sector is then used
for iteration until the on-shell parameter M̃b̃R

agrees with the input parameter of the
benchmark scenario.

An alternative approach is provided by a purely fixed-order implementation of the
difference between Mb̃L

and Mt̃L
,

M2
b̃L

= M2
t̃L

+ ∆M2
L

∆M2
L = δM2

t̃L
− δM2

b̃L

δM2
q̃L

= c2
θq
δm2

q̃1 + s2
θq
δm2

q̃2 −
(
m2
q̃1 −m

2
q̃2

)
s2θqδθq − 2mqδmq , (4.31)

3This relation can be improved related to the resummation of tgβ-enhanced contributions [75, 86–90],

m̂b = mb(Q0)(1 + ∆b)− δm̂b + δmb

1 + ∆b

with ∆b defined in eq. (5.34). We have checked that our NLO results are only affected within our
integration errors when moving to this improved prescription so that this modification is negligible for our
numerical results.
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with q = t, b. The counterterms δmq̃1/2 are given in eq. (4.19), the counterterm δθq in
eq. (4.20) and the counterterm δmq in eq. (4.18) for the top pole mass mq = mt and in
eq. (4.27) for the (derived) bottom mass mq = m̂b. This approach does not require any
iteration, since the on-shell parameters of the benchmark scenario can immediately be used
to derive the parameters of the sbottom sector. We have compared both approaches and
found agreement of the sbottom parameters at the few-per-mille level.

4.2.3 Higgs couplings to stops and sbottoms

The NLO neutral Higgs couplings to squarks in the current-eigenstate basis are given by

gΦ
Q̃LQ̃L

= m2
Qg

Φ
1 +M2

Z(I3Q − eQ sin2 θW )gΦ
2

gΦ
Q̃RQ̃R

= m2
Qg

Φ
1 +M2

ZeQ sin2 θW g
Φ
2

gΦ
Q̃LQ̃R

= mQ

2
[
µgΦ

3 −AQgΦ
4

]
, (4.32)

with the on-shell trilinear couplings AQ and the couplings gΦ
i of table 1. The quark mass

mQ denotes either the top pole mass in the stop case or the derived bottom mass m̂b for the
sbottom sector. The related couplings to the stop/sbottom mass eigenstates Q̃1,2 are derived
by the rotations according to eq. (4.7) by the radiatively corrected mixing angle θQ. For
pseudoscalar Higgs bosons, we obtain vanishing diagonal couplings gA

Q̃LQ̃L
= gA

Q̃RQ̃R
= 0 and

non-vanishing off-diagonal couplings gA
Q̃1Q̃2

= −gA
Q̃2Q̃1

= gA
Q̃LQ̃R

at the NLO level as at LO.

5 SUSY-QCD corrections at NLO

The genuine SUSY-QCD corrections at NLO are determined by the Feynman diagrams
shown in figure 5 that displays only the non-vanishing graphs. Additional permutations of
the external gluons have to be added. The matrix element for the LO expression and the
SUSY-QCD corrections can be parametrized as

M = iδab
αs

2πvT
µνεµ(q1)εν(q2)

T µν = AALO/SQCD εµναβq1αq2β , (5.1)

where q1, q2 denote the two incoming momenta of the gluons and εµ(qi) their polarization
vectors, δab the Kronecker symbol of the adjoint SU(3)c color space and εµναβ the four-
dimensional Levi-Civita tensor. In this paper we will mainly use the γ5 prescription of
Larin [65], where the product of Levi-Civita tensors is replaced by the determinant of
n-dimensional metric tensors in n = 4 − 2ε dimensions. Within this framework we can
construct a projector on the anticipated form factors AALO/SQCD,

Pµν = 2
M4
A(1− ε)(1− 2ε) ε

µναβq1αq2β (5.2)

so that
PµνTµν = AALO/SQCD . (5.3)
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Figure 5. Non-vanishing diagrams contributing to the genuine SUSY-QCD corrections to pseu-
doscalar MSSM Higgs boson production via gluon fusion mediated by top- and bottom quark
(Q = t, b) as well as stop/sbottom (Q̃ = t̃, b̃) and gluino (g̃) loops at NLO.

In order to set up a simple notation in close connection to the QCD corrections of eq. (2.5)
we will normalize the genuine SUSY-QCD corrections to the individual form factors at LO,

AAQ,SQCD = AAQ,LO CAQ,SQCD
αs
π
, (5.4)

where CAQ,SQCD depends on all ratios of the pseudoscalar Higgs, quark, squark and gluino
masses. The LO form factor

AAQ,LO = Γ(1 + ε)
(

4πµ̄2

m2
Q

)ε
mQg

A
QA

A
Q(τQ) (5.5)

has been defined in terms of the expressions of eq. (2.2). In the following we will describe
the technical details for the numerical integration to determine the complex coefficient
CQ,SQCD by exemplifying our method for the first diagram of figure 5. In order to regularize
virtual thresholds we have added a small imaginary part to the quark and squark masses,4

m2
Q → m2

Q(1− iε̄), m2
Q̃k
→ m2

Q̃k
(1− iε̄) (k = 1, 2) , (5.6)

with a positive regulator ε̄ > 0, which defines the analytical continuation of our two-loop
amplitudes. We work with a small but finite value of ε̄ that is small enough to achieve results
in the narrow-width approximation. For the parametrization of the two-loop diagrams,

4This procedure is equivalent to adding an imaginary part to the gluino mass in addition, but in our
numerical analysis we do not cross virtual thresholds involving the gluino so that this addition is not required.
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we follow the same procedure used and described in refs. [98–100] for Higgs-boson pair
production and adopted in earlier works [101–105].

5.1 Feynman parametrization

The parametrization of the first two-loop diagram of figure 5 reads

T µν1 = −CF4
gA
Q̃lQ̃m

mQ

αs
π

(4π)4 Aµν1,lm

Aµν1,lm =
∫
dnkdnq

(2π)2n

Tr
{
IP l(−6q +Mg̃)IPm(6k+6q1 +mQ)γµ(6k +mQ)γν(6k−6q2 +mQ)

}
(k2 −m2

Q)[(k + q1)2 −m2
Q][(k − q2)2 −m2

Q][(k + q + q1)2 −m2
Q̃m

]

× 1
[(k + q − q2)2 −m2

Q̃l
](q2 −M2

g̃ ) , (5.7)

where we sum over l,m ∈ {1, 2} in T µν1 , k, q are the loop momenta that are integrated over
and the chiral coupling factors IPj (j = 1, 2) are defined as

IP1 = IPL cos θQ − IPR sin θQ
IP2 = −IPL sin θQ − IPR cos θQ

IPR/L = 1± γ5
2 (5.8)

and IP j emerges from IPj by the replacement γ5 → −γ5. After applying the contraction with
the projector Pµν onto the contribution to the virtual form factor, we introduce Feynman
parameters x3, x4, x1, x2 for the second to fifth propagator (in this ordering) and 1−∑j xj
for the first one, (k2 −m2

Q). With the substitutions

x1 = (1− x)y, x2 = (1− x)(1− y), x3 = x(1− z), x4 = xzv (5.9)

we obtain a four-dimensional Feynman-parameter integral over x, y, z, v with integration
boundaries from 0 to 1. The shift

k → k −Q1

Q1 = (1− x)q + [x+ y − x(y + z)]q1 − [(1− x)(1− y) + xzv]q2 (5.10)

in both the numerator and denominator symmetrizes the k-integration that is performed in a
simple and systematic way for the emerging integral. The residual q-dependent denominator
after the k-integration is treated as a propagator for the q-integration after extracting all
coefficients in front of the term q2. We introduce a fifth Feynman parameter r for this
propagator and 1− r for the last purely q2-dependent propagator of eq. (5.7). Applying the
second shift

q → q −Q2,

Q2 = −r(1− y − z)q1 − r(1− y − zv)q2 (5.11)
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both in the numerator and denominator we perform the symmetric q-integration. In this
way, we finally arrive at an integral of the type

AA1,SQCD = CF
4
gA
Q̃lQ̃m

mQ

αs
π

Γ(2 + 2ε)
(

4πµ2
0

M2
g̃

)2ε ∫ 1

0
d5x

x1+ε(1− x)εzr2+εH(~x)
N2+2ε(~x) , (5.12)

with ~x = (x, y, z, v, r) and d5x = dx dy dz dv dr. The term H(~x) denotes the full numerator
and includes singular and higher powers of the dimensional regulator ε. N(~x) is the
final denominator,

N(~x) = x(1− x)(1− r) + ρQxr + ρm(1− x)yr + ρl(1− x)(1− y)r

+ ρAr
{
x(1− x)r(1− y − z)(1− y − zv)

− [y(1− x) + x(1− z)][(1− x)(1− y) + xzv]
}
, (5.13)

where the ratios are defined as ρQ = m2
Q/M

2
g̃ , ρk = m2

Q̃k
/M2

g̃ , ρA = M2
A/M

2
g̃ . This

denominator is maximally a second-order polynomial in all Feynman parameters we have
introduced. The poles of H(~x) in ε originate from powers of k2 and q2 in the numerators of
the k- and q-integrals. We have chosen the convention to normalize all mass parameters to
the gluino mass Mg̃. In order to cope with the LO form factor in an easier way, we have
rewritten the coefficients of all integrals as

Γ(2 + 2ε)
(

4πµ2
0

M2
g̃

)2ε

= Γ2(1 + ε)
(

4πµ2
0

m2
Q

)ε(4πµ2
0

M2
g̃

)ε
× ρεQ(1 + 2ε)(1 + ε2ζ2) +O(ε3).

(5.14)
The factors ρεQ(1 + 2ε)(1 + ε2ζ2) are added to the integrands before expansion in ε. The
final contribution to the coefficient CAQ,SQCD is then given by

CA,(1)
Q,SQCD = CF

4
gA
Q̃lQ̃m

m2
Qg

A
QA

A
Q(τQ)

Γ(1 + ε)
(

4πµ2
0

M2
g̃

)ε ∫ 1

0
d5x

x1+ε(1− x)εzr2+εH(~x)
N2+2ε(~x)

× ρεQ(1 + 2ε+ ε2ζ2) . (5.15)

The final integral is finite for this diagram. For the other diagrams, we follow the same
procedure accordingly. All diagrams are infrared finite, since all virtual particles are massive,
but the residual Feynman integrals contain end-point singularities in several cases that are
subtracted in the usual way according to the description of refs. [98–100]. The integration
of the subtracted part yields the corresponding UV singularities.

5.2 Integration by parts

In our numerical analysis, we cross the virtual bb̄, tt̄ thresholds and for large pseudoscalar
masses the b̃1b̃∗2, t̃1t̃∗2 thresholds as well. The parametrization of the integrals discussed so far
is not sufficiently stable above these thresholds due to the high power of the denominator
N(~x) that becomes small in the Feynman-parameter regions in the vicinity of the virtual
thresholds. We need to adopt imaginary regulators ε̄ <∼ 10−3 in order to obtain numbers
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independent of this regulator. The small size of this regulator makes the integral numerically
unstable. A stabilization of the integration can be achieved by an integration by parts
(IBP) to reduce the power of the denominator. In general, for this purpose, one can write

∆ = p0N +
∑
i

pi
∂N

∂xi
, (5.16)

where N is the dominator of the integral, p0 and pi are polynomials and ∆ is constant in
the variables xi. For simplicity we drop the arguments ~x everywhere. The polynomials p0
and pi can be found by constructing the Gröbner basis of the set {N, ∂N∂xi

}. We find that

∫ 1

0
dnx

gm
Nm+2ε =

∫ 1

0
dnx

gm−1
Nm−1+2ε +

∑
i

 g
(i)
m−1

Nm−1+2ε

xi=1

xi=0

gm−1 = 1
∆

(
gmp0 −

∑
i ∂xi(gmpi)

1−m− 2ε

)
g

(i)
m−1 = 1

∆
gmpi

1−m− 2ε . (5.17)

These equations can be applied iteratively to reduce the power of the denominator further.
Not every choice of the parameters for the integration by parts will yield a stable result.

Potential issues can arise from singularities in the boundary terms as well as singularities
that arise when ∆ = 0, which can happen when N = 0 and all ∂N∂xi

= 0.
Choosing only a subset of the Feynman parameters yields shorter expressions that can

be evaluated faster. For practical purposes, it is thus usually best to find a parametrization
where using a single Feynman parameter for the integration by parts is sufficient to stabilize
the numerical integration.

We exemplify the two examples encountered in our calculation. If N is linear in the
Feynman parameter x1, i.e.

N = ax1 + b , (5.18)

there are two possible choices for the polynomials

p0 = 0 p1 = 1 ∆ = a (5.19)
or p0 = 1 p1 = −x1 ∆ = b . (5.20)

A linear combination of these two solutions is also valid. If N is quadratic in the Feynman
parameter i.e.

N = ax2
1 + bx1 + c , (5.21)

the polynomials are given by

p0 = 4a p1 = −b− 2ax1 ∆ = −b2 + 4ac . (5.22)
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For example in the first diagram we have achieved stabilization for x1 = v. The denominator
is linear in this parameter and we have

N(~x) = av + b

a = −ρAxzr
{
r(1− z) + (1− r)[y(1− x) + x(1− z)]

}
b = x(1− x)(1− r) + ρQxr + ρm(1− x)yr + ρl(1− x)(1− y)r

+ ρA(1− x)(1− y)r
{
xr(1− y − z)− [y(1− x) + x(1− z)]

}
. (5.23)

With this explicit parametrization at hand, the following manipulation can be performed,∫ 1

0
dv

Hi(~x)
N2(~x) = H(~x)|v=0

ab
− H(~x)|v=1

a(a+ b) + [∂vH(~x)]|v=1 log(a+ b)− [∂vH(~x)]|v=0 log(b)
a2

−
∫ 1

0

dv

a2 [∂2
vH(~x)] log(av + b) , (5.24)

according to eq. (5.17). Since the powers of all denominators are reduced and the original
denominator N(~x) appears in the argument of a logarithm in the last integral the numerical
integration appears to be stable for the imaginary regulator down to ε̄ <∼ 10−4 which is
sufficient for the narrow-width limit.

In cases of a Feynman parameter entering the denominator in second order,

N(~x) = ay2 + by + c (5.25)

and making make use of the identities of eq. (5.22) (we drop the arguments of N)

∆ = 4ac− b2 = 4aN − (∂yN)2 = 4aN − (2ay + b)2 , (5.26)

we arrive at the special situation that the derivative appears in second power. This allows
us to perform two IBPs of the original integral [98–100],∫ 1

0
dy

H

N2 = 1
∆

{[2ay + b

N
H − (∂yH) logN

]∣∣∣∣y=1

y=0
+
∫ 1

0
dy

[2a
N
H + (∂2

yH) logN
]}

,

(5.27)
where for simplicity we dropped the arguments ~x everywhere.

5.3 Renormalization

In our calculation of the genuine SUSY-QCD corrections we have to renormalize the SUSY-
QCD part of the quark mass only, since everything else is already accounted for by the
QCD corrections, i.e. the decoupling of all SUSY particles from the evolution of the strong
coupling αs and the PDFs that both run with five active flavours in our calculation. The
SUSY-QCD part of the on-shell quark-mass counterterm is given by [see eq. (4.18)]

δmQ

mQ
= −CF

αs
4π

B1
(
m2
Q;Mg̃,mQ̃1

)
+B1

(
m2
Q;Mg̃,mQ̃2

)
(5.28)

+2Mg̃ (AQ − µrQ)
B0
(
m2
Q;Mg̃,mQ̃1

)
−B0

(
m2
Q;Mg̃,mQ̃2

)
m2
Q̃1
−m2

Q̃2

 .
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We renormalize the quark mass on-shell, because the LO form factor AAQ(τQ) and the
pure QCD corrections are expressed in terms of the quark pole mass.5 The corresponding
counterterm for the gluon-fusion cross section form factor is given by

δ1A
A
Q,SQCD =

∂ÃAQ(τQ)
dmQ

δmQ = 2 τQ
∂ÃAQ(τQ)
∂τQ

δmQ

mQ
, (5.29)

where ÃAQ(τQ) denotes the LO form factor including O(ε) terms,

ÃAQ(τ) = τf(τ) + ε
τ

4H(τ) +O(ε2)

H(τ) = 4
{
S1,2(x) + S1,2

(1
x

)}
+ 2

{
Li3(x) + Li3

(1
x

)}
+ 2ζ3

x = 1−
√

1− τ
1 +
√

1− τ
, (5.30)

with the usual trilogarithms,

S1,2(y) = 1
2

∫ 1

0

dz

z
log2(1− zy)

Li3(y) =
∫ 1

0

dz

z
log(z) log(1− zy) . (5.31)

The derivative is given by

τ
∂ÃAQ(τ)
∂τ

= ÃAQ(τ) + τ

1− τ g(τ) + ε

2

{
τ

τ − 1g(τ) log
(

4τ − 1
τ

)
+ τ√

1− τ

[
Li2

( 1
1− x

)
− Li2

( −x
1− x

)]}

g(τ) =


√
τ − 1 arcsin 1√

τ
τ ≥ 1

√
1− τ
2

[
log 1 +

√
1− τ

1−
√

1− τ
− iπ

]
τ < 1

, (5.32)

where Li2 denotes the dilogarithm,

Li2(y) = −
∫ 1

0

dz

z
log(1− zy) . (5.33)

However, we introduce effective low-energy Yukawa couplings in our calculation, i.e. the
Yukawa couplings of a low-energy Two-Higgs-Doublet model (2HDM), where the heavy
SUSY particles are integrated out. This implies that the top- and bottom-Yukawa couplings
are dressed with ∆t/b contributions. The SUSY-QCD parts of these contributions are

5For the evaluation of the NLO SUSY-QCD contributions, however, we use the derived bottom mass m̂b

[see eq. (4.29)] in the calculation of CA
b,SQCD. The resulting difference only contributes at the NNLO level.
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given by

∆Q = CF
2

αs(µR)
π

Mg̃ µ rQ I
(
m2
Q̃1
,m2

Q̃2
,M2

g̃

)

I(a, b, c) =
ab log a

b
+ bc log b

c
+ ca log c

a
(a− b)(b− c)(a− c) . (5.34)

The expressions for the Yukawa couplings including resummations of the leading cotβ-
enhanced contributions for the top-Yukawa coupling and the tgβ-enhanced terms of the
bottom Yukawa coupling can be cast into the form

gAQ → g̃AQ =
gAQ

1 + ∆Q

[
1− ∆Q

r2
Q

]
, (5.35)

with rQ defined after eq. (4.2). These contributions will result in additional terms in the
counterterms of our calculation,

∆AAQ,SQCD = AAQ(τQ)
(

1 + 1
r2
Q

)
∆Q , (5.36)

since the LO form factors AAQ(τQ) are proportional to the linear quark-Yukawa coupling.
This results in the complete counterterm

δAAQ,SQCD = 2 τQ
∂ÃAQ(τQ)
∂τQ

δmQ

mQ
+ ∆AAQ(τQ) . (5.37)

5.4 Hadronic cross section

Our notation can be viewed as a modification of the factor σA0 of eq. (2.1) as a starting
point that can easily be extended to the NLO corrections,

σA0 = GFα
2
s

128
√

2π

∣∣∣∣gAt At(τt)(1 + ĈAt,SQCD
αs
π

)
+ gAb Ab(τb)

(
1 + ĈAb,SQCD

αs
π

)∣∣∣∣2
= GFα

2
s

128
√

2π

{∣∣∣g̃At At(τt) + g̃Ab Ab(τb)
∣∣∣2 (5.38)

+ 2 Re
[[
g̃At At(τt) + g̃Ab Ab(τb)

]∗ [
gAt At(τt)CAt,SQCD + gAb Ab(τb)CAb,SQCD

] αs
π

]
+O(α2

s)
}

where g̃AQ (Q = t, b) denote the resummed quark Yukawa couplings of eq. (5.35) that absorb
∆b and ∆t contributions in the effective Yukawa couplings as the appropriate effective
Yukawa couplings in the low-energy effective 2HDM. The factors CAQ,SQCD and ĈAQ,SQCD
(Q = t, b) denote the relative SUSY-QCD corrections factors to the individual form factors
with and without absorption of the ∆Q terms, respectively. Within this framework the
Yukawa couplings of the QCD corrections will be replaced by these effective Yukawa
couplings as well due to the factorizing properties of EFT couplings from the pure QCD
corrections. However, the subleading contributions of eq. (5.38) involve the LO Yukawa
coulings, since ∆t,b effects only factorize at the leading order of an 1/M2

SUSY expansion so
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that the SUSY-QCD remainder does not factorize from the effective Yukawa couplings in
general. This will avoid artificial singularities in the scalar MSSM Higgs sector as well [106].
Expressing the LO factor σA0 in terms of the effective Yukawa couplings,

σA0 → σ̃A0 = GFα
2
s

128
√

2π

∣∣∣g̃At At(τt) + g̃Ab Ab(τb)
∣∣∣2 , (5.39)

and referring to eq. (2.6), the SUSY-QCD corrections add to the virtual coefficient CA,

CA = CAQCD + CASQCD , (5.40)

with the usual QCD-correction coefficient CAQCD and

CASQCD = 2 Re
{
gAt At(τt)CAt,SQCD + gAb Ab(τb)CAb,SQCD

g̃At At(τt) + g̃Ab Ab(τb)

}
, (5.41)

where we are using LO Yukawa couplings gAQ in the numerator, since this contribution
constitutes the remainder of the full SUSY-QCD corrections that does not factorize in
general terms. In eq. (5.38) and for the following discussion of the results, we distinguish
between this coefficient for the SUSY-remainder and the corresponding coefficient,6

ĈASQCD = C
A
SQCD − 2 Re

{
gAt ∆At,SQCD + gAb ∆Ab,SQCD

gAt At(τt) + gAb Ab(τb)

}

C
A
SQCD = 2 Re

{
gAt At(τt)CAt,SQCD + gAb Ab(τb)CAb,SQCD

gAt At(τt) + gAb Ab(τb)

}
(5.42)

that describes the full SUSY-QCD corrections without introducing the effective top and
bottom Yukawa couplings, i.e. without absorbing ∆Q terms in the Yukawa couplings. The
contributions ∆AQ,SQCD are given in eq. (5.36).

5.5 Axial γ5 schemes

We have implemented the Larin scheme of ref. [65] that is a variant of the original ’t
Hooft-Veltman scheme that has been set-up systematically by Breitenlohner and Maison [11,
64]. We have extracted the Levi-Civita tensor at the pseudoscalar vertex by means of
the replacement

γ5 = i

24 εµνρσγ
µγνγργσ (5.43)

and just keeping the four γ matrices inside the traces. The diagrams where the pseudoscalar
couples to squarks do not have such a vertex. They are however finite, such that a naively
anticommuting γ5 can be used at NLO. The chiral couplings at the quark-squark-gluino
vertices are treated fully anticommuting to arrive at traces with one or no γ5 matrix. Only

6Note that in the case of ĈA
Q,SQCD we have to normalize to the LO expression with LO, i.e. without

effective, Yukawa couplings.
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the contributions with no additional γ5 matrix contribute after applying the projector of
eq. (5.2). The projector yields a product of two Levi-Civita tensors that is defined as

εµνρσεµ′ν′ρ′σ′ = −Det


gµµ′ g

µ
ν′ g

µ
ρ′ g

µ
σ′

gνµ′ g
ν
ν′ g

ν
ρ′ g

ν
σ′

gρµ′ g
ρ
ν′ g

ρ
ρ′ g

ρ
σ′

gσµ′ g
σ
ν′ g

σ
ρ′ g

σ
σ′

 , (5.44)

where the metric tensors inside this determinant are treated as n-dimensional objects.
This prescription avoids a splitting of γ matrices and loop momenta into 4- and (n− 4)-
dimensional components. Since γ5 as defined in eq. (5.43) does not anticommute, an
anomalous counterterm has to be added. However the genuine SUSY-QCD contributions
to this counterterm vanish. In the ’t Hooft-Veltman scheme, the metric tensors in this
determinant are defined as strictly 4-dimensional objects so that the numerators of the loop
integrals split into 4- and (n − 4)-dimensional pieces that have to be treated separately.
To avoid additional anomalous counterterms we used anticommuting γ5 matrices at the
QQ̃g̃-vertices in this scheme as well. We found full agreement for both schemes. In addition,
we have lifted the anti-commuting properties of the γ5 matrices entering at the QQ̃g̃-vertices
and found mismatches that require anomalous subtractions to restore the chiral properties.
Finally, we have implemented the γ5 scheme of refs. [66, 67] that gives up the cyclicity of
the traces but keeps the full anti-commuting property of the γ5 matrix. The cyclicity of
the trace is equivalent to the arbitrary decision where we start to read the fermion lines.
To resolve this, the scheme defines unambiguous reading points in each diagram relative
to the external axial couplings. However, since we have no axial vector couplings in our
diagrams, the only prescription we have to follow is that the reading point must be outside
of subdivergences, e.g. in the fifth diagram of figure 5 the reading point must not be at the
gg̃g̃ vertex. We found full agreement with the calculation in the Larin scheme as well.

Finally, we have reproduced the limit of large top, stop and gluino masses of ref. [75]
and found full agreement. Ref. [75] worked with Pauli-Villars regularization so that their
Clifford algebra is defined in four dimensions strictly resulting in a fully anti-commuting γ5.
That we have found full agreement with this calculation in the large-mass limit underlines
the consistency of our results.

5.6 Adler-Bardeen theorem

According to the analytical results of ref. [75] the SUSY-QCD coefficient in the large
SUSY-mass limit (keeping the quark mass small) is given by

ĈAQ,SQCD = −CF2
Mg̃

mQ

s2θQ

2 − mQYQ
m2
Q̃1
−m2

Q̃2

( ρ1
1− ρ1

log ρ1 −
ρ2

1− ρ2
log ρ2

)
+O(M−2

SUSY),

(5.45)
with ρi as defined after eq. (5.13). In this expression, we have focused just on the leading
terms of the large-mass expansion, since this is the relevant contribution of the matching to
a low-energy 2HDM. Moreover, in the expression above the ∆Q terms are not subtracted,
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i.e. this is the result in terms of the LO Higgs coupling gAQ without ∆Q-dressing. The
coupling YQ is related to the squark coupling,

YQ = 2
gQ̃1Q̃2

mQgAQ
= AQ + µ

rQ
. (5.46)

Inserting the explicit expressions for s2θQ
and YQ one arrives at

ĈAQ,SQCD = −∆Q

(
1 + 1

r2
Q

)
+O(M−2

SUSY) . (5.47)

Since the Att̄ operator mixes with the At̃t̃∗ operator the non-decoupling ∆t contributions to
the effective top Yukawa coupling are induced. Working with properly matched low-energy
parameters, i.e. effective Yukawa couplings with ∆Q contributions as in eq. (5.35), this
term is absorbed in the Yukawa couplings exactly so that the radiative corrections in the
low-energy 2HDM with properly defined low-energy parameters are vanishing for the leading
O(M0

SUSY) term
CAQ,SQCD = O(M−2

SUSY). (5.48)

This is because in contrast to the MSSM, the chiral symmetry ψQ → eiαγ5ψQ is only broken
by the quark mass term in the effective 2HDM so that only the higher-order corrections to
the proper matching of the low-energy 2HDM to the full MSSM contribute. Thus, in the
low-energy limit the Adler-Bardeen theorem [47] is fulfilled.7 Since radiative corrections still
arise due to the higher-order corrections to the matching, the Adler-Bardeen theorem [47]
builds a deep connection between the explicit structure of the radiative corrections in the
full MSSM in the low-energy limit and the radiative corrections in the low-energy EFT.
This result is in line with the result of ref. [80] that the QCD corrections to the effective
ggA Lagrangian in the HTL are vanishing if the strong coupling is chosen as the 5-flavour
one, i.e. properly decoupling the top-quark contribution from the running of αs or in other
words using the properly matched low-energy αs within pure 5-flavour QCD. This also
implies that in the large SUSY-mass limit (keeping the top mass small in comparison)
no effective ggA operator is generated in the low-energy 2HDM at the dimension-5 level
by integrating out the SUSY particles. The same is true as well for the bottom/sbottom
contributions so that the SUSY particles do not generate a sbottom-induced effective ggA
operator at leading O(M0

SUSY) at all.
Another situation arises when the top quark is integrated out, i.e. assumed to be much

heavier than the pseudoscalar A as well and not assumed to be much lighter than the
other SUSY particles. In this case a dimension-5 operator contribution is generated on
top of the HTL at LO due to the non-decoupling nature of the top quark as has already
been observed for the leading O(GFm2

t ) corrections to the effective Agg coupling [107, 108].
Since the stops couple to the pseudoscalar in terms of the top Yukawa coupling as well, a
new genuine dimension-5 contribution to the Agg coupling, on top of the contribution from

7The Adler-Bardeen theorem is not valid for subleading O(M−2
SUSY) orders in the large SUSY-mass

expansion with effective low-energy parameters as it also not valid for subleading O(m−2
t ) orders of the

large-top mass expansion of the pure QCD corrections.
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the effective Yukawa coupling, emerges starting at NLO. This contribution can be related
to the violation of the global Peccei-Quinn symmetry of the MSSM Lagrangian by the µ
term [73–75]. This leads to an extension of the related operator identity of the divergence of
the axial-vector current by an additional operator involving the stop fields thus destroying
the one-to-one correspondence between the pseudoscalar top-Yukawa coupling and the
ABJ-anomaly operator and in this way the translation of the Adler-Bardeen theorem to the
Agg operator. It follows that both the ∆t terms and the genuine radiative corrections to
the Agg coupling scale with the µ parameter [109]. Within the EFT view this has to be
considered as higher-order corrections to the effective Agg operator in the combined HTL
and large-SUSY-mass limit, i.e. higher-order corrections to the corresponding matching
conditions that scale with µ.

6 Results

We are now in the position to present and discuss the final results of the NLO SUSY-QCD
corrections to pseudoscalar gg → A production, but also to the pseudoscalar decays A→ gg

and A→ γγ. For the numerical analysis we have adopted the M125
h benchmark scenario [50]

that is defined by the following on-shell parameters,

M125
h : MQ̃ = 1.5 TeV, M˜̀3

= 2 TeV, Mg̃ = 2.5 TeV,

M1 = M2 = 1 TeV, Ab = Aτ = At = 2.8 TeV + µ/tgβ, µ = 1 TeV, (6.1)

that have been used in the framework of the program HDECAY [110–112] with an iteration
to determine the corresponding MS parameters accordingly. This proceeds along the
lines discussed in section 4. Here, MQ̃ denotes the third-generation soft SUSY-breaking
squark-mass parameters, M˜̀3

the corresponding one for the sleptons and M1,M2 the soft
SUSY-breaking gaugino-mass parameters for the bino and wino, repectively. For two
representative values of tgβ, the related stop and sbottom masses amount to

tgβ = 10
mt̃1 = 1340 GeV, mt̃2 = 1662 GeV, mb̃1

= 1496 GeV, mb̃2
= 1508 GeV

tgβ = 40
mt̃1 = 1340 GeV, mt̃2 = 1662 GeV, mb̃1

= 1479 GeV, mb̃2
= 1525 GeV. (6.2)

Our numerical integration has been performed with the VEGAS subroutine [113] after
preparing the integrands according to the methods described in section 5. We have used
up to O

(
109) points for the 5-dimensional VEGAS integration, with imaginary parts ε̄ of

eq. (5.6) up to the order of 10−3 above the virtual thresholds (QQ̄, Q̃1Q̃2, Q̃2Q̃1) for Q = t, b.
The numerical integration errors of our final results rank below the 10−2-level for the final
coefficients CAQ,SQCD of eq. (5.4) and DAQ,SQCD of eq. (3.8) for both the top- and bottom-
induced corrections. This has been achieved with less than a week of CPU time for each
individual MA point.
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Figure 6. The genuine SUSY-QCD corrections to gg → A normalized to the LO top and bottom
quark form factors for tgβ = 10 in the M125

h benchmark scenario. Real part: red, imaginary part:
blue, compared to the approximate calculations of ref. [75] (dashed lines). The dotted lines for the
stop contributions correspond the combined limit of large top and SUSY masses.
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Figure 7. The same as figure 6, but for tgβ = 40.

– 27 –



J
H
E
P
0
3
(
2
0
2
3
)
1
2
4

real part

full

full

+ ∆
t
 terms

approx

imaginary part

full
approx

approx
mt

approx
heavy

   
t,SQCD

    [top]   
A

M
h

   125   scenario

M
A

 = 1.5 TeV

tgβ

C

-6

-5

-4

-3

-2

-1

0

1

2

6 8 10 12 14 16 18 20

real part

full

full

+ ∆
b
 terms

approx

imaginary part

full approx

   
b,SQCD

    [bottom]   
A

M
h

   125   scenario

M
A

 = 1.5 TeV

tgβ

C

-6

-5

-4

-3

-2

-1

0

1

2

6 8 10 12 14 16 18 20

Figure 8. The same as figure 6, but as a function of tgβ for MA = 1.5TeV.

6.1 Gluon fusion gg → A

As a starting point, the perturbative NLO coefficients CAQ,SQCD are displayed in figures 6
and 7 as a function of the pseudoscalar mass MA for tgβ values of 10 and 40, respectively.
In these figures, we show the approximate calculations of ref. [75] as well, i.e. for the stop
contribution both approximations of the combined heavy-top/SUSY limit (’approxheavy’)
and the pure large SUSY-mass limit (’approxmt’), while for the sbottom contribution only
the large SUSY-mass limit (’approx’) is phenomenologically relevant and shown. The full
calculation agrees well with the former approximate calculations for smaller pseudoscalar
masses in both the stop and sbottom cases. However, we observe sizeable and increasingly
relevant deviations for pseudoscalar masses approaching or exceeding the virtual squark
threshold.8 Moreover, we display the results of the NLO coefficients for the two cases of
absorbing the ∆t/b terms in the corresponding Yukawa couplings and the opposite. It
is clearly visible that the ∆t/b terms approximate the full results quite well for smaller
pseudoscalar masses MA so that the results after subtracting them turn out to be quite
small. These subtracted results represent the SUSY-remainder, i.e. the contributions beyond
the leading parts corresponding to the effective top and bottom Yukawa couplings. It is
obvious that the absorption of these contributions leads to a much better perturbative
behaviour thus corroborating the effective Yukawa-coupling approach. This is further
underlined by the tgβ dependence of the stop and sbottom contributions shown in figure 8
for a pseudoscalar mass MA = 1.5TeV. The description of the SUSY-QCD corrected cross
section in terms of the effective low-energy top- and bottom-Yukawa couplings leads to
a moderate SUSY-remainder at NLO as long as the pseudoscalar Higgs mass does not
approach the virtual stop/sbottom thresholds. At and beyond these virtual thresholds, the
SUSY-remainders turn out to be sizeable.

8The kink structure at the heavy squark threshold is in line with the S-wave but CP-odd behaviour of
q̃1q̃2 and q̃2q̃1 pairs of different squarks close to the threshold.
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Figure 9. The K-factors of the QCD and genuine SUSY-QCD corrections for the LHC with
tgβ = 10, 40 and a c.m. energy of 13TeV. As parton density functions the MSHT20 sets have been
used. The renormalization and factorization scales have been chosen as µR = µF = MA/2.
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Figure 10. The pseudoscalar production cross section via gluon-fusion at the LHC with tgβ = 10
(left) and tgβ = 40 (right) and a c.m. energy of 13TeV at LO, NLO QCD and including the genuine
SUSY-QCD corrections involving effective Yukawa couplings. The LO and NLO QCD corrected
cross sections are shown without effective Yukawa couplings. As parton density functions the
MSHT20 sets have been used. The renormalization and factorization scales have been chosen as
µR = µF = MA/2.
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As the next step, we analyze the SUSY-QCD corrections to the hadronic cross section
of pseudoscalar Higgs-boson production via gluon fusion. The effect of the corrections on
the K-factor at the hadronic level, which is defined as the ratio between the NLO and LO
cross sections, is discussed first. We adopt the MSHT20nlo_as118 parton density functions
and perform the analysis for a c.m. energy of 13TeV at the LHC. Figure 9 exhibits the
K-factor for tgβ = 10, 40 with effective top- and bottom-Yukawa couplings for the QCD
part of the cross section and for the corresponding results of the previous approximate
calculations. The QCD part of the K-factors shows the usual sizeable NLO corrections
of about 30–50%, while the additional SUSY-QCD remainder turns out to be small or
moderate. The comparison implies that effects beyond the approximation become relevant
when approaching the virtual stop/sbottom thresholds and above as expected.

These K-factors can be translated to the hadronic production cross sections of pseu-
doscalar Higgs bosons via gluon fusion as shown in figure 10 for two values of tgβ = 10, 40.
For the effective bottom-Yukawa couplings, we include the full set of NNLO corrections [114–
118] to lift the accuracy of the factorizing and dominant contributions to the NNLO level,
while for the effective top-Yukawa coupling we use the NLO expression in the effective
field-theory framework. Here, we present the QCD-corrected cross sections without the
effective top- and bottom-Yukawa couplings, i.e. without any genuine SUSY-QCD correc-
tions and the approximate and full SUSY-QCD corrected cross sections with the effective
Yukawa couplings as discussed in the previous section. The comparison of the full QCD-
corrected cross section (blue line) and the full QCD + SUSY-QCD corrected cross section
(red line) supports the high relevance of the SUSY-QCD corrections in total, while the
SUSY-remainder plays a role close or above the virtual stop- and sbottom thresholds.

6.2 The gluonic decay A → gg

The same virtual coefficient as for gg → A contributes to the genuine SUSY-QCD corrections
of the gluonic pseudoscalar Higgs decay A→ gg according to eq. (3.5). The relative QCD
and SUSY-QCD corrections to the gluonic decay width are shown in figure 11 with the
use of effective top and bottom Yukawa couplings. It is clearly visible that the bulk of the
genuine SUSY-QCD corrections can be absorbed by the effective top and bottom Yukawa
couplings including ∆t,b contributions. The SUSY-remainder is relevant in regions where
finite squark-mass effects become relevant, i.e. close or above the related virtual thresholds.
The corresponding partial decay widths Γ(A→ gg) are shown in figure 12 for tgβ = 10, 40,
using effective top and bottom Yukawa couplings for the SUSY-QCD-corrected decay widths,
but LO couplings without ∆t.b terms for the LO and QCD-corrected decay widths. The
SUSY-QCD corrections are treated in the same way as for the production cross sections,
i.e. ∆b terms at two-loop order and ∆t contributions at one-loop level. The main effect of
the genuine SUSY-QCD corrections emerges from the factorizing ∆b,t corrections to the
Yukawa couplings. The comparison of the pure NLO QCD prediction (blue curve) and the
SUSY-QCD corrected one (red curve) indicates the large size of SUSY-QCD corrections at
NLO for the partial width.
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Figure 11. Relative radiative corrections, defined as Γ = ΓLO(1 + δ), to the gluonic pseudoscalar
decay width as a function of the pseudoscalar mass MA for tgβ = 10 (left) and tgβ = 40 (right) at
NLO QCD and including the genuine SUSY-QCD corrections involving effective Yukawa couplings.
The renormalization scale has been chosen as µR = MA.
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Figure 12. Partial decay widths Γ(A→ gg) as a function of the pseudoscalar mass MA for tgβ = 10
(left) and tgβ = 40 (right) at NLO QCD and including the genuine SUSY-QCD corrections involving
effective Yukawa couplings. The renormalization scale has been chosen as µR = MA.
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Figure 13. The genuine SUSY-QCD corrections to A→ γγ normalized to the LO top and bottom
quark form factors for tgβ = 10 in the M125

h benchmark scenario. Real part: red, imaginary part:
blue, compared to the Abelian part of the approximate calculations of ref. [75] (dashed lines). The
dotted lines for the stop contributions correspond the combined limit of large top and SUSY masses.

6.3 The photonic decay A → γγ

The virtual SUSY-QCD corrections to the photonic decay width of A→ γγ emerge from
the first four diagrams of figure 5 after adjusting the related coupling and color factors and
replacing the two external gluons by photons. The normalized coefficient of the SUSY-QCD
corrections with and without absorption of the ∆t,b terms is shown in figures 13 and 14 for
two values of tgβ = 10, 40. As in the gluonic case the ∆t and ∆b contributions determine
the dominant part of the SUSY-QCD corrections that can be absorbed in the effective top
and bottom Yukawa couplings of eq. (5.35). The SUSY-QCD remainder turns out to be
small apart from the regions closer to the virtual stop and sbottom thresholds. The partial
decay widths of A→ γγ are shown in figure 15 for the different levels of perturbative orders.
The LO and NLO QCD corrected widths are shown in blue, while the approximate and full
SUSY-QCD-corrected ones are displayed in red. As in the previous cases it is clearly visible
that the bulk of the genuine SUSY-QCD corrections can be absorbed by the corresponding
effective top and bottom Yukawa couplings leaving a sizeable SUSY-remainder in regions
only where squark-mass effects become relevant. The extended peaking structure around a
pseudoscalar mass of 2TeV originates from the two chargino thresholds that are not affected
by corrections due to strong interactions. It should be noted that the same corrections are
valid for the reverse process γγ → A as well, which could be probed at a potential future
high-energy γγ-collider.
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Figure 14. The same as figure 13, but for tgβ = 40.
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Figure 15. The partial decay width of A → γγ for two values of tgβ = 10, 40 in the M125
h

benchmark scenario at LO and NLO QCD (blue) and including the genuine SUSY-QCD corrections
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7 Conclusions

We have calculated the full SUSY-QCD corrections to pseudoscalar Higgs-boson production
via gluon fusion gg → A within the MSSM at hadron colliders. We implemented the
virtual stop and sbottom sector at the NLO level to be in line with the necessities for the
corresponding scalar Higgs-boson production cross sections via gluon fusion gg → h,H.
We have analyzed pseudoscalar Higgs-boson production with respect to the introduction
of effective low-energy top and bottom Yukawa couplings, i.e. the couplings within the
low-energy 2HDM after integrating out the strongly interacting SUSY particles (stops,
sbottoms and gluinos). We found that the bulk of the NLO corrections can be absorbed
in these effective Yukawa couplings, while the SUSY-remainder is of moderate size, being
significant close or above virtual squark thresholds. We have analyzed the corrections
in the context of the Adler-Bardeen theorem and found that this theorem is fulfilled in
the large SUSY-mass limit, if the observable is expressed in terms of properly matched
low-energy parameters, i.e. top- and bottom-Yukawa couplings. The analogous results have
also been obtained for the related rare pseudoscalar Higgs-boson decays A→ gg, γγ that,
however, only play a minor role in phenomenological analyses at hadron colliders. This work
completes the full NLO QCD calculation for pseudoscalar MSSM Higgs production and
decay into gluonic and photonic final states and thus serves as a basis for the corresponding
theoretical predictions.
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