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1 Introduction

One of the ultimate goals of quantum field theory is to obtain exact results, including non-
perturbative effects. In recent decades, significant progress has been made in understanding
the non-perturbative nature of quantum field theory. Starting with the seminal work by
Seiberg and Witten [1, 2], deep insights have been gained into supersymmetric theories
with eight supercharges. In particular, Nekrasov performed the first instance of supersym-
metric localization for instanton partition functions [3], providing exact results for certain
observables in the Seiberg-Witten theory, such as the low-energy effective prepotential.

More remarkably, the fixed points of equivariant actions on the instanton moduli spaces
are classified by a set of Young diagrams, and the partition function is expressed as a sum
over Young diagrams. Nekrasov’s exact result has far-reaching consequences in both physics
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and mathematics. For example, the expression as a sum over Young diagrams is important
because it provides a connection to the topological vertex [4–6]. It is also particularly useful
in the context of the AGT relation [7], where the instanton partition function is identified
with conformal blocks of a 2d CFT.

These developments were exclusively made in the gauge groups of A type until recent
years. However, closed-form expressions of the unrefined instanton partition functions for
pure Yang-Mills theory with gauge groups of BCD type were recently obtained as sums
over Young diagrams [8]. Additionally, the connection to the topological vertex [9] of an
O5-plane was uncovered.

In this paper, we push forward the research direction in [8], aiming to obtain unrefined
instanton partition functions with a hypermultiplet beyond the fundamental representa-
tion as sums over 2d and 4d Young diagrams. We combine two approaches to studying
5d supersymmetric gauge theories with matters beyond the fundamental representation.
The first approach is the ADHM description, which has been studied in previous works
such as [10–14]. The second approach is the fivebrane construction, which has been ex-
tensively studied in [15–26]. Our main results are as follows: first, we demonstrate that
the poles of the JK residue integral arising from the ADHM descriptions can be classified
by 2d and 4d Young diagrams in the unrefined limit. Second, we verify identities of the
instanton partition functions predicted by Higgsing procedures of fivebrane web diagrams
and representation theory.

The paper is structured as follows. In section 2, we investigate the SU(N) gauge
theory with (anti-)symmetric hypermultiplet, and we represent the unrefined instanton
partition functions as sums over 2d Young diagrams. In section 3, we study the SO(N)
gauge theory with (conjugate) spinor hypermultiplet and similarly express the unrefined
instanton partition functions as sums over 2d Young diagrams. In section 4, we consider
the N = 1∗ SO(N) gauge theory, and in section 5, we investigate the Sp(N) gauge theory
with antisymmetric hypermultiplet. In these latter cases, the unrefined instanton partition
functions are represented as sums over 4d Young diagrams. In all of these cases, we verify
the identities of the instanton partition functions predicted by Higgsing of fivebrane webs
and representation theory.

2 SU(N) gauge group with (anti-)symmetric hypermultiplet

The instanton partition function can be obtained from the equivariant Chern characters of
the universal bundle E over the instanton moduli space [3]. Let p be a generic element of
the equivariant torus action on the universal bundle E . The equivariant Chern characters
for (rank-two) symmetric and antisymmetric representations of SU(N) can be obtained by

Chsym
p (E) = Chp

(
Sym2E

)
= 1

2
[
(Chp(E))2 + Chp2(E)

]
,

Chant
p (E) = Chp

(
∧2E

)
= 1

2
[
(Chp(E))2 − Chp2(E)

]
.
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The equivariant index of the Dirac operator on the universal bundle takes the following
form

Indq =
∑
α

εαewa =
∫
C2

Chq(E)Tdq
(
C2
)
t
.

Then, the contributions to the integrands of the 5d instanton partition function can be
read off by mapping ∑

α

εαewα 7→
∏
α

shεα(wα) .

We refer the reader to [3, 11, 27] for the details. Note that we use the notation that

sh(x) := e
x
2 − e−

x
2 , ch(x) := e

x
2 + e−

x
2 . (2.1)

In this way, we can write down the contour integral expressions of the instanton par-
tition functions

Zrep
SU(N),k,κ = 1

k!2k
∮

JK

k∏
I=1

dφI
2πi · e

κ
∑k

I=1 φIIvec
SU(N),kI

rep
SU(N),k (2.2)

where the integrands are given by

Ivec
SU(N),k =

∏
I 6=J sh(φI − φJ) ·

∏
I,J sh(2ε+ − φI + φJ)∏

I,J sh(ε1,2 + φI − φJ)
∏k
I=1

∏N
s=1 sh(ε+ ± (φI − as))

I fund
SU(N),k(m) =

k∏
I=1

sh(φI +m)

Isym
SU(N),k(m) =

k∏
I=1

sh (2φI +m± ε−)
N∏
s=1

sh (φI + as +m)
k∏

I<J

sh (φI + φJ +m± ε−)
sh (−ε+ ± (φI + φJ +m))

Ianti
SU(N),k(m) =

k∏
I=1

∏N
s=1 sh (φI + as +m)

sh (−ε+ ± (2φI +m))

k∏
I<J

sh (φI + φJ +m± ε−)
sh (−ε+ ± (φI + φJ +m)) . (2.3)

Note that κ is the 5d Chern-Simons level. For a gauge group SU(2N +1), the level κ needs
to be a half-odd-integer due to the parity anomaly associated with the (anti-)symmetric
matter. The residue computation is carried out by the Jeffrey-Kirwan prescription [28,
29]. With (anti-)symmetric hypermultiplet, it is difficult to classify poles fully and obtain
closed-form expressions at the refined level. Nonetheless, one can check that the following
isomorphisms of representations of gauge Lie algebras1

(su(4),AS) ∼= (so(6),V) −→ Zanti
SU(4),k,κ=0 = Zvect

SO(6),k , (2.4)

(su(3),AS) ∼= (su(3),F) −→ Zanti
SU(3),k,κ= 1

2
(m) = Z fund

SU(3),k,κ= 1
2
(m→ −m) .

1We perform the following change of variables on the Coulomb branch parameters of the instanton
partition function from the orthogonal basis of SU(4) to that of SO(6):

A1 → (A1A2A3)
1
2 , A2 → (A1A

−1
2 A−1

3 )
1
2 , A3 → (A−1

1 A2A
−1
3 )

1
2 , A4 → (A−1

1 A−1
2 A3)

1
2 .
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Figure 1. (Left-panel) SU(4) gauge theory with a symmetric hypermultiplet. (Right-panel) SU(4)
gauge theory with an anti-symmetric hypermultiplet.

We verify these identities up to 4-instanton by performing JK residues explicitly at the
refined level.

In [16], 5d SU(N) gauge theory with one (anti-)symmetric hypermultiplet is con-
structed from fivebranes with an O7-plane in Type IIB theory. (See figure 1.) Once we
align D5-branes in the brane configuration with an O7+-plane (symmetric hypermultiplet),
we can higgs the middle NS5-brane, yielding the brane configuration for pure SO(N) gauge
theory. This operation can be seen at the level of the instanton partition functions as

Zsym
SU(N),2k,κ= 1

2 (N mod 2)(aN−i+1 = −ai,m = ε+) = (−1)k(N+1)Zpure
SO(N),k . (2.5)

Note that 2k-instanton on the left-hand side coincides with k-instanton on the right-hand
side. Also, when N is odd, we set aN+1

2
= 0 in the left-hand side.

Similarly, we can perform the same operation on the brane configuration with an O7−-
plane (anti-symmetric hypermultiplet), which results in the brane configuration for pure
Sp(N) gauge theory. This operation amounts to the identities of the instanton partition
functions

Zanti
SU(2N),k,κ=N mod 2(aN−i+1 = −ai,m = ε+) = (−1)k(N+1)+d k2 eZpure

Sp(N),k,θ=0 ,

Zanti
SU(2N),k,κ=N+1 mod 2(aN−i+1 = −ai,m = ε+) = (−1)k(N+1)+d k2 eZpure

Sp(N),k,θ=π ,
(2.6)

where the discrete θ-angle of the Sp(N) theory is determined by the Chern-Simons level
and the rank of the gauge group.

Although pole classification is hard at the refined level, non-trivial JK-poles are classi-
fied by N -tuples ~λ = (λ(1), . . . , λ(N)) of 2d Young diagrams with the total number of boxes∑N
s=1 |λ(s)| = k in the unrefined limit ε1 = −ε2 = ~. We specify a pole location associated

with a content x = (x1, x2) ∈ λ(s) as

φs(x) = as + (x1 − x2)~ . (2.7)

By writing the Nekrasov factor [3]

Ns,t(x) := as − at − ~(aλ(s)(x) + lλ(t)(x) + 1) , (2.8)
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the residue sum for a symmetric hypermultiplet is expressed as

Zsym
SU(N),k,κ

= (−1)kN+d k2 e
∑
~λ

N∏
s=1

∏
x∈λ(s)

eκφs(x) sh(2φs(x) +m± ~) ·
∏N
t=1 sh(φs(x) + at +m)∏N

t=1 sh2(Ns,t(x))

×
N∏
s≤t

∏
x∈λ(s),y∈λ(t)

x<y

sh(φs(x) + φt(y) +m± ~)
sh2(φs(x) + φt(y) +m)

(2.9)

Here we define a total ordering on the boxes of 2d Young diagrams:

λ(s) 3 x < y ∈ λ(t) if


s < t

s = t, x1 < y1

s = t, x1 = y1, x2 < y2

. (2.10)

Once we take the specialization (2.5) at the unrefined level, we obtain an expression as a
Young diagram sum for the pure SO(N) instanton partition function, which is different
from the one in [8].

For an anti-symmetric matter, the JK-poles are classified by (N + 4)-tuples of 2d
Young diagrams with the total number of boxes

∑N+4
s=1 |λ(s)| = k where the four additional

effective Coulomb branch parameters are

aN+j = −m2 (+πi) , ~−m
2 (+πi) , (2.11)

for j = 1, 2, 3, 4. Then, the residue sums are expressed as

Zanti
SU(N),k,κ(AN+1 = e

m
2 , AN+2 = −e

m
2 , AN+3 = e−

~−m
2 , AN+4 = −e−

~−m
2 )

= (−1)kN+d k2 e
∑
~λ

Canti
~λ, ~A

N+4∏
s=1

∏
x∈λ(s)

eκφs(x) sh2(2φs(x) +m− ~) ·
∏N
t=1 sh(φs(x) + at +m)∏N+4

t=1 sh2(Ns,t(x))

×
N+4∏
s≤t

∏
x∈λ(s),y∈λ(t)

x<y

sh(φs(x) + φt(y) +m± ~)
sh2(φs(x) + φt(y) +m)

(2.12)

where φs(x) and Ns,t(x) are given in (2.7) and (2.8). Here, the non-trivial multiplicity
constants

Canti
~λ, ~A

=
N+4∏
s=N+1

Canti
λ(s),As

. (2.13)

are involved due to higher-order poles coming from the additional effective Coulomb branch
parameters (2.11). These multiplicity constants are in principle determined by the orders
of poles and the determinant of JK vectors that define a cone. Here we conjecture these
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constants as follows: Canti
λ(s)=∅,As = 1, and

λ(s) =
j

j

j is the number of rows with λ
(s)
i ≥ i

 Canti
λ(s),As=±e−

m
2

= (−2)j

λ(s) =
j

j + 1

j is the number of rows with λ
(s)
i ≥ i+ 1

 Canti
λ(s),As=±e−

~−m
2

= (−2)j

(2.14)

Once we take the specialization (2.6) at the unrefined level, we obtain an expression as
Young diagram sums for the pure Sp(N) instanton partition function (both θ = 0 and
θ = π), which takes a different presentation from the one in [8].

Since the relation to the instanton partition functions for gauge groups of BCD comes
from the fivebrane webs with an O7-plane here, the difference in the expressions of the
partition functions from [8] may be due to the distinction between O7-planes and O5-
planes in the topological vertex formalism. Further investigation from this perspective
could be worthwhile.

The relationship between the instanton partition functions for the symmetric and an-
tisymmetric hypermultiplet, as viewed from the perspective of fivebrane systems with an
O-plane, will be explored in the upcoming work [30]. This will also help to deepen our
understanding of the additional Coulomb branch parameters (2.11) and the multiplicity
coefficients (2.14).

3 SO(n) gauge group with spinor hypermultiplet

A Type IIB brane configuration for a hypermultiplet in the spinor representation of a 5d
SO(n) gauge theory is given in [17] by using O5-planes. To introduce two hypermultiplets
in the spinor representation, a “leg” fivebrane needs to be introduced on the right side.
For instance, we draw the fivebrane diagrams for SO(7) gauge group with one spinor, and
SO(8) gauge theory with spinor and conjugate spinor in figure 2. As the figures show, the
diagram for a hypermultiplet in the (conjugate) spinor representation can be intuitively
interpreted as the “Sp(0)” gauge theory. In other words, roughly speaking, the theory can
be regarded as an “SO(n)-Sp(0) quiver” gauge theory.

Instantons are created by D1-branes that are suspended by fivebranes in the middle.
On the other hand, hypermultiplet particles in the spinor representation are created by
D1’-branes that are suspended by “leg” fivebranes. As illustrated in figure 3, for SO(n)
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Õ5
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Õ5
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Õ5
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O5+ O5− O5+O5− O5−

Figure 2. (Left-panel) SO(7) gauge theory with a spinor matter. (Right-panel) SO(8) gauge theory
with spinor and conjugate spinor matters.

n = 7, 8n > 8 n < 7

Figure 3. D1’-branes (blue) create hypermultiplet particles in the spinor representation.

gauge theory with n ≤ 6, the “leg” fivebranes do not intersect. For n = 7, 8, the two “leg”
fivebranes are parallel to each other. In fact, from this viewpoint of quantum mechanics on
D1-D1’-branes, the SO(n) instanton moduli spaces with spinor matter are described using
the ADHM approach in [20]. The results are reviewed in appendix B.

When k D1-branes create k instantons and j D1’-branes create j hypermultiplet par-
ticles, we can view the system as Sp(k)-O(j) quiver gauge theory from the perspective
of quantum mechanics on the D1-D1’-branes. (See figures 6 and 7.) The gauge group
O(j) has two connected components, O(j)±, which leads to generally two contributions,
Z

SO(n)
k,j,± , to the partition function for a (conjugate) spinor matter. These contributions can

be obtained by performing JK residue integrals, as detailed in appendix B. However, for
n = odd, ZSO(n)

k,even,− and Z
SO(n)
k,odd,+ vanish due to fermionic zero modes. The full partition

function for a spinor hypermultiplet can still be written as

Zspinor
full,SO(n) =

∞∑
k,j=0

qke−jm
Z

SO(n)
k,j,+ + Z

SO(n)
k,j,−

2 (3.1)

where m is the mass of the hypermultiplet. On the other hand, for a conjugate spinor
hypermultiplet, the full partition function is

Zconj
full,SO(n) =

∞∑
k,j=0

qke−jm(−1)j
Z

SO(n)
k,j,+ + (−1)sign(j)Z

SO(n)
k,j,−

2 (3.2)

where sign(j) = 0 for j = 0, and sign(j) = 1 for j > 0. For n < 9, the full partition
function Zfull contains not only instanton contributions, but also spurious contributions.

As analyzed in [20], to extract genuine instanton contributions, we must remove spu-
rious contributions. Below, we focus only on the spinor hypermultiplet, but the story is
parallel for the conjugate spinor (just insert appropriate signs as in (3.2)). For n ≤ 6, the
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partition function at k = 0 is given by

∞∑
j=0

e−jm
Z

SO(n)
0,j,+ + Z

SO(n)
0,j,−

2 = Zpert ≡ PE

e−mZSO(n)
0,1,+ + Z

SO(n)
0,1,−

2

 (3.3)

where PE is the plethystic exponent (A.1). Consequently, the full partition function fac-
torizes as

Zspinor
full,SO(n) = Ẑspinor

SO(n)(q, ε1,2,m)Zpert(ε1,2,m) (3.4)

where we extract the genuine instanton contribution

Ẑspinor
SO(n)(q, ε1,2,m) =

∞∑
k=0

qkẐspinor
SO(n),k(ε1,2,m) , Ẑspinor

SO(n),k(ε1,2,m) =
∞∑
j=0

e−jmẐspinor
SO(n),k,j .

(3.5)
For the cases of n ≤ 6, the contributions from hypermultiplet particles more than instanton
numbers vanish as Ẑk,j = 0 for j > k for both the spinor and the conjugate spinor.

For n = 7, 8, the partition function at k = 0 is given by

∞∑
j=0

e−jm
Z

SO(n)
0,j,+ + Z

SO(n)
0,j,−

2 = ZpertZextra (3.6)

= PE

e−mZSO(n)
0,1,+ + Z

SO(n)
0,1,−

2

PE
[
−1

2e
−2m ch 2ε+

sh ε1,2

]
,

where Zextra is the contribution from D1’-branes running away along the two parallel five-
branes. (See the middle of figure 3.) Thus, the full partition function factorizes as

Zspinor
full,SO(n) = Ẑspinor

SO(n)(q, ε1,2,m)Zpert(ε1,2,m)Zextra (ε1,2,m) , (3.7)

where Ẑspinor
SO(n)(q, ε1,2,m) takes the form (3.5). In the cases of n = 7, 8, for both the spinor

and the conjugate spinor, the instanton partition functions are subject to Ẑk,2k−n = Ẑk,n
so that Ẑk,j = 0 for j > 2k.

For n ≥ 9, we cannot express the contribution purely from the hypermultiplet in the
form of a plethystic exponent, unlike in previous examples (3.3) and (3.6). This is because
the leg fivebranes meet at a certain point in this case. Such a fivebrane configuration has
been studied in [24]. However, we believe that the full partition functions (3.1) and (3.2)
can still be applied to these fivebrane web configurations even for n ≥ 9, although we leave
a more detailed investigation of this issue for future work.

As we learned in [8], the instanton partition function of pure Yang-Mills theory for
gauge groups of BCD type can be written as sums over 2d Young diagrams at the unrefined
level. Since the SO(n) theory with a spinor matter can be roughly regarded as an “SO(n)-
Sp(0) quiver” gauge theory, we expect that its instanton partition function can also be
expressed as a sum over 2d Young diagrams in the unrefined limit. In the following, we
will demonstrate that this is indeed the case. Moreover, we can generalize the method in
this section to the SO-Sp linear quiver gauge theories.
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3.1 SO(2N + 1) with one spinor

The integral expressions for the partition functions are given in appendix B.1. For a gauge
group of B type, the contributions from O(2`)− and O(2` + 1)+ sectors vanish due to
fermionic zero modes. As a result, we have a single contribution, ZSO(2N+1)

k,j , for each
hypermultiplet particle number j. This is another way to see that there is no distinction
between the spinor representation and its conjugate for SO(n) with odd n.

As in [8] and we also discussed below (2.12), there are four effective Coulomb branch
parameters so that even the “Sp(0)” gauge theory contributes to the unrefined partition
function. Hence, for ZSO(2N+1)

k,2`(+1) , the non-trivial JK poles in the unrefined limit are classified
(N + 4)-tuples ~λ of 2d Young diagrams where the numbers of boxes are subject to

N∑
s=1
|λ(s)| = k ,

N+4∑
s=N+1

|λ(s)| = ` . (3.8)

The JK residue sums are expressed as

Z
SO(2N+1)
k,2` (AN+1=q 1

2 ,AN+2=−q 1
2 ,AN+3=1,AN+4=−1;q)=(−1)k+`

×
∑
~λ

CSp
~λ, ~A

N∏
s=1

∏
x∈λ(s)

sh42φs(x)

sh2(φs(x))
N∏
t=1

sh2(Ns,t(x))sh2(φs(x)+at)

N∏
s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N+4∏
s=N+1

∏
x∈λ(s)

sh2(φs(x))sh4(2φs(x))
N∏
t=1

sh(±φs(x)+at)

N+4∏
t=N+1

sh2(Ns,t(x))sh2(φs(x)+at)

N+4∏
N+1≤s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N∏
s=1

∏
x∈λ(s)

N+4∏
t=N+1

∏
y∈λ(t)

sh(~±φs(x)±φt(y))
sh(±φs(x)±φt(y)) (3.9)

Z
SO(2N+1)
k,2`+1 (AN+1=q 1

2 ,AN+2=−q 1
2 ,AN+3=1,AN+4=−q;q)=(−1)k+`+1

∏3
t=1chat
sh2~

×
∑
~λ

CSp
~λ, ~A

N∏
s=1

∏
x∈λ(s)

sh42φs(x)

sh2(φs(x))
N∏
t=1

sh2(Ns,t(x))sh2(φs(x)+at)

N∏
s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N+4∏
s=N+1

∏
x∈λ(s)

sh2(φs(x))sh4(2φs(x))
N∏
t=1

sh(±φs(x)+at)

N+4∏
t=N+1

sh2(Ns,t(x))sh2(φs(x)+at)

N+4∏
N+1≤s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N∏
s=1

∏
x∈λ(s)

N+4∏
t=N+1

∏
y∈λ(t)

sh(~±φs(x)±φt(y))
sh(±φs(x)±φt(y))

ch(~±φs(x))
ch(±φs(x)) (3.10)

where φs(x) and Ns,t(x) are given in (2.7) and (2.8), and CSp
~λ, ~A

is a constant

CSp
~λ, ~A

=
N+4∏
s=N+1

CSp
λ(s),As

. (3.11)
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These coefficients are the same as those that appear in the pure Sp(N) instanton partition
function in [8]: Cλ(s)=∅,As = 1, and

CSp
λ(s),As=±1,±q

1
2

= 22j−1(2j−1
j−1

) where j is the number of rows with λ(s)
i ≥ i ,

CSp
λ(s),As=±q

= 22j(2j+1
j

) where j is the number of rows with λ(s)
i ≥ i+ 1 .

(3.12)

(See also (2.14) for the illustration by Young diagrams.) Note that these multiplicity
coefficients are still conjectural.

As a simple check, we can compare the result with [20, (2.29)], which are obtained
from SU(4) instanton partition function by ingenious representation theoretic methods.
We check the match upto 5-instanton.

New formula of G2 instanton. Higssing of SO(7)+1S leads to pure G2 gauge theory [8,
20, 21]. Therefore, if we set m = 0, A3 = A1A2 in the instanton partition function of
SO(7) + 1S, we obtain a new formula of G2 instanton partition function. We check it
against [8, 20, 21] upto 4-instanton.

3.2 SO(2N) with one (conjugate) spinor

The integral expressions of the partition functions are written in appendix B.2. For a
gauge group of D type, the two sectors from O(j)± make non-trivial contributions. This
is another way to see that the spinor representation and its conjugate are not isomorphic
for SO(n) for general even n.

Hence, the non-trivial JK poles in the unrefined limit are classified (N + 4)-tuples ~λ of
2d Young diagrams where the numbers of boxes for ZSO(2N)

k,2`,+ and ZSO(2N)
k,2`+1,± are subject to

N∑
s=1
|λ(s)| = k ,

N+4∑
s=N+1

|λ(s)| = ` , (3.13)

whereas those for ZSO(2N)
k,2`,− is required to be

N∑
s=1
|λ(s)| = k ,

N+4∑
s=N+1

|λ(s)| = `− 1 . (3.14)

Then, using the multiplicity coefficients in (3.12), the JK residue sum of each sector is
expressed as

Z
SO(2N)
k,2`,+ (AN+1 = q

1
2 ,AN+2 =−q 1

2 ,AN+3 = 1,AN+4 =−1;q) = 2sign(`)

×
∑
~λ

CSp
~λ, ~A

N∏
s=1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh2(Ns,t(x)) sh2(φs(x)+at)

N∏
s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)
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×
N+4∏
s=N+1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh(±φs(x)+at)

N+4∏
t=N+1

sh2(Ns,t(x)) sh2(φs(x)+at)

N+4∏
N+1≤s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N∏
s=1

∏
x∈λ(s)

N+4∏
t=N+1

∏
y∈λ(t)

sh(~±φs(x)±φt(y))
sh(±φs(x)±φt(y)) (3.15)

Z
SO(2N)
k,2`,− (AN+1 = q

1
2 ,AN+2 =−q 1

2 ,AN+3 = q,AN+4 =−q;q) =
[

(−1)k2
∏N
s=1 sh(2as)

sh2(~)sh2(2~)

]sign(`)

×
∑
~λ

CSp
~λ, ~A

N∏
s=1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh2(Ns,t(x)) sh2(φs(x)+at)

N∏
s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×

[
N+4∏
s=N+1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh(±φs(x)+at)

N+4∏
t=N+1

sh2(Ns,t(x)) sh2(φs(x)+at)

N+4∏
N+1≤s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N∏
s=1

∏
x∈λ(s)

sh(2~±2φs(x))
sh2(2φs(x))

N+4∏
t=N+1

∏
y∈λ(t)

sh(~±φs(x)±φt(y))
sh(±φs(x)±φt(y))

]sign(`)

(3.16)

Z
SO(2N)
k,2`+1,+(AN+1 = q

1
2 ,AN+2 =−q 1

2 ,AN+3 = q,AN+4 =−1;q) = (−1)k+1
∏N
s=1 sh(as)
sh2(~)

×
∑
~λ

CSp
~λ, ~A

N∏
s=1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh2(Ns,t(x)) sh2(φs(x)+at)

N∏
s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N+4∏
s=N+1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh(±φs(x)+at)

N+4∏
t=N+1

sh2(Ns,t(x)) sh2(φs(x)+at)

N+4∏
N+1≤s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N∏
s=1

∏
x∈λ(s)

sh(~±φs(x))
sh2(φs(x))

N+4∏
t=N+1

∏
y∈λ(t)

sh(~±φs(x)±φt(y))
sh(±φs(x)±φt(y)) (3.17)

Z
SO(2N)
k,2`+1,−(AN+1 = q

1
2 ,AN+2 =−q 1

2 ,AN+3 = 1,AN+4 =−q;q) =−
∏N
s=1 ch(as)
sh2(~)

×
∑
~λ

CSp
~λ, ~A

N∏
s=1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh2(Ns,t(x)) sh2(φs(x)+at)

N∏
s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)
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×
N+4∏
s=N+1

∏
x∈λ(s)

sh4(2φs(x))
N∏
t=1

sh(±φs(x)+at)

N+4∏
t=N+1

sh2(Ns,t(x)) sh2(φs(x)+at)

N+4∏
N+1≤s≤t

∏
x∈λ(s)

y∈λ(t)

x<y

sh4(φs(x)+φt(y))
sh2(φs(x)+φt(y)±~)

×
N∏
s=1

∏
x∈λ(s)

ch(~±φs(x))
ch2(φs(x))

N+4∏
t=N+1

∏
y∈λ(t)

sh(~±φs(x)±φt(y))
sh(±φs(x)±φt(y)) (3.18)

3.3 Isomorphisms of representations

In the cases of SO(4), SO(5) and SO(6), the (conjugate) spinor representation is isomorphic
to the fundamental representation of SU(2) × SU(2), Sp(2) and SU(4), respectively. This
can be seen at the level of the unrefined instanton partition functions as follows, and we
check the following identities up to 5-instanton.

• (so(4), S) ∼= (su(2)⊕ su(2),F⊕ ∅).

Ẑspinor
SO(4) = Z fund

SU(2),κ= 1
2
(A→

√
A1A2, q→ −qM−1/2)Zpure

SU(2),κ=0

(
A→

√
A1
A2

)
ZU(1) , (3.19)

• (so(4),C) ∼= (su(2)⊕ su(2), ∅ ⊕ F).

Ẑconj
SO(4) = Zpure

SU(2),κ=0(A→
√
A1A2)Z fund

SU(2),κ= 1
2

(
A→

√
A1
A2
, q→ −qM−1/2

)
ZU(1) , (3.20)

• (so(5), S) ∼= (sp(2),F).

M
k
2 Ẑspinor

SO(5),k = Z fund
Sp(2),k

(
A1 →

√
A1A2, A2 →

√
A1
A2

)
, (3.21)

• (so(6), S) ∼= (su(4),F).

M
k
2 Ẑspinor

SO(6),k = (−1)kZ fund
SU(4),k,κ= 1

2
. (3.22)

• (so(6),C) ∼= (su(4),F).

M
k
2 Ẑconj

SO(6),k = Z fund
SU(4),k,κ=− 1

2
(M →M−1) . (3.23)

Note that the U(1) factor is given by

ZU(1) = PE
[
− q ch ε+

2 sh ε1,2

]
. (3.24)

Also, we need to shift the 5d Chern-Simons level by ±1
2 for SU(N) gauge theory with one

fundamental because of the parity anomaly.
In particular, (3.21) implies that the top (j = k) and bottom (j = 0) components of

the hypermultiplet particles are equal to

Ẑ
SO(5)
k,0 = Zpure

Sp(2),k,θ=0

(
A1 →

√
A1A2, A2 →

√
A1
A2

)
,

Ẑ
SO(5)
k,k = Zpure

Sp(2),k,θ=π

(
A1 →

√
A1A2, A2 →

√
A1
A2

)
.

(3.25)
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Also, (3.22) and (3.23) indicate that

Ẑ
SO(6)
k,0 = (−1)kZpure

SU(4),k,κ=0 , Ẑ
SO(6)
k,k = Zpure

SU(4),k,κ=1 . (3.26)

Certainly, of most importance is the triality of SO(8). The SO(8) instanton partition
functions enjoy the triality [31]

(so(8),S)

(so(8),V) (so(8),C)

c.o.v.c.o.v.

c.o.v.

where the change of variables for the instanton partition functions is given by

A1 →
√
A1A2A3A4 , A2 →

√
A1A2
A3A4

, A3 →
√
A1A3
A2A4

, A4 →
√
A2A3
A1A4

(3.27)

We check the triality upto 5-instanton.

4 SO(n) N = 1∗ theory

The maximally supersymmetric 5d SO(n) gauge theory can be realized as a worldvolume
theory on D4-branes with an O4−-plane in Type IIA theory. The scalar field in the adjoint
(antisymmetric) hypermultiplet represents the fluctuation of a D4-brane along the trans-
verse direction to its worldvolume. When we turn on the Ω-background transverse to the
D4-branes/O4-plane, the adjoint hypermultiplet acquires a mass, giving rise to the SO(n)
N = 1∗ theory.

The equivariant index for the adjoint hypermultiplet is described in detail in [11].
The integrand of the JK residue integral for the instanton partition function of the SO(n)
N = 1∗ theory is given by

Iadj
SO(n),k= 1

k!2k

k∏
I=1

sh(2ε+)sh(±2φI)sh(±2φI+2ε+)
sh(ε1,2)shχ(ε+±φI)

∏bn
2 c

s=1 sh(±φI±as+ε+)

k∏
I<J

sh(±φI±φJ)sh(±φI±φJ+2ε+)
sh(±φI±φJ+ε1,2)

·
k∏
I=1

sh(±m−ε−)shχ(m±φI)
∏bn

2 c
s=1 sh(±φI±as+m)

sh(±m−ε+)sh(±2φI±m−ε+)

k∏
I<J

sh(±φI±φJ±m−ε−)
sh(±φI±φJ±m−ε+) (4.1)

where n ≡ χ mod 2.
At the unrefined level, ~ and m play a similar role in the JK residue integral. This is

natural because they are the parameters for the Ω-background. Indeed, poles are classified
by (bn2 c+ 4)-tuples of 4d young diagrams with the total number of boxes k. We specify a
pole location associated with a content x = (x1, x2, x3, x4) ∈ λ(s) as

φs(x) = as + (x1 − x2)~ + (x3 − x4)m. (4.2)

Note that as (s = 1, . . . , bn2 c) are the Coulomb branch parameters of the SO(n) gauge
theory. Similarly to (2.11), the other four effective Coulomb branch parameters are given by

abn2 c+j = m

2 (+πi) , ~−m
2 (+πi) , (4.3)
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for j = 1, 2, 3, 4. For the purpose of later use, we define

Z̃k( ~A;q) =
∑
~λ

C4d
~λ, ~A

(
sh(m±~) sh2(0)
sh2(~) sh2(m)

)k
(4.4)

×
‖~λ‖∏
s=1

∏
x∈λ(s)

sh4(2φs(x)) sh2(2φs(x)+m−~) sh2(2φs(x)−m+~)
∏N

t=1 sh(φs(x)±at±m)∏‖~λ‖
t=1 sh2(φs(x)±at)

×
‖~λ‖∏
s≤t

∏
x∈λ(s),y∈λ(t)

x<y

sh4(φs(x)±φt(y)) sh(φs(x)±φt(y)±m±~)
sh2(φs(x)±φt(y)±~) sh2(φs(x)±φt(y)±m)

where ‖~λ‖ is the number of 4d Young diagrams in ~λ, and the total ordering on the boxes
is the natural extension of (2.10). In this case, ‖~λ‖ = bn2 c+ 4, and the instanton partition
function is

Zadj
SO(n),k = Z̃k( ~A,AN+1 = e−

m
2 , AN+2 = −e−

m
2 , AN+3 = e−

~−m
2 , AN+4 = −e−

~−m
2 ; q)

(4.5)
where N = bn2 c. As in (2.13), the non-trivial multiplicity constants are involved due to
higher-order poles coming from the additional effective Coulomb branch parameters (4.3).
We do not know how to determine these multiplicity constants for general 4d Young dia-
grams. However, some of the multiplicity constants C4d

~λ, ~A
are listed in appendix C.

Since the adjoint representation 6 of so(4) is isomorphic to the direct sum (3, 1)⊕(1, 3)
of the adjoint representations of su(2)⊕su(2), we have the following identity at the unrefined
level

Zadj
SO(4)(A1, A2,M) = Zadj

SU(2)(A = (A1A2)
1
2 ,M)Zadj

SU(2)(A = (A1/A2)
1
2 ,M)Zextra (4.6)

where
Zextra = PE

[
q(2 + 3M + 2M2)(q −M)(1−Mq)

(1− q)M(1 +M)2(1− q)2

]
. (4.7)

Also, the adjoint representation of so(6) is isomorphic to that of su(4), which leads to

Zadj
SO(6)(A1, A2, A3,M) = Zadj

SU(4)(A1, A2, A3,M)Z ′extra (4.8)

where
Z ′extra = PE

[
q(1 +M +M2)(q −M)(1−Mq)

(1− q)M(1 +M)2(1− q)2

]
. (4.9)

We check these identities upto 5-instanton.

5 Sp(N) gauge group with antisymmetric hypermultiplet

If we replace the O4−-plane by an O8−-plane in the brane configuration described in the
previous section, the gauge group becomes Sp(N), and the fluctuation of a D4-brane along
the transverse directions to its worldvolume on the O8−-plane describes the scalar field in
the antisymmetric hypermultiplet. Hence, the D4-O8− system in Type IIA theory gives
rise to the Sp(N) gauge theory with the antisymmetric hypermultiplet.
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This brane system has close connections to Type I’ theory. From the viewpoint of
Type I’ theory, the instanton quantum mechanics is described in [12, appendix D]. Using
the instanton quantum mechanics, we can write down the instanton partition functions as
JK contour integral formulas [11, 12, 14]. The results are summarized in appendix B.3.

Again, the gauge group O(k) of the instanton quantum mechanics has two components,
which results in two contributions Zanti

Sp(N),k,± to the partition function. Then, the θ-angle
can be distinguished through the following equations:

Zanti
Sp(N),k,θ=0 =

Zanti
Sp(N),k,+ + Zanti

Sp(N),k,−
2 , Zanti

Sp(N),k,θ=π = (−1)k
Zanti

Sp(N),k,+ − Z
anti
Sp(N),k,−

2 .

(5.1)
In the unrefined limit, the JK poles are classified using 4d Young diagrams, and a pole

location at a content x ∈ λ(s) is as in (4.2). Additionally, all the residues can be expressed
in a single universal formula, as shown in (4.4). This is similar to the relationship between
the instanton partition functions of pure Yang-Mills theory for SO(n) and Sp(N) gauge
groups [8]. This relationship still holds when including an antisymmetric hypermultiplet.
However, there are more effective Coulomb branch parameters than (4.5), depending on
the instanton number and plus/minus sector:

• (even,+) sector.
Zanti

Sp(N),k=2`,+ = Z̃`( ~A; q) (5.2)

where there are 8 additional effective Coulomb branch parameters (j = 1, . . . , 8)

aN+j = ~
2(+πi) , m2 (+πi) , ~−m

2 (+πi) , 0(+πi) .

• (odd,+) sector.

Zanti
Sp(N),k=2`+1,+ = 1

2 sh2(~) sh2(m)

N∏
t=1

sh(at ±m)
sh2(at)

‖~λ‖∏
s=1

∏
x∈λ(s)

sh(φs(x)±m±~)Z̃`( ~A; q) (5.3)

where there are 9 additional effective Coulomb branch parameters (j = 1, . . . , 9)

aN+j = ~
2(+πi) , m2 (+πi) , ~−m

2 (+πi) , πi , ~ , m .

• (even,−) sector.

Zanti
Sp(N),k=2`,+ = ch(m± ~)

sh2(~) sh2(2~) sh2(m) sh2(2m)

N∏
t=1

sh(at ±m) ch(at ±m)
sh2(2at)

Z̃`−1( ~A; q) (5.4)

where there are 10 additional effective Coulomb branch parameters (j = 1, . . . , 10)

aN+j = ~
2(+πi) , m2 (+πi) , ~−m

2 (+πi) , ~(+πi) , m(+πi) .
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• (odd,−) sector.

Zanti
Sp(N),k=2`+1,+ = 1

2 sh2(~) sh2(m)

N∏
t=1

ch(at ±m)
ch2(at)

‖~λ‖∏
s=1

∏
x∈λ(s)

ch(φs(x)±m±~)Z̃`( ~A; q) (5.5)

where there are 9 additional effective Coulomb branch parameters (j = 1, . . . , 9)

aN+j = ~
2(+πi) , m2 (+πi) , ~−m

2 (+πi) , 0 , ~ + πi , m+ πi .

Note that the multiplicity coefficients are involved for the additional Coulomb branch
parameters due to the presence of higher-order poles in (4.4), and we do not know how
to determine them for general 4d Young diagrams. Nonetheless, we list some of them in
appendix C.

We can verify the isomorphisms of representations by comparing the instanton parti-
tion functions of different theories. For example, the antisymmetric representation of Sp(1)
is trivial, so it decouples from the gauge theory and does not affect the instanton dynam-
ics. Thus, the instanton partition function for the Sp(1) theory with an antisymmetric
hypermultiplet is equal to the pure Sp(1) instanton partition function

Zanti
Sp(1),θ=0 = Zpure

Sp(1),θ=0ZD0 ,

Zanti
Sp(1),θ=π = Zpure

Sp(1),θ=π (5.6)

up to the 8 translational zero modes of a single D0-brane

ZD0 = PE
[

q

sh(ε1,2) sh(m± ε+)

]
. (5.7)

On the other hand, the antisymmetric representation of Sp(2) is isomorphic to the vector
representation of SO(5), so the instanton partition functions should obey the relation

Zanti
Sp(2),θ=0ZU(1) = Zvect

SO(5)ZD0 (5.8)

where the U(1) instanton partition function is given in (3.24). We have checked (5.6)
and (5.8) upto 8-instanton at the unrefined level, respectively.

Once we take T-duality from the brane system in Type IIA theory, we can construct
5d Sp(N) theories with an antisymmetric hypermultiplet by fivebrane web with two O7−-
planes in Type IIB theory [16, 22–24]. The brane configuration can be further deformed
by splitting an O7−-plane into two (p, q)-sevenbranes [32] and performing Hanany-Witten
transitions [33]. In the massless limit of the antisymmetric matter (m = ε+ at the refined
level), the resulting fivebrane web takes the form of a product of pure Sp(1) theories [23],
as shown in figure 4. This brane moves and the Higgsing procedure can also be verified at
the level of instanton partition functions as

Zanti
Sp(2),θ=0(m = ε+) = Zpure

Sp(1),θ=0(A1)Zpure
Sp(1),θ=0(A2)ZD0

Zanti
Sp(2),θ=π(m = ε+) = Zpure

Sp(1),θ=π(A1)Zpure
Sp(1),θ=π(A2) . (5.9)
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Figure 4. Fivebrane web configuration of Sp(2) gauge theory with massless antisymmetric
hypermultiplet in Type IIB theory where the left-panel represents θ = 0 while the right-panel
illustrates θ = π.

In order to move forward with the research presented in this paper, it is important to
fully determine the multiplicity constants in (4.4). One potential approach to this problem
is to consider the blowup equation on C2

±~ ×C2
±m, as the equivariant parameters ~ and m

play a similar role in this context.
While (4.4) currently yields non-trivial rational functions through the cancellation of

Sh(0) in the numerator with poles in the denominator, it would be valuable to find a
closed-form expression similar to the Nekrasov factor (2.8) for 4d Young diagrams. This
could provide deeper insights and simplify calculations furthermore.
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A Notations and definitions

In this appendix, we provide a summary of the notations and definitions used throughout
the paper.

We denote a 2d Young diagram by λ = (λ1, λ2, · · · ), which is a sequence of non-negative
integers such that λi ≥ λi+1 and |λ| =

∑
i λi < ∞. We write the transposition of λ by

λt. The arm length aλ(x) of a box at x = (x1, x2) in the Young diagram is the number
of boxes to the right of the box, and the leg length lλ(x) is the number of boxes below it.
This is illustrated in the following figure:
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Figure 5. Arm and leg length of a box x = (x1, x2) in a Young diagram.

We also introduce the notation for 5d instanton partition functions. The moduli spaces
of instantons receive equivariant actions of SO(2)ε1 × SO(2)ε1 of the space-time. Also, the
maximal torus

∏rankG
s=1 U(1)as of the gauge group G and that U(1)m of the flavor group

act on the instanton moduli spaces. Consequently, 5d instanton partition functions are
rational functions of variables

q = e−ε1 , t = eε2 , As = e−as , M = e−m.

The parameters As are Coulomb branch parameters, and the parameter M is the mass
parameter of a hypermultiplet. We also use the notation 2ε± = ε1 ± ε2.

In this paper, we mainly focus on the unrefined limit ε1 = −ε2 = ~, and we write q =
e−~. We denote a k-instanton partition function with a hypermultiplet in a representation
of G by Zrep

G,k. This paper obtains expressions of k-instanton partition functions summed
over P -tuples of Young diagrams, which is denoted by

~λ = (λ(1), . . . , λ(P )) ,

where the total number of boxes satisfy

k =
‖~λ‖∑
s=1
|λ(s)| .

Here we also denote the number of Young diagrams by ‖~λ‖ = P . The total instanton
partition function is expressed as a generating function with instanton counting parameter q

Zrep
G =

∞∑
k=0

qkZrep
G,k(Ai; q) .

The perturbative partition function is often written in terms of the plethystic exponent

PE [f(x, y, · · · )] ≡ exp
[ ∞∑
d=1

1
d
f(xd, yd, · · · )

]
(A.1)

which brings the single particle index f to the multi-particle index.
With these notations and definitions, we can now proceed with the analysis presented

in the main text of the paper.
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Figure 6. The solid line represents a hypermultiplet while the dashed line represents a Fermi
multiplet.

B Integral expressions of instanton partition functions

To be self-contained, in this appendix, we provide a summary of the partition functions
of supersymmetric quantum mechanics on instanton moduli spaces, as studied in [12, 20].
For more details, we refer the reader to the original references.

B.1 SO(2N + 1) with spinor hypermultiplet

The brane system for SO(2N+1) gauge theory with spinor hypermultiplet is schematically
drawn in figure 2. The instanton quantum mechanics can be derived from open strings
in this brane system. N = 4 supersymmetric quantum mechanics on k D1-branes and j

D1’-branes is given in figure 6. The formal SO(1) comes from the half D5-brane on the
Õ5

+
-plane, on the leg part of fivebranes in figure 2. For 5d gauge groups of B type, the

contributions from O(2`)− and O(2`+ 1)+ sectors vanish due to the fermionic zero modes.
Hence, the integrand of the supersymmetric quantum mechanics for k instantons and

2` hypermultiplet particles is given by

ISO(2N+1)
k,2` = 1

2kk!
shk(2ε+)
shk(ε1,2)

k∏
I=1

sh(2ε+±2φI)sh(±2φI)
sh(ε+±φI)

∏N

s=1sh(ε+±φI±as)

∏
I>J

sh(2ε+±φI±φJ)sh(±φI±φJ)
sh(ε1,2±φI±φJ)

× 1
2``!

sh`(2ε+)
sh`(ε1,2)

∏̀
i=1

sh(±χi)
∏N

s=1sh(±χi+as)
sh(ε1,2±2χi)

∏
i>j

sh(2ε+±χi±χj)sh(±χi±χj)
sh(ε1,2±χi±χj)

×
k∏
I=1

`∏
i=1

sh(ε−±φI±χi)
sh(−ε+±φI±χi)

. (B.1)

Here φI (I = 1, · · · , k) are Sp(k) gauge fugacities, and χi (i = 1, · · · , `) are O(2`) gauge
fugacities so that they are integrated by the JK prescription. On the other hand, the
integrand for k instantons and (2`+ 1) hypermultiplet particles is given by
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ISO(2N+1)
k,2`+1 = 1

2kk!
shk(2ε+)
shk(ε1,2)

k∏
I=1

sh(2ε+±2φI)sh(±2φI)
sh(ε+±φI)

∏N

s=1sh(ε+±φI±as)

∏
I>J

sh(2ε+±φI±φJ)sh(±φI±φJ)
sh(ε1,2±φI±φJ)

× 1
2``!

sh`(2ε+)
sh`+1(ε1,2)

`∏
i=1

ch(2ε+±χi)sh(±2χi)
∏N

s=1sh(±χi+as)
ch(ε1,2±χi)sh(ε1,2±2χi)

·
N∏
s=1

ch(as)

×
∏
i>j

sh(2ε+±χi±χj)sh(±χi±χj)
sh(ε1,2±χi±χj)

k∏
I=1

ch(ε−±φI)
ch(−ε+±φI)

`∏
i=1

sh(ε−±φI±χi)
sh(−ε+±φI±χi)

. (B.2)

B.2 SO(2N) with (conjugate) spinor hypermultiplet

The brane system for SO(2N) gauge theory with (conjugate) spinor hypermultiplet is
shown in figure 2. This brane system allows us to derive the instanton quantum mechanics
from open strings. In figure 7, we see the N = 4 supersymmetric quantum mechanics on k
D1-branes and j D1’-branes. In this case, there are non-trivial contributions from the two
connected components of the gauge group O(j).

To account for each contribution, we write down an integrand of the partition function
for each one:

ISO(2N)
k,2`,+ = 1

2kk!
shk(2ε+)
shk(ε1,2)

k∏
I=1

sh(2ε+±2φI)sh(±2φI)
N∏
s=1

sh(ε+±φI±as)

∏
I>J

sh(2ε+±φI±φJ)sh(±φI±φJ)
sh(ε1,2±φI±φJ)

× 2sign(`)

2``!
sh`(2ε+)
sh`(ε1,2)

∏̀
i=1

N∏
s=1

sh(±χi+as)

sh(ε1,2±2χi)
∏
i>j

sh(2ε+±χi±χj)sh(±χi±χj)
sh(ε1,2±χi±χj)

×
k∏
I=1

`∏
i=1

sh(ε−±φI±χi)
sh(−ε+±φI±χi)

(B.3)
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ISO(2N)
k,2`,− = 1

2kk!
shk(2ε+)
shk(ε1,2)

k∏
I=1

sh(2ε+±2φI)sh(±2φI)
N∏
s=1

sh(ε+±φI±as)

∏
I>J

sh(2ε+±φI±φJ)sh(±φI±φJ)
sh(ε1,2±φI±φJ)

×

[ N∏
s=1

sh(2as)

2`−1(`−1)!
ch(2ε+)

sh(2ε1,2)sh(ε1,2)

`−1∏
i=1

sh(2ε+)sh(4ε+±2χi)sh(±2χi)
N∏
s=1

sh(±χi+as)

sh(ε1,2)sh(2ε1,2±2χi)sh(ε1,2±2χi)

×
∏
i>j

sh(2ε+±χi±χj)sh(±χi±χj)
sh(ε1,2±χi±χj)

k∏
I=1

sh(2ε−±2φI)
sh(−2ε+±2φI)

`−1∏
i=1

sh(ε−±φI±χi)
sh(−ε+±φI±χi)

]sign(`)

(B.4)

ISO(2N)
k,2`+1,+ = 1

2kk!
shk(2ε+)
shk(ε1,2)

k∏
I=1

sh(2ε+±2φI)sh(±2φI)
N∏
s=1

sh(ε+±φI±as)

∏
I>J

sh(2ε+±φI±φJ)sh(±φI±φJ)
sh(ε1,2±φI±φJ)

×

N∏
s=1

sh(as)

2``!
sh`(2ε+)

sh`+1(ε1,2)

`∏
i=1

sh(2ε+±χi)sh(±χi)
N∏
s=1

sh(±χi+as)

sh(ε1,2±χi)sh(ε1,2±2χi)

×
∏
i>j

sh(2ε+±χi±χj)sh(±χi±χj)
sh(ε1,2±χi±χj)

k∏
I=1

sh(ε−±φI)
sh(−ε+±φI)

`∏
i=1

sh(ε−±φI±χi)
sh(−ε+±φI±χi)

(B.5)

ISO(2N)
k,2`+1,−= 1

2kk!
shk(2ε+)
shk(ε1,2)

k∏
I=1

sh(2ε+±2φI)sh(±2φI)
N∏
s=1

sh(ε+±φI±as)

∏
I>J

sh(2ε+±φI±φJ)sh(±φI±φJ)
sh(ε1,2±φI±φJ)

×

N∏
s=1

ch(as)

2``!
sh`(2ε+)

sh`+1(ε1,2)

`∏
i=1

ch(2ε+±χi)ch(±χi)
N∏
s=1

sh(±χi+as)

ch(ε1,2±χi)sh(ε1,2±2χi)

×
∏
i>j

sh(2ε+±χi±χj)sh(±χi±χj)
sh(ε1,2±χi±χj)

k∏
I=1

ch(ε−±φI)
ch(−ε+±φI)

`∏
i=1

sh(ε−±φI±χi)
sh(−ε+±φI±χi)

(B.6)

B.3 Sp(N) with antisymmetric hypermultiplet

Let us recall the supersymmetric quantum mechanics of the k instanton moduli space of
pure Sp(N) gauge theory [10]. This system is described by an O(k) gauge theory with
a (rank-two) symmetric hypermultiplet and 2N fundamental half-hypermultiplets, which
have Sp(N) flavor symmetry.

The introduction of a 5d antisymmetric hypermultiplet modifies the field content of the
instanton quantum mechanics. Specifically, it introduces an additional symmetric hyper-
multiplet and 2N fundamental half-Fermi multiplets. (This is illustrated in figure 8.) The
equivariant index for the 5d antisymmetric hypermultiplet has previously been calculated
in [11, (5.14)]. For more details on the field content of the instanton quantum mechanics,
see [12, appendix D].

The partition function receives two contributions due to the O(k) gauge group. These
contributions can be calculated by performing the JK residue integrals of the following
integrands:
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Figure 8. The solid line represents a hypermultiplet while the dashed line represents a Fermi
multiplet.

I+
k=2`+χ=

(
1

sh(ε1,2)
∏N

s=1sh(±as+ε+)
·
∏̀
I=1

sh(±φI)sh(±φI+2ε+)
sh(±φI+ε1,2)

)χ

·
`∏

I=1

sh(2ε+)
sh(ε1,2)sh(±2φI+ε1,2)

∏N

s=1sh(±φI±as+ε+)

`∏
I<J

sh(±φI±φJ)sh(±φI±φJ+2ε+)
sh(±φI±φJ+ε1,2)

·

(∏N

s=1sh(m±as)
sh(±m−ε+)

`∏
I=1

sh(±φI±m−ε−)
sh(±φI±m−ε+)

)χ `∏
I=1

sh(±m−ε−)
∏N

s=1sh(±φI±as+m)
sh(±m−ε+)sh(±2φI±m−ε+)

·
`∏

I<J

sh(±φI±φJ±m−ε−)
sh(±φI±φJ±m−ε+) (B.7)

I−k=2`+1 = 1
sh(ε1,2)

∏N

s=1ch(±as+ε+)
·
`∏

I=1

ch(±φI)ch(±φI+2ε+)
ch(±φI+ε1,2)

·
`∏

I=1

sh(2ε+)
sh(ε1,2)sh(±2φI+ε1,2)

∏N

s=1sh(±φI±as+ε+)

`∏
I<J

sh(±φI±φJ)sh(±φI±φJ+2ε+)
sh(±φI±φJ+ε1,2)

·
∏N

s=1ch(m±as)
sh(±m−ε+) ·

`∏
I=1

ch(±φI±m−ε−)
ch(±φI±m−ε+)

sh(±m−ε−)
∏N

s=1sh(±φI±as+m)
sh(±m−ε+)sh(±2φI±m−ε+)

·
`∏

I<J

sh(±φI±φJ±m−ε−)
sh(±φI±φJ±m−ε+) (B.8)

I−k=2`=
ch(±m−ε−)

∏N

s=1sh(2m±2as)
sh(±m−ε+)sh(±2m−2ε+)

· ch(2ε+)
sh(ε1,2)sh(2ε1,2)

∏N

s=1sh(±2as+2ε+)
·
`−1∏
I=1

sh(±2φI)sh(±2φI+4ε+)
sh(±2φI+2ε1,2)

·
`−1∏
I=1

sh(2ε+)
sh(ε1,2)sh(±2φI+ε1,2)

∏N

s=1sh(±φI±as+ε+)

`−1∏
I<J

sh(±φI±φJ)sh(±φI±φJ+2ε+)
sh(±φI±φJ+ε1,2)

·
`−1∏
I=1

sh(±2φI±2m−2ε−)
sh(±2φI±2m−2ε+)

sh(±m−ε−)
∏N

s=1sh(±φI±as+m)
sh(±m−ε+)sh(±2φI±m−ε+) ·

`−1∏
I<J

sh(±φI±φJ±m−ε−)
sh(±φI±φJ±m−ε+)
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C Multiplicity coefficients

In this appendix, we list some of the multiplicity coefficients C4d
~λ, ~A

in (4.4). The additional
effective Coulomb branch parameters that appear in (4.5) and (5.2)–(5.5) are

aN+j = ~
2(+πi) , m2 (+πi) , ~−m

2 (+πi) , 0(+πi) , ~(+πi) , m(+πi) . (C.1)

In order to express the multiplicity coefficients C4d
λ,A that appear in these parameters, we

need to introduce some notation for 4d Young diagrams. As in (4.2), the (x1, x2) direction
is associated with the equivariant parameter ~, while the (x3, x4) direction is associated
with the equivariant parameterm. We represent an (x1, x2) Young sub-diagram by drawing
it explicitly, and we assign an (x3, x4) Young sub-diagram to each box of the (x1, x2) Young
sub-diagram by monotonically decreasing positive integers µ = (µ1, µ2, . . .). Note that we
write the transposition of a 2d Young diagram µ by µt. For example, all the contents
x = (x1, x2, x3, x4) ∈ λ of the following presentation of a 4d Young diagram λ are given by

(2)  {(1, 1, 1, 1), (1, 2, 1, 1), (1, 1, 1, 2)}

(2)t  {(1, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1)}

(2, 1)  {(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1)} (C.2)

Although we obtain multiplicity coefficients for 4d Young diagrams with total 4 boxes,
they are quite complicated. Therefore, we provide a list of multiplicity coefficients for 4d
Young diagrams with up to total 3 boxes that correspond to non-trivial residues. Note
that residues are trivial upto 7-instanton for 4d Young diagrams that are not listed here.
For 4 boxes, the reader can refer to the Mathematica file provided on the arXiv page.

• C4d
λ,A=±q

1
2

(a = ~
2(+πi)).

 2;  2;

(2, 1)  2;  2;  2;  2;

• C4d
λ,A=±M

1
2

(a = m
2 (+πi)).

 −2; (2)t  2;

 −2; (3)t  −2; (3)  −2; (2, 1)  −2;
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• C4d
λ,A=±( q

M )
1
2

(a = ~−m
2 (+iπ)).

 −1; (2)t  −1;

• C4d
λ,A=±1 (a = 0(+iπ)).

 2;  2; (2)t  2; (2)  2;

(3)t  −2; (3)  −2;  2;  2;

(2)t  −1; (2)  −1;
(2)t

 −1;
(2)

 −1;

• C4d
λ,A=±q (a = ~(+iπ)).

 1;  1;  2;

 1; (2, 1)  2;  2;

• C4d
λ,A=±M (a = m(+iπ)).

 −1; (2)t  1; (2)  −2; (3)t  −1; (2, 1)  2;

D Gopakumar-Vafa invariants for D-type singularities

In this appendix, we will list the Gopakumar-Vafa (GV) invariants [34, 35] from SO(2N)
instanton partition functions.

Compactification of M-theory on a Calabi-Yau manifold leads to a five-dimensional (5d)
supersymmetric theory with eight supercharges, known as geometric engineering [36, 37].
In particular, when a Calabi-Yau manifold is a bundle in which an ALE space (a blowup of
an ADE-orbifold singularity C2/Γ) is fibered over P 1, it gives rise to 5d pure Yang-Mills
theory for a gauge group of ADE type. In this construction, W -bosons arise as M2-branes
wrapped on two-cycles in the ALE space, while instantons appear by wrapping M2-branes
on the base P 1.

– 24 –



J
H
E
P
0
3
(
2
0
2
3
)
1
2
0

Through geometric engineering, instantons are related to the Gopakumar-Vafa (GV)
invariants [34, 35] for a Calabi-Yau manifold. These invariants are graded dimensions of
BPS states that arise from M2-branes wrapping two-cycles of a Calabi-Yau threefold in M-
theory, and they can be defined using techniques in algebraic geometry [38, 39]. As a result,
the GV invariants are a set of integers, and the closed topological string partition function
for a Calabi-Yau threefold becomes the GV generating function. Therefore, geometric
engineering relates the GV invariants to instantons in the 5d supersymmetric theory.

The relationship between the closed topological string partition function and the in-
stanton partition functions has been studied extensively in the case of gauge groups of A
type [40–42]. Since the SO(2N) instanton partition function has been obtained in [8], we
can read off GV invariants of the ALE space withD-type singularity fibered over P 1 from it.

To understand this relationship, we first recall the GV expansion of the free energy of
a closed topological string amplitude, which is given by spins as follows:

F =
∑

C∈H2(X,Z)

∞∑
d=1

∑
jL

(−1)2jLnjLC e
−kTC

(
q−2jLd + · · ·+ q+2jLd

d
(
qd/2 − q−d/2)2

)
, q = eigs . (D.1)

Here, nC ∈ Z are invariants associated to the two-cycle C ∈ H2(X,Z) of a Calabi-Yau
manifold X. This partition function has the following infinite product form:

Z (ω, gs) = exp(F ) =
∏

C∈H2(X,Z)

∏
jL

+jL∏
p=−jL

∞∏
m=0

(
1− q2p+m+1QC

)(−1)2jL+1(m+1)njLC
, (D.2)

where QC = e−
∫
C
ω is the Kähler parameter associated to the holomorphic curve C in

H2(X,Z).

D.1 SO(4)

The Kähler parameters for SO(4) instanton partition function are Q and Q1,2. Their
relations with the Coulomb branch parameters are

As :=
s∏
j=1

Qj . (D.3)

We can choose such a basis that Q = q and k, a, b ∈ Z+, then k is identified with instanton
number

Zinst. =
∏

k,a,b∈Z+

∏
jL

+jL∏
p=−jL

∞∏
m=0

(
1− q2p+m+1QkQa1Q

b
2

)(−1)2jL+1(m+1)njL
k,a,b (D.4)

The GV invariants at k = 1 can be expressed as follows:

n0
1,0,0 = 1,
n0

1,0,p = n0
1,2p,p = 2p.

(D.5)

For the k = 2 case, we have read off the GV invariants from the instanton partition function
up to Q14

1 and Q7
2. These results are summarized in table 1.
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jL a, b n a, b n jL a, b n a, b n

2 0,7 18 14,7 18
1/2

0,6 -46 12,6 -46

3/2
0,6 -15 12,6 -15 0,7 -76 14,7 -76
0,7 -32 14,7 -32

0

0,3 6 6,3 6

1
0,5 12 10,5 12 0,4 14 8,4 14
0,6 26 12,6 26 0,5 34 10,5 34
0,7 58 14,7 58 0,6 58 12,6 58

1/2 0,5 -20 10,5 -20 0,7 100 14,7 100

Table 1. GV invariants njL

2,a,b for SO(4), k = 2 case.

From table 1, we can see that the GV invariants of SO(4) have a symmetry

njLk,0,p = njLk,2p,p (D.6)

for k = 1, 2. We conjecture that this relation holds for arbitrary k.

Relation with SU(2). The isomorphism so(4) = su(2)⊕ su(2) leads to

ZSO(4) = ZSU(2)
(
Q1 → Q1Q

1/2
2

)
ZSU(2)

(
Q1 → Q

1/2
2

)
ZU(1), (D.7)

Recall that

ZSO(4) = exp
[ ∞∑
d=1

∑
k,a,b∈Z

∑
jL

njLk,a,bQ
dkQda1 Q

db
2 (q−2jLd + . . . .+ q2jLd)

d(qd/2 − q−d/2)2

]

ZSU(2) = exp
[ ∞∑
d=1

∑
k,a∈Z

∑
jL

njLk,aQ
dkQ

2d(k+a)
1 (q−2jLd + . . .+ q2jLd)
d(qd/2 − q−d/2)2

]

ZU(1) = exp
[ ∞∑
d=1

∑
k∈Z

∑
jL

njLk Q
dk(q−2jLd + . . .+ q2jLd)
d(qd/2 − q−d/2)2

]
(D.8)

Substituting them into (D.7), we can identify the relations between GV invariants of SO(4)
and SU(2) (also U(1)) as

n
SO(4)
jL,k,0,p = n

SO(4)
jL,k,2p,p = n

SU(2)
jL,k,p−k

n
SO(4)
jL,k,0,0 = n

U(1)
jL,k

(D.9)

where GV invariants of U(1) are just nU(1)
0,1 = 1 and all others are 0.

D.2 SO(6)

The Kähler parameters are now Q and Q1,2,3.

Z
SO(6)
inst. =

∏
k,a,b,c∈Z+

∏
jL

+jL∏
p=−jL

∞∏
m=0

(
1− q2p+m+1QkQa1Q

b
2Q

c
3

)(−1)2jL+1(m+1)njL
k,a,b,c

. (D.10)

For the k = 1 case, we computed the GV invariants up to Q6
1 and Q3

2,3. The results
are summarized in table 2.
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jL a, b, c n a, b, c n a, b, c n a, b, c n

0

0,0,0 2 2,2,1 8 6,3,1 10 0,1,3 14
0,1,0 2 4,2,1 6 2,1,2 10 2,1,3 14
2,1,0 2 0,0,2 6 0,2,2 12 0,2,3 18
0,2,0 4 0,1,2 10 2,2,2 16 2,2,3 24
4,2,0 4 0,3,0 6 4,2,2 12 4,2,3 18
0,0,1 4 6,3,0 6 0,3,2 12 0,3,3 20
0,1,1 6 0,3,1 10 2,3,2 18 2,3,3 30
2,1,1 6 2,3,1 6 4,3,2 18 4,3,3 30
0,2,1 6 4,3,1 6 6,3,2 12 6,3,3 20

Table 2. GV invariants njL

1,a,b,c for SO(6), k = 1 case.

jL a, b, c, d n a, b, c, d n a, b, c, d n a, b, c, d n

0

0,0,0,0 2 0,0,2,0 6 2,2,1,1 10 2,1,1,2 6
0,1,0,0 2 0,1,2,0 10 4,2,1,1 6 2,2,1,2 6
2,1,0,0 2 2,1,2,0 10 0,0,2,1 10 0,0,2,2 12
0,2,0,0 4 0,2,2,0 12 0,1,2,1 16 0,1,2,2 18
4,2,0,0 4 2,2,2,0 16 2,1,2,1 16 2,1,2,2 18
0,0,1,0 4 4,2,2,0 12 0,2,2,1 18 0,2,2,2 18
0,1,1,0 6 0,0,0,1 2 2,2,2,1 30 4,2,2,2 18
2,1,1,0 6 0,0,1,1 6 4,2,2,1 18 2,2,2,2 32
0,2,1,0 6 0,1,1,1 8 0,0,0,2 4
2,2,1,0 8 2,1,1,1 8 0,0,1,2 6
4,2,1,0 6 0,2,1,1 6 0,1,1,2 6

Table 3. GV invariants njL

1,a,b,c,d for SO(8), k = 1 case.

Relation with SU(4). The isomorphism so(6) = su(4) leads to

ZSO(6) (A1, A2, A3) = ZSU(4) (A1, A2, A3) . (D.11)

And given

ZSO(6) = exp
[ ∞∑
d=1

∑
k,a,b,c∈Z

∑
jL

njLk,a,b,cQ
dkQda1 Q

db
2 Q

dc
3 (q−2jLd + . . .+ q2jLd)

d(qd/2 − q−d/2)2

]

ZSU(4) = exp
[ ∞∑
d=1

∑
k,a,b,c∈Z

∑
jL

njLk,a,b,cQ
dkQ2da

1 Q
d(a+c)
2 Qdb3 (q−2jLd + . . .+ q2jLd)
d(qd/2 − q−d/2)2

] (D.12)
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We can conclude that by simple changes of variables, the GV invariants of SO(6) are related
to those of SU(4) via

n
SU(4)
jL,k,a,b,c

= n
SO(6)
jL,k,2a,a+c,b ⇐⇒ n

SO(6)
jL,k,a,b,c

= n
SU(4)
jL,k,a/2,c,b−a/2 (D.13)

D.3 SO(8)

The first non-trivial case is the D4 gauge group. The Kähler parameters are Q and Q1,2,3,4.

Zinst. =
∏

k,a,b,c,d∈Z+

∏
jL

+jL∏
p=−jL

∞∏
m=0

(
1− q2p+m+1QkQa1Q

b
2Q

c
3Q

d
4

)(−1)2jL+1(m+1)njL
k,a,b,c,d (D.14)

For the k = 1 case, we computed the GV invariants up to Q4
1 and Q2

2,3,4. The results
are summarized in table 3.
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