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1 Introduction

The Hilbert series has been used to systematically list operators in various effective field
theories (EFTs) [1–16]. The introduction of the conformal group enabled the Hilbert series
to remove the redundancies from equations of motion (EOM) and integration by parts
(IBP) [5, 9]. Furthermore, ‘folding’ Dynkin diagrams was found to be useful to implement
discrete symmetries into the Hilbert series; the Hilbert series with parity (P) and charge
conjugation (C) were constructed in [9] and [12], respectively. However, both P and C have
been applied only to theories in which each of them can be defined independently. If P
and C are not well-defined but CP is, we need to implement CP transformation in the
Hilbert series. The Standard Model is one example of such theories, and there has been no
application of CP symmetry to the Hilbert series for the Standard Model Effective Field
Theory (SMEFT).

The CP violation is important in any search for physics beyond the Standard Model.
First of all, we know there must be more CP violations beyond the Cabibbo-Kobayashi-
Maskawa phase to explain the baryon asymmetry of the universe. There are dedicated
experimental searches underway in the K system at NA62 and KOTO, the B system at
LHCb and Belle II, and neutrinos at T2K and NOνA. It is also the case that the sensitivity
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of experiments is higher for CP violation because the Standard-Model effects are usually
highly suppressed. Therefore we can hope that even operators beyond mass dimension six
can be probed experimentally. This is why we believe it is important to list CP-violating
operators in the SMEFT even for higher mass dimensions.

Previous research identified CP-odd operators in the SMEFT at dimension 6 [17], and
listed bosonic CP-odd operators at dimension 8 [18]. However, not all of these operators
necessarily violate CP because they did not take “rephasing” into account. Rephasing is
redefining the phases of the fields, which can remove some CP-violating phases. A recent
study [19] found all CP-phases for dimension-six operators remaining after rephasing.

This paper shows how to construct CP-even and CP-odd Hilbert series for the SMEFT.
In section 2, we introduce how to define charge conjugation for general compact Lie groups.
The charge conjugation for SU(N) has been discussed in [20, 21], and we improve their
definition of charge conjugation. In section 3, we look into the implementation of CP
transformation into the Hilbert series in detail. We provide two definitions for operators
that may violate CP symmetry depending on whether taking rephasing into account or not.
In section 4, we give the results of classifying dimension-eight operators and of counting
operators up to dimension 14. The results can be obtained using the accompanying Form
code. Section 5 is devoted to the conclusion. In addition, we clarify why charge conjugations
that appear to involve complex conjugation are not anti-unitary but rather unitary operators
in Appendix A. We also summarize the characters and Haar measures used in our explicit
calculations in Appendix B for the convenience of readers.

2 Two types of charge conjugation

We can think of charge conjugation as an automorphism that interchanges a representation
with its complex conjugate representation.1 From this viewpoint, previous papers [20, 21]
have suggested that there are two inequivalent definitions of charge conjugation for the
fundamental representation of SU(N) with even N . However, we found that one of the two
charge conjugations fails to be consistent with Hermitian conjugation on field operators.
In this section, it is shown that we can still define two types of charge conjugation on a
general compact Lie group by weakening requirements in the previous studies.

2.1 Requirements

Let us consider the charge conjugation C which operates on some unitary representation of a
compact Lie group G. We suppose that charge conjugation C interchanges fundamental and
anti-fundamental representations. We impose five requirements on C to deduce its properties:

1. linearity,

2. unitarity,

3. C2 = eiθ1 with θ ∈ R,
1The outer automorphisms for SO(4k) interchange one spinor with another spinor representation, but

are not complex conjugation. The case of SO(8) allows for three such possibilities due to its triality. We will
not discuss these cases since they are not relevant to the SMEFT.
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4. compatibility with G,

5. consistency with Hermitian conjugation on field operators.

We will see what each requirement means and discuss properties of C derived from them in
the following sections.

2.2 Charge conjugation for fundamental representations

First, we consider the charge conjugation on fundamental representations. Let us denote the
N -dimensional fundamental representation of a group G by N and its complex conjugate
representation by N. The operation of charge conjugation C is not closed within one repre-
sentation itself because N and N interchange among each other under charge conjugation.
Taking this into consideration, charge conjugation works only on the direct sum N⊕N. For
simplicity, we discuss a scalar field Φ = (φ1, · · · , φN )T in the representation N. In this case,
its Hermitian conjugate Φ† = (φ†1, · · · , φ

†
N )T is in the representation N. Generalizations

to fermion fields are straightforward.
The first requirement, linearity, restricts the form of C as

C
(

Φ
Φ†

)
=
(

0 C−
C+ 0

)(
Φ
Φ†

)
. (2.1)

Here, C± are N ×N matrices. Note that the symbol C is used for both the group element
of charge conjugation and its representation matrix.

Next, we will use the fifth requirement for the consistency of Hermitian conjugation
on field operators. This requirement was missing in refs. [20, 21]. From eq. (2.1), the
transformation laws under charge conjugation are

Φ C−−−→ C−Φ† , (2.2)

Φ† C−−−→ C+Φ . (2.3)

By taking Hermitian conjugation of eq. (2.2), we get another expression for transforma-
tion of Φ†:

Φ† C−−−→ C∗−Φ . (2.4)

It should be noted that we considered Hermitian conjugation for quantum operators but not
for matrices, which means the Hermitian conjugate of C− is C∗−. Eqs. (2.3) and (2.4) implies

C− = C∗+. (2.5)

Therefore, we will use the notation C+ = C and C− = C∗.
The second requirement, unitarity, leads to

C†C =
(

0 C†

CT 0

)(
0 C∗

C 0

)
=
(
C†C 0

0 CTC∗

)
= 1 , (2.6)

and hence

C†C = CC† = 1 , (2.7)

which means that the matrix C is unitary.
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Let us use the third requirement; C2 is a phase transformation of fields,2

C2 =
(

0 C∗

C 0

)(
0 C∗

C 0

)
=
(
C∗C 0

0 CC∗

)
= eiθ1 . (2.8)

By comparing each block, we see that

C∗C = CC∗ = eiθ1 , (2.9)

and hence,

C = eiθ(C∗)−1 = eiθCT . (2.10)

Taking transpose, we get

CT = eiθ C . (2.11)

From eqs. (2.10) and (2.11), we find

C = eiθ CT = (eiθ)2C , (2.12)

which means eiθ = ±1. Furthermore, by taking determinant on the left and right-hand
sides of eq. (2.10), we find

detC = (eiθ)N detCT = (eiθ)N detC , (2.13)

and hence (eiθ)N = 1. For odd N , only eiθ = 1 is allowed, while for even N , we have two
possibilities eiθ = ±1. Let us use CS for charge conjugation satisfying C2

S = +1 and CA
for C2

A = −1. The subscripts S and A indicate the symmetry of the matrix C: CS = CTS
(symmetric) and CA = −CTA (anti-symmetric).

Finally, we will use the fourth requirement, the compatibility with G. To see what this
requirement means, we define two discrete groups corresponding to CS and CA as

ΓCS ≡ {1, CS} ∼= Z2 , (2.14)
ΓCA ≡ {1, CA, −1,−CA} ∼= Z4 . (2.15)

The discrete group ΓC extends G to the disconnected group G̃:

G̃ ≡ Go ΓC ≡ {gγ | g ∈ G, γ ∈ ΓC} . (2.16)

In order for G̃ to be well-defined as a group, the product of two elements gγ, g′γ′ ∈ G̃ has
to be in the form of g′′γ′′ ∈ G̃. Thus, we have

gγ · g′γ′ = (gγg′γ−1)(γγ′) ≡ g′′γ′′ . (2.17)
2One might think that we need to interchange the first and second columns for the second C operation

because C interchanges N and N. However, once the representation space is fixed, the representation
matrix C should not change its form according to what it operates on. Therefore, we must use the same
representation matrices for two Cs.
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Therefore, γg′γ−1 needs to be an element of G.3 This gives our fourth requirement; CgC† is
an element of G for all g ∈ G. Any element of G can be represented on N⊕N as

U(g)
(

Φ
Φ†

)
=
(
eiT

aωa 0
0 V †e−iT

aTωaV

)(
Φ
Φ†

)
. (2.18)

Here {T a} are the unitary N representation of Lie algebra of G and ωa ∈ R are real
parameters. Its complex conjugate representation is equivalent to

(
eiT

aωa
)∗

= e−iT
aTωa up

to a unitary transformation V . Without loss of generality, we can set V = 1 by changing
the basis for the N representation. Then the element CgC† is represented as

CU(g)C† =
(

0 e−iθC†

C 0

)(
eiT

aωa 0
0 e−iT

aTωa

)(
0 C†

eiθC 0

)

=
(
C†e−iT

aTωaC 0
0 CeiT

aωaC†

)
. (2.19)

At the same time, this is also an element of G, this can be written with other real parameters
ηa as (

C†e−iT
aTωaC 0

0 CeiT
aωaC†

)
=
(
eiT

aηa 0
0 e−iT

aT ηa

)
. (2.20)

Therefore, the lower right block of the right-hand side has to be a complex conjugate of its
upper left block:

CeiT
aωaC† =

(
C†e−iT

aTωaC
)∗

, (2.21)

and hence
C∗CeiT

aωa = eiT
aωaC∗C . (2.22)

That is, C∗C commutes with any element of G. By Schur’s lemma, C∗C is proportional to
an identity matrix

C∗C = α1 . (2.23)

This is exactly the same form as eq. (2.9). Therefore we find

α = eiθ =
{

+ 1 for odd N
± 1 for even N

. (2.24)

To summarize,

• for odd N , charge conjugation has to be symmetric and involutive:

CTS = CS and C2
S = +1.

3In other words, γ is an automorphism of the group γ : G→ G which preserves the multiplication rules
(endomorphism). An inner automorphism is a conjugation by an element of γ ∈ G and hence does not
extend the group. What is interesting is an outer automorphism that does not belong to G.
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• for even N , there are two possibilities.

– symmetric: CTS = CS and C2
S = +1,

– anti-symmetric: CTA = −CA and C2
A = −1.

Let us revisit the transformation laws of Φ and Φ†:

Φ C−−−→ C∗Φ† , (2.25)

Φ† C−−−→ CΦ . (2.26)

For G = U(1) in particular, C is not a matrix but just a phase. This phase is sometimes
called “charge-conjugation parity” and assigned the symbol ξ in [22]. Eqs. (2.25) and (2.26)
seem to suggest that the charge conjugation C is an anti-unitary operator, but we will show
that unitary charge conjugation can be defined by considering its action on creation and
annihilation operators in appendix A.

Previous papers [20, 21] require charge conjugation C to be (1) linear, (2) unitary, (3)
involutive (C2 = +1), and (4) consistent with SU(N). In a similar way we did, they prove
that there are two versions of charge conjugation for even N : symmetric (CTS = CS) and
anti-symmetric (CTA = −CA). However, when we additionally impose the fifth requirement
in section 2.1, which is necessary in the context of QFT, CA fails to satisfy their third
requirement, C2

A = +1. However, we can define CA consistently by weakening their third
requirement; C2 is not necessarily +1 but just a phase factor eiθ.

In this section, we have discussed charge conjugation only for fundamental representa-
tions. If we want to know the symmetry properties of other general representations, we need
to consider the action of charge conjugation onto the tensor products of fundamental and
anti-fundamental representations. For example, charge conjugation of the adjoint represen-
tation can be understood by the transformation laws of fundamental and anti-fundamental
representations. Let us use the upper indices for fundamental representations and the lower
indices for anti-fundamental representations as the tensor notation. The transformation of
the adjoint representation can be written as

Aij
C−−−→ ηC(C∗)ikCjlAlk , (2.27)

which is equivalent to
A

C−−−→ ηCC
∗ATCT = ηCC

†ATC . (2.28)

Since the adjoint representation is real, the overall phase factor ηC is limited to ±1.
Furthermore, when A is a gauge field as A = AaT a, ηC must be −1 to maintain the
Lie algebra.

If we require −C†HaTC = −Ha for the Cartan subalgebra Ha as in [23], the charge
conjugation matrix is restricted to the symmetric one CS . This requirement comes from
a viewpoint that charge conjugation should reverse all quantum numbers or, in other
words, the diagonal components of the Cartan subalgebra. However, we do not require
this condition because such quantum numbers are not directly related to the “charges” of
particles in general cases. In addition, CA is much more natural for some cases from the
point of view of the Hilbert series as we will see later. Therefore, we will consider both CS
and CA henceforth.
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2.3 Charge conjugation for (pseudo)real representations

For a (pseudo)real representation of Lie algebra {T a}, there is a unitary matrix R such that

R†(−T aT )R = T a , (2.29)

where the matrix R is symmetric for real representations and anti-symmetric for pseudoreal
representations. In this case, the charge conjugation is an inner automorphism [24].

One can define charge conjugation for (pseudo)real representations as a transformation
from a representation to the same representation. This definition is accomplished by setting
the matrix C, which is defined in the previous section, to be equal to R. In this case,
fields in real representations are transformed by CS and those in pseudoreal representations
are transformed by CA. For example, the fundamental representation N of SO(N) is real.
Therefore, as long as the charge conjugation C is defined for the irreducible representation N,
charge conjugation for N is limited to CS .4 In contrast, since the fundamental representation
of Sp(2N) is pseudoreal, charge conjugation for this representation have to be CA.

However, for a pseudoreal representation, if we allow C to transform N to N (i.e. if we
let C act on a reducible representation N⊕N), C can be defined as CS . Note that, although
this is possible, it would require an artificial differentiation of N and N even when they are
unitary equivalent. Let us see an example of the Higgs doublet H. This is a fundamental
representation of SU(2), which is a pseudoreal representation. There are two definitions of
charge conjugation CS and CA for H:

H =
(
φ+

φ0

)
CS−−−−→

(
φ+†

φ0†

)
CS−−−−→

(
φ+

φ0

)
= +H, (2.30)

H =
(
φ+

φ0

)
CA−−−−→

(
φ0†

−φ+†

)
CA−−−−→

(
−φ+

−φ0

)
= −H. (2.31)

When we write the representation of H as 2, the representation of CSH should be written
as 2, and that of CAH is 2 as is expected.

2.4 Symmetric and anti-symmetric charge conjugations

For even-dimensional representations, we can define charge conjugation in two ways, CS and
CA. These symmetry properties are independent of the choice of basis. When we change
the basis of N-representation field Φ by a unitary transformation Φ → UΦ, the charge
conjugation matrix C changes as

C → C′ =
(
U 0
0 U∗

)(
0 C∗

C 0

)(
U † 0
0 UT

)

=
(

0 UC∗UT

U∗CU † 0

)
. (2.32)

4Note that there are outer automorphisms that can act non-trivially on real representations, such as the
“parity” element of O(2k). We do not discuss it here because it is not important for the SMEFT, but the
interested readers are referred to [21].
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The sign of the square of charge conjugation does not change by this transformation:

C′2 = C2. (2.33)

Therefore, CS and CA cannot be mixed together by the change of the basis.
Similarly, CS and CA are gauge inequivalent. This is shown by replacing U in eq. (2.32)

with a group element exp(iT aωa) ∈ G. However, this gauge inequivalence does not mean that
the extended groups by CS and CA are inequivalent. Let us consider the case G = SU(2N).
If we take the choice

CS = 1 =


1
. . .

1

 , CA = J ≡



0 1
−1 0

. . .
0 1
−1 0


, (2.34)

there is a group element −J ∈ SU(2N), which satisfies(
0 C∗S
CS 0

)
=
(
−J 0
0 −J∗

)(
0 C∗A
CA 0

)
. (2.35)

Therefore, the extended groups are equivalent:5

SU(2N) o ΓCS = SU(2N) o ΓCA . (2.36)

In such a case, charge conjugation CS and CA result in the same physics.6

3 CP violation in the SMEFT

3.1 CP violation at dimension 4 or less

The SM has two CP-violating sources: the phase δCKM in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix and the strong CP phase θQCD. We will briefly review the origins of the two
phases and list all U(1) transformations that keep these phases unchanged. Here we assume
that neutrinos are massless up to mass dimension 4 (namely the absence of right-handed
neutrinos) and the number of the fermion generations is three.

Let us begin with the SU(2)W doublets and singlets in the quark sector

Q0
i =

(
u0
iL

d0
iL

)
, u0

iR, d
0
iR (i = 1, 2, 3) . (3.1)

The upper script 0 means that they are weak eigenstates. In terms of them, we can write
the Yukawa interaction terms

LY = −(fd)ijQ0
iHd

0
jR − (fu)ijQ0

i H̃u
0
jR + h.c. . (3.2)

5This was shown very recently in [25].
6For parity in SO(N), two extended groups are inequivalent, Pin+(N) and Pin−(N).
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Here, H is the Higgs doublet and H̃ = iσ2H∗ where σI are the Pauli matrices. The matrices
fu,d are 3× 3 complex matrices. By defining the vectors

U0
L =

u
0
1L
u0

2L
u0

3L

 , D0
L =

d
0
1L
d0

2L
d0

3L

 , U0
R =

u
0
1R
u0

2R
u0

3R

 , D0
R =

d
0
1R
d0

2R
d0

3R

 , (3.3)

we can rewrite eq. (3.2) as

LY = −(U0
L D

0
L)HfdD0

R − (U0
L D

0
L)H̃fuU0

R + h.c. . (3.4)

When H has the vacuum expectation value 〈H〉 = (0, v/
√

2)T with v ∈ R, eq. (3.4) becomes

LY = −D0
LM

0
dD

0
R − U0

LM
0
uU

0
R + h.c. , (3.5)

where M0
u,d = fu,dv/

√
2 are generally non-diagonal complex matrices.

Let us move to the mass eigenstates UL,R and DL,R by unitary transformations

U0
L = VuLUL , U0

R = VuRUR , D0
L = VdLDL , D0

R = VdRDR . (3.6)

The unitary matrices V diagonalize M0
u,d by bi-unitary transformations:

V †dLM
0
dVdR = Md = diag(md,ms,mb) , (3.7)

V †uLM
0
uVuR = Mu = diag(mu,mc,mt) . (3.8)

If all quark masses are not degenerate, further unitary transformations like UL → V ′uLUL
that keep the mass matrices invariant are limited to the vector-like and diagonal ones:

V ′†uLMuV
′
uR = Mu only if V ′uL = V ′uR = diag(eiθu , eiθc , eiθt) . (3.9)

The same goes for the down sector. These U(1) transformations for each flavor are often
called “rephasing”.

The degree of freedom of rephasing can be used to remove some of the complex phases
in the CKM matrix VCKM, which is defined in the charged current by

J+
µ = g√

2
U0
Lγ

µD0
L = g√

2
ULVCKMγ

µDL, VCKM = V †uLVdL . (3.10)

As a result, we can remove all complex phases except one phase δCKM by using five rephasing
out of six. The only one remaining U(1) symmetry is U(1)B, which transforms the phases
of all quarks equally and hence does not change VCKM.

We can adapt a similar discussion to the lepton sector, but all complex phases in the
charged current can be eliminated because of the zero neutrino masses. Such elimination
happens by taking VνL = VeL; see eq. (3.10). This is possible because the mass matrix of
neutrinos is zero and hence VνL can take arbitrary value. Therefore, there are three U(1)
symmetries, V ′νL = V ′eL = diag(eiθe , eiθµ , eiθτ ), that keep the mass matrix Me unchanged.
We write these U(1) transformations as U(1)Li(i = 1, 2, 3).

– 9 –
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Other operators that can violate CP are topological terms θF F̃ . There seem to be
three topological terms in the SM corresponding to the three gauge symmetries. However,
since π3(U(1)) = 0, the U(1)Y topological term θYBB̃ does not give any physical effect.7
The theta factor of SU(3)c topological term can generally be eliminated by chiral U(1)
transformations of quarks, but U(1)B, which is vector-like transformation, cannot cause
such elimination. This unremovable CP-violating phase θQCD is well known as the strong
CP phase. Finally, SU(2)W topological term can be removed by U(1)B or U(1)Li . This is
because SU(2)W gauge interaction operates only on left-handed particles (Qi and Li) and
their anti-particles, and therefore even vector-like U(1) transformation can shift the theta
factor of the topological term. If we want to fix the SU(2)W topological term to be zero, we
have only three U(1) symmetries: U(1)B−L, U(1)L1−L2 , and U(1)L2−L3 . Practically, however,
the effect of SU(2)W instantons is highly suppressed by a factor exp

(
−8π2/g2

W

)
∼ 10−80

due to the small coupling constant gW . If one ignores the SU(2)W topological term, one
can consider four U(1) symmetries such as U(1)B , U(1)L1 , U(1)L2 , and U(1)L3 as rephasing
transformations. Even in such a case, we confirmed that the classification of operators
remains the same at least up to dimension 8. The lowest dimension operators where this
distinction becomes important are dimension 9. For example, the dimension-nine operator
uuue1L2L3 conserves U(1)B−L and U(1)Li−Lj , but violates U(1)B and U(1)Li .

3.2 Definition of “CP violation by a single operator”

In this paper, we use three different terms for operators: CP-even, CP-odd, and CP-violating
operators. The first two operators are defined as follows.

Definition 1. An operator that is invariant under a CP transformation is a CP-even
operator. An operator whose sign is reversed by a CP transformation is a CP-odd operator.

A general operator O is either CP-even, CP-odd, or a linear combination of them. All
operators in the Lagrangian are gauge singlets. Hence, they are transformed by CSP under
CP transformation. Since (CSP)2 = 1, the CP transformation law of operators is classified
into three ways:8

Type I: Not self-conjugate

O CP−−−−→ OCP 6= ±O,

Type II: Self-conjugate
O CP−−−−→ O,

Type III: Self-conjugate with a sign flip

O CP−−−−→ −O.
7When the spacetime is compactified on S2 × S2, and if there is U(1)Y magnetic monopole (possibly

from SU(5) breaking), θY can become physical. We do not consider physics in the presence of magnetic
monopoles in this paper.

8Here we assume that the operator O consists only of field operators and does not include its coefficient.
Therefore, O does not have to be Hermitian by itself.
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From this classification, we find two types of CP-even operators: the sum of a type-I
operator and its conjugate, O + OCP, and the type-II operators themselves. Similarly,
there are two types of CP-odd operators: the difference between a type-I operator and its
conjugate, O −OCP, and the type-III operators themselves.

Not all CP-odd operators cause CP violation because the above definition ignores the
coefficients of operators. For example, a type-I operator O has its complex coefficient λ
in the Lagrangian L. Because the Lagrangian has to be Hermitian, L has another term
λ∗O†. Because OCP should be proportional to O†, we expect that OCP = eiφO†. In this
case, these terms in L are written as

λO + λ∗O† = λO + λ∗e−iφOCP

= e−iφ/2
(
λeiφ/2O + λ∗e−iφ/2OCP

)
= e−iφ/2

[
Re(λeiφ/2)

(
O +OCP

)
+ i Im(λeiφ/2)

(
O −OCP

)]
. (3.11)

The second term seems to violate CP. However, sometimes the rephasing of fermions in O
can remove the phase of λeiφ/2, which is called the CP phase. In such a case, we can take
Im(λeiφ/2) = 0, and there is no CP violation by the CP-odd operator O −OCP. Therefore,
we provide another definition for operators that cause CP violations.

Definition 2. If a CP phase of an operator O cannot be removed by rephasing performed
while preserving the CP phases in the SM Lagrangian, the CP-odd operator corresponding
to O is a CP-violating operator.

In the following part of this paper, we ignore SU(2)W instanton effect. In this case, as
we discussed in section 3.1, there are four U(1) symmetries that do not change δCKM and
θQCD. If a CP-odd operator is not invariant under at least one of four U(1) transformations,
its CP phase can be removed by the U(1) transformation. Therefore, CP-violating operators
have to be invariant under all four U(1) transformations.

Note that CP-violating operators are defined as operators that violate CP when only
one of them is added to the SM Lagrangian. In general, however, when two or more
CP-odd but not CP-violating operators are added to the SM Lagrangian, they can cause
CP violation. This is because rephasing does not necessarily remove all of their CP phases
simultaneously. For example, suppose that there are N CP-violating operators and M

CP-odd but not CP-violating operators, and that the latter contain at least one operator
that is not invariant under each of the four U(1) transformations. Then, we have N +M − 4
independent CP phases. Since we can perform this counting once we have a complete list
of CP-odd and CP-violating operators, we do not discuss the case with multiple operators
any further in this paper.

3.3 Implementation of CP into the Hilbert Series

The Hilbert series method is the way to systematically enumerate independent invariants
under some group(s). The previous research [9] presented a formula to count EFT operators
modulo EOM and IBP redundancies. This formula needs building blocks called “spurions”
to be assigned corresponding characters, which are traces of representation matrices of
considered group(s).
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(SU(2)l × SU(2)r)× (SU(3)c × SU(2)W ×U(1)Y )

Ȟ
[
(1,1)× (1,2)1/2

]
⊕
[
(1,1)× (1,2)−1/2

]
Q̌

[
(2,1)× (3,2)1/6

]
⊕
[
(1,2)× (3̄,2)−1/6

]
ǔ

[
(2,1)× (3̄,1)−2/3

]
⊕
[
(1,2)× (3,1)2/3

]
ď

[
(2,1)× (3̄,1)1/3

]
⊕
[
(1,2)× (3,1)−1/3

]
Ľ

[
(2,1)× (1,2)−1/2

]
⊕
[
(1,2)× (1,2)1/2

]
ě [(2,1)× (1,1)1]⊕ [(1,2)× (1,1)−1]

Ǧ [(3,1)× (8,1)0]⊕ [(1,3)× (8,1)0]

W̌ [(3,1)× (1,3)0]⊕ [(1,3)× (1,3)0]

B̌ [(3,1)× (1,1)0]⊕ [(1,3)× (1,1)0]

Table 1. The spurions for our Hilbert series method and their representations under Lorentz and
gauge groups.

For the Hilbert series for the SMEFT, spurions labeled by their field name consist of

φ ∈ {H,Q, u, d, L, e,BL,WL, GL} , (3.12)

their CP partners

φ† ∈ {H†, Q†, u†, d†, L†, e†, BR,WR, GR} , (3.13)

and the covariant derivative D. We can assign them appropriate characters of Lorentz
and gauge groups. In our case, where we want to list SMEFT operators based on the CP
property, we need to construct the Hilbert series for invariants under Lorentz, gauge, and
CP transformations as will be shown later. Therefore, building blocks have to be in some
representation of the group (SO(4)× SU(3)c × SU(2)W × U(1)Y ) o ΓCP . However, none of
φ and φ† has a definite representation under this group because they are transformed to
each other by CP. Therefore, we use the direct sum φ̌ ≡ φ⊕ φ† as building blocks. Their
representations under Lorentz and gauge groups are listed in table 1. Note that, when we
use φ̌ as building blocks, a CP-even operator O +OCP and a CP-odd operator O −OCP

are written identically as Ǒ. For example, the dimension-five operator Ȟ2Ľ2 means the
direct sum H2L2 ⊕H†2L†2, which includes the CP-even operator H2L2 +H†2L†2 and the
CP-odd operator H2L2 −H†2L†2.

Let us see how to construct CP-even and odd Hilbert series for the SMEFT. As derived
in appendix C of [9] and [12], they are expressed as linear combinations of two different
Hilbert series,

Heven = 1
2 (H+ +H−) , (3.14)

Hodd = 1
2 (H+ −H−) . (3.15)
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The Hilbert series H+ is composed of singlets under SO(4)× SU(3)× SU(2)×U(1), and
H− consists of singlets under (SO(4)× SU(3)× SU(2)×U(1))CP . They are given by9

H+({φ̌i},D)

≡
∫

dµO+(4)(x)
∫

dµg̃auge+
(y) 1

P+(D, x)
∏
i

Z+(φ̌i,D, x, y) , (3.16)

H−({φ̌i},D)

≡
∫

dµO−(4)(x̃)
∫

dµg̃auge−(ỹ) 1
P−(D, x̃)

∏
i

Z−(φ̌i,D, x̃, ỹ) . (3.17)

Here we used the notation for the Lorentz symmetry extended to the disconnected group
by parity ΓP = {1,P},

O(4) = SO(4) o ΓP
= {SO(4), SO(4)P}
≡ {O+(4), O−(4)} , (3.18)

and for the gauge symmetries extended by charge conjugation ΓC ,10

g̃auge ≡ (SU(3)× SU(2)×U(1)) o ΓC
= {SU(3)× SU(2)×U(1), (SU(3)× SU(2)×U(1))C}
≡ {S̃U+(3)× S̃U+(2)× Ũ+(1), S̃U−(3)× S̃U−(2)× Ũ−(1)}
≡ {g̃auge+, g̃auge−} . (3.19)

We summarize the details of eqs. (3.16) and (3.17) below.

1. The integrands Z± are calculated by

Z+(φ̌i,D, x, y) = exp
[ ∞∑
n=1

(±1)n+1 1
n

(
φ̌i
D∆i

)n
tr
(
gni,+

)]
, (3.20)

Z−(φ̌i,D, x̃, ỹ) = exp
[ ∞∑
n=1

(±1)n+1 1
n

(
φ̌i
D∆i

)n
tr
(
gni,−

)]
. (3.21)

The sign ± is plus for bosonic fields and minus for fermionic fields. Thanks to this, we
can take the coefficient of (φ̌i/D∆i)n to be nth symmetric or anti-symmetric product
of tr(gi), i.e. symn[tr(gi)] or ∧n[tr(gi)], reflecting the statistics of φ̌i. The exponent
∆i is the mass dimension of φ̌i.

9Eqs. (3.16) and (3.17) need correction terms ∆H± [9], but they do not include operators with mass
dimensions higher than four. Since we have an interest in classifying only high-dimensional operators, we
ignore ∆H± terms in this paper.

10For ΓCA
∼= Z4, g̃auge seems to have four disconnected components. Yet, because SU(2) includes the Z2

center, g̃auge consists of only two components as well as eq. (3.19). Therefore, the following discussion holds
regardless of the choice of CS and CA.
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The representation matrices gi,+(D, x, y) and gi,−(D, x̃, ỹ) are defined as a tensor
product of those for the spacetime and internal symmetry groups:

gi,+(D, x, y) ≡ gO+(4)
i (D, x)⊗ gg̃auge+

i (y) , (3.22)

gi,−(D, x̃, ỹ) ≡ gO−(4)
i (D, x̃)⊗ gg̃auge−

i (ỹ) . (3.23)

The variables x ≡ (x1, x2) and y ≡ (yc,1, yc,2, yW , yY ) parametrize maximal tori of the
groups O+(4) = SO(4) and g̃auge+ = SU(3)c × SU(2)W × U(1)Y respectively, and
x̃ ≡ x1, ỹ ≡ (yc,1, yW ).

On the H+ branch, tr
(
gni,+

)
is written in terms of the character χi,+ = tr(gi,+) as

tr
(
gni,+(D, x, y)

)
= χi,+(Dn, xn, yn)

= χ
O+(4)
i (Dn, xn) χg̃auge+

i (yn)

= χ
SO(4)
i (Dn, xn) χSU(3)

i (ync ) χSU(2)
i (ynW ) χU(1)

i (ynY ) . (3.24)

Here we adopted an abbreviated notation xn = (xn1 , xn2 ) as well as ync . The formulae
for the characters are listed in appendix B.

On the contrary, we cannot apply the same method for H− branch: tr
(
gni,−(D, x̃, ỹ)

)
6=

χi,−(Dn, x̃n, ỹn). Instead, we have

tr
(
gni,−(D, x̃, ỹ)

)
=
{

0 (n : odd)
± χi,+(Dn, x̄n, ȳn) (n : even)

, (3.25)

where x̄ ≡ (x1, 1) and ȳ ≡ (yc,1, 1, yW , 1); see appendix C of [9] and [12]. The zero
value for odd n comes from the fact that none of the field contents is invariant under
CP transformation. The sign ± is plus for the choice of CSP, and minus for CAP
corresponding to the sign of squared CP transformation.

2. The factor P± removes IBP redundancies and is written as

P+(D, x) = 1
(1−Dx1)(1−Dx−1

1 )(1−Dx2)(1−Dx−1
2 )

, (3.26)

P−(D, x̃) = 1−D2

(1−Dx1)(1−Dx−1
1 )

. (3.27)

3. The Haar measures for the H+ branch are

dµO+(4)(x1) = dµSO(4)(x1, x2) , (3.28)
dµg̃auge+

(ỹ) = dµSU(3)(yc,1, yc,2) dµSU(2)(yW ) dµU(1)(yY ) . (3.29)
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For the H− branch,

dµO−(4)(x1) = dµSp(2)(x1) , (3.30)
dµg̃auge−(ỹ) = dµS̃U−(3)(yc,1) dµS̃U−(2)(yW ) , (3.31)

dµS̃U−(3)(yc,1) = dµSp(2)(yc,1) , (3.32)

dµS̃U−(2)(yW ) =
{

dµSU(2)(iyW ) for CS ,
dµSU(2)(yW ) for CA .

(3.33)

Eqs. (3.30) and (3.32) are derived with the “folding” technique in [9] and [12], and
eq. (3.33) is derived in [20]. The formulae for the Haar measures are listed in
appendix B.

For S̃U−(2), if one tries to remove the factor i in eq. (3.33) for CS by chang-
ing variable yW → y′W = −iyW , then the sign of eq. (3.25) will be reversed:
tr(gn−)(p, x1, yc,1, yW ) → −tr(gn−)(p, x1, yc,1, y

′
W ). Therefore, the same result can be

obtained whichever you choose CS or CA. This result is expected from eq. (2.36). Yet
it is clear that the choice of CA is more “natural” in this formulation.

CP-violating operators defined in section 3.2 are obtained by a simple modification;
just add four U(1) symmetries, U(1)B and U(1)Li (i = 1, 2, 3) to the Hilbert series H±.
All you need is two procedures. First, assign these U(1) charges to the character of each
building block. Second, integrate with four U(1) Haar measures.

4 Result

In this section, we will summarize some results of counting. These results can be reproduced
by a Form file, in the supplementary material attached to this paper, that computes the
full Hilbert series for the SMEFT. This file is based on the code called ECO (Effective
Counting of Operators) provided in [11].

4.1 List of operators at dimension eight

First, we categorize the dimension-eight operators into several classes in table 2. Here we
use H for Higgs Ȟ, ψ for fermions Q̌, ǔ, ď, Ľ, ě, and X for field strengths B̌, W̌ , Ǧ as well
as [4]. In total, we find 430 CP-odd operators for Nf = 1, and 22016 (11777) CP-odd
(-violating) operators for Nf = 3.

We find that the existing classification [18], which counts dimension-eight CP-even and
CP-odd operators involving only bosonic fields, differs from our result in the classification
of operators Ȟ2D2W̌ 2. The authors claim that the operator Ȟ2D2W̌ 2 involves 3 CP-even
operators and 3 CP-odd operators. In contrast, our result with the Hilbert series shows
that there are 4 CP-even and 2 CP-odd operators. To understand the discrepancy, let us
consider the operator iεIJK(DµH†σIDνH)(W J

µρW̃
Kρ
ν + W̃ J

µρW
Kρ
ν ). This is classified into

CP-odd operators in [18], but it is actually a CP-even operator. This can be shown using
either CS or CA as charge conjugation, and we will use CA here. The example of the matrix
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Class CP-even CP-odd

Nf 1 3 Nf 1 3 3′

X4 26 26 26 17 17 17 17

X3H2 3 3 3 3 3 3 3

X2H4 5 5 5 5 5 5 5

H8 1 1 1 0 0 0 0

X2Hψ2 48N2
f 48 432 48N2

f 48 432 372

XH3ψ2 11N2
f 11 99 11N2

f 11 99 81

H5ψ2 3N2
f 3 27 3N2

f 3 27 21

Xψ4 (B) 2N2
f (40N2

f − 1) 78 6462 2N2
f (40N2

f − 1) 78 6462 4344

( /B) N3
f (21Nf + 1) 22 1728 N3

f (21Nf + 1) 22 1728 0

H2ψ4 (B) 1
2Nf (67N3

f +N2
f + 37Nf + 1) 53 2895 1

2Nf (67N3
f +N2

f − 23Nf − 1) 22 2622 1566

( /B) 1
6N

2
f (43N2

f − 9Nf + 2) 6 543 1
6N

2
f (43N2

f − 9Nf + 2) 6 543 0

X2ψ2D 1
2Nf (57Nf + 23) 40 291 1

2Nf (57Nf − 23) 17 222 183

XH2ψ2D 46N2
f 46 414 46N2

f 46 414 330

H4ψ2D 1
2Nf (13Nf + 7) 10 69 1

2Nf (13Nf − 7) 3 48 33

Hψ4D
(B) 1

2N
3
f (135Nf − 1) 67 5454 1

2N
3
f (135Nf − 1) 67 5454 3387

( /B) 1
2N

3
f (29Nf + 3) 16 1215 1

2N
3
f (29Nf + 3) 16 1215 0

X2H2D2 11 11 11 7 7 7 7

XH4D2 3 3 3 3 3 3 3

H6D2 2 2 2 0 0 0 0

XHψ2D2 24N2
f 24 216 24N2

f 24 216 180

H3ψ2D2 18N2
f 18 162 18N2

f 18 162 126

ψ4D2 (B) 1
4N

2
f (99N2

f + 89) 47 2205 1
4N

2
f (99N2

f − 67) 8 1854 1086

( /B) 1
2N

3
f (11Nf − 1) 5 432 1

2N
3
f (11Nf − 1) 5 432 0

H2ψ2D3 Nf (8Nf + 7) 15 93 Nf (8Nf − 7) 1 51 33

H4D4 3 3 3 0 0 0 0

Total
(B) 823

4 N4
f + 929

4 N2
f + 22Nf + 54 514 18873 823

4 N4
f + 649

4 N2
f − 22Nf + 35 381 18098 11777

( /B) 289
6 N4

f + 1
2N

3
f + 1

3N
2
f 49 3918 289

6 N4
f + 1

2N
3
f + 1

3N
2
f 49 3918 0

Table 2. The number of dimension-eight operators for arbitrary Nf as well as for Nf = 1 and
Nf = 3. The horizontal lines separate the operators according to the number of derivatives involved.
Operators with four fermions are further distinguished by whether they preserve the baryon number
(B) or violate the baryon number ( /B). The last column with Nf = 3′ indicates the number of
CP-violating operators defined in section 3.2.
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Nf Dimension= 5 6 7 8 9 10 11 12 13 14
1 CP-odd 1 27 15 430 280 7414 6981 129253 128689 2300238
1 CP-violating 0 23 0 381 0 6242 0 103268 0 1743183
3 CP-odd 6 1422 771 22016 45228 1042942 1736133 37761366 87686796 1397416310
3 CP-violating 0 705 0 11777 0 (60) 437331 0 (5757) 13891774 0 (528689) 454073102
Time (in seconds) 0.01 0.03 0.05 0.12 0.25 0.59 1.20 3.18 6.11 14.25

Table 3. The numbers of CP-odd and CP-violating operators for Nf = 1, 3, as well as the computing
time for Nf = 3 CP-odd operators on the Apple M1 max with ten cores. The numbers in parentheses
are those of CP-violating operators when the SU(2)W instanton effect is taken into account.

CA in the asymmetric charge conjugation CA for SU(2) has already appeared in eq. (2.31),
CA = iσ2. Following to eq. (2.28), W ≡W IσI/2 transforms as

W
CA−−−→− (iσ2)∗W T (iσ2)T

= (−W T )∗

= −W . (4.1)

Here, we have used σ2σIσ2 = −σI∗. From eq. (4.1), we find

W I CA−−−→ −W I for I = 1, 2, 3 . (4.2)

Considering that parity P flips the sign of WW̃ , we find

iεIJK [DµH†σIDνH](W J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν )

CAP−−−−→ iεIJK [DµH(iσ2)TσI(iσ2)∗DνH†][−(−W J
µρ)(−W̃Kρ

ν )− (−W̃ J
µρ)(−WKρ

ν )]
= −iεIJK [DνH†σ2†(σI)Tσ2DµH][W J

µρW̃
Kρ
ν + W̃ J

µρW
Kρ
ν ]

= +iεIJK [DµH†σIDνH][W J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν ] . (4.3)

Hence, this operator is CP even, and our Hilbert series method identifies it correctly.

4.2 The number of operators up to dimension 14

We summarize the numbers of CP-odd and CP-violating operators for Nf = 1, 3 in table 3.
This table shows that there are 1422 CP-odd and 705 CP-violating dimension-six operators
for Nf = 3. The 1422 CP-odd operators are made up of 273 operators violating the baryon
number and 1149 operators conserving the baryon number, which is consistent with the
counting by [17]. The 705 CP-violating operators consist of 6 bosonic operators and 699
operators including fermions, and this is consistent with the counting by [19].

We also visualized the growth of the number of CP-violating operators up to dimension
14 in figure 1.

5 Conclusion and discussion

In this paper, we have shown how to classify the SMEFT operators based on CP property by
means of the Hilbert series techniques. We successfully reproduced the same enumerations
as those by [17, 19] for dimension-six operators and pointed out a misidentification by [18]
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Figure 1. The number of independent CP-violating operators in the SMEFT up to mass dimension
14. Points joined by the lower solid line are for Nf = 1; those joined by the upper solid line are for
Nf = 3. All operators of odd dimensions can have their phases removed by rephasing up to this
dimension, and hence they are not shown.

for dimension-eight operators. Our Form code can output these results in a few seconds
and can list higher-dimensional operators quickly. Our method can be easily applied to
other EFT theories besides the SMEFT, such as QCD EFT or the SMEFT with gravity.

As is mentioned at the end of section 3.2, our method correctly lists operators that
violate CP that cannot be removed by rephasing when only one of them is added to SMEFT.
In the presence of multiple operators, CP-conserving operators on our list can conspire
together to violate CP as there is less freedom for rephasing. The classification of such a
possibility is beyond the scope of this paper.

Note added. While we were finalizing this paper, the paper [26] appeared. They con-
sider Higgs Effective Field Theory (HEFT), not SMEFT, with CP transformation. They
introduce right-handed neutrinos and another SU(2)R gauge to allow for separate C and P
transformations, which we do not need in our formulation. In addition, they do not consider
removing CP-violating phases by rephasing either. Some details of the implementations of
CP also are different, and the consistency between theirs and ours will be studied elsewhere,
given that SMEFT and HEFT operators cannot be compared directly.
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A Unitarity of charge conjugation

It is sometimes misunderstood that the charge conjugation is anti-unitary given that it
involves a complex conjugation. In this section, we clarify why the apparent complex
conjugation is consistent with charge conjugation being unitary. We demonstrate how to
define unitary charge conjugation C that is consistent with eqs. (2.25) and (2.26). Anti-
unitary operations appear only when they involve time reversal.

As in section 2.2, let Φ = (φ1, · · · , φN )T be a scalar quantum field operator in the
representation N. We write them and their Hermitian conjugates in terms of the annihilation
operators ai and bi as

Φ(x) =


φ1(x)

...
φN (x)

 =
∫ d3p

(2π)32E



a1(p)

...
aN (p)

e−ip·x +


b†1(p)

...
b†N (p)

e+ip·x

 , (A.1)

Φ†(x) =


φ∗1(x)

...
φ∗N (x)

 =
∫ d3p

(2π)32E



a†1(p)

...
a†N (p)

e+ip·x +


b1(p)

...
bN (p)

e−ip·x
 . (A.2)

Here, we assumed that Φ is a scalar field for simplicity, but the following discussion can be
applied to a general field.

By comparing the coefficients of e±ip·x in eqs. (2.25) and (2.26), we find the transfor-
mation laws of creation and annihilation operators:

a1
...
aN

 C−−−→ C


b1
...
bN

 , (A.3)


b†1
...
b†N

 C−−−→ C


a†1
...
a†N

 . (A.4)

These give the definition of the unitary charge conjugation operator. Conversely, eqs. (A.3)
and (A.4) cannot be consistent if C is antiunitary because antiunitary C would trans-
form e±ip·x to e∓ip·x.
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Group Rep. Character

Lorentz scalar DP+(D, x1, x2)(1−D2)

LH spinor D
3
2P+(D, x1, x2)

(
x1 + 1

x1
−D

(
x2 + 1

x2

))
RH spnior D

3
2P+(D, x1, x2)

(
x2 + 1

x2
−D

(
x1 + 1

x1

))
LH field strength D2P+(D, x1, x2)

(
x2

1 + 1 + 1
x2

1
−D

(
x1 + 1

x1

) (
x2 + 1

x2

)
+D2

)
RH field strength D2P+(D, x1, x2)

(
x2

2 + 1 + 1
x2

2
−D

(
x1 + 1

x1

) (
x2 + 1

x2

)
+D2

)
SU(3)c 1 1

3 yc,1 + yc,2
yc,1

+ 1
yc,2

3 yc,2 + yc,1
yc,2

+ 1
yc,1

8 yc,1yc,2 + y2
c,2
yc,1

+ y2
c,1
yc,2

+ 2 + yc,2
y2
c,1

+ yc,1
y2
c,2

+ 1
yc,1yc,2

SU(2)W 1 1

2 yW + 1
yW

3 y2
W + 1 + 1

y2
W

U(1)Y Q yQY

Table 4. List of characters used to calculate the Hilbert series. We use parameters of maximal tori
x1 and x2 for SU(2)l and SU(2)r respectively, (yc,1, yc,2) for SU(3)c, yW for SU(2)W , and yY for
U(1)Y . The spurion D represents the covariant derivative. P+(D, x1, x2) is given by eq. (3.26).

Group Haar measure
Lorentz dx1

2πix1
dx1

2πix1
(1− x2

1)(1− x2
2)

SU(3)c dyc,1
2πiyc,1

dyc,2
2πiyc,2 (1− yc,1yc,2)

(
1− y2

c,1
yc,2

)(
1− y2

c,2
yc,1

)
SU(2)W dyW

2πiyW (1− y2
W )

U(1)Y dyY
2πiyY

Table 5. List of Haar measures used to calculate the Hilbert series. See the caption of table 4 for
the definition of variables.

B Characters and Haar measures

In tables 4 and 5, we summarize characters and Haar measures we used in section 3.3. They
are described by the maximal tori of the groups. The redundancy of EOM can be removed
by using the formulae of characters for the Lorentz group [9].

For example, let us write down the characters for the left-handed quark doublet Q̌.
Because its representation of the group (SU(2)l × SU(2)r)× (SU(3)c × SU(2)W ×U(1)Y ) is
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[
(2,1)× (3,2)1/6

]
⊕
[
(1,2)× (3̄,2)−1/6

]
, the character χ+ for Q̌ is written as

χQ̌,+(D, x, y) = χLorentz
LH spnior(D, x) χSU(3)

3 (yc) χSU(2)
2 (yW ) χU(1)

1/6 (yY )

+ χLorentz
RH spnior(D, x) χSU(3)

3̄ (yc) χSU(2)
2 (yW ) χU(1)

−1/6(yY ) . (B.1)
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