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1 Introduction

Matrix models have played a prominent role in gauge-string duality, starting from the
duality between matrix models with double scaling limits and low-dimensional non-critical
strings [1–3]. They also arise in the description of BPS states and their correlators in
N = 4 super-Yang Mills theories. They are therefore important for the AdS/CFT duality
between N = 4 super-Yang Mills (SYM) theories and string theory on AdS5 × S5 [4–6].
In particular, complex matrix models with one complex variable matrix Z, and the U(N)
invariant polynomial functions of Z, are relevant for the half-BPS sector of N = 4 super-
Yang Mills (SYM) with U(N) gauge group. AdS/CFT brings into focus the classification
of the invariant polynomial functions and the computation of their correlators. It was
observed in [7] that the breakdown of the standard map between multi-traces in SYM
and multi-particle states in AdS, for large dimension operators, is related to a failure of
orthogonality of multi-traces in the inner product constructed from 2-point functions of
holomorphic and anti-holomorphic gauge invariant operators. Sub-determinant operators
were also proposed as SYM duals of giant gravitons extended in the S5. Orthogonal bases
were thus recognised as important for the identification of bulk space-time duals for the
quantum states in the CFT corresponding to large dimension local operators. This led
to the classification of half-BPS operators in U(N) N = 4 SYM theory with dimension
n in terms of operators OR(Z) labelled by Young diagrams R having n boxes [8]. These
operators were shown to be orthogonal in the free-field inner product, and this informed a
proposal for a general map between half-BPS gauge invariant operators in SYM to giant
gravitons in the string theory, distinguishing giant gravitons extended in the S5 from those
extended in the AdS5 giants, and single-giant states from multi-giant states in terms of the
Young diagrams. This proposal has passed non-trivial checks based on the calculation of
3-point functions of large dimension operators in SYM and comparison with calculations
in the AdS5 × S5 (see [9–16]). The free-field inner product is equivalently expressible in
terms of a Gaussian matrix model correlator. The precise form of OR(Z) ≡ χR(Z) will
be recalled in (2.42) of section 2.2: they are linear combinations of multi-trace operators
weighted by characters of the symmetric group Sn. The inner product was calculated as

〈OR(Z)OS(Z†)〉 = δRS
n!DimN (R)

dR
(1.1)

where DimNR is the dimension of the U(N) irreducible representation associated with
Young diagram R. This object is referred to throughout as the two-point correlator. The
reason for this nomenclature stems from the fact that the matrices Z and Z† are inserted at
a given point in spacetime, and the convention followed in this paper chooses to suppress
this spacetime dependence. In section 2.2 we consider a modification of the standard
Gaussian matrix model integral by introducing a matrix coupling A. The partition function
is modified as: ∫

[dZ]e−Tr(ZZ†) →
∫

[dZ]e−Tr(ZAZ†) (1.2)

Similar modifications of hermitian matrix models have been considered in [17]. Using a
subscript A to denote the correlation functions calculated with this modified action, we
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show that

〈OR(Z)OS(Z†)〉A = δRS
n!OR(B)

dR
(1.3)

where B = A−1. The r.h.s. of (1.1) is recovered from the r.h.s. of (1.3) by setting B to be
equal to a unit matrix. The matrix-coupling dependent result is obtained by generalising
the combinatorial and diagrammatic techniques in [8] and [18] to the case of the background
matrix coupling.

For operators of dimension n obeying n < N , a familiar basis of operators is given
by trace structures. For operators of dimension n, the different trace structures can be
parameterised by integers p = {p1, p2, · · · , pn} giving the powers of different traces

Op(Z) = (trZ)p1(trZ2)p2 · · · (trZn)pn (1.4)

These integers obey

n = p1 + 2p2 + · · ·+ npn =
n∑
i=1

ipi (1.5)

i.e, they define a partition of n. The linear change of basis between the Op and OR is
given by

OR(Z) = 1
n!

∑
σ∈Sn

χR(σ) Oσ(Z) = 1
n!
∑
p`n

χRp Op(Z) (1.6)

where χRp is the character for any permutation σ(p) in the conjugacy class p in Sn, |Tp| is
the number of group elements in the conjugacy class p and

Op(Z) = |Tp|Oσ(p)(Z) . (1.7)

For n > N , the operators Op(Z) form an overcomplete basis, due to finite N trace relations.
The description of the finite N state space is simple in terms of the Young diagram basis
elements OR(Z). We simply drop all Young diagrams with l(R) > N , where l(R) is the
number of rows in the Young diagram R. The two-point function (1.1) reflects this cutoff
since the r.h.s., viewed as a polynomial in N , vanishes for l(R) > N . The two-point
function in the trace basis is

〈Op1(Z)(Op2(Z))†〉 = n!
∑
p3`n

Cp3
p1,p2N

Cp3 (1.8)

where Cp3
p1,p2 are the structure constants of the commutative algebra formed by the centre

of Z(C(Sn)). These are described more explicitly in section 2.
A partition p of n determines a conjugacy class in Sn. The formal sum of group

elements in the conjugacy class, denoted Tp, is an element in the group algebra C(Sn) and
commutes with all elements of C(Sn). As p ranges over all partitions of n, these Tp form
a basis for the centre of C(Sn). The multiplication of two of these central elements can be
expanded in terms of the same basis

Tp1Tp2 =
∑
p3

Cp3
p1,p2Tp3 (1.9)
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where Cp3
p1,p2 are the structure constants of the multiplication in the algebra Z(C(Sn)). We

will show that, with the background matrix coupling A, the equation (1.8) admits a simple
modification

〈Op1(Z)(Op2(Z))†〉A = n!
∑
p3`n

Cp3
p1,p2Op3(B) (1.10)

This shows that the class algebra of the symmetric group has a direct realization in terms
of matrix model correlators in the presence of a background matrix coupling. In (1.9) we
have a direct realisation of the same structure constants, purely within the algebra, with
no connection to matrix elements. To go from (1.9) to (1.10) we are simply decorating the
algebra elements with matrix model quantities:

Tp1 → Op1(Z)
Tp2 → (Op2(Z))†

Tp3 → Op3(B) (1.11)

The equality of the number of conjugacy classes and irreducible representations of a
finite group is a familiar mathematical fact. A related fact is that there is a change of
basis in the centre of the group algebra between a basis labelled by the conjugacy classes
and a basis labelled by irreducible representations. In the case of Sn, we have a basis of
(un-normalized) projectors

PR = 1
n!
∑
p

χRp Tp (1.12)

The multiplication in this basis is diagonal, i.e. zero unless that two projectors are identical:

PR1PR2 = δR1R2
PR1

dR1
(1.13)

To obtain (1.3) we apply the same map (1.11)

PR1 → OPR1
(Z) ≡ OR1(Z)

PR2 → (OPR2
(Z))† ≡ OR2(Z†)

PR3 → OPR3
(B) ≡ OR3(B) (1.14)

Our derivation of the refined 2-point correlator in the Schur basis will in fact be obtained
by first deriving (1.10) and then Fourier transforming. The result (1.3) may be expected by
analogy to similar results in the super-integrability literature. Our derivation shows that
this result follows using Fourier transformation on a hidden symmetry algebra underlying
the combinatorics of invariant operators, which becomes visible (as in (1.10)) in the presence
of a background matrix coupling.

The super-integrability results in [17] also include examples where there is a classical
(un-integrated) matrix in the observable, alongside the quantum (integrated) matrix. Em-
ulating these results, we also show that an equation similar to (1.3) can be obtained by
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considering gauge invariant operators constructed from classical as well as quantum fields.
The result takes the form

〈OR(ZA) (OS(ZA))†〉 = δRSn!
dR
OS(B) , (1.15)

where we now have B = A†A. This is also related by a Fourier transform on the algebra
Z(C(Sn)) to the fact that the structure constants of this algebra arise in 2-point functions
for operators labelled by permutations. In the context of AdS/CFT with N = 4 SYM,
where the theory has three complex matrices X,Y, Z, the matrix A could be Y,X which
transform in the same way as Z with an adjoint U(N) action, so that the observables
OR(ZA) are gauge-invariant under the simultaneous gauge transformation of Z and A.

Classical matrices which occur as couplings in the action are matrix spurions. Spurions
are coupling constants in quantum field theories which are promoted to fields (see for
example [19] for a recent effective field theory discussion). Here the matrix A can be
viewed as a matrix spurion in a zero-dimensional quantum field theory. Since there are
results of the same algebraic nature whether we consider classical (un-integrated) matrices
as coupling constants in the action or classical matrices appearing inside observables, it
is natural to have a single name for both uses of a classical field in a matrix model. We
propose to use “matrix witness” as a unifying terminology which includes a matrix being
used in either role. There is some resonance with the fact that classical objects appear
as measuring apparatuses in classical/quantum interactions. We leave the exploration of
witnesses, as defined here, for applications in quantum information theory as an intriguing
question for the future.

Motivated by the CFT description of open strings attached to giant gravitons, the
orthogonality relation (1.1) has been generalised to multi-matrix systems [20–26]. The
study of tensor models as combinatorial models of quantum gravity [27–31] and as models
of gauge-string duality [32] has also led to tensor generalisations of the orthogonality rela-
tion [33–36]. It has been recognised that these orthogonality equations for representation
theoretic bases are related to permutation centralizer algebras [37]. These are in general
non-commutative algebras. The starting point is that the observables can be constructed
by using a set of permutations to parametrize the contractions of upper and lower indices
of matrix or tensor fields. We will refer to these as the parameterising-permutations. There
are redundancies in the parameterising permutations, which are themselves described by a
smaller permutation group. It is useful to think of the smaller permutation group as giving
a discrete gauge symmetry which acts on the discrete set of parameterising-permutations.
Parameterising permutations which are gauge-equivalent give rise to the same gauge invari-
ant polynomial. In the case of the one-matrix problem with U(N) invariants of degree n,

Parameterising permutations : G = Sn

Gauge permutations : H = Sn (1.16)

For the two-matrix problem with U(N) invariants of degree m in one matrix and degree n
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in the other

Parameterising permutations : G = Sm+n

Gauge permutations : H = Sm × Sn ⊂ Sm+n (1.17)

In both of the above cases, the gauge permutations act by conjugation on G. For the case
of a complex 3-index tensor Φ transforming in 3-fold tensor product VN ⊗ VN ⊗ VN of the
fundamental representation VN of U(N), the construction of invariants of degree n in Φ
and Φ̄ can be done by using

Parameterising permutations : G = Sn × Sn × Sn
Gauge permutations : H = Diag(Sn)×Diag(Sn) (1.18)

Diag(Sn) is the diagonal sub-group of Sn × Sn × Sn consisting of permutations γ ∈ Sn
embedded diagonally in Sn×Sn×Sn as (γ, γ, γ). Writing the general parameterising Sn×
Sn×Sn elements as ordered triples (σ1, σ2, σ3) with σ1, σ2, σ3 ∈ Sn, the gauge permutations
γL, γR ∈ Sn act as

(γL, γR) : (σ1, σ2, σ3)→ (γLσ1γR, γLσ2γR, γLσ3γR) (1.19)

with the γL acting diagonally on the left and γR acting diagonally on the right. In all
the above cases, the group action by H organises the set of permutations in G into gauge
orbits. Sums over G-permutations within an orbit of the H-action commute with H, and
form a combinatorial basis of a (G,H) permutation centralizer algebra (PCA). This is
defined as the subspace of the group algebra C(G) which is stabilised by elements of H.
A more detailed and more general account of permutation centralizer algebras is given
in [37]. The PCA for the 2-matrix models is closely related to Littlewood-Richardson
coefficients (reduction multiplicities for irreps of Sm+n to the subgroup Sm × Sn), while
that for the tensor model the PCA (denoted K(n)) is related to Kronecker coefficients
(Clebsch-Gordan multiplicities) for tensor products of Sn irreps. These latter algebras
have been used to realise the squared Kronecker coefficients as the dimensions of null
spaces of combinatorially defined integer matrices: the null vectors can be obtained using
standard combinatorial integer matrix algorithms [38, 39]. Using an involution on K(n)
these remarks are generalised to the Kronecker coefficients themselves.

An important aspect of the PCAs is that there is a change of basis (Fourier transfor-
mation) from the combinatorial basis to a Wedderburn-Artin basis labelled by representa-
tion theory data (a collection of Young diagrams and associated representation theoretic
multiplicity labels). The Wedderburn-Artin basis shows that the associative algebras are
isomorphic to a direct sum of matrix algebras. A general discussion of the Wedderburn-
Artin theorem for associative algebras in a form we find accessible for physicists is in [40].
Explicit equations describing the bases which exhibit the isomorphism to a direct sum of
matrix algebras, drawing on the background physics literature, will be reviewed at the start
of sections 3, 4, 5. A general synopsis of this paper’s results is captured in figure 1.

The paper is organized as follows. Section 2 develops the results outlined in the
earlier part of this introduction for the complex 1-matrix model. Section 3 develops all
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Correlators with
witness fields in

combinatorial basis

Correlators with
witness fields in

W.A. basis

Structure constants
of permutation

centraliser algebras

Representation theoretic
orthogonality relations
with witness fields

Wick contraction

Fourier TransformFourier Transform

Wick contraction

Figure 1. The diagram demonstrates the core results of the paper. The action of Fourier trans-
forming exchanges combinatorial and Wedderburn-Artin (W.A.) bases, while Wick contractions are
used to produce the orthogonality relations of correlators as well as the structure constants of the
associated PCAs.

the analogous results for the complex 2-matrix model. Section 4 generalises this discussion
to the complex multi-matrix models. Section 5 describes how the structure constants of
the Kronecker PCA arise by using tensor witness fields appearing inside gauge invariant
composites of quantum (integrated) and classical (unintegrated) tensor fields.

2 Algebras and single matrix correlators with matrix witnesses

In this section we consider the complex-matrix model of a single complex matrix Z of
size N , transforming in the adjoint of U(N), which is relevant to the half-BPS sector of
N = 4 SYM theory with U(N) gauge group. We first set up the notation following previous
work [8, 18]. The holomorphic gauge invariant functions of degree n are BPS operators
with dimension n. These are products of traces of powers of Z. For the N ×N , complex
matrix Z and permutation σ ∈ Sn, we can define a gauge invariant operator (GIO) as

Oσ(Z) = Zi1iσ(1)
. . . Ziniσ(n)

= TrV ⊗nN
(Z⊗nLσ) . (2.1)

The indices i1, · · · , in are summed over the range {1, · · · , N}. The last expression indicates
that Oσ(Z) is the trace in the n-fold tensor product of the N -dimensional fundamental
representation VN of U(N) of the product of two linear operators: Z⊗nLσ. Here, Lσ has
the following action on the tensor product of basis vectors

Lσ |ei1 ⊗ · · · ⊗ ein〉 = |eiσ(1) ⊗ · · · ⊗ eiσ(n)〉 . (2.2)
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It follows straightforwardly that these GIO satisfy

Oσ(Z) = Oγσγ−1(Z) (2.3)

where γ ∈ Sn. This invariance means that the holomorphic gauge invariants can be de-
scribed in terms of equivalence classes of permutations σ ∈ Sn, obtained by conjugation
with permutations γ ∈ Sn:

σ ∼ γσγ−1 . (2.4)

Sums of permutations σ within an equivalence class belong to the centre Z[C[Sn]] of the
group algebra C[Sn]. These equivalence classes are the conjugacy classes in Sn, associated
with partitions p of n, which describe cycle structures of permutations. We denote as Cp,
the conjugacy class of permutations associated with partition p, and let σ(p) be any chosen
permutation in the class Cp. The automorphism group AutZ

(
σ(p)

)
, is the subgroup of

Sn that leaves σ(p) invariant under conjugation i.e. the stabiliser subgroup composed of
the permutations γ ∈ Sn, that satisfy γσ(p)γ−1 = σ(p). The order of this stabiliser group
depends only on p, and not the choice of σ(p), and we denote this order as |AutZ (p) |. We
define central elements Tp labelled by partitions p as follows:

Tp = 1
|AutZ (p) |

∑
γ∈Sn

γσ(p)γ−1 =
∑
α∈Cp

α ∈ Z[C[Sn]] . (2.5)

As central elements Tp satisfy Tp = γTpγ
−1 for all γ ∈ Sn. The size of the class is denoted

by |Cp| = |Tp| and it is useful to note that |Tp| = n!
|AutZ(p)| .

The algebra Z[C[Sn]] is an example of a permutation centraliser algebra (PCA) as
defined in [37]. As discussed in the introduction, the definition of the PCAs used in this
paper involves a set of parameterising permutations and a set of gauge permutations. In
this case the parametrising permutations σ and the gauge permutations γ are both general
permutations in Sn (as indicated in (1.16)). In section 2.1 we show that the two-point
function involving a holomorphic and an anti-holomorphic gauge invariant operator, in the
presence of an invertible matrix coupling A = B−1, can be written in terms of the structure
constants of the algebra Z[C[Sn]]. In section 2.2 we perform the Fourier transform from
the basis in Z[C[Sn]] labelled by partitions p to a basis labelled by Young diagrams, to
show that the Young-diagram-labelled operators form an orthogonal basis for the two-
point functions. In section 2.3 we consider gauge-invariant operators with the matrix Z

replaced by the matrix product ZY , where Y is another complex matrix (such as exists in
N = 4 SYM), transforming in the adjoint of U(N). We define two-point functions where
Z is integrated while Y is left as an unintegrated classical field. We show that the results
are given in terms of the structure constants of Z[C[Sn]]. In section 2.4 we use Fourier
transformation to obtain the orthogonal two-point functions in the Young diagram basis.
Thus we have the same structure of results whether we have matrix couplings or matrix
classical fields, both of which are referred to as examples of witness fields. The results of
this section provide the template which is emulated in subsequent sections, with Z[C[Sn]]
replaced by appropriate PCAs, which are in general non-commutative.
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2.1 Two-point function of general operators with matrix coupling

The partition function of the single matrix model with coupling witness matrix A is

Σ[0] =
∫

[dZ]e−Tr(ZAZ†) , (2.6)

and throughout we take A to be a positive definite Hermitian matrix. In appendix A, we
derive the basic correlator1

〈Zij(Z†)kl 〉 = 1
Σ[0]

∫
[dZ]Zij(Z†)kl e−Tr(ZAZ†) = δil(A−1)kj = δilB

k
j , (2.7)

where we set B = A−1 and henceforth refer to B as the coupling witness field. Recalling
the permutation parameterisation of the GIO from (2.1)

Oσ(Z) = TrV ⊗nN
(Z⊗nLσ) = Zi1iσ(1)

. . . Ziniσ(n)
, (2.8)

the Hermitian conjugate is

(Oσ(Z))† =
(
TrV ⊗nN

(Z⊗nLσ)
)†

= (Z†)i1iσ−1(1)
. . . (Z†)iniσ−1(n)

= Oσ−1(Z†) . (2.9)

By taking the expectation value of the product of (2.8) and (2.9), the two-point func-
tion/correlator of GIOs with coupling matrix field is

〈Oσ1(Z)(Oσ2(Z))†〉

= 1
Σ[0]

∫
[dZ]Oσ1(Z)(Oσ2(Z))†e−Tr(ZAZ†) (2.10)

= 〈TrV ⊗nN
(Z⊗nLσ1)

(
TrV ⊗nN

(Z⊗nLσ2)
)†
〉 (2.11)

=
∑

i1,i2,...,in
j1,j2,...,jn

〈
Zi1iσ1(1)

. . . Ziniσ1(n)
(Z†)j1j

σ−1
2 (1)

. . . (Z†)jnj
σ−1

2 (n)

〉
(2.12)

=
∑

i1,i2,...,in
j1,j2,...,jn

∑
γ∈Sn

δi1j
σ−1

2 (γ(1))
. . . δinj

σ−1
2 (γ(n))

B
jγ(1)
iσ1(1)

. . . B
jγ(n)
iσ1(n)

(2.13)

=
∑

i1,i2,...,in
j1,j2,...,jn

∑
γ∈Sn

δi1j
γσ−1

2 (1)
. . . δinj

γσ−1
2 (n)

B
jγ(1)
iσ1(1)

. . . B
jγ(n)
iσ1(n)

(2.14)

=
∑

i1,i2,...,in
j1,j2,...,jn

∑
γ∈Sn

δ
iγ−1σ1(1)
j
γ−1σ1γσ

−1
2 (1)

. . . δ
iγ−1σ1(n)
j
γ−1σ1γσ

−1
2 (n)

Bj1
iγ−1σ1(1)

. . . Bjn
iγ−1σ1(n)

(2.15)

=
∑

j1,j2,...,jn

∑
γ∈Sn

Bj1
j
γ−1σ1γσ

−1
2 (1)

· · ·Bjn
j
γ−1σ1γσ

−1
2 (n)

(2.16)

=
∑
γ∈Sn

TrV ⊗nN
(B⊗nLγ−1σ1γσ

−1
2

) , (2.17)

1Note that 〈ZijZkl 〉 = 〈(Z†)ij(Z†)kl 〉 = 0, also.
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Figure 2. The diagrammatic representation of the one-matrix correlator with coupling witness field.
The expectation value of these gauge invariant operators can be written as a sum over permutations
by exchanging Z⊗n and (Z†)⊗n for permutation operators Lγ−1 and Lγ , inserting B⊗n and then
swapping the indices. This tensor product of the coupling witness matrix B is incorporated when
the (γ−1, γ) permutations are inserted via Wick contraction, using equation (2.7).

In (2.13), Wick’s theorem has been used to write the correlator as a sum over permutations
γ ∈ Sn in conjunction with the basic correlator of (2.7). The step between equations (2.14)
and (2.15) uses the following identity

δ
iτ(1)
jσ(1)

. . . δ
iτ(n)
jσ(n)

= δi1jτ−1σ(1)
. . . δinjτ−1σ(n)

(2.18)

where the action of permutations on a number a is τ−1σ(a) = σ(τ−1(a)), i.e. the chosen
convention is to act with the leftmost permutation first (left-to-right). We will refer to this
identity for products of Kronecker delta functions as Kronecker equivariance. It follows by
re-ordering the Kronecker delta’s. In equation (2.15), we also used the identity

B
jγ(1)
iσ1(1)

. . . B
jγ(n)
iσ1(n)

= Bj1
iγ−1σ1(1)

. . . Bjn
iγ−1σ1(n)

. (2.19)

This follows from a similar re-ordering of the B-matrix elements. The final equation (2.17)
writes the correlator as a trace over the n-fold tensor product of VN .

A neat way to understand the structure of the derivation and to anticipate the outcome
is to use the diagrammatic representation of linear operators in tensor spaces [18, 26].
Figure 2 demonstrates the original two-point function on the left, while the right hand
side replaces the matrix variables with permutation operators and the tensor product of
coupling matrix B. To obtain the result from the diagram, one follows a branch downward
and multiplies the B⊗n and L operator boxes encountered. The horizontal bars on each
branch imply a trace by identifying the bottom and the top of the diagram. The figure
therefore expresses the correlator equation

〈TrV ⊗nN
(Z⊗nLσ1)TrV ⊗nN

((Z†)⊗nLσ−1
2

)〉 =
∑
γ∈Sn

TrV ⊗nN
(B⊗nLγ−1Lσ1LγLσ−1

2
) , (2.20)
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Figure 3. The diagrammatic interpretation of the multiplication of linear operators Lσ and Lτ .
In terms of the tensor components of these operators, (Lσ)i1,...,ink1,...,kn

(Lτ )k1,...,kn

j1,...,jn
= (Lστ )i1,...,inj1,...,jn

, where
the sum over repeated k indices is implicit.

and we infer the equation on the right, starting at B⊗n in the right side diagram. From
definition (2.2), it is possible to show that multiple permutation operators acting on tensor
space follow the rule LσLτ = Lστ , where again, στ(i) = τ(σ(i)) is the composition of
elements, applying left-to-right convention. This action is represented diagrammatically in
figure 3 and using this fact, the expression of (2.20) reduces to that of the derived result
in (2.16). For a more detailed discussion of the diagram interpretation and linear operators,
see appendix B.

Like the previous work without witness matrix fields, this two-point function is natu-
rally related to the cycle structure of the product of these permutations

〈Oσ1(Z)(Oσ2(Z))†〉 =
∑
γ∈Sn

∑
j1,j2,...,jn

Bj1
j
γ−1σ1γσ

−1
2 (1)

· · ·Bjn
j
γ−1σ1γσ

−1
2 (n)

(2.21)

=
∑
γ∈Sn

n∏
i=1

[
Tr(Bi)

]Ci(γ−1σ1γσ
−1
2 )

(2.22)

=
∑
σ3∈Sn

∑
γ∈Sn

n∏
i=1

[
Tr(Bi)

]Ci(σ3)
δ(σ−1

3 γ−1σ1γσ
−1
2 ) . (2.23)

Here “Tr” is the matrix trace and Ci(γ−1σ1γσ
−1
2 ) is the number of i-length cycles in the

permutation γ−1σ1γσ
−1
2 . In (2.23), a delta function on permutations is introduced using

σ3 ∈ Sn. This is defined by δ(σ) = 1 for σ = e (the identity element) and δ(σ) = 0 for all
other elements. From here, the appearance of the underlying PCA in the correlator can
also be made manifest. Since the σ3 sum runs over the entire group, it can be decomposed
in terms of conjugacy classes/partitions

∑
σ3∈Sn

∑
γ∈Sn

n∏
i=1

[
Tr(Bi)

]Ci(σ3)
δ(σ−1

3 γ−1σ1γσ
−1
2 )

=
∑
γ∈Sn

∑
p3`n

( ∑
α∈Cp3

n∏
i=1

[
Tr(Bi)

]Ci(α)
δ(α−1γ−1σ1γσ

−1
2 )

)
(2.24)
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=
∑
γ∈Sn

∑
p3`n

n∏
i=1

[
Tr(Bi)

]Ci(σ(p3))
δ

( ∑
α∈Cp3

α−1γ−1σ1γσ
−1
2

)
(2.25)

=
∑
p3`n
Oσ(p3)(B)

∑
γ∈Sn

δ
(
Tp3γ

−1σ1γσ
−1
2

)
, (2.26)

where p3 labels the conjugacy classes in the decomposition. Note that Ci(α) is replaced
with Ci(σ(p3)) here, as both α and σ(p3) represent permutations from conjugacy class Cp3

and therefore have the same cycle structure. Consequently, the sum over α can move inside
the delta function and since α and α−1 belong to the same conjugacy class Cp3 , the PCA
element Tp3 =

∑
α∈Cp3

α =
∑
α∈Cp3

α−1, is used. Equation (2.26) then sets

n∏
i=1

[
Tr(Bi)

]Ci(σ(p3))
= TrV ⊗nN

(
B⊗nLσ(p3)

)
= Oσ(p3)(B) , (2.27)

following the general definition in equation (2.1), and noting again that σ(p3) is any repre-
sentative permutation from class Cp3 . At this point, it is useful to introduce the following
lemma.

Lemma 1. For γ, σ1, σ2 ∈ Sn, Tpi ∈ Z[C[Sn]] the following equality holds

∑
γ∈Sn

δ(Tp3γ
−1σ1γσ

−1
2 ) = n!|Tp3 |

|Tp1 ||Tp2 |
Cp3
p1p2 (2.28)

where Cp3
p1p2 is a Z[C[Sn]] PCA structure constant and σ1, σ

−1
2 belong to conjugacy classes

Cp1 ,Cp2 respectively.

Proof.∑
γ∈Sn

δ(Tp3γ
−1σ1γσ

−1
2 ) =

∑
µ1∈Sn

δ
(
Tp3(µ1µ2)−1σ1(µ1µ2)σ−1

2

)
(2.29)

=
∑
µ1∈Sn

δ
(
(µ−1

2 µ2)Tp3µ
−1
2 µ−1

1 σ1µ1µ2σ
−1
2

)
(2.30)

=
∑
µ1∈Sn

δ

µ2Tp3µ
−1
2︸ ︷︷ ︸

=Tp3

µ−1
1 σ1µ1µ2σ

−1
2 µ−1

2

 (2.31)

= 1
n!

∑
µ1,µ2∈Sn

δ
(
Tp3(µ−1

1 σ1µ1)(µ2σ
−1
2 µ−1

2 )
)

(2.32)

= 1
n!δ

Tp3

 ∑
µ1∈Sn

µ−1
1 σ1µ1

 ∑
µ2∈Sn

µ2σ
−1
2 µ−1

2

 (2.33)

= |AutZ (p1) ||AutZ (p′2) |
n! δ

(
Tp3Tp1Tp′2

)
(2.34)

= n!
|Tp1 ||Tp2 |

δ (Tp3Tp1Tp2) . (2.35)
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In (2.29), the sum over γ has been replaced by a sum over µ1 with γ → µ1µ2. Equa-
tion (2.30) inserts the identity element e = µ−1

2 µ2, while (2.31) cycles the µ−1
2 permutation

to the right hand side of the delta and utilises Tp3 = µ2Tp3µ
−1
2 . An additional sum over

µ2 is introduced in (2.32), and the appropriate normalisation factor 1/n! introduced (see
appendix C for similar arguments). Equation (2.33) collects the sums inside the delta
functions, leading to the introduction of the PCA elements in (2.34), along with the auto-
morphism group sizes as per the PCA definition in (2.5). We take σ1 and σ−1

2 to belong
to conjugacy classes Cp1 and Cp′2

respectively: the primes on the partition/class labels
indicating that they are related to an inverse permutation. The final step makes use of the
orbit-stabiliser theorem, whereby the size of the automorphism group is related to the con-
jugacy/equivalence class size and gauge permutation group order by |AutZ(p)| = |Sn|/|Tp|.
As was the case with Tp3 , since a permutation and its inverse share the same conjugacy
class, the prime labels have subsequently been removed in (2.35).

The next step makes use of PCA multiplication and identities of the delta function

δ(Tp3Tp1Tp2) =
∑
pk

Cpkp1p2δ(Tp3Tpk) =
∑
pk

δp3pkC
pk
p1p2 |Tpk | = |Tp3 |Cp3

p1p2 . (2.36)

Therefore ∑
γ∈Sn

δ(Tp3γ
−1σ1γσ

−1
2 ) = n!|Tp3 |

|Tp1 ||Tp2 |
Cp3
p1p2 . (2.37)

The result of this lemma combined with equation (2.26), directly shows that upon
inclusion of a coupling matrix field, the correlator may be written as

〈Oσ1(Z)(Oσ2(Z))†〉 =
∑
p3`n
Oσ(p3)(B) n!|Tp3 |

|Tp1 ||Tp2 |
Cp3
p1p2 . (2.38)

As the GIOs in the correlator are functions of conjugacy class, we may write Oσ1 ≡ Oσ(p1)

and Oσ2 ≡ Oσ(p2) . Additionally, since a PCA element is the sum of permutations in a given
equivalence class, the GIO may also be written in combinatorial basis form, using PCA
elements divided by the size of the class

O
σ(pi) = 1

|Tpi |
OTpi ≡

1
|Tpi |
Opi . (2.39)

Therefore, by rearranging the class size factors, the final result can be written as

〈Op1(Z)(Op2(Z))†〉 = n!
∑
p3`n

Cp3
p1p2Op3(B) (2.40)

showing that the insertion of gauge invariant functions in combinatorial basis, Op1(Z),
(Op2(Z))† of the fluctuating/quantum field Z, is equal to a linear combination of gauge
invariant functions of the B witness fields. The structure constants Cp3

p1p2 can be exactly
reconstructed by choosing the appropriate basis labels (p1, p2, p3) for the gauge invariant
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functions of the quantum and witness fields. Contact with the previous result of [8] can
be made by setting the coupling matrix in equation (2.22) equal to the N × N identity
matrix, i.e. B = I,

〈Oσ1(Z)(Oσ2(Z))†〉 =
∑
γ∈Sn

n∏
i=1

[
Tr(Ii)

]Ci(γ−1σ1γσ
−1
2 )

=
∑
γ∈Sn

n∏
i=1

NCi(γ−1σ1γσ
−1
2 )

=
∑
γ∈Sn

NC1(γ−1σ1γσ
−1
2 )+···+Cn(γ−1σ1γσ

−1
2 )

=
∑
γ∈Sn

N
C
γ−1σ1γσ

−1
2 .

(2.41)

where Ci(σ) is the number of i-length cycles in σ and Cσ is the total number of cycles in σ.

2.2 Fourier basis for two-point function with matrix coupling

We have established above a direct connection between the structure constants of the
algebra Z[C[Sn]] and the two-point correlator of matrix observables in the presence of a
matrix coupling. In this section we will show that a Fourier transform on Z[C[Sn]] which
maps the combinatorial basis to a Young-diagram basis results in an orthogonal 2-point
correlator in the presence of the matrix coupling. This generalizes the orthogonality result
for Young-diagram basis operators, also called Schur polynomial operators, which captures
finite N effects in terms of a simple cut-off on the Young diagram and informs the map
between half-BPS operators in N = 4 SYM and giant gravitons [8, 41]. The role of the
Fourier transform on algebras in the construction of orthogonal bases was emphasized
in [21, 25, 26, 37, 42].

Applying the Fourier transform to the single matrix operator, as seen in section 2.1,
we define a general gauge invariant operator as

OR(Z) = 1
n!

∑
σ∈Sn

χR(σ)TrV ⊗n(Z⊗nLσ) = 1
n!

∑
σ∈Sn

χR(σ)Oσ(Z) , (2.42)

along with conjugate operator

(OR(Z))† = 1
n!

∑
σ∈Sn

(χR(σ))∗
(
TrV ⊗n(Z⊗nLσ)

)† = 1
n!

∑
σ∈Sn

χR(σ) (Oσ(Z))† . (2.43)

Here R denotes the irreducible representation (irrep) of Sn, Z is a complex matrix and
χR(σ) is the character of the representation R of element σ ∈ Sn [8]. The fact (χR(σ))∗ =
χR(σ−1) = χR(σ) has been used since characters of Sn representations can be chosen to be
real and the operator Oσ(Z) is as previously defined in (2.1). These OR(Z), with R having
n boxes, form a basis in the space of U(N) invariant polynomial functions of the matrix
Z of degree n, where U(N) acts on Z by conjugation. The calculation of the general GIO
two-point functions starts with

〈OR(Z) (OS(Z))†〉 = 1
(n!)2

∑
σ∈Sn

∑
τ∈Sn

χR(σ)χS(τ)〈Oσ(Z) (Oτ (Z))†〉 . (2.44)
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The expectation value appearing in the right hand side is just the correlator found in the
previous section using the permutation parameterisation of the observables. Using its form
given in equation (2.23), stated again here for convenience

〈Oσ(Z) (Oτ (Z))†〉 =
∑
ρ∈Sn

∑
γ∈Sn

n∏
i=1

δ(ρ−1γ−1σγτ−1)
[
Tr(Bi)

]Ci(ρ)
, (2.45)

this can be substituted in to (2.44) to achieve the following

〈OR(Z) (OS(Z))†〉 = 1
(n!)2

∑
σ,τ,ρ,γ
∈Sn

n∏
i=1

χR(σ)χS(τ)δ(ρ−1γ−1σγτ−1)
[
Tr(Bi)

]Ci(ρ)
. (2.46)

To simplify the correlator further, the following lemma is introduced.

Lemma 2. For σ, τ, ρ, γ ∈ Sn and where χR(σ) are characters of σ in representation R,
the following equality holds

1
(n!)2

∑
σ,τ,ρ,γ
∈Sn

n∏
i=1

χR(σ)χS(τ)δ(ρ−1γ−1σγτ−1)
[
Tr(Bi)

]Ci(ρ)
= n!δRS

dR
OS(B) . (2.47)

where dR is the dimension of the symmetry group’s R representation, Dim(V Sn
R ).

Proof.

1
(n!)2

∑
σ,τ,ρ,γ
∈Sn

n∏
i=1

χR(σ)χS(τ)δ(ρ−1γ−1σγτ−1)
[
Tr(Bi)

]Ci(ρ)

= 1
(n!)2

∑
τ,ρ,γ∈Sn

n∏
i=1

χR(γρτγ−1)χS(τ)
[
Tr(Bi)

]Ci(ρ)
(2.48)

=
∑
ρ∈Sn

n∏
i=1

 1
n!
∑
τ∈Sn

χS(τ)χR(ρτ)

[Tr(Bi)
]Ci(ρ)

(2.49)

= δRS
dS

∑
ρ∈Sn

χS(ρ)
n∏
i=1

[
Tr(Bi)

]Cyci(ρ)
(2.50)

= δRS
dS

∑
ρ∈Sn

χS(ρ)Oρ(B) (2.51)

= n!δRS
dR
OS(B) . (2.52)

In equation (2.48), the sum over σ was computed to remove the delta function and the
cyclic invariance of the character under conjugation of elements was used to remove the γ
dependence in (2.49), such that the γ sum produces a factor of n!. Identity

1
n!
∑
τ∈Sn

χS(τ)χR(ρτ) = δRS
dS

χS(ρ) (2.53)

was used to obtain (2.50) and the definition of the permutation-parameterised GIO was
applied in (2.51). Finally, definition (2.42) was used to write the final expression in terms
of an operator in the representation basis of the witness field B.
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Combining equation (2.46) with lemma 2 above, the correlator in Schur/Fourier basis
simply reduces to

〈OR(Z) (OS(Z))†〉 = n!δRS
dR
OS(B) . (2.54)

This result states that the correlator of two Schur polynomials/operators is orthogonal and
proportional to a Schur polynomial/operator constructed purely from the witness fields,
in agreement with recent ideas on the super-integrability of matrix models [17, 43, 44].
Additionally, by taking B = I (the N ×N identity matrix) in equation (2.54), the original
result of [8] is obtained

〈OR(Z) (OS(Z))†〉 = n!δRS
dR
OS(I) = n!δRS

dR

1
n!

∑
σ∈Sn

χS(σ)NCσ = DimN (S)n!δRS
dR

, (2.55)

using the identity DimN (S) = 1
n!
∑
σ∈Sn χS(σ)NCσ where DimN (S) is the dimension of

representation S of the unitary group and Cσ is the total number of cycles in σ.

2.3 Gauge invariant functions (observables) of quantum and classical fields

The previous sections derived the single matrix correlator result by establishing the witness
matrix as a coupling in the action. An alternative approach is to define the operators
themselves as containing some classical field. Start with a matrix field defined as

(ZA)ij =
∑
k

ZikA
k
j . (2.56)

where A is the classical witness matrix, and Z is the (quantum) matrix integration variable.
Then define the gauge invariant operator

Oσ(ZA) = TrV ⊗nN

(
(ZA)⊗nLσ

)
= (ZA)i1iσ(1)

. . . (ZA)iniσ(n)
(2.57)

and its Hermitian conjugate

(Oσ(ZA))†=
(
TrV ⊗nN

(
(ZA)⊗nLσ

))†
=(A†Z†)j1jσ−1(1)

. . . (A†Z†)jnjσ−1(n)
=Oσ−1(A†Z†) . (2.58)

The path integral, now without a coupling matrix field in the action, is

Σ[0] =
∫

[dZ]e−Tr(ZZ†) (2.59)

which produces basic correlator

〈Zij(Z†)kl 〉 = 1
Σ[0]

∫
[dZ]Zij(Z†)kl e−Tr(ZZ†) = δilδ

k
j . (2.60)

Therefore the correlator of these GIOs is

〈Oσ1(ZA)(Oσ2(ZA))†〉 =
∑

I,J,K,L

Ak1
iσ1(1)

. . . Akniσ1(n)
(A†)j1l1 . . . (A

†)jnln (2.61)

× 1
Σ[0]

∫
[dZ]Zi1k1

. . . Zinkn(Z†)l1j
σ−1

2 (1)
. . . (Z†)lnj

σ−1
2 (n)

e−Tr(ZZ†) ,
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where the sum over I, J,K,L represents a sum over all matrix indices. For notational
convenience we define a function in the witness fields

f(A,A†;~i,~j,~k,~l;σ1) = Ak1
iσ1(1)

. . . Akniσ1(n)
(A†)j1l1 . . . (A

†)jnln , (2.62)

where ~i, for example, is a vector denoting all possible i indices for a witness matrix. Using
this definition, the correlator is written as

〈Oσ1(ZA)(Oσ2(ZA))†〉

=
∑

I,J,K,L

f(A,A†;~i,~j,~k,~l;σ1)

× 1
Σ[0]

∫
[dZ]Zi1k1

. . . Zinkn(Z†)l1j
σ−1

2 (1)
. . . (Z†)lnj

σ−1
2 (n)

e−Tr(ZZ†)
(2.63)

=
∑

I,J,K,L

f(A,A†;~i,~j,~k,~l;σ1)〈Zi1k1
. . . Zinkn(Z†)l1j

σ−1
2 (1)

. . . (Z†)lnj
σ−1

2 (n)
〉 (2.64)

=
∑
γ∈Sn

∑
I,J,K,L

f(A,A†;~i,~j,~k,~l;σ1)δi1j
γσ−1

2 (1)
. . . δinj

γσ−1
2 (n)

δ
lγ(1)
k1

. . . δ
lγ(n)
kn

(2.65)

=
∑
γ∈Sn

∑
J,K

(A†)jγ(1)
k1

. . . (A†)jγ(n)
kn

Ak1
j
σ1γσ

−1
2 (1)

. . . Akni
σ1γσ

−1
2 (n)

(2.66)

=
∑
γ∈Sn

∑
j1,...,jn

(
A†A

)j1
j
γ−1σ1γσ

−1
2 (1)

. . .
(
A†A

)jn
j
γ−1σ1γσ

−1
2 (n)

(2.67)

=
∑
γ∈Sn

∑
j1,...,jn

Bj1
j
γ−1σ1γσ

−1
2 (1)

· · ·Bjn
j
γ−1σ1γσ

−1
2 (n)

(2.68)

=
∑
γ∈Sn

∑
σ3∈Sn

n∏
i=1

[
Tr(Bi)

]Ci(σ3)
δ(σ−1

3 γ−1σ1γσ
−1
2 ) (2.69)

=
∑
γ∈Sn

∑
p3`n

n∏
i=1

[
Tr(Bi)

]Ci(σ(p3))
δ

 ∑
α∈Cp3

α−1γ−1σ1γσ
−1
2

 (2.70)

=
∑
p3`n
Oσ(p3)(B)

∑
γ∈Sn

δ
(
Tp3γ

−1σ1γσ
−1
2

)
(2.71)

=
∑
p3`n

n!|Tp3 |
|Tp1 ||Tp2 |

Cp3
p1p2Oσ(p3)(B) , (2.72)

Equation (2.63) introduces the f function of (2.62), then Wick contraction, followed by the
redistribution of permutations using Kronecker equivariance, occurs between (2.64)–(2.67).
Equation (2.68) sets B = A†A to match the notation of equation (2.16). Equation (2.70)
splits the σ3 sum into a sum over conjugacy classes/partitions (labelled p3) and a sum over
the elements in each class (labelled α), while (2.71) defines the GIO in witness field B and
inserts PCA element Tp3 =

∑
α∈Cp3

α−1 ≡
∑
α∈Cp3

α. In (2.72), lemma 1 has been used to
write the correlator in terms of structure constants. In summary, the correlator is

〈Oσ1(ZA)(Oσ2(ZA))†〉 =
∑
p3`n

n!|Tp3 |
|Tp1 ||Tp2 |

Cp3
p1p2Oσ(p3)(B) . (2.73)

– 17 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

Figure 4. The diagrammatic representation of the one-matrix, two-GIO correlator where the
witness field is a classical matrix. This matrix is introduced as A (along with its conjugate A†) and
subsequently used to define B = A†A. The right hand diagram shows how upon Wick contracting,
the Lγ ,Lγ−1 , operators are incorporated and the indices are swapped.

Using Oσ1 ≡ Oσ(p1) , Oσ2 ≡ Oσ(p2) and equation (2.39), we can rewrite this result in
combinatorial basis, i.e. in terms of partitions/classes on which the operators depend

〈Op1(ZA)(Op2(ZA))†〉 = n!
∑
p3`n

Cp3
p1p2Op3(B) (2.74)

This shows that using either classical matrices or coupling matrices as the witness fields,
the same correlator result is obtained. A box operator diagram is given in figure 4 that
portrays this classical matrix construction of the two-point function.

2.4 Fourier basis for two-point function with classical fields

Just as the Schur basis correlator was calculated with the coupling witness field in sec-
tion 2.2, here the analog is derived for the classical witness field. Given the description of
Schur operators in terms of permutation parameterised operators, as well as the equiva-
lence of the combinatorial basis correlator using either coupling or classical witness fields
(as shown by the results of section 2.1 and section 2.3), this extension is straightforward.
Define the classical field GIO in Schur basis as

OR(ZA) = 1
n!

∑
σ∈Sn

χR(σ)TrV ⊗nN

(
(ZA)⊗nLσ

)
= 1
n!

∑
σ∈Sn

χR(σ)Oσ(ZA) , (2.75)

and the conjugate operator

(OR(ZA))† = 1
n!

∑
σ∈Sn

(χR(σ))∗
(
TrV ⊗nN

(
(ZA)⊗nLσ

))†
= 1
n!

∑
σ∈Sn

χR(σ) (Oσ(ZA))† ,

(2.76)
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where again, (χR(σ))∗ = χR(σ−1) = χR(σ) has been used and R corresponds to irrep R.
The correlator is therefore

〈OR(ZA) (OS(ZA))†〉 = 1
(n!)2

∑
σ∈Sn

∑
τ∈Sn

χR(σ)(χS(τ))〈Oσ(ZA) (Oτ (ZA))†〉 (2.77)

The right hand side features the permutation parameterised correlator for classical witness
fields of equation (2.69), restated here for convenience

〈Oσ(ZA)(Oτ (ZA))†〉 =
∑
ρ∈Sn

∑
γ∈Sn

n∏
i=1

δ(ρ−1γ−1σγτ−1)
[
Tr(Bi)

]Ci(ρ)
, (2.78)

where B = A†A. This can be substituted into (2.77) to simplify the Schur basis two-point
function

〈OR(ZA) (OS(ZA))†〉 = 1
(n!)2

∑
σ,τ,ρ,γ
∈Sn

n∏
i=1

χR(σ)χS(τ)δ(ρ−1γ−1σγτ−1)
[
Tr(Bi)

]Ci(ρ)
.

(2.79)

We now use lemma 2 to conclude that

〈OR(ZA)(OS(ZA))†〉 = δRSn!
dR
OS(A†A) = δRSn!

dR
OS(B) (2.80)

which reproduces the outcome of equation (2.54).

3 Algebras and two-matrix correlators with two-matrix witnesses

Partition functions of complex two-matrix models involve integration over complex matrices
X,Y . Correlators of holomorphic and anti-holomorphic polynomial functions of X,Y are
of interest in connection with the quarter-BPS sector of N = 4 SYM theory (see [45] and
references therein). Invariants of degree m in X and degree n in Y can be constructed using
a permutation parameterisation generalizing (2.1). We define gauge invariant observables
parametrised by a permutation σ in the symmetric group Sm+n of all permutations of
{1, 2, · · · ,m+ n}:

Oσ(X,Y ) = TrV ⊗m+n
N

(X⊗m ⊗ Y ⊗nLσ) = Xi1
iσ(1)

. . . X im
iσ(m)

Y
im+1
iσ(m+1)

. . . Y
im+n
iσ(m+n)

. (3.1)

The indices i1, · · · , im+n are summed from 1 to N , and operator Lσ has action

Lσ |ei1 ⊗ · · · ⊗ eim+n〉 = |eiσ(1) ⊗ · · · ⊗ eiσ(m+n)〉 . (3.2)

When γ is any element of the subgroup (Sm × Sn) ⊂ Sm+n consisting of permutations
which map the subset {1, · · · ,m} to itself and the subset {m+1, · · · ,m+n} to itself, then
by re-ordering the X among each other and the Y among each other, it can be shown that

Oγσγ−1(X,Y ) = Oσ(X,Y ) . (3.3)
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Thus the parameterising permutations are in Sm+n while the gauge permutations are in
Sm × Sn ⊂ Sm+n [22]. The permutation centralizer algebra (PCA) A(m,n) [37] relevant
to this 2-matrix problem is thus based on the equivalence classes:

σ ∼ γσγ−1 , (3.4)

with σ ∈ Sm+n, γ ∈ Sm×Sn. We will refer to A(m,n) as the “Necklace PCA”. It is defined
as the sub-algebra of C[Sm+n] that commutes with C[Sm×Sn]. There is a basis of the sub-
algebra labelled by the equivalence classes (or orbits) in Sm+n generated by the conjugation
action by γ ∈ Sm × Sn. Taking a label p to run over the orbits we denote the orbits as
OrbA(p). Choosing a representative σ(p), the automorphism group AutSm×Sn

(
σ(p)

)
is the

subgroup of Sm × Sn which leaves σ(p) ∈ Sm+n invariant under the action of conjugation
by γ ∈ Sm × Sn. The order of the automorphism group is independent of the choice of
representative σ(p) in the orbit p. We refer to this order as |AutA(p)|. By the orbit stabiliser
theorem, the size of the orbit (or equivalence class) labelled by p is

|OrbA(p)| = m!n!
|AutA(p)| . (3.5)

Applying this notation,2 the PCA basis elements for each orbit take the form

TAp = 1
|AutA(p)|

∑
γ∈Sm×Sn

γσ(p)γ−1 =
∑

τ∈OrbA(p)
τ ∈ A(m,n) , (3.6)

where the A label on TAp , AutA(p) and OrbA(p), indicate that these objects are associated
with the A(m,n) PCA. Thus, TAp are sums over permutations in the same equivalence
class/orbit, governed by relation (3.4). A notable feature of this PCA is that, unlike
Z[C[Sn]] in the single matrix case, it is non-commutative. We refer to these basis ele-
ments associated with orbits, and the combinatorics of group multiplications in Sm+n, as
combinatorial basis elements for A(m,n).

The two-matrix correlators using classical and coupling witness fields are now derived
in both combinatorial and representation basis, following the same order as section 2.

3.1 Two-point function of general operators with matrix couplings for two-
matrix case

The two-matrix analog of the one-matrix, two-point function with coupling fields, features
initial coupling matrices Ax for X and Ay for Y

Σ[0] =
∫

[dX][dY ]e−Tr(XAxX†)−Tr(Y AyY †) . (3.7)

Following a similar procedure to that of appendix A, the partition function can be written
with vector variables and source fields, so that the basic correlators can be derived by

2These TAp are referred to as “Necklaces” in their original description. See [37] for further explanation
on the analogy.
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taking derivatives with respect to said sources. These correlators of the field variables can
then be evaluated as

〈Xi
j(X†)kl 〉 = 1

Σ[0]

∫
[dX][dY ]Xi

j(X†)kl e−Tr(XAxX†)−Tr(Y AyY †) = δil(A−1
x )kj = δil(Bx)kj (3.8)

〈Y i
j (Y †)kl 〉 = 1

Σ[0]

∫
[dX][dY ]Y i

j (Y †)kl e−Tr(XAxX†)−Tr(Y AyY †) = δil(A−1
y )kj = δil(By)kj (3.9)

where again, Bx and By will be referred to as the coupling matrices in the subsequent
discussion. Using the general permutation parameterised gauge-invariant operator (3.1)
and its Hermitian conjugate

(Oσ(X,Y ))† = TrV ⊗m+n
N

((X†)⊗m ⊗ (Y †)⊗nLσ−1)

= (X†)i1iσ−1(1)
. . . (X†)imiσ−1(m)

(Y †)im+1
iσ−1(m+1)

. . . (Y †)im+n
iσ−1(m+n)

= Oσ−1(X†, Y †) ,

(3.10)

the two-point function for the two matrix model can be constructed as follows

〈Oσ1(X,Y )(Oσ2(X,Y ))†〉

=
〈
TrV ⊗m+n

N

(
X⊗m ⊗ Y ⊗nLσ1

) (
TrV ⊗m+n

N

(
X⊗m ⊗ Y ⊗nLσ2

))†〉
(3.11)

=
∑

i1,...,im+n
j1,...,jm+n

〈Xi1
iσ1(1)

· · ·Xim
iσ1(m)

Y
im+1
iσ1(m+1)

· · ·Y im+n
iσ1(m+n)

× (X†)j1j
σ−1

2 (1)
· · · (X†)jmj

σ−1
2 (m)

(Y †)jm+1
j
σ−1

2 (m+1)
· · · (Y †)jm+n

j
σ−1

2 (m+n)
〉

(3.12)

=
∑

i1,...,im+n
j1,...,jm+n

∑
γ∈Sm×Sn

δi1j
γσ−1

2 (1)
· · · δimj

γσ−1
2 (m)

δ
im+1
j
γσ−1

2 (m+1)
· · · δim+n

j
γσ−1

2 (m+n)

× (Bx)j1iγ−1σ1(1)
· · · (Bx)jmiγ−1σ1(m)

(By)jm+1
iγ−1σ1(m+1)

· · · (By)jm+n
iγ−1σ1(m+n)

.

(3.13)

Here a sum over γ ∈ Sm×Sn is introduced and the permutations applied to the indices, as
required byWick’s theorem. γ maps the set {1, . . . ,m} to itself, as well as {m+1, . . . ,m+n}
to itself. Applying Kronecker equivariance

〈Oσ1(X,Y )(Oσ2(X,Y ))†〉

=
∑

i1,...,im+n
j1,...,jm+n

∑
γ∈Sm×Sn

δ
iγ−1σ1(1)
j
γ−1σ1γσ

−1
2 (1)

· · · δ
iγ−1σ1(m)
j
γ−1σ1γσ

−1
2 (m)

δ
iγ−1σ1(m+1)
j
γ−1σ1γσ

−1
2 (m+1)

· · · δ
iγ−1σ1(m+n)
j
γ−1σ1γσ

−1
2 (m+n)

× (Bx)j1iγ−1σ1(1)
· · · (Bx)jmiγ−1σ1(m)

(By)jm+1
iγ−1σ1(m+1)

· · · (By)jm+n
iγ−1σ1(m+n)

(3.14)

=
∑

j1,...,jm+n

∑
γ∈Sm×Sn

(Bx)j1j
γ−1σ1γσ

−1
2 (1)

· · · (Bx)jmj
γ−1σ1γσ

−1
2 (m)

× (By)jm+1
j
γ−1σ1γσ

−1
2 (m+1)

· · · (By)jm+n
j
γ−1σ1γσ

−1
2 (m+n)

.
(3.15)
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The i indices are contracted in (3.15). Therefore

〈Oσ1(X,Y )(Oσ2(X,Y ))†〉 =
∑

γ∈Sm×Sn
TrV ⊗m+n

N

(
B⊗mx ⊗B⊗ny Lγ−1σ1γσ

−1
2

)
. (3.16)

Following the trace notation of (3.16), the result of the calculation can be represented
using the diagram of figure 5, recalling the composition property of the linear operators:
LσLτ = Lστ . A delta function can now be inserted and the σ3 ∈ Sm+n sum decomposed
into sums over equivalence classes as well as the elements therein

〈Oσ1(X,Y )(Oσ2(X,Y ))†〉

=
∑

γ∈Sm×Sn

∑
σ3∈Sm+n

TrV ⊗m+n
N

(
B⊗mx ⊗B⊗ny Lσ3

)
δ(σ−1

3 γ−1σ1γσ
−1
2 ) (3.17)

=
∑

γ∈Sm×Sn

∑
σ3∈Sm+n

Oσ3(Bx, By)δ(σ−1
3 γ−1σ1γσ

−1
2 ) (3.18)

=
∑

γ∈Sm×Sn

∑
p3

 ∑
α∈OrbA(p3)

Oα(Bx, By)δ(α−1γ−1σ1γσ
−1
2 )

 (3.19)

=
∑
p3

Oσ(p3)(Bx, By)
∑

γ∈Sm×Sn
δ

 ∑
α∈OrbA(p3)

α−1γ−1σ1γσ
−1
2

 (3.20)

=
∑
p3

Oσ(p3)(Bx, By)
∑

γ∈Sm×Sn
δ
(
TAp′3

γ−1σ1γσ
−1
2

)
, (3.21)

where p3 labels the equivalence classes/orbits of the σ3 sum decomposition. Here we set
TrV ⊗m+n

N

(
B⊗mx ⊗B⊗ny Lσ3

)
= Oσ3(Bx, By) as per equation (3.1) and the definition of TAp′3 ∈

A(m,n) was used in (3.21). Note that given the permutation is α−1 and the sum is over
α ∈ OrbA(p3), we attach a prime to the partition/orbit/class label to indicate that Orb(p′3)
is the orbit constructed from the inverse permutations of Orb(p3).3 In equation (3.20), the
α label on the GIO has been replaced by σ(p3) to help indicate that it is a function of
the p3 partition/class. To identify how the PCA structure constants emerge as part of the
correlator, the following lemma is provided.

Lemma 3. For γ ∈ Sm × Sn, σi ∈ Sm+n and TApi ∈ A(m,n) the following equality holds

∑
γ∈Sm×Sn

δ
(
TAp′3

γ−1σ1γσ
−1
2

)
=
m!n!|TAp′3 |
|TAp1 ||T

A
p′2
|
C
p′3;A
p1p′2

(3.22)

where Cp
′
3;A
p1p′2

is a structure constant of the A(m,n) PCA and σ1, σ−1
2 belong to equivalence

classes labelled by p1, p′2 respectively.

3While in the one-matrix case of section 2.1, permutations and their inverses share the same conjugacy
class, meaning the prime label can be dropped, for the two-matrix and multi-matrix models, this is not
generally the case.
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Figure 5. The diagrammatic representation of the general two-matrix correlator with coupling
matrix fields. As in the one-matrix case, this shows that the correlator can be written as a sum
over permutations with a swap in the indices. Note that here γ is an element of Sm × Sn (the
direct product of symmetric groups of m and n objects), as required by the appropriate equivalence
relation.

Proof. ∑
γ∈Sm×Sn

δ(TAp′3γ
−1σ1γσ

−1
2 )

=
∑

µ1∈Sm×Sn
δ
(
TAp′3

(µ1µ2)−1σ1(µ1µ2)σ−1
2

)
(3.23)

=
∑

µ1∈Sm×Sn
δ
(
(µ−1

2 µ2)TAp′3µ
−1
2 µ−1

1 σ1µ1µ2σ
−1
2

)
(3.24)

=
∑

µ1∈Sm×Sn
δ

(
µ2T

A
p′3
µ−1

2︸ ︷︷ ︸
=TA

p′3

µ−1
1 σ1µ1µ2σ

−1
2 µ−1

2

)
(3.25)

= 1
m!n!

∑
µ1,µ2∈Sm×Sn

δ
(
TAp′3

(µ−1
1 σ1µ1)(µ2σ

−1
2 µ−1

2 )
)

(3.26)

= 1
m!n!δ

(
TAp′3

( ∑
µ1∈Sm×Sn

µ−1
1 σ1µ1

)( ∑
µ2∈Sm×Sn

µ2σ
−1
2 µ−1

2

))
(3.27)
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= |AutA (p1) ||AutA (p′2) |
m!n! δ

(
TAp′3

TAp1T
A
p′2

)
(3.28)

= m!n!
|TAp1 ||T

A
p′2
|
δ
(
TAp′3

TAp1T
A
p′2

)
. (3.29)

In the above, equation (3.23) replaces the sum over γ for a sum over µ1 with γ → µ1µ2. The
identity element is added in (3.24), followed by a rearranging of µ−1

2 and the identification
of TAp′3 = µ2T

A
p′3
µ−1

2 . A sum over µ2 ∈ Sm × Sn is introduced in (3.26) along with required
factor 1/(m!n!). Finally, between equations (3.27) and (3.29), the sums are brought inside
the delta function, the PCA elements and automorphism group size factors are introduced,
and the orbit-stabiliser theorem is used to simplify the expression. Again, the prime labels
are used to represent the partitions/classes of which an inverse permutation belongs, and
we have chosen that σ1 and σ−1

2 belong to partitions/equivalence classes labelled by p1 and
p′2 respectively.

The remaining delta function can be reduced using the multiplication properties of
the PCA

δ(TAp′3T
A
p1T
A
p′2

) =
∑
pk

Cpk;A
p1p′2

δ(TAp′3T
A
pk

) =
∑
pk

Cpk;A
p1p′2

δpkp′3 |T
A
pk
| = |TAp′3 |C

p′3;A
p1p′2

. (3.30)

Plugging this back into equation (3.29) produces the required result

∑
γ∈Sm×Sn

δ(TAp′3γ
−1σ1γσ

−1
2 ) = m!n!

|TAp1 ||T
A
p′2
|
|TAp′3 |C

p′3;A
p1p′2

. (3.31)

Combining the lemma above and equation (3.21), the correlator is

〈Oσ1(X,Y )(Oσ2(X,Y ))†〉 =
∑
p3

m!n!|TAp′3 |
|TAp1 ||T

A
p′2
|
C
p′3;A
p1p′2
Oσ(p3)(Bx, By) . (3.32)

Finally, using the facts that |TAp′i | = |T
A
pi |, Oσ1 ≡ Oσ(p1) andOσ−1

2
≡ O

σ
(p′2) , then rearranging

the orbit size factors and applying |TApi |Oσ(pi) = OTApi ≡ Opi , we achieve the combinatorial
basis representation of the correlator

〈Op1(X,Y )(Op2(X,Y ))†〉 = m!n!
∑
p3

C
p′3;A
p1p′2
Op3(Bx, By) . (3.33)

Akin to the result of the one-matrix correlator with coupling matrix field of (2.40), this
two-matrix result shows that the insertion of combinatorial basis GIOs with fluctuat-
ing/quantum fields X and Y , is equal to a linear combination of operators in the associated
witness fields Bx and By. As such, the structure constants can be evaluated by choosing
the basis labels (p1, p

′
2, p
′
3) for the quantum and witness field operators. It is worth noting

that the structure constants Cp
′
3;A
p1p′2

are integer valued.
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3.2 Fourier/Q-basis for the two-matrix, two-point function

As explained at the start of this section, the two-matrix observables can be enumerated
using equivalence classes of permutations σ ∈ Sm+n under the equivalence relation σ ∼
γσγ−1 where γ ∈ Sm × Sn ⊂ Sm+n. Following [22, 26, 37, 41, 46, 47], it will be useful
to consider the decomposition of the irreducible representation V

(Sm+n)
R of Sm+n labelled

by the Young diagram R having m + n boxes as a direct sum of irreps V (Sm)
R1

⊗ V (Sn)
R2

of
the product group Sm × Sn ⊂ Sm+n, where R1, R2 have m and n boxes respectively. This
takes the form

V
(Sm+n)
R =

⊕
R1,R2

V
(Sm)
R1

⊗ V (Sn)
R2

⊗ V R
R1,R2 (3.34)

where V R
R1,R2

is the “multiplicity space” with dimension equal to the number of times
V

(Sm)
R1

⊗V (Sn)
R2

appears in the decomposition. This dimension is the Littlewood-Richardson
coefficient denoted g(R1, R2, R). The states of this subgroup basis are labelled by

|R1, R2,m1,m2; ν〉 (3.35)

where the m1 and m2 label the states of V (Sm)
R1

and V (Sn)
R2

respectively, while ν is the index
which runs over a basis for the multiplicity space V R

R1,R2
. As in the single matrix case, Schur

polynomial operators can be built using characters. For the two-matrix case specifically,
these operators are known as restricted Schur polynomials [22–24, 48–51] due to the choice
of subgroup basis and formed using the restricted character :

χRR1,R2,µ,ν(σ) (3.36)

where again, the integers µ, ν run over the multiplicity g(R1, R2, R) of the branching R→
R1 ⊗ R2: 1 ≤ ν1; ν2 ≤ g(R1, R2, R), and there is an associated Young diagram for each
representation R ,R1 and R2. The restricted character is analogous to χR(σ) in (2.42), but
equipped with the necessary indices inherited from the decomposition of (3.34). Using the
projector-like operator

PRR1,R2,µ,ν =
dR1∑
m1

dR2∑
m2

|R1, R2,m1,m2;µ〉 〈R1, R2,m1,m2; ν| (3.37)

where dRi is the dimension of irrep Ri, the restricted characters are explicitly defined as

χRR1,R2,µ,ν(σ) = TrV (R1,R2)

[
PRR1,R2,µ,ν

(
DR(σ)

)]
. (3.38)

Here, DR(σ) is the representation matrix of σ in representation R and the trace is taken
over the subspace corresponding to the subduction (R1, R2) of R. The projection-like
operator’s components in turn may be written in terms of branching coefficients as(

PRR1,R2,µ,ν

)ij
=

∑
m1,m2

BR;i
R1,R2,µ;m1,m2

BR;j
R1,R2,ν;m1,m2

(3.39)

where the branching coefficients, BR;i
Ra,Rb,ν;ma,mb , are defined as the components of the vector

|Ra, Rb,ma,mb; ν〉 in any given orthogonal basis for R:
BR;i
Ra,Rb,ν;ma,mb = 〈R; i|Ra, Rb,ma,mb; ν〉.
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The final step in producing the Schur polynomial operators, comes via the Wedderburn-
Artin theorem, which states that the PCA A(m,n) may be decomposed as a sum of matrix
algebras

A(m,n) =
⊕
R

R1,R2

Span{QRR1,R2,µ,ν ;µ, ν} (3.40)

where these Q-basis elements, using the above terminology, are defined as

QRR1,R2,µ,ν = dR
(m+ n)!

∑
σ∈Sm+n

χRR1,R2,µ,ν(σ)σ−1 , (3.41)

where dR is the dimension of representation R of Sm+n, and they have the property that
they multiply as matrices in the multiplicity indices

QRR1,R2,µ1,ν1Q
R
R1,R2,µ2,ν2 = δRSδR1S1δR2S2δν1µ2Q

R
R1,R2,µ1,ν2 . (3.42)

This is derived by generalising the multi-matrix model result in appendix D, to the two-
matrix model. Therefore, the associated restricted Schur polynomial operators, which
shall be equivalently called Q-basis/Fourier basis operators throughout, can be formed by
Fourier transforming the permutation parameterised operators of (3.1) as follows

ORR1,R2,µ,ν(X,Y ) =
∑

σ∈Sm+n

δ
(
QRR1,R2,µ,νσ

−1
)
Oσ(X,Y ) . (3.43)

Its Hermitian conjugate is(
ORR1,R2,µ,ν(X,Y )

)†
=

∑
σ∈Sm+n

δ
(
QRR1,R2,ν,µσ

)
Oσ−1(X†, Y †) (3.44)

=
∑

σ̃∈Sm+n

δ
(
QRR1,R2,ν,µσ̃

−1
)
Oσ̃(X†, Y †) (3.45)

= ORR1,R2,ν,µ(X†, Y †) , (3.46)

where properties (QRR1,R2,µ,ν
)† = QRR1,R2,ν,µ

(see appendix D) and σ† = σ−1 were used,
and σ → σ̃ = σ−1 was applied via sum invariance. The corresponding two-point function
is hence

〈ORR1,R2,µ1,ν1(X,Y )
(
OSS1,S2,µ2,ν2(X,Y )

)†
〉

= 〈ORR1,R2,µ1,ν1(X,Y )OSS1,S2,ν2,µ2(X†, Y †)〉 (3.47)

=
∑

σ,τ∈Sm+n

δ(QRR1,R2,µ1,ν1σ
−1)δ(QSS1,S2,ν2,µ2τ)〈Oσ(X,Y )Oτ−1(X†, Y †)〉 (3.48)

=
∑

σ,τ,ρ∈Sm+n

∑
γ∈Sm×Sn

δ(QRR1,R2,µ1,ν1σ
−1)δ(QSS1,S2,ν2,µ2τ)Oρ(Bx, By)δ(ρ−1γ−1σγτ−1)

(3.49)

Equation (3.49) introduces the permutation parameterised correlator result from (3.18).
Here we use a lemma to simplify the above expression
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Lemma 4. For σ, τ, ρ ∈ Sm+n, γ ∈ Sm × Sn, irreps R,R1, R2 and multiplicity indices
µ1,2, ν1,2, the following expression holds∑

σ,τ,ρ∈Sm+n

∑
γ∈Sm×Sn

δ(QRR1,R2,µ1,ν1σ
−1)δ(QSS1,S2,ν2,µ2τ)Oρ(Bx, By)δ(ρ−1γ−1σγτ−1)

= m!n!δRSδR1S1δR2S2δν1ν2ORR1,R2,µ1,µ2(Bx, By) (3.50)

Proof.∑
σ,τ,ρ∈Sm+n

∑
γ∈Sm×Sn

δ(QRR1,R2,µ1,ν1σ
−1)δ(QSS1,S2,ν2,µ2τ)Oρ(Bx, By)δ(ρ−1γ−1σγτ−1) (3.51)

=
∑

ρ∈Sm+n

∑
γ∈Sm×Sn

Oρ(Bx, By)δ(ρ−1γ−1QRR1,R2,µ1,ν1γQ
S
S1,S2,ν2,µ2) (3.52)

= m!n!
∑

ρ∈Sm+n

Oρ(Bx, By)δ(ρ−1QRR1,R2,µ1,ν1Q
S
S1,S2,ν2,µ2) (3.53)

= m!n!δRSδR1S1δR2S2δν1ν2

[ ∑
ρ∈Sm+n

δ(QRR1,R2,µ1,µ2ρ
−1)Oρ(Bx, By)

]
(3.54)

= m!n!δRSδR1S1δR2S2δν1ν2ORR1,R2,µ1,µ2(Bx, By) . (3.55)

Equation (3.52) computed the sum over the Q-basis delta functions, replacing the σ and
τ−1 in the final delta function. Equation (3.53) makes use of the invariance of Q-basis
elements under conjugation by γ ∈ Sm × Sn, while (3.54) is obtained by utilising their
multiplication property (3.42). Finally, (3.55) yields a Q-basis operator in witness fields,
following definition (3.43).

Applying lemma 4 to equation (3.49), the two-matrix generalisation to that of the
one-matrix outcome in section 2.2, is therefore〈

ORR1,R2,µ1,ν1(X,Y )(OSS1,S2,µ2,ν2(X,Y ))†
〉

=

m!n!δRSδR1S1δR2S2δν1ν2ORR1,R2,µ1,µ2(Bx, By) .
(3.56)

This shows that the correlator of two Fourier basis operators in two matrices X and Y , is
orthogonal in its representations, and is proportional to a Fourier basis operator made of
the witness fields, Bx and By.

3.3 Observable functions of quantum and classical fields for two-matrix case

If the observables are defined to include classical witness fields, and the action defined
to have no coupling, then the same result can be acquired. Define the gauge invariant
operator as

Oσ(XAx, Y Ay) = TrV ⊗m+n
N

(
(XAx)⊗m ⊗ (Y Ay)⊗nLσ

)
= (XAx)i1iσ(1)

. . . (XAx)imiσ(m)
(Y Ay)im+1

iσ(m+1)
. . . (Y Ay)im+n

iσ(m+n)

(3.57)
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and its Hermitian conjugate

(Oσ(XAx, Y Ay))†

=
(
TrV ⊗m+n

N

(
(XAx)⊗m ⊗ (Y Ay)⊗nLσ

))†
= (A†xX†)

i1
iσ−1(1)

. . . (A†xX†)imiσ−1(m)
(A†yY †)

im+1
iσ−1(m+1)

. . . (A†yY †)
im+n
iσ−1(m+n)

= Oσ−1(A†xX†, A†yY †) .

(3.58)

where Ax and Ay are the initially defined classical witness fields. Using the partition
function

Σ[0] =
∫

[dX][dY ]e−Tr(XX†)−Tr(Y Y †) (3.59)

as well as the basic field correlators

〈Xi
j(X†)kl 〉 = 1

Σ[0]

∫
[dX][dY ]Xi

j(X†)kl e−Tr(XX†)−Tr(Y Y †) = δilδ
k
j ,

〈Y i
j (Y †)kl 〉 = 1

Σ[0]

∫
[dX][dY ]Y i

j (Y †)kl e−Tr(XX†)−Tr(Y Y †) = δilδ
k
j ,

(3.60)

where all other basic field correlators vanish, one may calculate that the correlator of these
GIOs is

〈Oσ1(XAx, Y Ay)(Oσ2(XAx, Y Ay))†〉

= 1
Σ[0]

∫
[dX][dY ]Oσ1(XAx, Y Ay) (Oσ2(XAx, Y Ay))† e−Tr(XX†)−Tr(Y Y †) (3.61)

=
∑

I,J,K,L

(A†x)j1l1(Ax)k1
iσ1(1)

. . . (A†x)jmlm (Ax)kmiσ1(m)
(A†y)

jm+1
lm+1

(Ay)km+1
iσ1(m+1)

. . . (A†y)
jm+n
lm+n

(Ay)km+n
iσ1(m+n)

× 1
Σ[0]

∫
[dX][dY ]Xi1

k1
. . . X im

km
Y
im+1
km+1

. . . Y
im+n
km+n

× (X†)l1j
σ−1

2 (1)
. . . (X†)lmj

σ−1
2 (m)

(Y †)lm+1
j
σ−1

2 (m+1)
. . . (Y †)lm+n

j
σ−1

2 (m+n)
e−Tr(XX†)−Tr(Y Y †)

(3.62)

where the sum over I, J,K,L represents a sum over all associated matrix indices. For
notational convenience we define a function in the witness fields

fx,y(A,A†;~i,~j,~k,~l;σ1) = (A†x)j1l1 (Ax)k1
iσ1(1)

. . . (A†x)jmlm (Ax)kmiσ1(m)

× (A†y)
jm+1
lm+1

(Ay)km+1
iσ1(m+1)

. . . (A†y)
jm+n
lm+n

(Ay)km+n
iσ1(m+n)

, (3.63)
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where, for example, all possible i matrix indices are denoted as vector ~i components. With
this definition, the correlator becomes

〈Oσ1(XAx, Y Ay)(Oσ2(XAx, Y Ay))†〉

=
∑

I,J,K,L

fx,y(A,A†;~i,~j,~k,~l;σ1) 1
Σ[0]

∫
[dX][dY ]Xi1

k1
. . . X im

km
Y
im+1
km+1

. . . Y
im+n
km+n

× (X†)l1j
σ−1

2 (1)
. . . (X†)lmj

σ−1
2 (m)

(Y †)lm+1
j
σ−1

2 (m+1)
. . . (Y †)lm+n

j
σ−1

2 (m+n)
e−Tr(XX†)−Tr(Y Y †)

(3.64)

=
∑

I,J,K,L

fx,y(A,A†;~i,~j,~k,~l;σ1)〈Xi1
k1
. . . X im

km
Y
im+1
km+1

. . . Y
im+n
km+n

× (X†)l1j
σ−1

2 (1)
. . . (X†)lmj

σ−1
2 (m)

(Y †)lm+1
j
σ−1

2 (m+1)
. . . (Y †)lm+n

j
σ−1

2 (m+n)
〉

(3.65)

=
∑

I,J,K,L

fx,y(A,A†;~i,~j,~k,~l;σ1)
∑

γ∈Sm×Sn
δi1j
γσ−1

2 (1)
δl1kγ−1(1)

. . . δ
im+n
j
γσ−1

2 (m+n)
δ
lm+n
kγ−1(m+n) (3.66)

=
∑
J,K

∑
γ∈Sm×Sn

(A†x)j1kγ−1(1)
(Ax)k1

j
σ1γσ

−1
2 (1)

. . . (A†x)jmkγ−1(m)
(Ax)kmj

σ1γσ
−1
2 (m)

× (A†y)
jm+1
kγ−1(m+1)

(Ay)km+1
j
σ1γσ

−1
2 (m+1)

. . . (A†y)
jm+n
kγ−1(m+n)

(Ay)km+n
j
σ1γσ

−1
2 (m+n)

(3.67)

=
∑

j1,...,jn

∑
γ∈Sm×Sn

(
A†xAx

)j1
j
γ−1σ1γσ

−1
2 (1)

. . .
(
A†xAx

)jm
j
γ−1σ1γσ

−1
2 (m)

×
(
A†yAy

)jm+1

j
γ−1σ1γσ

−1
2 (m+1)

. . .
(
A†yAy

)jm+n

j
γ−1σ1γσ

−1
2 (m+n)

(3.68)

=
∑

j1,...,jn

∑
γ∈Sm×Sn

(Bx)j1j
γ−1σ1γσ

−1
2 (1)

. . . (Bx)jmj
γ−1σ1γσ

−1
2 (m)

× (By)jm+1
j
γ−1σ1γσ

−1
2 (m+1)

. . . (By)jm+n
j
γ−1σ1γσ

−1
2 (m+n)

(3.69)

=
∑

γ∈Sm×Sn

∑
σ3∈Sm+n

Oσ3(Bx, By)δ(σ−1
3 γ−1σ1γσ

−1
2 ) (3.70)

=
∑

γ∈Sm×Sn

∑
p3

 ∑
α∈OrbA(p3)

Oα(Bx, By)δ(α−1γ−1σ1γσ
−1
2 )

 (3.71)

=
∑
p3

Oσ(p3)(Bx, By)
∑

γ∈Sm×Sn
δ

 ∑
α∈OrbA(p3)

α−1γ−1σ1γσ
−1
2

 (3.72)

=
∑
p3

Oσ(p3)(Bx, By)
∑

γ∈Sm×Sn
δ
(
TAp′3

γ−1σ1γσ
−1
2

)
(3.73)

=
∑
p3

m!n!|TAp′3 |
|TAp1 ||T

A
p′2
|
C
p′3;A
p1p′2
Oσ(p3)(Bx, By) . (3.74)

Initial steps from (3.64) to (3.68) use Wick’s theorem, Kronecker equivariance and con-
traction of indices. In (3.69) we set the classical matrices as A†xAx = Bx and A†yAy = By
to match the notation of equation (3.15), while a delta function and the GIO definition
from (3.1) were used in (3.70). Equations (3.71)–(3.73) split the σ3 sum into a sum over
equivalence classes/partitions, labelled by p3, and set a PCA element in the delta func-
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Figure 6. The diagrammatic representation of the general two-matrix correlator with classical
matrix fields. The presence of the two index swaps in the lower diagram is to account for the two
classical matrices Ax and Ay, appearing after applying Wick’s theorem.

tion. Note that α and σ(p3) belong in the same orbit/equivalence class, OrbA(p3), since
σ(p3) is any permutation from the orbit. Lemma 3 was used to reach the final line (3.74).
Using |TApi |Oσ(pi) ≡ |T

A
pi |Oσi = Opi and rearranging orbit size factors, we achieve the same

combinatorial basis result as equation (3.33) for the coupling matrix derivation

〈Op1(XAx, Y Ay)(Op2(XAx, Y Ay))†〉 = m!n!
∑
p3

C
p′3;A
p1p′2
Op3(Bx, By) . (3.75)

This two-matrix correlator using classical witness fields has an associated diagram given in
figure 6. The swap in indices occurs now for both Ax and Ay matrices when the correlator
is expanded in terms of a sum over permutations.
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3.4 Fourier/Q basis for two-matrix, two-point function with classical fields

To adopt the Fourier basis for the classical witness field result, define the gauge invariant
Fourier operator

ORR1,R2,µ,ν(XAx, Y Ay) =
∑

σ∈Sm+n

δ
(
QRR1,R2,µ,νσ

−1
)
Oσ(XAx, Y Ay) (3.76)

with Hermitian conjugate(
ORR1,R2,µ,ν(XAx, Y Ay)

)†
=

∑
σ∈Sm+n

δ
(
QRR1,R2,ν,µσ

)
Oσ−1(A†xX†, A†yY †) (3.77)

=
∑

σ̃∈Sm+n

δ
(
QRR1,R2,ν,µσ̃

−1
)
Oσ̃(A†xX†, A†yY †) (3.78)

= ORR1,R2,ν,µ(A†xX†, A†yY †) . (3.79)

where again, we used (QRR1,R2,µ,ν
)† = QRR1,R2,ν,µ

, σ† = σ−1 and Oσ(XAx, Y Ay) is the
permutation parameterised operator, defined previously in (3.57). Using these Fourier
basis operators, the correlator is therefore

〈ORR1,R2,µ1,ν1(XAx, Y Ay)
(
ORR1,R2,µ2,ν2(XAx, Y Ay)

)†
〉

=
∑
σ,τ
∈Sm+n

δ(QRR1,R2,µ1,ν1σ
−1)δ(QSS1,S2,ν2,µ2τ)〈Oσ(XAx, Y Ay) (Oτ (XAx, Y Ay))†〉 (3.80)

A convenient form of the permutation parameterised correlator seen on the right hand side
of the above equation is

〈Oσ(XAx, Y Ay) (Oτ (XAx, Y Ay))†〉

=
∑

γ∈Sm×Sn

∑
ρ∈Sm+n

Oρ(Bx, By)δ(ρ−1γ−1σγτ−1) . (3.81)

This was achieved in (3.70) and sets Bx = A†xAx and By = A†yAy. Plugging this into (3.80)
and then utilising lemma 4, the final correlator expression is once again obtained〈

ORR1,R2,µ1,ν1(XAx, Y Ay)(OSS1,S2,µ2,ν2(XAx, Y Ay))†
〉

=

m!n!δRSδR1S1δR2S2δν1ν2ORR1,R2,µ1,µ2(Bx, By)
(3.82)

The result of this classical field witness case has the exact same form as the coupling witness
field case (3.56).

4 Algebras and multi-matrix correlators with multi-matrix witnesses

The extension to an arbitrary number of witness matrix fields takes gauge invariants of
the form

Oσ(Xl) = TrV ⊗m
N

(
X⊗m1

1 ⊗X⊗m2
2 · · ·X⊗ml−1

l−1 ⊗X⊗mll Lσ
)

= TrV ⊗m
N

(
l⊗

α=1
X⊗mαα Lσ

)
.

(4.1)
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Here l labels the unique/distinguishable matrices, m = m1 + m2 + · · · + ml and Lσ has
action

Lσ |ei1 ⊗ · · · ⊗ eim〉 = |eiσ(1) ⊗ · · · ⊗ eiσ(m)〉 . (4.2)

The invariance of these operators is captured by equivalence relation

σ ∼ γσγ−1 (4.3)

where σ ∈ S∑l

i=1 mi
≡ Sm and γ ∈ Sm1 × · · · × Sml , such that

Oσ(Xl) = Oγσγ−1(Xl) . (4.4)

The associated PCA stemming from such equivalence is an extension to A(m,n) (the
Necklace PCA) and hence it is denoted as: A(m1,m2, . . . ,ml) := A(~m). This A(~m) is
defined as the sub-algebra of C[Sm] that commutes with C[Sm1 × · · · × Sml ] and to ex-
press its elements, we introduce the following notation. Aut ~A(p) ≡ AutSm1×···×Sml

(
σ(p)

)
is the subgroup of Sm1 × · · · × Sml comprised of elements that leave σ(p) ∈ Sm invari-
ant under conjugation by γ ∈ Sm1 × · · · × Sml , and has size |Aut ~A(p)|. The orbit,
Orb ~A(p) ≡ Orbit

(
σ(p), Sm1 × · · · × Sml

)
, is the set of elements from Sm obtained by act-

ing on σ(p) ∈ Sm with γ ∈ Sm1 × · · · × Sml by conjugation, i.e. γσ(p)γ−1, and the size of
each orbit/equivalence class is denoted by |T ~A

p | = |Orb ~A(p)| =
∏l
β=1mβ !/|Aut ~A(p)|. For

clarity, σ(p) ∈ Sm is any permutation within the orbit Orb ~A(p). As such, an element of
A(~m) is defined as

T
~A
p = 1

|Aut ~A(p)|
∑

γ∈Sm1×···×Sml

γσ(p)γ−1 =
∑

α∈Orb ~A(p)
α ∈ A(~m) , (4.5)

where the label ~A on T ~A
p , Aut ~A(p) and Orb ~A(p) implies that these quantities are associated

to the A(~m) PCA. Such PCA elements are therefore sums over elements within the same
orbit/class, obtained from the equivalence relation of (4.3).

Applying similar techniques as previously encountered, the following sections explore
the combinatorial and Schur/Fourier basis correlator results for multi-matrix models with
classical and coupling witness fields.

4.1 Two point function of general operators with multi-matrix-couplings

The partition function with coupling witness matrices for the multi-matrix model is

Σ[0] =
l∏

η=1

∫
[dXη]e−Tr(XηAηX†η) , (4.6)

where in what follows, (Aη)−1 = Bη defines the coupling matrix associated to variable
Xη and the [0] in Σ[0] implies a sourceless partition function. By introducing sources in
the same manner as appendix A, the two-point functions for the Xη field variable can be
derived

〈(Xα)ij(X
†
β)kl 〉=

l∏
η=1

1
Σ[0]

∫
[dXη](Xα)ij(X

†
β)kl e−Tr(XηAηX†η) = δαβδ

i
l((Aα)−1)kj = δαβδ

i
l(Bα)kj .

(4.7)
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Using the permutation parameterised GIO

Oσ(Xl) = TrV ⊗m
N

(
X⊗m1

1 ⊗X⊗m2
2 ⊗ · · · ⊗X⊗ml−1

l−1 ⊗X⊗mll Lσ
)

(4.8)

and its Hermitian conjugate

(Oσ(Xl))† = TrV ⊗m
N

(
(X†1)⊗m1 ⊗ (X†2)⊗m2 ⊗ · · · ⊗ (X†l−1)⊗ml−1 ⊗ (X†l )

⊗mlLσ−1

)
= Oσ−1(X†l ) ,

(4.9)

the correlator is then constructed as follows

〈Oσ1(Xl) (Oσ2(Xl))†〉

=
〈
TrV ⊗m

N

(
X⊗m1

1 ⊗ · · · ⊗X⊗mll Lσ1

)
TrV ⊗m

N

(
(X†1)⊗m1 ⊗ · · · ⊗ (X†l )

⊗mlLσ−1
2

)〉
(4.10)

=
∑

i1,...,im
j1,...,jm

〈 (X1)i1iσ1(1)
· · · (X1)im1

iσ1(m1)
· · · · · · (Xl)

im−ml
iσ1(m−ml)

· · · (Xl)imiσ1(m)

× (X†1)j1j
σ−1

2 (1)
· · · (X†1)jm1

j
σ−1

2 (m1)
· · · · · · (X†l )

jm−ml
j
σ−1

2 (m−ml)
· · · (X†l )

jm
j
σ−1

2 (m)
〉

(4.11)

=
∑

γ∈Sm1×···×Sml

∑
i1,...,im
j1,...,jm

δi1j
γσ−1

2 (1)
· · · δim1

j
γσ−1

2 (m1)
· · · · · · δim−mlj

γσ−1
2 (m−ml)

· · · δimj
γσ−1

2 (m)

× (B1)j1iγ−1σ1(1)
· · · (B1)jm1

iγ−1σ1(m1)
· · · · · · (Bl)

jm−ml
iγ−1σ1(m−ml)

· · · (Bl)jmiγ−1σ1(m)

(4.12)

=
∑

γ∈Sm1×···×Sml

∑
i1,...,im
j1,...,jm

δ
iγ−1σ1(1)
j
γ−1σ1γσ

−1
2 (1)
· · · δ

iγ−1σ1(m1)
j
γ−1σ1γσ

−1
2 (m1)

· · · · · · δ
iγ−1σ1(m−ml)
j
γ−1σ1γσ

−1
2 (m−ml)

· · · δ
iγ−1σ1(m)
j
γ−1σ1γσ

−1
2 (m)

× (B1)j1iγ−1σ1(1)
· · · (B1)jm1

iγ−1σ1(m1)
· · · · · · (Bl)

jm−ml
iγ−1σ1(m−ml)

· · · (Bl)jmiγ−1σ1(m)

(4.13)

=
∑

γ∈Sm1×···×Sml

∑
j1,...jm

(B1)j1j
γ−1σ1γσ

−1
2 (1)

. . . (B1)jm1
j
γ−1σ1γσ

−1
2 (m1)

· · ·

· · · × (Bl)
j(m−ml)
j
γ−1σ1γσ

−1
2 (m−ml)

· · · (Bl)
j(m)
j
γ−1σ1γσ

−1
2 (m)

.

(4.14)

Between equations (4.12) and (4.14) Kronecker equivariance was applied and the set of i
indices were contracted. Further simplification leads to

〈Oσ1(Xl) (Oσ2(Xl))†〉

=
∑

σ3∈Sm
γ∈Sm1×···×Sml

TrV ⊗m
N

(B⊗m1
1 ⊗ · · · ⊗B⊗mll Lσ3)δ(σ−1

3 γ−1σ1γσ
−1
2 ) (4.15)

=
∑

σ3∈Sm
γ∈Sm1×···×Sml

Oσ3(Bl)δ(σ−1
3 γ−1σ1γσ

−1
2 ) (4.16)

=
∑
p3

∑
γ∈Sm1×···×Sml

( ∑
α∈Orb ~A(p3)

Oα(Bl)δ(α−1γ−1σ1γσ
−1
2 )

)
(4.17)

=
∑
p3

Oσ(p3)(Bl)
∑

γ∈Sm1×···×Sml

δ(T ~A
p′3
γ−1σ1γσ

−1
2 ) , (4.18)
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where p3 labels equivalence classes/orbits. In (4.15) trace notation was adopted and a
delta function was used. This is followed by setting the witness field GIO in equation (4.16)
using the definition of equation (4.1). Splitting the sum over σ3 into a sum over equivalence
classes/orbits labelled by p3 is completed in (4.17), and finally the sum over α — the sum
over elements in the equivalence class/orbit Orb ~A(p3) of which σ(p3) and α belong — is
brought inside the delta function to produce the PCA element T ~A

p′3
in (4.18). The prime

label indicates an orbit associated to an inverse permutation.

Lemma 5. For γ ∈ Sm1×· · ·×Sml, σi ∈ Sm and T ~A
pi ∈ A(~m), the following equality holds

∑
γ∈Sm1×···×Sml

δ(T ~A
p′3
γ−1σ1γσ

−1
2 ) =

|T ~A
p′3
|
∏l
α=1mα!

|T ~A
p1 ||T

~A
p′2
|

C
p′3; ~A
p1p′2

(4.19)

where Cp
′
3; ~A
p1p′2

is the PCA structure constant of A(~m) and σ1, σ−1
2 belong to equivalence

classes labelled by p1, p′2 respectively.

Proof. ∑
γ∈Sm1×···×Sml

δ(T ~A
p′3
γ−1σ1γσ

−1
2 )

=
∑

µ1∈Sm1×···×Sml

δ
(
T
~A
p′3

(µ1µ2)−1σ1(µ1µ2)σ−1
2

)
(4.20)

=
∑

µ1∈Sm1×···×Sml

δ
(
(µ−1

2 µ2)T ~A
p′3
µ−1

2 µ−1
1 σ1µ1µ2σ

−1
2

)
(4.21)

=
∑

µ1∈Sm1×···×Sml

δ

(
µ2T

~A
p′3
µ−1

2︸ ︷︷ ︸
T
~A
p′3

µ−1
1 σ1µ1µ2σ

−1
2 µ−1

2

)
(4.22)

= 1∏l
α=1mα!

∑
µ1,µ2∈Sm1×···×Sml

δ
(
T
~A
p′3

(µ−1
1 σ1µ1)(µ2σ

−1
2 µ−1

2 )
)

(4.23)

= 1∏l
α=1mα!

δ

(
T
~A
p′3

( ∑
µ1∈Sm1×···×Sml

µ−1
1 σ1µ1

)( ∑
µ2∈Sm1×···×Sml

µ2σ
−1
2 µ−1

2

))
(4.24)

=
|Aut ~A (p1)||Aut ~A (p′2)|∏l

α=1mα!
δ
(
T
~A
p′3
T
~A
p1T

~A
p′2

)
(4.25)

=
∏l
α=1mα!
|T ~A
p1 ||T

~A
p′2
|
δ
(
T
~A
p′3
T
~A
p1T

~A
p′2

)
. (4.26)

In equation (4.20), the sum over γ is replaced by a sum over µ1, taking γ → µ1µ2. An
identity permutation (e = µ−1

2 µ2) is inserted in (4.21), followed by cycling µ−1
2 in the

delta function next to σ−1
2 and identifying that µ2T

~A
p′3
µ−1

2 = T
~A
p′3

in (4.22). The subsequent
steps introduce a sum over µ2 in (4.23) (including the required 1/|Sm1 × · · · × Sml | =
1/
∏l
α=1mα! factor), place the sums in the delta function to establish the PCA elements
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and automorphism group size factors between (4.24) and (4.25), and finally, use the orbit-
stabiliser theorem to rewrite |Aut ~A(pi)| = |Sm1 × · · · ×Sml |/|T

~A
pi | in equation (4.26). Here,

as in previous sections, the prime notation on the class labels imply the equivalence class
of an inverse permutation, and we choose that σ1 and σ−1

2 belong to equivalence classes
labelled by p1 and p′2 respectively.

The remaining delta function can be reduced, revealing the structure constant using
the multiplication properties of the A(~m) PCA elements

δ
(
T
~A
p′3
T
~A
p1T

~A
p′2

)
=
∑
pk

Cpk; ~A
p1p′2

δ(T ~A
p′3
T
~A
pk

) =
∑
pk

Cpk; ~A
p1p′2

δp′3pk |T
~A
pk
| = |T ~A

p′3
|Cp

′
3; ~A
p1p′2

. (4.27)

Therefore ∑
γ∈Sm1×···×Sml

δ(T ~A
p′3
γ−1σ1γσ

−1
2 ) =

∏l
α=1mα!
|T ~A
p1 ||T

~A
p′2
|
|T ~A
p′3
|Cp

′
3; ~A
p1p′2

. (4.28)

Using this lemma, the correlator expression is

〈Oσ1(Xl) (Oσ2(Xl))†〉 =
∑
p3

|T ~A
p′3
|
∏l
α=1mα!

|T ~A
p1 ||T

~A
p′2
|

C
p′3; ~A
p1p′2
Oσ(p3)(Bl) . (4.29)

Finally, using |T ~A
p′i
| = |T ~A

pi |, Oσ1 ≡ Oσ(p1) , Oσ−1
2
≡ O

σ
(p′2) , rearranging the orbit sizes and

taking |T ~A
pi |Oσ(pi) = O

T ~A
pi

≡ Opi the correlator in combinatorial basis becomes

〈Op1(Xl) (Op2(Xl))†〉 =
l∏

α=1
mα!

∑
p3

C
p′3; ~A
p1p′2
Op3(Bl) . (4.30)

As in the previous sections, we obtain a linear combination of combinatorial basis
GIOs in witness fields Bl, upon evaluating the quantum field Xl GIO two-point function.
Supplying the basis label data (p1, p

′
2, p
′
3) will therefore provide the required information

to reconstruct the structure constants of the permutation centraliser algebra A(~m). Addi-
tionally, structure constant Cp

′
3; ~A
p1p′2

is an integer by virtue that each orbit/equivalence class
is of a set number of elements.

4.2 Fourier/Q basis for multi-matrix correlator

The representation decomposition for the multi-matrix case follows much the same route
as section 3.2 but is generalised to a larger tensor space to account for the larger number of
unique matrices.4 Generalising for σ ∈ Sm and γ ∈ Sm1×· · ·×Sml we have a decomposition
of form

V
(Sm)
R =

⊕
R1,R2,...,Rl

V
(Sm1 )
R1

⊗ V (Sm2 )
R2

⊗ · · · ⊗ V (Sml )
Rl

⊗ V R
R1,R2,...,Rl . (4.31)

4The notation in this section closely follows [26] which provides further details/identities in their appen-
dices A, B and D.
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A state in such a space can be labelled by

|R; r, ν, t〉 (4.32)

where R is the representation of Sm and r = (R1, R2, . . . , Rl) which denotes the set of indi-
vidual representations Ri, for i = 1, . . . , l. Multiplicity label ν indicates/counts how many
times the tensor product of the r irreps appear in the decomposition, and t = (t1, t2, . . . , tl)
are a set of labels used to denote the states of each individual representation space e.g.
V

(Sm1 )
R1

has states labelled by t1. Following on from this notation, the characters from
which the GIO in Fourier basis are generated, are now established. Define the projection-
like operator

PRr,µ,ν =
∑

t
|R; r, µ, t〉 〈R; r, ν, t| (4.33)

with components given in terms of branching coefficients5

(
PRr,µ,ν

)ij
=
∑

t
BR;i

r,µ;tB
R;j
r,ν;t , (4.34)

where
∑

t implies a sum over all state spaces in t = (t1, t2, . . . , tl). The character is then
constructed from these operators

χRr,µ,ν(σ) = TrV r

[
PRr,µ,ν

(
DR(σ)

)]
(4.35)

which leads naturally to the Q-basis element definition

QRr,µ,ν = dR
m!

∑
σ∈Sm

χRr,µ,ν(σ)σ−1 . (4.36)

where dR is the dimension of representation R of Sm. An important property of these basis
elements is that they multiply like matrices

QRr,µ1,ν1Q
S
s,µ2,ν2 = δRSδrsδν1µ2Q

R
r,µ1,ν2 . (4.37)

See appendix D, for the derivation of this rule. The GIO in this Fourier basis for the
multi-matrix model is hence defined as

ORr,µ,ν(Xl) =
∑
σ∈Sm

δ
(
QRr,µ,νσ

−1
)
Oσ(Xl) , (4.38)

with conjugate

(ORr,µ,ν(Xl))† =
∑
σ∈Sm

δ
(
QRr,ν,µσ

)
Oσ−1(X†l ) (4.39)

=
∑
σ̃∈Sm

δ
(
QRr,ν,µσ̃

−1
)
Oσ̃(X†l ) (4.40)

= ORr,ν,µ(X†l ) . (4.41)
5The branching coefficients BR;i

r,ν;t are defined as the components of the vector |R; r, ν, t〉 in any given
orthogonal basis for R: BR;i

r,ν;t = 〈R; i|R; r, ν, t〉.

– 36 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

where (QRr,µ,ν)† = QRr,ν,µ was applied and σ† = σ−1. Additionally, Oσ(Xl) is the permu-
tation parameterised operator established in (4.8). The correlator of these GIOs is then
written as〈

ORr,µ1,ν1(Xl)(OSs,µ2,ν2(Xl))†
〉

=
∑

σ,τ∈Sm

δ
(
QRr,µ1,ν1σ

−1
)
δ
(
QSs,ν2,µ2τ

)
〈Oσ(Xl)Oτ−1(X†l )〉 (4.42)

=
∑

σ,τ,ρ∈Sm

∑
γ∈Sm1×···×Sml

δ
(
QRr,µ1,ν1σ

−1
)
δ
(
QSs,ν2,µ2τ

)
Oρ(Bl)δ(ρ−1γ−1σγτ−1) , (4.43)

where the result of the permutation parameterised basis, multi-matrix correlator from
equation (4.16) was inserted in equation (4.43).

Lemma 6. For ρ, σ, τ ∈ Sm and γ ∈ Sm1 × · · · × Sml the following equality holds∑
σ,τ,ρ∈Sm

∑
γ∈Sm1×···×Sml

δ
(
QRr,µ1,ν1σ

−1
)
δ
(
QSs,ν2,µ2τ

)
Oρ(Bl)δ(ρ−1γ−1σγτ−1)

= hδRSδrsδν1ν2ORr,µ1,µ2(Bl) , (4.44)

where h =
∏l
α=1mα! = |Sm1 × · · · × Sml |.

Proof. ∑
σ,τ,ρ∈Sm

∑
γ∈Sm1×···×Sml

δ
(
QRr,µ1,ν1σ

−1
)
δ
(
QSs,ν2,µ2τ

)
Oρ(Bl)δ(ρ−1γ−1σγτ−1)

=
∑
ρ∈Sm

∑
γ∈Sm1×···×Sml

Oρ(Bl)δ(ρ−1γ−1QRr,µ1,ν1γQ
S
s,ν2,µ2) (4.45)

= h
∑
ρ∈Sm

Oρ(Bl)δ(ρ−1QRr,µ1,ν1Q
S
s,ν2,µ2) (4.46)

= hδRSδrsδν1ν2

 ∑
ρ∈Sm

δ
(
QRr,µ1,µ2ρ

−1
)
Oρ(Bl)

 (4.47)

= hδRSδrsδν1ν2ORr,µ1,µ2(Bl) (4.48)

Equation (4.45) sums over delta functions containing the Q-basis elements, inserting them
in place of σ and τ−1 in the final delta function. In equation (4.46), the invariance of
QRr,µ1,ν1 under conjugation by γ was used to remove the γ dependence, after which the sum
was computed, introducing a factor of h. Multiplying the Q-basis elements as matrices
following (4.37) produces equation (4.47). The final line simply identifies a Fourier basis
operator in the witness fields, as per definition (4.38).

Using the above lemma, the correlator of (4.43) is〈
ORr,µ1,ν1(Xl)(OSs,µ2,ν2(Xl))†

〉
= hδRSδrsδν1ν2ORr,µ1µ2(Bl) . (4.49)

This exhibits the orthogonality relationship as observed in the one and two-matrix cases
and shows the correlator is proportional to a Fourier operator composed of witness fields Bl.
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4.3 Observable functions of multi-matrix quantum and classical fields

Obtaining the multi-matrix correlator result through classical witness fields is possible and
follows the same procedure as section 2.3 and section 3.3. Define the partition function

Σ[0] =
l∏

η=1

∫
[dXη]e−Tr(XηX†η) , (4.50)

which has basic correlator

〈(Xα)ij(X
†
β)kl 〉 =

l∏
η=1

1
Σ[0]

∫
[dXη](Xα)ij(X

†
β)kl e−Tr(XηX†η) = δα,βδ

i
lδ
k
j . (4.51)

Then, using permutation parameterised GIO

Oσ(ZlAl) = TrV ⊗m
N

(
(Z1A1)⊗m1 ⊗ · · · ⊗ (ZlAl)⊗mlLσ

)
= (Z1A1)i1iσ(1)

. . . (Z1A1)im1
iσ(m1)

. . . (ZlAl)
im−ml
iσ(m−ml)

. . . (ZlAl)imiσ(m)

(4.52)

and its Hermitian conjugate

(Oσ(ZlAl))† = TrV ⊗m
N

(
(A†1Z

†
1)⊗m1 ⊗ · · · ⊗ (A†lZ

†
l )
⊗mlLσ−1

)
= (A†1Z

†
1)i1iσ−1(1)

. . . (A†1Z
†
1)im1
iσ−1(m1)

. . . (A†lZ
†
l )
im−ml
iσ−1(m−ml)

. . . (A†lZ
†
l )
im
iσ−1(m)

= Oσ−1(A†lZ
†
l ) ,

(4.53)

the GIO two-point function of classical witness fields is then

〈Oσ1(XlAl) (Oσ2(XlAl))†〉

=
l∏

η=1

1
Σ[0]

∫
[dXη]Oσ1(XlAl) (Oσ2(XlAl))† e−Tr(XηX†η) (4.54)

=
∑

I,J,K,Q

(A1)k1
iσ1(1)

. . . (A1)km1
iσ1(m1)

. . . (Al)
km−ml
iσ1(m−ml)

. . . (Al)km
iσ1(m)

(A†1)j1q1 . . . (A
†
1)jm1
qm1

× (A†l )
jm−ml
qm−ml

. . . (A†l )
jm
qm

l∏
η=1

1
Σ[0]

∫
[dXη](Z1)i1k1

. . . (Z1)im1
km1

. . . (Zl)
im−ml
km−ml

. . . (Zl)imkm

× (Z†1)q1
j
σ−1

2 (1)
. . . (Z†1)qm1

j
σ−1

2 (m1)
. . . (Z†l )

qm−ml
j
σ−1

2 (m−ml)
. . . (Z†l )

qm
j
σ−1

2 (m)
e−Tr(XηX†η) ,

(4.55)

where the sum over I, J,K,Q covers all matrix indices. To simplify the notation, a function
in the witness fields is defined

fl(A,A†;~i,~j,~k, ~q;σ1) = (A1)k1
iσ1(1)

. . . (A1)km1
iσ1(m1)

. . . (Al)
km−ml
iσ1(m−ml)

. . . (Al)km
iσ1(m)

× (A†1)j1q1 . . . (A
†
1)jm1
qm1 . . . (A

†
l )
jm−ml
qm−ml

. . . (A†l )
jm
qm .

(4.56)
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Using this notation the correlator is

〈Oσ1(XlAl) (Oσ2(XlAl))†〉

=
∑

I,J,K,Q

fl(A,A†;~i,~j,~k, ~q;σ1)
l∏

η=1

1
Σ[0]

∫
[dXη](Z1)i1k1

. . . (Z1)im1
km1

. . . (Zl)
im−ml
km−ml

× . . . (Zl)imkm
(Z†1)q1

j
σ−1

2 (1)
. . . (Z†1)qm1

j
σ−1

2 (m1)
. . . (Z†l )

qm−ml
j
σ−1

2 (m−ml)
. . . (Z†l )

qm
j
σ−1

2 (m)
e−Tr(XηX†η)

(4.57)

=
∑

I,J,K,Q

fl(A,A†;~i,~j,~k, ~q;σ1)〈(Z1)i1k1
. . . (Z1)im1

km1
. . . (Zl)

im−ml
km−ml

. . . (Zl)imkm

× (Z†1)q1
j
σ−1

2 (1)
. . . (Z†1)qm1

j
σ−1

2 (m1)
. . . (Z†l )

qm−ml
j
σ−1

2 (m−ml)
. . . (Z†l )

qm
j
σ−1

2 (m)
〉

(4.58)

=
∑

I,J,K,Q

∑
γ∈Sm1×···×Sml

fl(A,A†;~i,~j,~k, ~q;σ1)δi1j
γσ−1

2 (1)
δq1
kγ−1(1)

. . . . . . δimj
γσ−1

2 (m)
δqm
kγ−1(m)

(4.59)

=
∑

j1,...,jm

∑
γ∈Sm1×···×Sml

(
A†1A1

)j1
j
γ−1σ1γσ

−1
2 (1)

. . .
(
A†1A1

)jm1

j
γ−1σ1γσ

−1
2 (m1)

. . .

· · · ×
(
A†lAl

)jm−ml
j
γ−1σ1γσ

−1
2 (m−ml)

. . .
(
A†lAl

)jm
j
γ−1σ1γσ

−1
2 (m)

(4.60)

=
∑

j1,...jm

∑
γ∈Sm1×···×Sml

(B1)j1j
γ−1σ1γσ

−1
2 (1)

. . . (B1)jm1
j
γ−1σ1γσ

−1
2 (m1)

. . .

· · · × (Bl)
j(m−ml)
j
γ−1σ1γσ

−1
2 (m−ml)

· · · (Bl)
j(m)
j
γ−1σ1γσ

−1
2 (m)

(4.61)

=
∑

γ∈Sm1×···×Sml

TrV ⊗m
N

(
(B1)⊗m1 ⊗ · · · ⊗ (Bl)⊗mlLγ−1σ1γσ

−1
2

)
(4.62)

=
∑

σ3∈Sm

∑
γ∈Sm1×···×Sml

Oσ3(Bl)δ(σ−1
3 γ−1σ1γσ

−1
2 )) (4.63)

=
∑
p3

∑
γ∈Sm1×···×Sml

 ∑
α∈Orb ~A(p3)

Oα(Bl)δ(α−1γ−1σ1γσ
−1
2 )

 (4.64)

=
∑
p3

Oσ(p3)(Bl)
∑

γ∈Sm1×···×Sml

δ(T ~A
p′3
γ−1σ1γσ

−1
2 ) (4.65)

=
∑
p3

|T ~A
p′3
|
∏l
α=1mα!

|T ~A
p1 ||T

~A
p′2
|

C
p′3; ~A
p1p′2
Oσ(p3)(Bl) (4.66)

In the above, Kronecker equivariance, Wick’s theorem and index contractions were imple-
mented to arrive at (4.60) from (4.58). A†ηAη = Bη was set in (4.61), and the GIO of
classical witness fields along with a delta function were used in (4.63). Equations (4.64)
and (4.65) split the sum into equivalence classes/orbits (labelled p3), and a sum over the
elements of orbit Orb ~A(p3) (labelled α). The PCA element T ~A

p′3
is identified by taking the

α sum inside the delta function, to sum over α−1. Finally, lemma 5 was utilised in (4.66)
to bring the correlator to the form with manifest PCA structure constant dependence.
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The prime label on p′i is to indicate that it is the partition/equivalence class of an inverse
permutation. Employing |T ~A

pi |Oσ(pi) ≡ |T
~A
pi |Oσi = Opi , and |Tp′i | = |Tpi |, we achieve the

same combinatorial basis result as equation (4.30) for the coupling matrix derivation after
rearranging the orbit size factors

〈Op1(XlAl) (Op2(XlAl))†〉 =
l∏

α=1
mα!

∑
p3

C
p′3; ~A
p1p′2
Op3(Bl) . (4.67)

Figures may be generated for the multi-matrix case as a straightforward generalisation
to both figures 5 and 6, by inserting the required number of box operators to match the
desired number of witness matrices.

4.4 Fourier/Q basis for multi-matrix, two-point function with quantum and
classical fields

Define the GIO for the classical witness fields in Fourier basis as

ORr,µ,ν(XlAl) =
∑
σ∈Sm

δ
(
QRr,µ,νσ

−1
)
Oσ(XlAl) , (4.68)

with conjugate

(ORr,µ,ν(XlAl))† =
∑
σ∈Sm

δ
(
QRr,ν,µσ

)
Oσ−1(A†lX

†
l ) (4.69)

=
∑
σ̃∈Sm

δ
(
QRr,ν,µσ̃

−1
)
Oσ̃(A†lX

†
l ) (4.70)

= ORr,ν,µ(A†lX
†
l ) . (4.71)

where (QRr,µ,ν)† = QRr,ν,µ, and σ† = σ−1 were applied. Using the permutation parameterised
correlator result from (4.63), repeated below for convenience,

〈Oσ(XlAl) (Oτ (XlAl))†〉 = 〈Oσ(XlAl)Oτ−1(A†lX
†
l )〉 (4.72)

=
∑
ρ∈Sm

∑
γ∈Sm1×···×Sml

Oρ(Bl)δ(ρ−1γ−1σγτ−1) , (4.73)

where Bl = A†lAl was set, the classical witness field correlator in Fourier basis is

〈ORr,µ1,ν1(XlAl)
(
OSs,µ2,ν2(XlAl)

)†
〉

=
∑

σ,τ∈Sm

δ
(
QRr,µ1,ν1σ

−1
)
δ
(
QSs,ν2,µ2τ

)
〈Oσ(XlAl) (Oτ (XlAl))†〉 (4.74)

=
∑

σ,τ,ρ∈Sm

∑
γ∈Sm1×···×Sml

δ
(
QRr,µ1,ν1σ

−1
)
δ
(
QSs,ν2,µ2τ

)
Oρ(Bl)δ(ρ−1γ−1σγτ−1) (4.75)

= hδRSδrsδν1ν2ORr,µ1,µ2(Bl) , (4.76)

where lemma 6 was used to obtain the final line, and again h =
∏l
α=1mα!. This correlator

result 〈
ORr,µ1,ν1(XlAl)

(
OSs,µ2,ν2(XlAl)

)†〉
= hδRSδrsδν1ν2ORr,µ1,µ2(Bl) (4.77)
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generalises the previous findings of section 3.4 to an arbitrary number of witness matrices,
while again confirming the orthogonality relations of the two GIO correlator by virtue of
the representation theoretic delta functions.

5 Algebras and tensor correlators with tensor witnesses

A further extension to the witness field discussion is to introduce tensor invariants [33, 36].
Tensor operators of rank d are invariant under U(N)×d and labelled by permutations
(σ1, σ2, . . . , σd). As such they are constructed by contracting a given tensor, Zi1...id , with its
complex conjugate,6 Z̄i1,...id . A general permutation parameterised GIO is then written as

Oσ1,...,σd(Z̄, Z)

= TrV ⊗m1 ⊗···⊗V ⊗m
d

(
Z⊗mZ̄⊗m(Lσ1 ⊗ · · · ⊗ Lσd)

)
=
∑
I

Z̄(i1)σ1(1)...(id)σd(1) . . . Z̄(i1)σ1(m)...(id)σd(m)Z
(i1)1...(id)1 . . . Z(i1)m...(id)m

(5.1)

where the sum over I is over the full set of indices I={(i1)1, . . . , (id)1, . . . , (i1)m, . . . , (id)m}.
The tensor invariants have the underlying equivalence relation

(σ1, σ2, . . . , σd) ∼ (µ1σ1µ2, µ1σ2µ2, . . . , µ1σdµ2) , (5.2)

where σi , µ1 , µ2 ∈ Sm. This is known as the equivalence under left-right diagonal action
of Sm on S×dm , and means that equivalent permutation tuples produce the same operator

Oσ1,σ2,...,σd(Z̄, Z) = Oµ1σ1µ2,µ1σ2µ2,...,µ1σdµ2(Z̄, Z) . (5.3)

In keeping with the previous matrix discussion, such a relation can be linked to a permu-
tation centralizer algebra (PCA) which may be used to characterise tensor correlators. To
help produce an explicit and concise demonstration of such correlator calculations, from
here on we specialise to d = 3. The PCA associated with the tensor model under study
is denoted K(m) and otherwise referred to as the “Kronecker PCA”. This was originally
discussed in detail in [36] where both a gauged version K(m) and an un-gauged version
Kun(m) were investigated for their connection to the counting of tensor invariants.7 There,
Kun(m) was defined as the vector space and sub-algebra of C(Sm)⊗3 which is invariant
under the left and right action of the diagonal symmetric group algebra8 Diag[C(Sm)], i.e.

Kun(m) = SpanC

 ∑
γ1,γ2∈Sm

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2 , σ1 , σ2 , σ3 ∈ Sm

 . (5.4)

This is also the definition used in the previous matrix models, where the algebra elements
are formed from group averages. An important relation between this PCA and graphs was

6In this tensor case, complex conjugated quantities will feature indices down out of convention.
7Kun(m) and K(m) are isomorphic and can be used interchangeably, both being referred to as the

Kronecker PCA.
8Kun(m) is also called the “double coset algebra” in [36].

– 41 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

at the centre of [33, 36, 38, 39], where a graph basis for the algebra was implemented.
This basis is simply a re-description of the combinatorial/permutation basis so far used, by
labelling the algebra in terms of unique graphs. Counting these graphs connects directly to
counting the elements in Kun(m), as they both share the same equivalence relation of (5.2)
(see §2 of [38] for more details on the construction of these graphs).

This relation and fact (5.3) apply to Kun(m) specifically and in terms of graph nomen-
clature, Kun(m) corresponds to bipartite graphs with m trivalent vertices with three in-
coming coloured edges and m trivalent vertices with three outgoing coloured edges. Unique
graphs are hence equivalence classes of triples (τ1, τ2, τ3) ∈ Sm× Sm× Sm. The expression
Col(m) is used to denote the set of such equivalence classes, where m labels the number
of vertices, and r ∈ {1, . . . , |Col(m)|} is the label for each individual graph of chosen m.
Alluding to the counting mentioned earlier, it is a fact that |Col(m)| = |Kun(m)|, i.e. the
number of graphs is equal to the dimension of the algebra. To define the PCA elements
used in the subsequent discussion, we additionally specify AutK(r) as the subgroup of
Diag[Sm]×Diag[Sm] leaving triples (σ(r)

1 , σ
(r)
2 , σ

(r)
3 ) ∈ Sm×Sm×Sm fixed, and OrbK(r) as

the set of unique triples of permutations obtained from the left-right diagonal action of Sm.
The orbit-stabilizer theorem then allows one to connect the size of these orbits, |OrbK(r)|,
to the size of the AutK(r) group, |AutK(r)|. More precisely, the theorem states that there
is an isomorphism such that

1
|OrbK(r)| = |AutK(r)|

|Diag[Sm]×Diag[Sm]| = |AutK(r)|
(m!)2 (5.5)

Having briefly introduced the background and notation, consider a graph basis element for
Kun(m) as

Er = 1
(m!)2

∑
µ1,µ2∈Sm

µ1σ
(r)
1 µ2 ⊗ µ1σ

(r)
2 µ2 ⊗ µ1σ

(r)
3 µ2 (5.6)

= |AutK(r)|
(m!)2

∑
a∈OrbK(r)

σ
(r)
1 (a)⊗ σ(r)

2 (a)⊗ σ(r)
3 (a) (5.7)

= 1
|OrbK(r)|

∑
a∈OrbK(r)

σ
(r)
1 (a)⊗ σ(r)

2 (a)⊗ σ(r)
3 (a) ∈ Kun(m) . (5.8)

Here a labels the distinct permutation triples that are in the same orbit, such that (σ(r)
1 (a)⊗

σ
(r)
2 (a)⊗σ(r)

3 (a)) is a representative triple of the orbit denoted OrbK(r). As an aside, the T
basis used in the previous matrix models (for example, equation (3.6) for the Necklace PCA)
is straightforwardly related to the graph E basis for the Kronecker PCA via normalisation

Er = TKr
|TKr |

, TKr =
∑

a∈OrbK(r)
σ

(r)
1 (a)⊗ σ(r)

2 (a)⊗ σ(r)
3 (a) . (5.9)

i.e. TKr is the un-normalised basis element of Kun(m) and |TKr | = |OrbK(r)|.
Having addressed the tensor model’s algebra, the correlator of tensor GIOs with classi-

cal witness fields is calculated in section 5.1. Note that using a coupling witness field faces
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difficulties due to a lack of well-defined tensor inverse, hence only classical witness fields are
implemented. Additionally, since Kun(m) is semi-simple and associative, the Wedderburn-
Artin theorem [52] allows us to describe it as a direct sum of matrix algebras. Using this
fact, the correlator calculations can be organised in terms of representation theoretic quan-
tities by Fourier transforming the GIOs and subsequently using the multiplication of the
Fourier basis matrix elements. This serves to generalise the findings of [36] to include a
classical tensor field in an additional basis, and is the subject of section 5.2.

5.1 Two-point function of general tensor operators with tensor quantum and
classical fields

To calculate tensor correlators with classical tensor witnesses, we define the gauge invariant
operators to include both classical field, Λ, and field variable Z, as rank-3 tensors. The
permutation σi ∈ Sm then acts on the i-th index of the tensor as per definition in (5.1).
Explicitly, we will use the gauge invariant operators:

Oσ1,σ2,σ3(Λ̄, Z) = TrV ⊗m1 ⊗V ⊗m2 ⊗V ⊗m3

[
Z⊗mΛ̄⊗m (Lσ1 ⊗ Lσ2 ⊗ Lσ3)

]
=
∑
I,J,K

Λ̄iσ1(1)jσ2(1)kσ3(1) · · · Λ̄iσ1(m)jσ2(m)kσ3(m)Z
i1j1k1 · · ·Zimjmkm . (5.10)

The permutation operators have action

(Lσ1 ⊗ Lσ2 ⊗ Lσ3) |(ei1 ⊗ · · · ⊗ eim)⊗ (ej1 ⊗ · · · ⊗ ejm)⊗ (ek1 ⊗ · · · ⊗ ekm)〉
= |(eiσ1(1) ⊗ · · · ⊗ eiσ1(m))⊗ (ejσ2(1) ⊗ · · · ⊗ ejσ2(m))⊗ (ekσ3(1) ⊗ · · · ⊗ ekσ3(m))〉

(5.11)

It is also convenient to write this, in shorthand notation, as:

(Lσ1 ⊗ Lσ2 ⊗ Lσ3) |ei1j1k1 ⊗ ei2j2k2 ⊗ · · · eimjmkm〉
= |eiσ1(1)jσ2(1)kσ3(1) ⊗ · · · ⊗ eiσ1(m)jσ2(m)kσ3(m)〉 (5.12)

We also have, in the shorthand notation,

Λ̄ |eijk〉 = Λ̄ijk
〈eijk|Z = Zijk (5.13)

Using these we can convert the trace in tensor space to the formula in terms of indices
using

TrV ⊗m1 ⊗V ⊗m2 ⊗V ⊗m3

[
Z⊗mΛ̄⊗m (Lσ1 ⊗ Lσ2 ⊗ Lσ3)

]
=
∑
I,J,K

〈ei1j1k1 ⊗ · · · ⊗ eimjmkm |Z⊗mΛ̄⊗m(Lσ1 ⊗ Lσ2 ⊗ Lσ3) |ei1j1k1 ⊗ · · · ⊗ eimjmkm〉

(5.14)

This translates directly into a diagrammatic form, as given on the left side of the top
diagram in figure 7 (see appendix B for more details on interpreting this diagrammatic
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tensor GIO). To get the conjugate operator we take Λ̄→ Λ, Z → Z̄ and the inverse of the
permutations:

Oτ1,τ2,τ3(Λ̄, Z)
= Oτ−1

1 ,τ−1
2 ,τ−1

3
(Λ, Z̄)

= TrV ⊗m1 ⊗V ⊗m2 ⊗V ⊗m3

[
Λ⊗mZ̄⊗m

(
Lτ−1

1
⊗ Lτ−1

2
⊗ Lτ−1

3

)]
=
∑
I,J,K

Z̄i
τ−1

1 (1)jτ−1
2 (1)kτ−1

3 (1)
· · · Z̄i

τ−1
1 (m)jτ−1

2 (m)kτ−1
3 (m)

Λi1j1k1 · · ·Λimjmkm ,

(5.15)

where the sum over I, J,K implies the sum over the full set of i , j and k indices (e.g.
I = {i1, . . . im}) and the bar on the fields indicates a covariant field. The conjugate
operator has the diagrammatic form in the top-right of figure 7. The tensor field partition
function is

Σ =
∫

[dZ][dZ̄]e−
1
2
∑

i,j,k
Z̄ijkZ

ijk

, (5.16)

and
〈Z̄j1j2j3Zi1i2i3〉 = δi1j1δ

i2
j2
δi3j3 (5.17)

is the two-point function of field variables Z, Z̄. The GIO correlator with classical tensor
fields is therefore

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉

= 1
Σ

∫
[dZ][dZ̄]Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)e−

1
2
∑

i,j,k
Z̄ijkZ

ijk

(5.18)

=
∑
I,J,K
I′,J ′,K′

〈Λ̄i′
σ1(1)j

′
σ2(1)k

′
σ3(1)
· · · Λ̄i′

σ1(m)j
′
σ2(m)k

′
σ3(m)

Zi
′
1j
′
1k
′
1 · · ·Zi′mj′mk′m

× Z̄i
τ−1

1 (1)jτ−1
2 (1)kτ−1

3 (1)
· · · Z̄i

τ−1
1 (m)jτ−1

2 (m)kτ−1
3 (m)

Λi1j1k1 · · ·Λimjmkm〉
(5.19)

=
∑
I,J,K
I′,J ′,K′

∑
γ∈Sm

Λ̄i′
σ1(1)j

′
σ2(1)k

′
σ3(1)
· · · Λ̄i′

σ1(m)j
′
σ2(m)k

′
σ3(m)

Λi1j1k1 · · ·Λimjmkm

× δi
′
1
i
γτ−1

1 (1)
δ
j′1
j
γτ−1

2 (1)
δ
k′1
k
γτ−1

3 (1)
. . . δ

i′m
i
γτ−1

1 (m)
δ
j′m
j
γτ−1

2 (m)
δ
k′m
k
γτ−1

3 (m)

(5.20)

=
∑
I,J,K
γ∈Sm

Λ̄i
σ1γτ

−1
1 (1)jσ2γτ

−1
2 (1)kσ3γτ

−1
3 (1)

· · · Λ̄i
σ1γτ

−1
1 (m)jσ2γτ

−1
2 (m)kσ3γτ

−1
3 (m)

× Λi1j1k1 · · ·Λimjmkm .

(5.21)

where the expectation value on field variables Z and Z̄ has been expanded into a sum
over permutations γ via Wick’s theorem, and Kronecker equivariance was used to arrive
at (5.21). Therefore we have in trace notation

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉 =∑
γ∈Sm

TrV ⊗m1 ⊗V ⊗m2 ⊗V ⊗m3

(
Λ⊗mΛ̄⊗m(Lσ1 ⊗ Lσ2 ⊗ Lσ3)(Lγ)⊗3(Lτ−1

1
⊗ Lτ−1

2
⊗ Lτ−1

3
)
)
.

(5.22)
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invariant operators with classical tensor witnesses. This example takes Λ and Z as contravariant
tensors and their conjugates as covariant tensors, where all fields are rank-3 and displayed using
triangles. The figure implies (via their associated linear operators) that each of the three indices on
every term in the tensor product, is permuted by σ1, σ2 and σ3 (or τ−1

1 , τ−1
2 and τ−1

3 ) respectively.
Once again, applying Wick’s theorem introduces a permutation γ that is summed over, accompanied
by a twist in the indices.

A diagram representing this tensor, two-point GIO correlator and its equivalent descrip-
tion in terms of the γ permutations using Wick’s theorem, is given in figure 7. Next we
simplify (5.21) with the introduction of delta functions and elements αl for l = 1, 2, 3,

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉

=
∑
I,J,K

αl,γ∈Sm

Λ̄iα1(1)jα2(1)kα3(1) · · · Λ̄iα1(m)jα2(m)kα3(m)

× Λi1j1k1 · · ·Λimjmkm
3∏
l=1

δ(α−1
l σlγτ

−1
l ) ,

(5.23)
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where
∑
αl

implies a sum over α1, α2 and α3. The sum of the classical tensor fields,
Λ and Λ̄, over their index sets I, J,K now takes the form of an operator as defined in
equation (5.10) i.e.

Oα1,α2,α3(Λ̄,Λ) =
∑
I,J,K

Λ̄iα1(1)jα2(1)kα3(1) · · · Λ̄iα1(m)jα2(m)kα3(m)Λ
i1j1k1 · · ·Λimjmkm (5.24)

= TrV ⊗m1 ⊗V ⊗m2 ⊗V ⊗m3

(
Λ⊗mΛ̄⊗m(Lα1 ⊗ Lα2 ⊗ Lα3)

)
(5.25)

such that

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉 =
∑

αl,γ∈Sm
Oα1,α2,α3(Λ̄,Λ)

3∏
l=1

δ(α−1
l σlγτ

−1
l ) . (5.26)

The expression is further simplified by introducing γ = γ1γ2 and, by using the invariance of
the GIO in classical tensor fields, Oα1,α2,α3 = Oµ2α1µ1,µ2α2µ1,µ2α3µ1 , permutations µ2 and
µ1 can be included in the correlator (see appendix C for more details)

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉

= 1
m!

∑
αl,γ1,γ2∈Sm

Oα1,α2,α3(Λ̄,Λ)
3∏
l=1

δ(α−1
l σlγ1γ2τ

−1
l )

= 1
(m!)3

∑
αl,γ1,γ2,µ1,µ2∈Sm

Oα1,α2,α3(Λ̄,Λ)
3∏
l=1

δ(µ2α
−1
l µ1σlγ1γ2τ

−1
l ) .

(5.27)

Using the cyclicity of permutations in the delta functions, in explicit tensor product form
the correlator is

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉

= 1
(m!)3

∑
αl,γ1,γ2,µ1,µ2∈Sm

Oα1,α2,α3(Λ̄,Λ) (5.28)

× δ3
(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )(µ⊗3

1 )(σ1 ⊗ σ2 ⊗ σ3)(γ⊗3
1 )(γ⊗3

2 )(τ−1
1 ⊗ τ−1

2 ⊗ τ−1
3 )(µ⊗3

2 )
)
,

where

δ3(β1 ⊗ β2 ⊗ β3) ≡
3∏
l

δ(βl) for βl ∈ Sm . (5.29)

The two-point function now takes the form of an operator strictly in the classical tensor
fields multiplying a delta function of tensored permutations of Sm. This can be further
evaluated using the elements of the Kronecker PCA, Kun(m). There are two permutation
triples with left-right Sm×Sm diagonal permutations acting on them in the delta function
of (5.28). Bringing the sums over µi, γi inside, the correlator is equivalently rewritten as

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉= 1
(m!)3

∑
αl∈Sm

Oα1,α2,α3(Λ̄,Λ)

×δ3

(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )
[ ∑
µ1,γ1

µ1σ1γ1⊗ µ1σ2γ1⊗ µ1σ3γ1

]

×
[ ∑
µ2,γ2

γ2τ
−1
1 µ2 ⊗ γ2τ

−1
2 µ2 ⊗ γ2τ

−1
3 µ2

])
. (5.30)

– 46 –



J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

These square bracket terms are just the graph basis elements of (5.6) up to the normalisa-
tion factors and choice of graph label. Since the GIO are functions of equivalence class, we
can equally write an operator defined by permutations (σ1, σ2, σ3), as an operator defined
by (σ(r)

1 , σ
(r)
2 , σ

(r)
3 ) instead. This (r) notation implies any triple of permutations from the

orbit OrbK(r), i.e. from equivalence class r. Hence, associating the σi and τi triples with
graph labels r and s respectively, the correlator is now defined in reference to this basis as

〈OEr(Λ̄, Z)OEs(Λ̄, Z)〉 = 〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉 (5.31)

≡ 〈O
σ

(r)
1 ,σ

(r)
2 ,σ

(r)
3

(Λ̄, Z)O
τ

(s)
1 ,τ

(s)
2 ,τ

(s)
3

(Λ̄, Z)〉 (5.32)

= m!
∑

αl∈Sm
Oα1,α2,α3(Λ̄,Λ)δ3

(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )ErEs′

)
. (5.33)

The prime notation on Es′ , is used to indicate that this basis algebra element was formed
from an triple of inverse permutations, namely (τ−1

1 , τ−1
2 , τ−1

3 ). Decomposing the αl ∈ Sm
sums into sums over equivalence classes (labelled by p) and sums over elements in each
class (labelled by d),9 means the α−1 triple can also be exchanged for a Kronecker PCA
basis element

〈OEr(Λ̄, Z)OEs(Λ̄, Z)〉

= m!
∑
p

[ ∑
d∈OrbK(p)

O
α

(p)
1 ,α

(p)
2 ,α

(p)
3

(Λ̄,Λ)

× δ3
((

(α−1
1 )(p′)(d)⊗ (α−1

2 )(p′)(d)⊗ (α−1
3 )(p′)(d)

)
ErEs′

)] (5.34)

= m!
∑
p

(
O
α

(p)
1 ,α

(p)
2 ,α

(p)
3

(Λ̄,Λ)

× δ3

[ ∑
d∈OrbK(p)

(
(α−1

1 )(p′)(d)⊗ (α−1
2 )(p′)(d)⊗ (α−1

3 )(p′)(d)
)
ErEs′

])
,

(5.35)

where the orbits/equivalence classes in this sum decomposition are labelled by p, and again,
the prime notation has been adopted for the inverse triple (α−1

1 , α−1
2 , α−1

3 ).10 Hence,

〈OEr(Λ̄, Z)OEs(Λ̄, Z)〉 =
∑
p

m!|OrbK(p′)|O
α

(p)
1 ,α

(p)
2 ,α

(p)
3

(Λ̄,Λ)δ3
(
Ep′ErEs′

)
, (5.36)

Note that since the GIO are invariant under the equivalence relation (5.3), the operator
O
α

(p)
1 ,α

(p)
2 ,α

(p)
3

is the same for all d ∈ OrbK(p), and so the d-label on the operator is omitted.
For this same reason, it is free to move outside the sum over d as seen in (5.35). From §2.3

9In graph nomenclature, this is decomposing the sum into a sum over all unique graphs and a sum over
the elements in the same orbit of each graph.

10We may think of the sum over d ∈ OrbK(p) as running over all permutation triples in a given orbit
p. The implied effect this has on triples (α−1

1 (d), α−1
2 (d), α−1

3 (d)), is to run over all triples in the p′ orbit,
which is the orbit generated by inverse permutations: α−1

i .
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of [38], this delta function of graph basis elements can also be simplified. The following
multiplication rule holds

ErEs′ =
|Col(m)|∑
t=1

Ct;Krs′ Et =⇒ δ3(Ep′ErEs′) =
|Col(m)|∑
t=1

Ct;Krs′ δ3(Ep′Et) . (5.37)

where Ct;Krs′ is the Kun(m) structure constant in the graph basis. Setting σ(p)(a) = σ
(p)
1 (a)⊗

σ
(p)
2 (a)⊗ σ(p)

3 (a) for convenience, the inner product g on C(Sm)⊗3 can be defined as

g(α(p)(a), β(t)(b)) = δ3

((
α−1

)(p)
(a)β(t)(b)

)
, (5.38)

and one can identify that

δ3(Ep′Et) = 1
|OrbK(p′)||OrbK(t)|

∑
a∈OrbK(p′)

∑
b∈OrbK(t)

δ3
(
(α−1)(p′)(a)β(t)(b)

)
(5.39)

= 1
|OrbK(p′)||OrbK(t)|

∑
a∈OrbK(p′)

∑
b∈OrbK(t)

g
(
α(p′)(a), β(t)(b)

)
(5.40)

= 1
|OrbK(p′)||OrbK(t)|

∑
a∈OrbK(p′)

∑
b∈OrbK(t)

δp′tδab (5.41)

= 1
|OrbK(p′)|δp

′t . (5.42)

Combining equations (5.42) and (5.37) then substituting this into equation (5.36), the final
expression for the correlator in the graph basis becomes

〈OEr(Λ̄, Z)OEs(Λ̄, Z)〉 =
∑
p

|Col(m)|∑
t=1

m!|OrbK(p′)|O
α

(p)
1 ,α

(p)
2 ,α

(p)
3

(Λ̄,Λ)Ct;Krs′
1

|OrbK(p′)|δp
′t

(5.43)

=
∑
p

m!Cp
′;K
rs′ Oα(p)

1 ,α
(p)
2 ,α

(p)
3

(Λ̄,Λ) (5.44)

= m!
∑
p

Cp
′;K
rs′ OEp(Λ̄,Λ) , (5.45)

where the final line identifies the α(p)
i triple with algebra element Ep (see equation (5.31)

for similar application). This graph basis result

〈OEr(Λ̄, Z)OEs(Λ̄, Z)〉 = m!
∑
p

Cp
′;K
rs′ OEp(Λ̄,Λ) (5.46)

is again in keeping with the previous cases: a linear combination of operators composed
of the classical (tensor) fields with multiplicative structure constant factors from the cor-
responding PCA. Hence, given a set of basis labels (Er, Es, Ep), these structure constants
can be computed. Note that for the graph basis of Kun(m) used, the structure constant
appearing in the final expression, Cp

′;K
rs′ , is an integer as shown in [38].
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5.2 Fourier/Q basis

This section utilises the Fourier basis to write the correlator in terms of representation theo-
retic quantities. The Fourier basis we use is referred to as the “Qun-basis of Kun(m)” in [36]
where again, “un” stands for “ungauged”. These Qun matrix basis elements, transformed
from the combinatorial basis in (5.4), are given by11

QR,S,Tun;λ,ρ = κR,S,T
∑

σl∈Sm

∑
il,jl

CR,S;T,λ
i1,i2,i3

CR,S;T,ρ
j1,j2,j3

DR
i1j1(σ1)DS

i2j2(σ2)DT
i3j3(σ3)σ1 ⊗ σ2 ⊗ σ3 (5.47)

where the sums over σl, il, jl are taken to mean summing over all l values: l = 1, 2, 3.
Here κR,S,T = d(R)d(S)d(T )

(m!)3 , where d(A) is the dimension of representation A of Sm. In
other words, the matrices DA(σ) of representation A of permutation element σ ∈ Sm, are
d(A)× d(A) in size. The CR,S;T,λ

i1,i2,i3
terms are Clebsch-Gordan coefficients, which arise from

the decomposition of a tensor product representation into the space of irreps tensored by
the multiplicity space of the irreps. Indices i1, j1 run from 1 to d(R), i2, j2 from 1 to d(S)
and i3, j3 from 1 to d(T ), while λ, ρ ∈ [1,C(R,S, T )] where C(R,S, T ) is the Kronecker
coefficient: the multiplicity of the irrep T in the tensor product of the irreps R and S.
Such a decomposition may be written as

VR ⊗ VS =
⊕
T`m

VT ⊗ Vλ (5.48)

with VR, VS and VT the vector space representations for Sm, and Vλ the multiplicity space.
Multiplication of two Qun-basis elements gives

QR,S,Tun;λ1,ρ1
QR

′,S′,T ′

un;λ2,ρ2
= δRR′δSS′δTT ′δρ1λ2Q

R,S,T
un;λ1,ρ2

, (5.49)

and the stability of the Qun-basis elements under left and right actions of the diagonal
group algebra Diag[C(Sn)] elements implies12

(γ⊗3
1 )QR,S,Tun;λ,ρ(γ

⊗3
2 ) = QR,S,Tun;λ,ρ . (5.50)

As for the operators, they take Fourier form

OR,S,Tλ,ρ (Λ̄, Z) =
∑

σ1,σ2,σ3

δ3
(
QR,S,Tun;λ,ρ(σ

−1
1 ⊗ σ

−1
2 ⊗ σ

−1
3 )

)
Oσ1,σ2,σ3(Λ̄, Z) (5.51)

where Oσ1,σ2,σ3(Λ̄, Z) is defined in (5.10), while the conjugate Fourier operator is

OR
′,S′,T ′

λ,ρ (Λ̄, Z) =
∑

σ1,σ2,σ3

δ3
(
QR

′,S′,T ′

un;λ,ρ (σ−1
1 ⊗ σ

−1
2 ⊗ σ

−1
3 )

)
Oσ1,σ2,σ3(Λ̄, Z) (5.52)

=
∑

σ1,σ2,σ3

δ3
(
QR

′,S′,T ′

un;ρ,λ (σ1 ⊗ σ2 ⊗ σ3)
)
Oσ1,σ2,σ3(Λ̄, Z) (5.53)

11Explicit transformation between combinatorial/permutation and representation/Fourier basis (gauged
form) is given by equation (39) of [36]. It can also be derived by starting with the basis of algebra C(Sm),
then forming a tensor product, see appendix B1 of [36]. Finally, direct transformation between graph and
Q-basis is given in appendix B of [38].

12See appendix B of [36] for proofs.
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with Oσ1,σ2,σ3(Λ̄, Z) defined in (5.15). Using fact DR
ij(σ) = DR

ji(σ−1) in equation (5.47),
the multiplicity indices λ, ρ have swapped positions in (5.53), accompanied by the inverse
permutations of the delta function. The two-point function in this basis is then〈

OR,S,Tλ1,ρ1
(Λ̄, Z)OR

′,S′,T ′

λ2,ρ2
(Λ̄, Z)

〉
=
〈 ∑
σ1,σ2,σ3

δ3
(
QR,S,Tun;λ1,ρ1

(σ−1
1 ⊗ σ

−1
2 ⊗ σ

−1
3 )

)
Oσ1,σ2,σ3(Λ̄, Z)

×
∑

τ1,τ2,τ3

δ3
(
QR

′,S′,′T
un;ρ2,λ2

(τ1 ⊗ τ2 ⊗ τ3)
)
Oτ1,τ2,τ3(Λ̄, Z)

〉 (5.54)

=
∑

σ1,σ2,σ3
τ1,τ2,τ3

δ3
(
QR,S,Tun;λ1,ρ1

(σ−1
1 ⊗ σ

−1
2 ⊗ σ

−1
3 )

)

× δ3
(
QR

′,S′,′T
un;ρ2,λ2

(τ1 ⊗ τ2 ⊗ τ3)
) 〈
Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)

〉 (5.55)

From here, the result of (5.28), repeated below for convenience,

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉 = 1
(m!)3

∑
αl,γ1,γ2,µ1,µ2∈Sm

Oα1,α2,α3(Λ̄,Λ) (5.56)

× δ3
(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )(µ⊗3

1 )(σ1 ⊗ σ2 ⊗ σ3)(γ⊗3
1 )(γ⊗3

2 )(τ−1
1 ⊗ τ−1

2 ⊗ τ−1
3 )(µ⊗3

2 )
)
,

may be utilised by substituting this correlator into the expression (5.55). By then summing
over the σi and τi, the tensor product triples of (5.56) are replaced by the Q-basis elements
via the delta functions. As such we have〈

OR,S,Tλ1,ρ1
(Λ̄, Z)OR

′,S′,T ′

λ2,ρ2
(Λ̄, Z)

〉
= 1

(m!)3

∑
αl,γ1,γ2,µ1,µ2∈Sm

Oα1,α2,α3(Λ̄,Λ) (5.57)

× δ3
(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )(µ⊗3

1 )QR,S,Tun;λ1,ρ1
(γ⊗3

1 )(γ⊗3
2 )QR

′,S′,T ′

un;ρ2,λ2
(µ⊗3

2 )
)
.

Using properties (5.50) and (5.49) of the Qun-basis,〈
OR,S,Tλ1,ρ1

(Λ̄, Z)OR
′,S′,T ′

λ2,ρ2
(Λ̄, Z)

〉
= m!

∑
αl∈Sm

Oα1,α2,α3(Λ̄,Λ)δ3
(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )QR,S,Tun;λ1,ρ1

QR
′,S′,T ′

un;ρ2,λ2

)
(5.58)

= m!δRR′δSS′δTT ′δρ1ρ2

∑
αl∈Sm

δ3
(
(α−1

1 ⊗ α
−1
2 ⊗ α

−1
3 )QR,S,Tun;λ1,λ2

)
Oα1,α2,α3(Λ̄,Λ) (5.59)

= m!δRR′δSS′δTT ′δρ1ρ2O
R,S,T
un;λ1,λ2

(Λ̄,Λ) , (5.60)

where the final equation comes from the operator definition in (5.51). The correlator〈
OR,S,Tλ1,ρ1

(Λ̄, Z)OR
′,S′,T ′

λ2,ρ2
(Λ̄, Z)

〉
= m!δRR′δSS′δTT ′δρ1ρ2O

R,S,T
un;λ1,λ2

(Λ̄,Λ) (5.61)

is therefore akin to the matrix cases where the final result is also proportional to an operator
of the classical witness fields in representation theoretic/Fourier basis.
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6 Summary and outlook

Representation theoretic orthogonal bases for the complex one-matrix, multi-matrix and
tensor models have applications in the AdS/CFT correspondence and more general models
of gauge-string duality. It has been understood that these orthogonal bases are related
to permutation centralizer algebras and organise many aspects of the combinatorics of
matrix and tensor model correlators. In the context of CFT4, these algebras have been
shown to be related to enhanced symmetries in the free field limit [24, 37]. However
a direct physical interpretation, in terms of the observables of matrix or tensor models,
of the structure constants of these algebras has so far been lacking. In this paper, we
showed that the notion of matrix and tensor witness fields, defined in the introduction,
allows such a direct interpretation. The Fourier transform from combinatorial bases of the
PCAs to representation theoretic Wedderburn-Artin bases lead to generalisations of the
orthogonality relations making contact with the super-integrability programme of Morozov
and Mironov [43]. We outline a number of future research directions suggested by the results
of this paper.

The problem of identifying the quantum state associated with the operator OR(Z)
in the half-BPS sector of N = 4 SYM with U(N) gauge group is related to interesting
questions related to the black hole information paradox [53] and also connects with inter-
esting structural properties of the centres of symmetric group algebras [54]. The Casimirs
of U(N), which can identify the Young diagrams, can be related to asymptotic multipole
moments of the gravity fields generated by the LLM geometry [55] corresponding to the
Young diagram R. Using the results of this paper, we can measure the Young diagram
labelling a matrix model observable by inspecting the outcome of the 2-point correlator as
a function of a matrix coupling. It would be interesting to consider deformations of N = 4
SYM involving the introduction of 4-dimensional background matrix fields. Presumably
this would reduce or break the supersymmetry, but would provide an interesting higher
dimensional quantum field theory arena to explore the implications of witness fields, with
potential implications for the gravity dual. The use of classical matrix fields alongside
quantum matrix fields inside observables has also been used in the context of coherent
state methods for matrix correlator problems in N = 4 SYM [56]. In a distant corners
limit the Young diagram bases of the 2-matrix sector considered in section 3 have been re-
lated to coherent state calculations, resulting in new integral formulae for symmetric group
characters [57]. A better understanding of the link between coherent state methods and
the results in the present paper is likely to be useful in applying the present results to giant
graviton physics. For example taking the matrix A in section 2.3 to be another complex
field say Y among the SU(3) triplet {Z, Y,X} of complex fields in SYM, the r.h.s. of (2.80)
contains Schur polynomial functions of Y Y †. Finding an interpretation of such Schur poly-
nomials in the bulk space-time is an interesting problem. A non-trivial goal would be to
justify such an interpretation using agreement between independent calculations in bulk
and boundary, e.g. agreements of 3-point functions along the lines of [9–16].

In this paper we have considered modifications of Gaussian single and multi-matrix
actions by adding matrix couplings to the quadratic terms. We have shown that two-point
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functions calculated as a function of the matrix couplings define structure constants of
associative algebras. An interesting question is whether analogous correlators depending
on matrix couplings in the quadratic terms lead to associative algebra structure constants
when the Gaussian actions are perturbed with interaction terms. Commutator interaction
terms are of interest in AdS/CFT (see [58–60]) and also in the context of emergence geom-
etry in the context of the IKKT IIB matrix model [61, 62]. Establishing associativity or
characterising the departure from associativity in interacting matrix models are interesting
projects.

The formula (1.8) for the 2-point function in the one-complex matrix in the combina-
torial basis has an interpretation as a combinatorial model of gauge-string duality [63–65]
closely analogous to the duality between partition functions of two-dimensional Yang-Mills
theory and combinatorial models of Euler characteristics of Hurwitz moduli space [66, 67].
The combinatorial string side is a sum over Belyi maps, which are branched covers of the
sphere with three branch points. The different world-sheet genera are summed with an
N -dependent weight. With appropriate normalization of the operators, 1/N can be inter-
preted as the string coupling. In the presence of the matrix coupling A, powers of the string
coupling have effectively been replaced by the invariant functions Op3(B). From (1.10) we
recover Cp3

p1,p2 by picking up the coefficient of Op3(B). We thus have a direct matrix model
interpretation of Belyi map counting with specified branching structure at the three branch
points being given by the partitions (p1, p2, p3). This is a refinement of the Belyi map —
matrix model connection known from [63–65].

It is instructive to compare the emergence of the structure constants of a symmetry
algebra in this paper from matrix and tensor witness fields, i.e. classical couplings in the
action or classical constituents of composite classical/quantum observables, with other ways
of getting structure constants of algebras in quantum field theory. A common mechanism
is to consider 3-point functions in topological or conformal field theories (see discussions,
for example, in [68, 69]).

Algebraic techniques similar to those used in this paper have recently been applied to
the case of matrix models or matrix quantum systems where the U(N) invariance of matrix
variables is replaced by an SN (symmetric group) invariance of the matrix variables. The
hidden symmetry algebra is related to a partition algebra. More precisely, for the case of
degree k invariants, we have an Sk invariant subspace of a partition algebra Pk(N), denoted
SPk(N). This is developed in [70, 71] . A natural future direction is to obtain the explicit
structure constants of these algebras using witness fields as we have done here.
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A Deriving the two-point function with witness matrix field

Here the basic two-point function of matrix variables Z and Z† is derived. The path
integral with a coupling witness matrix field A (that is taken to be invertible), is

Σ[0] =
∫

[dZ]e−Tr(ZAZ†) (A.1)

where the [0] in Σ[0] represents a source-free action/integral. The action is

Tr
(
ZAZ†

)
=
∑
i,j,k

ZijA
j
k(Z

†)ki

=
∑

i,j,k,l,m,n

Zij

(
δjkA

k
l δ
l
mδ

n
i

)
(Z†)mn

=
∑

i,j,m,n

Zij

(
δni A

j
m

)
(Z†)mn .

(A.2)

Having separated the expression in terms of indices, to begin solving the integral, first
define a N2-dimensional vector with components equal to matrix Z’s elements as follows

~x =


x1

x2

...
xN

2

 =



Z1
1
...
Z1
N

Z2
1
...
Z2
N
...
ZN1
...
ZNN



. (A.3)

Its Hermitian conjugate is therefore

~x† =
[
(x1)∗ · · · · · · · · · (xN2)∗

]
=
[
(Z1

1 )∗ · · · (Z1
N )∗ · · · · · · · · · (ZN1 )∗ · · · (ZNN )∗

]
=
[
(Z†)1

1 · · · (Z†)N1 · · · · · · · · · (Z†)1
N · · · (Z†)NN

]
.

(A.4)

In component form, each matrix element is then defined as

xN(i−1)+j := Zij and (x†)N(n−1)+m := (Z∗)nm = (Z†)mn . (A.5)

Similarly, for δni Ajm in the last line of (A.2), introduce the N2×N2 dimensional matrix R,
which is formed from this Kronecker product of I (the identity matrix) and AT

δni A
j
m = δni (AT )mj =

(
I⊗AT

)n,m
i,j

=: RN(n−1)+m
N(i−1)+j . (A.6)
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Note that AT was introduced so that R and the vector variables of (A.5), contract/multiply
correctly. The action can thus be redefined using the above objects as

~x†R~x =
∑

i,j,n,m

(x†)N(n−1)+m
(
R
N(n−1)+m
N(i−1)+j

)
xN(i−1)+j

=
∑

i,j,n,m

(Z†)mn
(
δni

(
AT
)m
j

)
Zij

=
∑
i,j,m

ZijA
j
m(Z†)mi

= Tr
(
ZAZ†

)
.

(A.7)

Substituting this into the integral and changing the variable of the measure to ~x, we
find it is of standard form and is readily computable

Σ[0] =
∫

[d~x]e−~x†R~x = πN
2det(R−1) . (A.8)

Equation (A.8) holds when R is Hermitian and is positive definite (see chapter 3.2 of [72]).
These conditions are adhered to throughout the discussion of matrix coupling fields in this
paper. To derive the correlator, we introduce complex vector sources (~S, ~S†) to the action
and normalise by the sourceless partition function

Σ[~S, ~S†] = 1
Σ[0]

∫
[d~x]e−~x†R~x+~x† ~S+~S†~x . (A.9)

where ~x†~S = (~x†)N(i−1)+j(~S)N(i−1)+j and ~S†~x = (~S†)N(i−1)+j(~x)N(i−1)+j , with ~S an N2-
dimensional vector. One may write

(~x−R−1~S)†R(~x−R−1~S) = ~x†R~x− ~x†RR−1~S − ~S†(R−1)†R~x+ ~S†(R−1)†RR−1~S

= ~x†R~x− ~x†~S − ~S†~x+ ~S†R−1~S ,
(A.10)

where in the second line (R−1)† = R−1 was used to simplify. Therefore

Σ[~S, ~S†] = 1
Σ[0]

∫
[d~x]e−(~x−R−1 ~S)†R(~x−R−1 ~S)+~S†R−1 ~S . (A.11)

Changing variables as ~y = ~x−R−1~S produces a trivial Jacobian and hence

Σ[~S, ~S†] = e
~S†R−1 ~S 1

Σ[0]

∫
[d~y]e−~y†R~y︸ ︷︷ ︸
=1

= e
~S†R−1 ~S . (A.12)

Finally, to derive the correlator, we set

〈Zij(Z†)kl 〉 = 〈xN(i−1)+j(x†)N(l−1)+k〉 = 〈xµ(x†)ν〉 (A.13)

where we have labelled µ = N(i − 1) + j, ν = N(l − 1) + k for convenience. Taking
derivatives of the partition function (A.12) with respect to the sources and at the end of
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the calculation, setting the sources to zero, we obtain

〈xµ(x†)ν〉 = ∂

∂Sν
∂

∂(S†)µ

(
Σ[~S, ~S†]

)∣∣∣∣
~S=~S†=0

= ∂

∂Sν
∂

∂(S†)µ
e
∑

σ,λ
(S†)σ(R−1)σλS

λ
∣∣∣∣
~S=~S†=0

= ∂

∂Sν

[∑
σ,λ

δµσ(R−1)σλSλ · Σ[~S, ~S†]
]∣∣∣∣∣
~S=~S†=0

=
[∑
σ,λ

δµσ(R−1)σλδλν · Σ[~S, ~S†] + (~S and ~S† dependent terms)
]∣∣∣∣∣
~S=~S†=0

= (R−1)µν .

(A.14)

Therefore the basic two-point function with witness matrix field is

〈Zij(Z†)kl 〉 = 〈xµ(x†)ν〉 = (R−1)µν = (R−1)N(i−1)+j
N(l−1)+k (A.15)

=
((

I⊗AT
)−1

)N(i−1)+j

N(l−1)+k
(A.16)

=
(
(I)−1 ⊗ (AT )−1

)N(i−1)+j

N(l−1)+k
(A.17)

= δil

((
AT
)−1

)j
k

(A.18)

= δil

(
A−1

)k
j
. (A.19)

where equation (A.18) writes the R−1 matrix components in terms of the Kronecker product
components, as in (A.6). Note that the condition that R is Hermitian, implies that in
addition to invertibility, A must also be Hermitian. This can be seen by observing the
block diagonal matrix R, formed from the Kronecker product between the delta function
and AT

R = (I⊗AT ) =


AT 0 . . . 0
0 AT . . . 0
...

... . . . ...
0 0 . . . AT

 (A.20)

Since R = R†, then by virtue that R is block diagonal, where each block consists of the
same matrix AT , we have AT = (AT )† and consequently, A = A†.

Additionally, since Hermitian matrices are diagonalisable, it suffices that if R is positive
definite, i.e. its eigenvalues are all positive, and as R is composed of N copies of the
eigenvalues of AT (noting that A has the same eigenvalues as AT ), then A must also be
positive definite. Finally, integrals of the form (A.8), can be extended to those with a
complex symmetric matrix R′, providing further positivity conditions are applied to the
real/Hermitian part of R′ (see chapter 1.7 of [73]).
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B Interpreting correlator diagrams

This appendix describes how to interpret the correlator diagrams, focussing on the “one-
matrix correlator with coupling witness field” result of section 2.1 as a main example first,
then proceeds to describe a tensor GIO diagram, used to produce the correlator figure in
section 5.1.

Figure 8 shows the one-matrix correlator diagrams where each box corresponds to an
“operator” which are connected to one another by “branches”. Note that there are also
horizontal lines at the bottom and top of the diagrams, which imply that the ends of these
branches should be identified. The operators can either be matrix variables such as Z,
witness fields B, or permutation linear operators such as Lσ for σ ∈ Sn. As mentioned
previously, the permutation operators act on basis vectors in the following way

Lσ |ei1 ⊗ · · · ⊗ ein〉 = |eiσ(1) . . . eiσ(n)〉 . (B.1)

where ei1 , . . . , ein is a basis for V ⊗n. They abide by the tensor composition property

LσLτ = Lστ , (B.2)

which is shown by calculating the tensor composition elements of these operators by in-
serting the identity

〈ej1 ⊗ · · · ⊗ ejn |LσLτ |ei1 ⊗ · · · ⊗ ein〉
= 〈ej1 ⊗ · · · ⊗ ejn |Lσ|ek1 ⊗ · · · ⊗ ekn〉 〈ek1 ⊗ · · · ⊗ ekn |Lτ |ei1 ⊗ · · · ⊗ ein〉
= 〈ej1 ⊗ · · · ⊗ ejn |ekσ(1) ⊗ · · · ⊗ ekσ(n)〉 〈e

k1 ⊗ · · · ⊗ ekn |eiτ(1) ⊗ · · · ⊗ eiτ(n)〉

= δj1kσ(1)
. . . δjnkσ(n)

δk1
iτ(1)

. . . δkniτ(n)

= δ
jσ−1(1)
k1

. . . δ
jσ−1(n)
kn

δk1
iτ(1)

. . . δkniτ(n)

= δj1iστ(1)
. . . δjniστ(n)

,

(B.3)

where the last two steps make use of Kronecker equivariance and the repeated indices are
summed. By virtue of the operator action (B.1), it may also be written that

〈ej1 ⊗ · · · ⊗ ejn |Lστ |ei1 ⊗ · · · ⊗ ein〉 = 〈ej1 ⊗ · · · ⊗ ejn |eiστ(1) ⊗ · · · ⊗ eiστ(n)〉

= δj1iστ(1)
. . . δjniστ(n)

(B.4)

Since results (B.3) and (B.4) are equal, we conclude that LσLτ = Lστ . The composition of
these linear operators can therefore be thought of as first substituting eia for eiτ(a) from the
action of Lτ (τ thus acting on the positions of basis vectors labelled by a ∈ {1, 2, · · · , n}),
then further substituting eiτ(a) for eiτ(σ(a)) = eiστ(a) from the action of Lσ. Having addressed
the operator properties, to obtain the correlator result by reading figure 8, start at the top
J index of the right hand side diagram. Follow this branch downward to encounter the
B⊗n, Lγ−1 and Lσ1 operators. This connection of the three operators corresponds to
multiplication/contraction of indices as∑

K,L

Bj1
k1
. . . Bjn

kn
(Lγ−1)k1,...,kn

l1,...,ln
(Lσ1)l1,...,lni1,...,in

=
∑
K

Bj1
k1
. . . Bjn

kn
(Lγ−1σ1)k1,...,kn

i1,...,in
. (B.5)
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Figure 8. The correlator diagrams where each box is an operator connected by branches. The
right side diagram explicitly shows the indices, indicating that horizontal lines are to be thought
of as traces connecting the bottom and top. The diagram is read by following branches downward
and multiplying the operators encountered.

where
∑
K,L indicates a sum over all k, l indices. Note that the upper indices on the B

witness matrices are labelled with j and the lower indices on operator Lσ1 are labelled
with i, in keeping with the figure 8 labels. Continuing on, follow the bottom I index under
Lσ1 to the top of the diagram since we identify the horizontal lines, and progress down
this branch, meeting Lγ then Lσ−1

2
and finally connecting back to the J index at the top.

Having formed a connected loop, all indices are contracted and we may represent the result
as a trace over these operators. In total, including the sum over γ, the correlator of the
one-matrix, coupling witness field model is therefore

〈Oσ1(Z) (Oσ2(Z))†〉

=
∑
γ∈Sn

∑
I,J,K,L,P

Bj1
k1
. . . Bjn

kn
(Lγ−1)k1,...,kn

l1,...,ln
(Lσ1)l1,...,lni1,...,in

(Lγ)i1,...,inp1,...,pn(Lσ−1
2

)p1,...,pn
j1,...,jn

(B.6)

=
∑
γ∈Sn

TrV ⊗nN

(
B⊗nLγ−1Lσ1LγLσ−1

2

)
(B.7)

=
∑
γ∈Sn

TrV ⊗nN

(
B⊗nLγ−1σ1γσ

−1
2

)
(B.8)

=
∑

j1,...jn

∑
γ∈Sn

〈ej1 . . . ejn |B⊗nLγ−1σ1γσ
−1
2
|ej1 . . . ejn〉 (B.9)

=
∑

j1,...,jn

∑
γ∈Sn

〈ej1 . . . ejn |B⊗n |ej
γ−1σ1γσ

−1
2 (1)

. . . ej
γ−1σ1γσ

−1
2 (n)
〉 (B.10)

=
∑

j1,...,jn

∑
γ∈Sn

Bj1
j
γ−1σ1γσ

−1
2 (1)

. . . Bjn
j
γ−1σ1γσ

−1
2 (n)

. (B.11)

where (B.2) was used in equation (B.8), and (B.1) used in (B.10). This is the previously
identified result of equation (2.21). Note that the right hand side diagram introduces a swap
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Figure 9. A diagram representing a single gauge invariant tensor operator Oσ1,σ2,σ3(Λ̄, Z), with
quantum fields Z and classical witnesses Λ̄. It can be decomposed into two parts: 1© where Z⊗m
acts on a bra state and 2© where the linear permutation operators act first on a ket state, followed
by Λ̄⊗m.

in the indices. The origin of this swap stems from deriving the basic two-point function,
as seen in appendix A, where indices j, l on 〈Zij(Z†)kl 〉 = δil(A−1)kj switch positions in the
outcome.

The tensor correlator diagram of figure 7 from section 5.1, introduces tensor variables
(Z, Z̄) and witnesses (Λ, Λ̄) illustrated by triangles. To help understand this, we explain
the diagrammatic representation of a single tensor GIO, Oσ1,σ2,σ3(Λ̄, Z), in figure 9. Math-
ematically we calculate 1© and 2© as follows

1© = 〈(ei1 ⊗ ej1 ⊗ ek1)⊗ · · · ⊗ (eim ⊗ ejm ⊗ ekm)|Z⊗m (B.12)
= Zi1j1k1 . . . Zimjmkm (B.13)

2© = Λ̄⊗m(Lσ1 ⊗ Lσ2 ⊗ Lσ3) |(ei1 ⊗ ej1 ⊗ ek1)⊗ · · · ⊗ (eim ⊗ ejm ⊗ ekm)〉 (B.14)
= Λ̄⊗m |(eiσ1(1) ⊗ ejσ2(1) ⊗ ekσ3(1))⊗ · · · ⊗ (eiσ1(m) ⊗ ejσ2(m) ⊗ ekσ3(m))〉 (B.15)

= Λ̄iσ1(1)jσ2(1)kσ3(1) . . . Λ̄iσ1(m)jσ2(m)kσ3(m) (B.16)

Combining these two pieces, the final GIO evaluation is then

Oσ1,σ2,σ3(Λ̄, Z) = 1©× 2© (B.17)
= Λ̄iσ1(1)jσ2(1)kσ3(1) . . . Λ̄iσ1(m)jσ2(m)kσ3(m)Z

i1j1k1 . . . Zimjmkm , (B.18)

which matches the definition in equation (5.10). The triangles are used to help emphasise
that the tensor field operators are maps from the tensor space to the complex numbers
Z⊗m : V ⊗m → C.
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C Delta function sums

Equation (5.27) can be obtained from equation (5.26) by first exchanging the γ ∈ Sm.
Begin with ∑

γ1,γ2,α∈Sm
δ(γ1γ2α) . (C.1)

Setting γ = γ1γ2 and noting that the sum over γ1 runs over all permutations in Sm, and
so too does the sum over γ1 = γγ−1

2 , then we can substitute
∑
γ1 for

∑
γ∑

γ1,γ2,α

δ(γ1γ2α) =
∑
γ,γ2,α

δ(γα) = m!
∑
γ,α

δ(γα) =⇒
∑
γ,α

δ(γα) = 1
m!

∑
γ1,γ2,α

δ(γ1γ2α) . (C.2)

Therefore

〈Oσ1,σ2,σ3(Λ̄, Z)Oτ1,τ2,τ3(Λ̄, Z)〉 =
∑

αl,γ∈Sm
Oα1,α2,α3(Λ̄,Λ)

3∏
l=1

δ(α−1
l σlγτ

−1
l ) (C.3)

= 1
m!

∑
αl,γ1,γ2∈Sm

Oα1,α2,α3(Λ̄,Λ)
3∏
l=1

δ(α−1
l σlγ1γ2τ

−1
l ) .

We then use the invariance of the operator Oα1,α2,α3(Λ̄,Λ) to insert permutations µ1 and µ2,

1
m!

∑
αl,γ1,γ2∈Sm

Oα1,α2,α3(Λ̄,Λ)
3∏
l=1

δ(α−1
l σlγ1γ2τ

−1
l )

= 1
m!

∑
αl,γ1,γ2∈Sm

Oµ1α1µ2,µ1α2µ2,µ1α3µ2(Λ̄,Λ)
3∏
l=1

δ(α−1
l σlγ1γ2τ

−1
l ) (C.4)

= 1
m!

∑
γ1,γ2∈Sm

∑
µ−1

1 α̃lµ
−1
2 ∈Sm

Oα̃1,α̃2,α̃3(Λ̄,Λ)
3∏
l=1

δ(µ2α̃
−1
l µ1σlγ1γ2τ

−1
l ) (C.5)

= 1
m!

∑
γ1,γ2∈Sm

∑
α̃l∈Sm

Oα̃1,α̃2,α̃3(Λ̄,Λ)
3∏
l=1

δ(µ2α̃
−1
l µ1σlγ1γ2τ

−1
l ) (C.6)

= 1
(m!)3

∑
αl,γ1,γ2µ1,µ2,∈Sm

Oα1,α2,α3(Λ̄,Λ)
3∏
l=1

δ(µ2α
−1
l µ1σlγ1γ2τ

−1
l ) . (C.7)

In (C.4) the equivalence property Oα1,α2,α3(Λ̄,Λ) = Oµ1α1µ2,µ1α2µ2,µ1α3µ2(Λ̄,Λ) is used.
Equation (C.5) relabels µ1αlµ2 → α̃, while (C.6) relabels the sum since both cover all
elements in Sm. Finally (C.7) introduces sums over µ1 and µ2 and includes the appropriate
normalisation factors.

D Wedderburn-Artin basis properties for general matrix models

Take the multi-matrix model tensor space decomposition

V
(Sm)
R =

⊕
r
V

(Sm1 )
R1

⊗ V (Sm2 )
R2

⊗ · · · ⊗ V (Sml )
Rl

⊗ V R
r . (D.1)
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Here, R is the representation of Sm with m = m1 +m2 + · · ·+ml and r = (R1, R2, . . . , Rl)
which denotes the set of individual representations Ri, for i = 1, . . . , l. The restricted
character is

χRr,µ,ν(σ) =
∑

t

∑
i,j

DR
ij(σ)BR;j

r,µ;tB
R;i
r,ν;t (D.2)

where t = (t1, t2, . . . , tl) are a set of labels used to denote the states of each individual
representation space e.g. V (Sm1 )

R1
has states labelled by t1. µ, ν are multiplicity indices. The

Wedderburn-Artin basis (also referred to as Q-basis/Fourier basis) element

QRr,µ,ν = dR
m!

∑
σ∈Sm

χRr,µ,ν(σ)σ−1 , (D.3)

multiplies like a matrix in the multiplicity indices and is subsequently proven.

Lemma 7.

QRr,µ1,ν1Q
S
s,µ2,ν2 = δRSδrsδν1µ2Q

R
r,µ1,ν2 (D.4)

Proof.

QRr,µ1,ν1Q
S
s,µ2,ν2 = dRdS

(m!)2

∑
σ,τ∈Sm

χRr,µ1,ν1(σ)χSs,µ2,ν2(τ)σ−1τ−1 (D.5)

= dRdS
(m!)2

∑
α∈Sm

[ ∑
τ∈Sm

χRr,µ1,ν1(τ−1α)χSs,µ2,ν2(τ)
]
α−1 , (D.6)

where in the above, σ → τ−1α and the sum symbol is exchanged accordingly. The square
bracket term can be evaluated using the definition of (D.2)

∑
τ∈Sm

χRr,µ1,ν1(τ−1α)χSs,µ2,ν2(τ)

=
∑
τ∈Sm

∑
t,q

∑
i,j,k,l

DR
ij(τ−1α)BR;j

r,µ1;tB
R;i
r,ν1;tD

S
kl(τ)BS;l

s,µ2;qB
S;k
s,ν2;q (D.7)

=
∑
t,q

∑
i,j,k,l

BR;j
r,µ1;tB

R;i
r,ν1;tB

S;l
s,µ2;qB

S;k
s,ν2;q

[ ∑
τ∈Sm

DR
ij(τ−1α)DS

kl(τ)
]

(D.8)

Using the following orthogonality relation

∑
τ∈Sm

DR
ij(τ−1α)DS

kl(τ) =
∑
a

DR
aj(α)

∑
τ∈Sm

DS
kl(τ)DR

ia(τ−1) (D.9)

=
∑
a

DR
aj(α)m!

dR
δRSδkaδli (D.10)

= m!
dR

δRSDR
kj(α)δli , (D.11)
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in equation (D.8), we achieve∑
τ∈Sm

χRr,µ1,ν1(τ−1α)χSs,µ2,ν2(τ)

= m!
dR

δRS
∑
t,q

∑
j,k

[∑
i,l

δliB
R;i
r,ν1;tB

S;l
s,µ2;q

]
DR
kj(α)BR;j

r,µ1;tB
S;k
s,ν2;q (D.12)

= m!
dR

δRS
∑
j,k

∑
t,q

[δrsδtqδν1µ2 ]DR
kj(α)BR;j

r,µ1;tB
S;k
s,ν2;q (D.13)

= m!
dR

δRSδrsδν1µ2

∑
j,k

∑
t
DR
kj(α)BR;j

r,µ1;tB
S;k
s,ν2;t (D.14)

= m!
dR

δRSδrsδν1µ2χ
R
r,µ1,ν2(α) . (D.15)

Therefore, substituting this result back into equation (D.6):

QRr,µ1,ν1Q
S
s,µ2,ν2 = dRdS

(m!)2

∑
α∈Sm

[ ∑
τ∈Sm

χRr,µ1,ν1(τ−1α)χSs,µ2,ν2(τ)
]
α−1 (D.16)

= δRSδrsδν1µ2

(
dR
m!

∑
α∈Sm

χRr,µ1,ν2(α)α−1
)

(D.17)

= δRSδrsδν1,µ2Q
R
r,µ1,ν2 (D.18)

Note that specialising to l = 2 in (D.1) leads to the required rules for the two-matrix
calculation in section 3.2. Namely, the decomposition becomes V R

Sm+n
= V R1

Sm
⊗V R2

Sn
⊗V R

R1,R2

where we label m1 = m,m2 = n such that m = m + n. This specialisation also implies
that notationally, δrs ≡ δR1S1δR2S2 . Appendix B.2 of [26] provides additional details and
proofs on restricted quiver characters. Additionally, the Hermitian conjugate of the Q-basis
element switches its multiplicity indices, such that

(
QRr,µ1,ν1

)†
= QRr,ν1,µ1 .

Proof. (
QRr,µ1,ν1

)†
= dR

m!
∑
σ∈Sm

(
χRr,µ1,ν1(σ)

)† (
σ−1

)†
(D.19)

= dR
m!

∑
σ∈Sm

χRr,µ1,ν1(σ)σ (D.20)

= dR
m!

∑
σ∈Sm

∑
t

∑
i,j

DR
ij(σ)BR;j

r,µ1;tB
R;i
r,ν1;tσ (D.21)

= dR
m!

∑
σ∈Sm

∑
t

∑
i,j

DR
ji(σ−1)BR;i

r,ν1;tB
R;j
r,µ1;tσ (D.22)

= dR
m!

∑
σ∈Sm

χRr,ν1,µ1(σ−1)σ (D.23)
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= dR
m!

∑
σ̃∈Sm

χRr,ν1,µ1(σ̃)σ̃−1 (D.24)

= QRr,ν1,µ1 . (D.25)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] E. Brezin and V.A. Kazakov, Exactly Solvable Field Theories of Closed Strings, Phys. Lett. B
236 (1990) 144 [INSPIRE].

[2] M.R. Douglas and S.H. Shenker, Strings in Less Than One-Dimension, Nucl. Phys. B 335
(1990) 635 [INSPIRE].

[3] D.J. Gross and A.A. Migdal, Nonperturbative Two-Dimensional Quantum Gravity, Phys.
Rev. Lett. 64 (1990) 127 [INSPIRE].

[4] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[5] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[6] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[7] V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal
field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].

[8] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N=4
SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].

[9] A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant
gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].

[10] P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus Non-Extremal Correlators with
Giant Gravitons, JHEP 08 (2012) 143 [arXiv:1204.4172] [INSPIRE].

[11] H. Lin, Giant gravitons and correlators, JHEP 12 (2012) 011 [arXiv:1209.6624] [INSPIRE].

[12] C. Kristjansen, S. Mori and D. Young, On the Regularization of Extremal Three-point
Functions Involving Giant Gravitons, Phys. Lett. B 750 (2015) 379 [arXiv:1507.03965]
[INSPIRE].

[13] Y. Jiang, S. Komatsu and E. Vescovi, Structure constants in N = 4 SYM at finite coupling
as worldsheet g-function, JHEP 07 (2020) 037 [arXiv:1906.07733] [INSPIRE].

[14] P. Yang, Y. Jiang, S. Komatsu and J.-B. Wu, D-branes and orbit average, SciPost Phys. 12
(2022) 055 [arXiv:2103.16580] [INSPIRE].

[15] G. Chen, R. de Mello Koch, M. Kim and H.J.R. Van Zyl, Absorption of closed strings by
giant gravitons, JHEP 10 (2019) 133 [arXiv:1908.03553] [INSPIRE].

– 62 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(90)90818-Q
https://doi.org/10.1016/0370-2693(90)90818-Q
https://inspirehep.net/literature/295835
https://doi.org/10.1016/0550-3213(90)90522-F
https://doi.org/10.1016/0550-3213(90)90522-F
https://inspirehep.net/literature/282514
https://doi.org/10.1103/PhysRevLett.64.127
https://doi.org/10.1103/PhysRevLett.64.127
https://inspirehep.net/literature/282525
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/literature/467400
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/literature/467202
https://doi.org/10.1088/1126-6708/2002/04/034
https://arxiv.org/abs/hep-th/0107119
https://inspirehep.net/literature/559990
https://doi.org/10.4310/ATMP.2001.v5.n4.a6
https://arxiv.org/abs/hep-th/0111222
https://inspirehep.net/literature/567216
https://doi.org/10.1007/JHEP06(2011)085
https://arxiv.org/abs/1103.4079
https://inspirehep.net/literature/893199
https://doi.org/10.1007/JHEP08(2012)143
https://arxiv.org/abs/1204.4172
https://inspirehep.net/literature/1111265
https://doi.org/10.1007/JHEP12(2012)011
https://arxiv.org/abs/1209.6624
https://inspirehep.net/literature/1188703
https://doi.org/10.1016/j.physletb.2015.09.056
https://arxiv.org/abs/1507.03965
https://inspirehep.net/literature/1382816
https://doi.org/10.1007/JHEP07(2020)037
https://arxiv.org/abs/1906.07733
https://inspirehep.net/literature/1740518
https://doi.org/10.21468/SciPostPhys.12.2.055
https://doi.org/10.21468/SciPostPhys.12.2.055
https://arxiv.org/abs/2103.16580
https://inspirehep.net/literature/1854749
https://doi.org/10.1007/JHEP10(2019)133
https://arxiv.org/abs/1908.03553
https://inspirehep.net/literature/1748690


J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

[16] A. Holguin and W.W. Weng, Orbit Averaging Coherent States: Holographic Three-Point
Functions of AdS Giant Gravitons, arXiv:2211.03805 [INSPIRE].

[17] A. Mironov and A. Morozov, Superintegrability summary, Phys. Lett. B 835 (2022) 137573
[arXiv:2201.12917] [INSPIRE].

[18] S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS
correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221]
[INSPIRE].

[19] R. Penco, An Introduction to Effective Field Theories, arXiv:2006.16285 [INSPIRE].

[20] Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity
duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].

[21] T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS
operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].

[22] R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP
03 (2008) 044 [arXiv:0801.2061] [INSPIRE].

[23] R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur
Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].

[24] Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the
spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].

[25] T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global
symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].

[26] J. Pasukonis and S. Ramgoolam, Quivers as Calculators: Counting, Correlators and
Riemann Surfaces, JHEP 04 (2013) 094 [arXiv:1301.1980] [INSPIRE].

[27] J. Ambjorn, B. Durhuus and T. Jonsson, Three-dimensional simplicial quantum gravity and
generalized matrix models, Mod. Phys. Lett. A 6 (1991) 1133 [INSPIRE].

[28] N. Sasakura, Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A 6
(1991) 2613 [INSPIRE].

[29] M. Gross, Tensor models and simplicial quantum gravity in > 2-D, Nucl. Phys. B Proc.
Suppl. 25 (1992) 144 [INSPIRE].

[30] D. Oriti, The Group field theory approach to quantum gravity, Tech. Rep. DAMTP-2006-54
(2006) [INSPIRE].

[31] R. Gurau, The 1/N expansion of colored tensor models, Ann. Henri Poincaré 12 (2011) 829
[arXiv:1011.2726] [INSPIRE].

[32] E. Witten, An SYK-Like Model Without Disorder, J. Phys. A 52 (2019) 474002
[arXiv:1610.09758] [INSPIRE].

[33] J. Ben Geloun and S. Ramgoolam, Counting tensor model observables and branched covers of
the 2-sphere, Ann. Inst. H. Poincare D Comb. Phys. Interact. 1 (2014) 77
[arXiv:1307.6490] [INSPIRE].

[34] P. Diaz and S.-J. Rey, Orthogonal Bases of Invariants in Tensor Models, JHEP 02 (2018)
089 [arXiv:1706.02667] [INSPIRE].

[35] R. de Mello Koch, D. Gossman and L. Tribelhorn, Gauge Invariants, Correlators and
Holography in Bosonic and Fermionic Tensor Models, JHEP 09 (2017) 011
[arXiv:1707.01455] [INSPIRE].

– 63 –

https://arxiv.org/abs/2211.03805
https://inspirehep.net/literature/2178084
https://doi.org/10.1016/j.physletb.2022.137573
https://arxiv.org/abs/2201.12917
https://inspirehep.net/literature/2022618
https://doi.org/10.1016/S0550-3213(02)00573-4
https://arxiv.org/abs/hep-th/0205221
https://inspirehep.net/literature/587122
https://arxiv.org/abs/2006.16285
https://inspirehep.net/literature/1804324
https://doi.org/10.1088/1126-6708/2007/11/078
https://arxiv.org/abs/0709.2158
https://inspirehep.net/literature/760794
https://doi.org/10.1088/1126-6708/2008/02/030
https://arxiv.org/abs/0711.0176
https://inspirehep.net/literature/767145
https://doi.org/10.1088/1126-6708/2008/03/044
https://doi.org/10.1088/1126-6708/2008/03/044
https://arxiv.org/abs/0801.2061
https://inspirehep.net/literature/777367
https://doi.org/10.1088/1126-6708/2008/06/101
https://arxiv.org/abs/0805.3025
https://inspirehep.net/literature/786256
https://doi.org/10.1103/PhysRevD.78.126003
https://arxiv.org/abs/0807.3696
https://inspirehep.net/literature/791348
https://doi.org/10.1088/1126-6708/2009/04/089
https://arxiv.org/abs/0806.1911
https://inspirehep.net/literature/787903
https://doi.org/10.1007/JHEP04(2013)094
https://arxiv.org/abs/1301.1980
https://inspirehep.net/literature/1210047
https://doi.org/10.1142/S0217732391001184
https://inspirehep.net/literature/301730
https://doi.org/10.1142/S0217732391003055
https://doi.org/10.1142/S0217732391003055
https://inspirehep.net/literature/300360
https://doi.org/10.1016/S0920-5632(05)80015-5
https://doi.org/10.1016/S0920-5632(05)80015-5
https://inspirehep.net/literature/318903
https://inspirehep.net/literature/721031
https://doi.org/10.1007/s00023-011-0101-8
https://arxiv.org/abs/1011.2726
https://inspirehep.net/literature/877016
https://doi.org/10.1088/1751-8121/ab3752
https://arxiv.org/abs/1610.09758
https://inspirehep.net/literature/1495302
https://doi.org/10.4171/aihpd/4
https://arxiv.org/abs/1307.6490
https://inspirehep.net/literature/1244344
https://doi.org/10.1007/JHEP02(2018)089
https://doi.org/10.1007/JHEP02(2018)089
https://arxiv.org/abs/1706.02667
https://inspirehep.net/literature/1603667
https://doi.org/10.1007/JHEP09(2017)011
https://arxiv.org/abs/1707.01455
https://inspirehep.net/literature/1608801


J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

[36] J. Ben Geloun and S. Ramgoolam, Tensor Models, Kronecker coefficients and Permutation
Centralizer Algebras, JHEP 11 (2017) 092 [arXiv:1708.03524] [INSPIRE].

[37] P. Mattioli and S. Ramgoolam, Permutation Centralizer Algebras and Multi-Matrix
Invariants, Phys. Rev. D 93 (2016) 065040 [arXiv:1601.06086] [INSPIRE].

[38] J. Ben Geloun and S. Ramgoolam, Quantum mechanics of bipartite ribbon graphs: Integrality,
Lattices and Kronecker coefficients, Tech. Rep. QMUL-PH-20-21 (2020) [INSPIRE].

[39] J.B. Geloun and S. Ramgoolam, Kronecker coefficients from algebras of bi-partite ribbon
graphs, [arXiv:2211.02544] [INSPIRE].

[40] A. Ram, Dissertation Chapter 1, Representation Theory,
http://math.soimeme.org/ arunram/Teaching/RepThy2008/dissertationChapt1.pdf.

[41] S. Ramgoolam, Permutations and the combinatorics of gauge invariants for general N, PoS
CORFU2015 (2016) 107 [arXiv:1605.00843] [INSPIRE].

[42] R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT,
JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].

[43] A. Mironov and A. Morozov, On the complete perturbative solution of one-matrix models,
Phys. Lett. B 771 (2017) 503 [arXiv:1705.00976] [INSPIRE].

[44] A. Mironov, A. Morozov and Z. Zakirova, Discrete Painlevé equation, Miwa variables and
string equation in 5d matrix models, JHEP 10 (2019) 227 [arXiv:1908.01278] [INSPIRE].

[45] C. Lewis-Brown and S. Ramgoolam, Quarter-BPS states, multi-symmetric functions and set
partitions, JHEP 03 (2021) 153 [arXiv:2007.01734] [INSPIRE].

[46] V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4
superYang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].

[47] V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills
theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].

[48] R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons — with Strings Attached. I,
JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].

[49] M. Stephanou, Schur Polynomials, Restricted Schur Polynomials and the AdS/CFT
Correspondence, Ph.D. Thesis, Witwatersrand University, Johannesburg, South Africa (2011)
[INSPIRE].

[50] D. Bekker, R. de Mello Koch and M. Stephanou, Giant Gravitons — with Strings Attached.
III, JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].

[51] S. Collins, Restricted Schur Polynomials and Finite N Counting, Phys. Rev. D 79 (2009)
026002 [arXiv:0810.4217] [INSPIRE].

[52] A. Ram, Representation Theory and Character Theory of Centralizer Algebras, University of
California, San Diego, U.S.A. (1991).

[53] V. Balasubramanian, B. Czech, K. Larjo and J. Simon, Integrability versus information loss:
A Simple example, JHEP 11 (2006) 001 [hep-th/0602263] [INSPIRE].

[54] G. Kemp and S. Ramgoolam, BPS states, conserved charges and centres of symmetric group
algebras, JHEP 01 (2020) 146 [arXiv:1911.11649] [INSPIRE].

[55] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP
10 (2004) 025 [hep-th/0409174] [INSPIRE].

– 64 –

https://doi.org/10.1007/JHEP11(2017)092
https://arxiv.org/abs/1708.03524
https://inspirehep.net/literature/1615777
https://doi.org/10.1103/PhysRevD.93.065040
https://arxiv.org/abs/1601.06086
https://inspirehep.net/literature/1416668
https://inspirehep.net/literature/1821995
https://arxiv.org/abs/2211.02544
https://inspirehep.net/literature/2176722
http://math.soimeme.org/~arunram/Teaching/RepThy2008/dissertationChapt1.pdf
https://doi.org/10.22323/1.263.0107
https://doi.org/10.22323/1.263.0107
https://arxiv.org/abs/1605.00843
https://inspirehep.net/literature/1454433
https://doi.org/10.1007/JHEP06(2012)083
https://arxiv.org/abs/1204.2153
https://inspirehep.net/literature/1107917
https://doi.org/10.1016/j.physletb.2017.05.094
https://arxiv.org/abs/1705.00976
https://inspirehep.net/literature/1597596
https://doi.org/10.1007/JHEP10(2019)227
https://arxiv.org/abs/1908.01278
https://inspirehep.net/literature/1747918
https://doi.org/10.1007/JHEP03(2021)153
https://arxiv.org/abs/2007.01734
https://inspirehep.net/literature/1805138
https://doi.org/10.1088/1126-6708/2002/08/037
https://arxiv.org/abs/hep-th/0204196
https://inspirehep.net/literature/585775
https://doi.org/10.1088/1126-6708/2005/03/006
https://arxiv.org/abs/hep-th/0411205
https://inspirehep.net/literature/665167
https://doi.org/10.1088/1126-6708/2007/06/074
https://arxiv.org/abs/hep-th/0701066
https://inspirehep.net/literature/742011
https://inspirehep.net/literature/1468718
https://doi.org/10.1088/1126-6708/2008/02/029
https://arxiv.org/abs/0710.5372
https://inspirehep.net/literature/765875
https://doi.org/10.1103/PhysRevD.79.026002
https://doi.org/10.1103/PhysRevD.79.026002
https://arxiv.org/abs/0810.4217
https://inspirehep.net/literature/800404
https://doi.org/10.1088/1126-6708/2006/11/001
https://arxiv.org/abs/hep-th/0602263
https://inspirehep.net/literature/711220
https://doi.org/10.1007/JHEP01(2020)146
https://arxiv.org/abs/1911.11649
https://inspirehep.net/literature/1767181
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2004/10/025
https://arxiv.org/abs/hep-th/0409174
https://inspirehep.net/literature/659502


J
H
E
P
0
3
(
2
0
2
3
)
0
5
6

[56] D. Berenstein and S. Wang, BPS coherent states and localization, JHEP 08 (2022) 164
[arXiv:2203.15820] [INSPIRE].

[57] W. Carlson, R. de Mello Koch and M. Kim, Generating functions for giant graviton bound
states, JHEP 01 (2023) 104 [arXiv:2212.06731] [INSPIRE].

[58] M.N.H. Cook and J.P. Rodrigues, Strongly coupled large N spectrum of two matrices coupled
via a Yang-Mills interaction, Phys. Rev. D 78 (2008) 065024 [arXiv:0710.0073] [INSPIRE].

[59] V.G. Filev and D. O’Connor, Multi-matrix models at general coupling, J. Phys. A 46 (2013)
475403 [arXiv:1304.7723] [INSPIRE].

[60] D.E. Berenstein, M. Hanada and S.A. Hartnoll, Multi-matrix models and emergent geometry,
JHEP 02 (2009) 010 [arXiv:0805.4658] [INSPIRE].

[61] E. Battista and H.C. Steinacker, Fermions on curved backgrounds of matrix models, Phys.
Rev. D 107 (2023) 046021 [arXiv:2212.08611] [INSPIRE].

[62] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A Large N reduced model as
superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].

[63] M. Bauer and C. Itzykson, Triangulations, Rencontres Phys.-Math. Strasbourg-RCP25 45
(1993) 39.

[64] R. de Mello Koch and S. Ramgoolam, From Matrix Models and Quantum Fields to Hurwitz
Space and the absolute Galois Group, Tech. Rep. QMUL-PH-09-21 (2010) [INSPIRE].

[65] T.W. Brown, Complex matrix model duality, Phys. Rev. D 83 (2011) 085002
[arXiv:1009.0674] [INSPIRE].

[66] D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional
QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [INSPIRE].

[67] S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2-d Yang-Mills theory, equivariant
cohomology and topological field theories, Nucl. Phys. B Proc. Suppl. 41 (1995) 184
[hep-th/9411210] [INSPIRE].

[68] R. de Mello Koch and S. Ramgoolam, CFT4 as SO(4, 2)-invariant TFT2, Nucl. Phys. B 890
(2014) 302 [arXiv:1403.6646] [INSPIRE].

[69] I. Bah, D.S. Freed, G.W. Moore, N. Nekrasov, S.S. Razamat and S. Schafer-Nameki, A
Panorama Of Physical Mathematics c. 2022, arXiv:2211.04467 [INSPIRE].

[70] G. Barnes, A. Padellaro and S. Ramgoolam, Hidden symmetries and large N factorisation for
permutation invariant matrix observables, JHEP 08 (2022) 090 [arXiv:2112.00498]
[INSPIRE].

[71] G. Barnes, A. Padellaro and S. Ramgoolam, Permutation symmetry in large-N matrix
quantum mechanics and partition algebras, Phys. Rev. D 106 (2022) 106020
[arXiv:2207.02166] [INSPIRE].

[72] A. Altland and B. Simons, Condensed matter field theory, Cambridge University
Press (2006).

[73] J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford Graduate Texts, Oxford
University Press (2004).

– 65 –

https://doi.org/10.1007/JHEP08(2022)164
https://arxiv.org/abs/2203.15820
https://inspirehep.net/literature/2060099
https://doi.org/10.1007/JHEP01(2023)104
https://arxiv.org/abs/2212.06731
https://inspirehep.net/literature/2613923
https://doi.org/10.1103/PhysRevD.78.065024
https://arxiv.org/abs/0710.0073
https://inspirehep.net/literature/762543
https://doi.org/10.1088/1751-8113/46/47/475403
https://doi.org/10.1088/1751-8113/46/47/475403
https://arxiv.org/abs/1304.7723
https://inspirehep.net/literature/1230985
https://doi.org/10.1088/1126-6708/2009/02/010
https://arxiv.org/abs/0805.4658
https://inspirehep.net/literature/787377
https://doi.org/10.1103/PhysRevD.107.046021
https://doi.org/10.1103/PhysRevD.107.046021
https://arxiv.org/abs/2212.08611
https://inspirehep.net/literature/2615449
https://doi.org/10.1016/S0550-3213(97)00290-3
https://arxiv.org/abs/hep-th/9612115
https://inspirehep.net/literature/427202
https://inspirehep.net/literature/844985
https://doi.org/10.1103/PhysRevD.83.085002
https://arxiv.org/abs/1009.0674
https://inspirehep.net/literature/867036
https://doi.org/10.1016/0550-3213(93)90042-N
https://arxiv.org/abs/hep-th/9303046
https://inspirehep.net/literature/353102
https://doi.org/10.1016/0920-5632(95)00434-B
https://arxiv.org/abs/hep-th/9411210
https://inspirehep.net/literature/380399
https://doi.org/10.1016/j.nuclphysb.2014.11.013
https://doi.org/10.1016/j.nuclphysb.2014.11.013
https://arxiv.org/abs/1403.6646
https://inspirehep.net/literature/1287377
https://arxiv.org/abs/2211.04467
https://inspirehep.net/literature/2178153
https://doi.org/10.1007/JHEP08(2022)090
https://arxiv.org/abs/2112.00498
https://inspirehep.net/literature/1982049
https://doi.org/10.1103/PhysRevD.106.106020
https://arxiv.org/abs/2207.02166
https://inspirehep.net/literature/2106152

	Introduction
	Algebras and single matrix correlators with matrix witnesses 
	Two-point function of general operators with matrix coupling 
	Fourier basis for two-point function with matrix coupling
	Gauge invariant functions (observables) of quantum and classical fields 
	Fourier basis for two-point function with classical fields 

	Algebras and two-matrix correlators with two-matrix witnesses 
	Two-point function of general operators with matrix couplings for two-matrix case
	Fourier/Q-basis for the two-matrix, two-point function
	Observable functions of quantum and classical fields for two-matrix case
	Fourier/Q basis for two-matrix, two-point function with classical fields

	Algebras and multi-matrix correlators with multi-matrix witnesses 
	Two point function of general operators with multi-matrix-couplings
	Fourier/Q basis for multi-matrix correlator
	Observable functions of multi-matrix quantum and classical fields
	Fourier/Q basis for multi-matrix, two-point function with quantum and classical fields

	Algebras and tensor correlators with tensor witnesses 
	Two-point function of general tensor operators with tensor quantum and classical fields
	Fourier/Q basis

	Summary and outlook 
	Deriving the two-point function with witness matrix field
	Interpreting correlator diagrams
	Delta function sums
	Wedderburn-Artin basis properties for general matrix models

