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1 Introduction

Advances in understanding the asymptotic structure of asymptotically flat space-
times (AFS) [1–8] have recently crystallized into the proposal that gravity in four-dimensional
(4D) AFS may be dual to a conformal field theory (CFT) living on the celestial sphere
at null infinity [9–13]. A central aspect of the holographic dictionary is the identification
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of asymptotic massless fields at I± with operator insertions on the celestial sphere upon
exchanging their dependence on retarded/advanced times for conformal scaling dimensions
via a Mellin transform. The resulting observables on the sphere, also known as celestial
amplitudes, compute overlaps between past and future asymptotic boost, instead of the
standard energy-momentum, eigenstates. As such, celestial amplitudes carry the same
information as the S-matrix while making the Lorentz SL(2,C) symmetries manifest [12, 13].

As anticipated in [14], the proposed holographic correspondence in AFS distinguishes
itself from its counterparts in asymptotically negatively and positively curved spacetimes
in that the boundary conformal theory lives in two lower dimensions compared to the
gravitational theory. Consequently, familiar aspects of standard CFTs with bulk gravity
duals such as the state operator correspondence, unitarity or the relationship between
entanglement and bulk geometry are obscured. As a first step in gaining intuition about
celestial CFT (CCFT), much of the research to date has focused on studying the imprints of
asymptotic symmetries and universal aspects of bulk scattering on celestial amplitudes [15–
34]. Remarkably, at tree-level, the symmetry structure of CCFT appears to be much richer
than anticipated, including global shift symmetries associated with bulk translations and
their local enhancements [7, 8], a Virasoro enhancement of the Lorentz SL(2,C) [10, 11], all
of which are further promoted to a w1+∞ symmetry associated with the tower of subleading
soft graviton theorems [35–37].

Taking a leap of faith, one hope is that celestial CFT will ultimately provide a non-
perturbative completion of gravity in AFS (see [38] for recent evidence in this direction
in a 2D model of gravity), while a complete understanding of celestial symmetries would
serve as a guiding principle for extracting non-perturbative details of scattering processes.
Evidence for the latter is already manifest, on the one hand in the realization that large
gauge symmetries suggest a prescription to eliminate infrared divergences at the S-matrix
level to all orders in perturbation theory in abelian [39–42] and possibly non-abelian gauge
theory [43–45], and gravity [41, 46–48], on the other hand in that CFT machinery such
as operator product expansion (OPE) blocks [35, 49, 50] allows for the resummation of
the leading holomorphic or antiholomorphic collinear divergences — a key element in the
identification of the w1+∞ higher spin symmetry of classical gravitational scattering [51].

One of the goals of this paper is to provide a new entry in the AFS/CCFT dictionary
related to a universal, non-perturbative property of 2-2 scattering amplitudes in four-
dimensional AFS, namely the leading eikonal exponentiation of t-channel exchanges at high
energy [52–54]. Naively, one challenge is that celestial amplitudes scatter boost eigenstates
involving integrals over all energies and hence it is a-priori not clear how to take a high-
energy limit. However, as shown in [41] low- and high-energy features of massless 4-point
scattering are reflected in the analytic structure of the corresponding celestial amplitudes
in the net boost weight β. While low energy features are captured by the poles at negative
even β (see also [20–22] for similar behavior in conformally soft limits), the high-energy
regime can be accessed in the limit of large β [16, 41]. It is natural to suspect then that at
large β and small cross-ratio z ≡ −t/s� 1, celestial amplitudes are dominated by t-channel
exchanges. In section 3 we present arguments in favor of this proposal by revisiting the
position-space calculation of the flat-space eikonal amplitude [54] in a conformal primary
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basis. As a result we obtain a celestial version of the eikonal exponentiation of t-channel
exchanges of arbitrary spin.

Interestingly, the celestial eikonal phase is in general1 operator valued and each term in
its small-coupling expansion acts as a weight-shifting operator [17] on the external scaling
dimensions. This is expected as spinning operators couple to scalars via higher derivative
interactions which in a conformal primary basis result in shifted weights and resonates with
results found in the exponentiation of IR divergences in gauge theory and gravity [41, 55].
Note however that our analysis is complementary, since the eikonal phase discussed here is
related to the imaginary part of the exponent of soft S-matrix that results from virtual
particle exchanges, rather than the typically discussed real part which arises when the
exchanges become on-shell [56].

The eikonal exponentiation of graviton exchanges is particularly interesting as in
flat space it is well known to be reproduced by the propagation of a probe particle in a
shockwave background [57–59]. The eikonal exponentiation of graviton exchanges has also
been generalized to scattering on black hole backgrounds where the scattering is governed
by virtual graviton exchanges on the horizon and is non-perturbatively described in ~
and γ ∼ MPl/MBH in terms of a black-hole eikonal phase, in the regime s � γ2M2

Pl,
where MPl is the Planck mass and MBH the black hole mass [60–65]. More recently, the
scattering problem in non-perturbative backgrounds has been approached with modern
amplitude methods [66–68] including double copy constructions [69–73]. This motivates
us to compute the celestial two-point function in a shockwave background. The result is
strikingly similar to the analog formula in AdS4 [59] and we establish a relation between
the two by demonstrating that the celestial result can be directly recovered as a flat space
limit of the AdS result. This observation is a special case of a more general relation between
celestial amplitudes and flat space limits of Witten diagrams which we discuss in section 5.
In particular, we present a general argument that scalar (d+ 1)-dimensional AdS Witten
diagrams reduce to (d− 1)-dimensional CCFT amplitudes to leading order in the limit of
large AdS radius provided the boundary operators are placed on certain past and future
time-slices. While it is well known that flat space S-matrices in 4D can be extracted from
CFT3 correlators either via the HKLL prescription [74–76] or via the flat space limit of
Mellin space correlators [77–80] (see also [81] for a recent review of the connection between
the two), what we find here instead is that celestial amplitudes arise directly as flat space
limits of CFT3 correlators with particular kinematics and with analytically continued
dimensions. We regard this as additional evidence that celestial amplitudes are natural
candidate holographic observables for quantum gravity in 4D AFS.

This paper is organized as follows. In section 3 we identify an eikonal regime in celestial
CFT and derive the celestial eikonal amplitude for the scattering of 4 massless scalars
mediated by massive scalar exchanges. In section 3.1.1 we show that the same result is
reproduced by the direct Mellin transform of the flat-space eikonal amplitude, while in
section 3.2 we explicitly check that the first term in a small coupling expansion precisely
reproduces the t-channel celestial amplitude in the celestial eikonal limit. We generalize our

1For exchanges of spin j 6= 1.
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result to exchanges of arbitrary spin in section 3.3. Section 4 is devoted to the study of the
celestial propagator in a shockwave background. After a review of the momentum space
phase shift acquired by a particle crossing a shockwave in section 4.1, we express this in a
conformal primary basis in section 4.2. We identify the CCFT source that relates this to the
celestial eikonal formula for graviton exchange in section 4.3. In section 4.4 we show that
the same formula can be obtained as the flat space limit of the CFT3 correlator associated
with propagation through a shock in AdS4. We establish a general relation between AdSd+1
Witten diagrams in the flat space limit and CCFTd−1 amplitudes in section 5. Various
technical details are collected in the appendices.

2 Preliminaries

The momentum space scattering amplitude of 4 massless scalars in 4D Minkowski spacetime
takes the general form

A4(p1, · · · , p4) = A4(s, t)(2π)4δ(4)
( 4∑
i=1

pi

)
. (2.1)

Here the Mandelstam invariants s, t are defined as

s = −(p1 + p2)2, t = −(p1 + p3)2 (2.2)

and we parameterize massless on-shell momenta as

pi = ηiωiq̂(zi, z̄i), (2.3)

where ωi are external energies, q̂ are null vectors towards a point (zi, z̄i) on the celestial
sphere2

q̂(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (2.4)

and ηi = +1 (ηi = −1) for outgoing (incoming) particles.
The amplitudes (2.1) are mapped to celestial amplitudes3 or 2D CCFT observables Ã

by a Mellin transform [12, 13],

Ã(∆j , zj , z̄j) =
( 4∏
i=1

∫ ∞
0

dωiω
∆i−1
i

)
A4(pj). (2.5)

This map effectively trades asymptotic energy-momentum eigenstates for states that di-
agonalize boosts towards the point (zi, z̄i) on the celestial sphere. As such, the resulting
celestial amplitudes transform covariantly under the Lorentz SL(2,C).

In the following, it will be convenient to recall that the momentum space amplitude (2.1)
and the celestial amplitude (2.5) can be obtained directly by integrating the connected
component of the time-ordered bulk correlation function C(x1, · · · , x4) with amputated

2Technically in this parameterization the celestial sphere is flattened to a plane.
3Unless otherwise stated, celestial amplitudes will refer to observables on the 2D celestial sphere.
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external legs against different external wavefunctions ψ(xi; pi). While (2.1) is defined by
integrating C against plane wave eigenstates ψ(xi; pi) = e−ipi·xi [54]4

A4(pj) =
( 4∏
i=1

∫
d4xie

−ipi·xi

)
C(xj), (2.6)

celestial amplitudes arise from choosing the external wavefunctions ψ(xi; pi) to be instead
conformal primary solutions to the scalar wave equation ϕ∆i

(xi; ηiq̂i) [12, 13]

ϕ∆i
(xi; ηiq̂i) = (iηi)∆iΓ(∆i)

(−q̂i · xi + iηiε)∆i
, (2.7)

namely,

Ã(∆j , zj , z̄j) =
( 4∏
i=1

∫
d4xiϕ∆i

(xi; ηiq̂i)
)

C(xj). (2.8)

Indeed, (2.5) follows immediately upon noticing that plane waves and massless conformal
primaries are related by a Mellin transform [12, 13],

ϕ∆(x; ηq̂) ≡
∫ ∞

0
dωω∆−1e−iωηq̂·x = (iη)∆Γ(∆)

(−q̂ · x+ iηε)∆ . (2.9)

One of the aims of this paper is to explore the relationship between celestial amplitudes
and correlation functions of CFT3 with bulk AdS4 gravity duals. Such a relation was first
proposed in [83], where it was argued that amplitudes in d-dimensional celestial CFT should
be related to CFTd+1 correlators in the bulk point limit. There, this correspondence was
studied explicitly for the case of 4-point scalar scattering in AdS3 mediated by massive
and massless scalar exchanges in which case the corresponding Witten diagrams in the
bulk-point configuration were found to reduce to amplitudes in 1-dimensional CCFT. In this
paper we extend the relationship between celestial amplitudes and AdS Witten diagrams by
showing that generic scalar AdSd+1 Witten diagrams with particular kinematics reduce to
CCFTd−1 amplitudes in the flat space limit.5 We will check this explicitly in the example of
propagation of a particle in a shockwave background, related to the eikonal exponentiation
of t-channel graviton exchanges [52, 53, 58, 59]. As we will see, it is the representation (2.8)
that makes the connection between celestial amplitudes and CFT correlators in the flat
space limit most manifest. In the next section we start by deriving a formula for the eikonal
exponentiation of arbitrary spinning exchanges in celestial 4-point massless scalar scattering.

4We work in the mostly + signature in which the mode expansion of a massless scalar field takes the
form φ(x) = 1

(2π)3

∫
d3k
2k0

(
a†~ke
−ik·x + a~ke

ik·x). Then (2.6) with pi = ηiωiq̂i is such that positive (negative)
energy modes are created in the in (ηi = −1) (out (ηi = 1)) states (see eg. [82]).

5See also [84] for a different kind of relation between celestial amplitudes and AdS3 Witten diagrams in
the particular case of Yang-Mills CCFT with a marginal deformation involving a chirally coupled massive
scalar. Celestial Yang-Mills theory in the presence of a spherical dilaton shockwave has also been studied
in [85, 86].
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ψ1

ψ2

ψ3

ψ4

G(xn − xn−1)

Ge(x1 − x̄1) ⋯

x̄1 x̄n−1 x̄n

x1

+ ⋯

x̄1 x̄n−1 x̄n

x1 xn−1 xn
ψ1

ψ2

ψ3

ψ4

An = + ⋯

Figure 1. Contributions from ladder diagrams involving n t-channel exchanges to the scattering of
4 scalars.

3 Eikonal regime in celestial CFT

In this section we propose that celestial 4-point amplitudes of massless particles have
universal behavior in the limit of large net conformal dimension β � 1 and small cross
ratio z � 1. We argue that in this kinematic regime, the CCFT encodes the eikonal
physics [52, 54] of bulk 4-point scattering amplitudes. We present a formula for the eikonal
exponentiation of arbitrary spinning t-channel exchanges in a conformal primary basis. We
find that the eikonal exponent is in general operator valued, with weight-shifting operators
replacing powers of the center-of-mass energy in a momentum space basis. Our formula
shares similarities with the eikonal amplitude in AdS4 suggesting a relation between celestial
amplitudes and CFT3 correlators with particular kinematics.

Consider the 4-point scalar scattering amplitude associated with the sum over crossed
ladder diagrams with n massive exchanges of arbitrary spin j in figure 1

An = (ig)2n
∫
d4x1 · · ·d4xnd

4x̄1 · · ·d4x̄nψ(xn;p3)G(xn−xn−1) · · ·G(x2−x1)ψ(x1;p1)

×ψ(x̄n;p4)G(x̄n−x̄n−1) · · ·G(x̄2−x̄1)ψ(x̄1;p2)
∑
σ∈Sn

Ge(x1−x̄σ(1)) · · ·Ge(xn−x̄σ(n)).

(3.1)

As indicated in figure 1, G and Ge are internal position-space propagators corresponding to
the external legs and exchanges respectively, while ψ(x; p) are external wavefunctions. Each
vertex comes with a factor of ig, where g is the coupling constant. As reviewed in section 2,
the momentum space amplitude associated with n crossed ladder exchanges is obtained by
taking ψ(x; p) to be plane waves. Resuming the amplitudes in (3.1) for all n > 0, n ∈ Z
(which excludes the disconnected contribution from n = 0) in the approximation where G are
on-shell valid at high energies s� −t, one obtains the standard eikonal amplitude [52, 54]

Aeik(s, t = −p2
⊥) ' 2s

∫
R2
d2x⊥e

ip⊥·x⊥
(
e
ig2
2 sj−1G⊥(x⊥) − 1

)
. (3.2)

Here G⊥(x⊥) is the transverse propagator

G⊥(x⊥) ≡
∫
d2k⊥
(2π)2

eik⊥·x⊥

k2
⊥ +m2 , (3.3)

p⊥ ≡ p3,⊥ + p1,⊥ is the net momentum transfer and j is the spin of the exchanged particles.
(3.2) is expected to approximate 4-point massless scalar scattering amplitudes in the high
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energy s� −t limit [87]. It is natural to expect a similar regime to exist in celestial CFT,
in which celestial amplitudes are dominated by a phase. The s� −t regime immediately
maps to a small cross-ratio z ≡ − t

s � 1 limit in the CCFT. Moreover, we will see in the
next section that in a conformal primary basis external lines become approximately on-shell
in the limit of large external dimensions ∆1,∆2, or equivalently β ≡

∑4
i=1 ∆i− 4� 1. This

resonates with the results of [17, 41] where it was shown that Mellin integrals are dominated
by high energies in the limit of large net boost weight. We will therefore identify a universal
eikonal regime in CCFT characterized by

β � 1, z � 1. (3.4)

3.1 Celestial eikonal exponentiation of scalar exchanges

The celestial counterpart of (3.2) can be obtained by evaluating (3.1) with the external
wavefunctions replaced by conformal primary wavefunctions ψ(xi; qi)→ ϕ∆i

(xi; ηiq̂i), where
ϕ∆i

(xi; ηiq̂i) were defined in (2.7). By construction, the resulting celestial amplitudes
transform covariantly under Lorentz transformations x → Λ · x, z → z′ = az+b

cz+d like 2D
correlation functions of scalar primary operators since the measure, G and Ge in (3.1) are
Lorentz invariant while [12]

ϕ∆i
(Λ · xi; ηiq̂i(z′i, z̄′i)) =

∣∣∣∣∂~z′i∂~zi

∣∣∣∣−∆i/2
ϕ∆i

(xi; ηiq̂i(zi, z̄i)). (3.5)

This implies that the celestial amplitude for n crossed ladder t-channel exchanges will be of
the form

Ãn(∆i, zi, z̄i) = I13−24(zi, z̄i)fn(z, z̄), (3.6)

where I13−24 is a 4-point conformally covariant factor6 and fn is a function of the conformally
invariant cross-ratio z. Motivated by the center of mass kinematics (see appendix C.1), it is
convenient to parameterize the null vectors q̂i as7

q̂i = (1 + qi, qi,⊥, 1− qi), i = 1, 3
q̂i = (1 + qi, qi,⊥,−1 + qi), i = 2, 4,

(3.7)

where qi,⊥ are 2-component vectors and q̂2
i = 0 =⇒ 4qi = |qi,⊥|2. At high energies,

ω1 ' ω3, ω2 ' ω4 and p+
i = 2ηiωi � pi,⊥, p

−
i ' 0, for i = 1, 3 and vice-versa for 2, 4

meaning that qi ∝ |qi,⊥|2 � 1. In this case the cross-ratio reduces to

z = − t
s

= ω3
ω2

q̂1 · q̂3
q̂1 · q̂2

' (q1
24,⊥ + iq2

24,⊥)(q1
13,⊥ − iq2

13,⊥), (3.8)

6For n ≥ 1 it takes the form

I13−24(zi, z̄i) =

(
z34
z14

)h13 ( z14
z12

)h24

zh1+h3
13 zh2+h4

24

(
z̄34
z̄14

)h̄13 ( z̄14
z̄12

)h̄24

z̄h̄1+h̄3
13 z̄h̄2+h̄4

24

with hi = h̄i = ∆i
2 , but it may also involve singular conformally covariant structures as will be the case for

the disconnected n = 0 contribution.
7The complex coordinates (zi, z̄i), (wi, w̄i) in the parameterizations qi,⊥ = (zi+ z̄i,−i(zi− z̄i)) for i = 1, 3,

and qi,⊥ = (wi + w̄i,−i(wi − w̄i)) for i = 2, 4 are in different patches. Writing both in the same patch
introduces Jacobian factors in the celestial amplitudes.
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p1

p2

p3

p4

z → 0

Figure 2. Eikonal kinematics in which the operators associated with particles 1, 3 and 2, 4 are
respectively inserted around antipodal points on the celestial sphere.

where we used momentum conservation

ω3
ω2

=
q1

24,⊥ + iq2
24,⊥

q1
13,⊥ + iq2

13,⊥
=
q1

24,⊥ − iq2
24,⊥

q1
13,⊥ − iq2

13,⊥
. (3.9)

We hence see that eikonal kinematics imply small z. Note that in the z → 0 limit, (3.7)
are a special case (up to a Jacobian factor) of (2.3) where the momenta of 1, 3 and 2, 4
are respectively expanded around antipodal points on the celestial sphere. This kinematic
configuration is illustrated in figure 2.

To evaluate the integrals in (3.1) we employ light-cone coordinates,

x− = x0 − x3, x+ = x0 + x3, xi⊥ = xi, i = 1, 2, (3.10)

in which the Minkowski metric takes the form

ds2 = −dx−dx+ + ds2
⊥. (3.11)

In the limit qi � 1, q̂i · x are approximated by [54]

q̂i · x = −x− + qi,⊥ · x⊥ − qix+ ' −x− + qi,⊥ · x⊥, i = 1, 3, (3.12)
q̂i · x = −x+ + qi,⊥ · x⊥ − qix− ' −x+ + qi,⊥ · x⊥, i = 2, 4 (3.13)

and the conformal primary wavefunctions are therefore given by

ϕ∆1(x;−q̂1) = (−i)∆1Γ(∆1)
(x− − q1,⊥ · x⊥ − iε)∆1

, ϕ∆3(x; q̂3) = i∆3Γ(∆3)
(x− − q3,⊥ · x⊥ + iε)∆3

, (3.14)

ϕ∆2(x;−q̂2) = (−i)∆2Γ(∆2)
(x+ − q2,⊥ · x⊥ − iε)∆2

, ϕ∆4(x; q̂4) = i∆4Γ(∆4)
(x+ − q4,⊥ · x⊥ + iε)∆4

. (3.15)

In a momentum space basis it can be argued that in the high energy limit, the internal
1-3 and 2-4 propagators are well approximated by on-shell ones (corresponding to classical
particle trajectories). In a conformal primary basis, energies are traded for conformal
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dimensions and it is not obvious whether an analogous argument can be made. Nevertheless,
we show in appendix A that a similar approximation holds instead at large ∆1,∆2 � 1, in
which case these propagators become

G13(xi, xj) = − i(x
−
i − q1,⊥ · xi,⊥ + iε)

2∆1
δ(x−i − x−j )Θ(x+

i − x
+
j )δ(2)(xi,⊥ − xj,⊥), (3.16)

G24(x̄i, x̄j) = − i(x̄
+
i − q2,⊥ · x̄i,⊥ + iε)

2∆2
Θ(x̄−i − x̄−j )δ(x̄+

i − x̄
+
j )δ(2)(x̄i,⊥ − x̄j,⊥). (3.17)

As for the propagators for scalar exchanges of mass m, we use the standard formula [82]

Ge(x− x̄) = −i
∫

d4k

(2π)4
eik·(x−x̄)

k2 +m2 − iε
. (3.18)

We now have all ingredients needed to evaluate (3.1). We refer the reader to appendix B
for the lengthy yet straightforward calculation and simply state the result. For n crossed
scalar exchanges of mass m we find

Ãn = 4(2π)2
∫
d2x⊥d

2x̄⊥
(iχ̂)n

n!
i∆1+∆3Γ(∆1 + ∆3)
(−q13,⊥ · x⊥)∆1+∆3

i∆2+∆4Γ(∆2 + ∆4)
(−q24,⊥ · x̄⊥)∆2+∆4

, (3.19)

where we defined

χ̂ ≡ g2

8 e
−∂∆1e−∂∆2G⊥(x⊥, x̄⊥), (3.20)

and G⊥ is the position space transverse propagator in (3.3).
Summing all connected diagrams with n > 0 yields the eikonal celestial amplitude

Ãeik ' 4(2π)2
∫
d2x⊥d

2x̄⊥
(
eiχ̂ − 1

) i∆1+∆3Γ(∆1 + ∆3)
(−q13,⊥ · x⊥)∆1+∆3

i∆2+∆4Γ(∆2 + ∆4)
(−q24,⊥ · x̄⊥)∆2+∆4

, (3.21)

where ' stands for the leading terms in the celestial eikonal regime of large ∆1,∆2 and
small z. This formula (together with its generalization to arbitrary spinning exchanges
where (3.20) is simply replaced by (3.49)) is one of the main results of this paper. It has
two interesting features. First, the eikonal phase χ̂ is operator valued for all spins j 6= 1.
This feature of CCFT is familiar from both celestial double copy constructions [29, 88]
and the conformally soft exponentiation of infrared divergences in gravity [41, 47, 89, 90].
Second, it looks remarkably similar to the eikonal amplitude in AdS [54]. Indeed, we will
later establish a relation between its cousin, the celestial two-point function in a shockwave
background, and the flat-space limit of its AdS counterpart. A general argument for the
relation between AdSd+1 Witten diagrams in the flat-space limit and CCFTd−1 amplitudes
will be given in section 5.

The eikonal formula can also be directly derived as a Mellin transform of the momentum
space amplitude (3.2). While this is to be expected from the standard relation between
conformal primary wavefunctions and plane waves (2.9), we find it nevertheless instructive
to provide this alternate derivation in the remainder of this section.
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3.1.1 Mellin transform of the eikonal amplitude

We now show that the celestial eikonal amplitude (3.21) is simply a Mellin transform of the
scalar momentum space eikonal amplitude (3.2) including the momentum conserving delta
function,

Aeik = 2s
∫
R2
d2x⊥e

ip⊥·x⊥

[
exp

(
ig2

2s G⊥(x⊥)
)
− 1

]
(2π)4δ(4)

( 4∑
i=1

pi

)
. (3.22)

Our strategy is to start with the celestial eikonal formula (3.21) and show that it can be
recast as a Mellin transform of (3.22) with respect to the external energies. To this end,
consider the Taylor expansion of (3.21) in powers of g2,

Ãeik = 4(2π)2
∞∑
n=1

1
n!

∫
d2x⊥d

2x̄⊥

(
ig2

8 G⊥(x⊥, x̄⊥)
)n

× i∆1+∆3−nΓ(∆1 + ∆3 − n)
(−q13,⊥ · x⊥)∆1+∆3−n

i∆2+∆4−nΓ(∆2 + ∆4 − n)
(−q24,⊥ · x̄⊥)∆2+∆4−n

. (3.23)

Introducing parameters ω1, ω2 and using the Mellin representation (2.9) for each term in
the sum,

Ãeik = 4(2π)2
∞∑
n=1

1
n!

∫
d2x⊥d

2x̄⊥

(
ig2

8 G⊥(x⊥, x̄⊥)
)n ∫ ∞

0

dω1
ω1

∫ ∞
0

dω2
ω2

ω∆1+∆3−n
1 ω∆2+∆4−n

2

×e−iω1q13,⊥·x⊥e−iω2q24,⊥·x̄⊥

=
∫ ∞

0

dω1
ω1

∫ ∞
0

dω2
ω2

ω∆1+∆3
1 ω∆2+∆4

2 4(2π)2
∫
d2x̄⊥e

−i(ω1q13,⊥+ω2q24,⊥)·x̄⊥

×
∞∑
n=1

1
n!

∫
d2x⊥

(
ig2

2 ·4ω1ω2
G⊥(x⊥)

)n
e−iω1q13,⊥·x⊥ , (3.24)

where the last line follows from shifting x⊥ → x⊥ + x̄⊥ under which G(x⊥, x̄⊥)→ G(x⊥).
The integrals over x⊥ and x̄⊥ are now decoupled and the latter evaluates to a delta function

Ãeik =
∫ ∞

0

dω1
ω1

∫ ∞
0

dω2
ω2

ω∆1+∆3
1 ω∆2+∆4

2 4(2π)4δ(2)(ω1q1,⊥ + ω2q2,⊥ − ω1q3,⊥ − ω2q4,⊥)

×
∞∑
n=1

1
n!

∫
d2x⊥

(
ig2

2 · 4ω1ω2
G⊥(x⊥)

)n
e−iω1q13,⊥·x⊥ . (3.25)

Inserting the identity ∫ ∞
0

dω3dω4δ(ω3 − ω1)δ(ω4 − ω2) = 1, (3.26)

(3.25) reduces to

Ãeik =
∫ ∞

0

( 4∏
i=1

dωi
ωi

ω∆i
i

)
(2π)4δ(ω1−ω3)δ(ω2−ω4)δ(2)(ω1q1,⊥+ω2q2,⊥−ω3q3,⊥−ω4q4,⊥)

×4ω1ω2

∞∑
n=1

1
n!

∫
d2x⊥

(
ig2

2 ·4ω1ω2
G⊥(x⊥)

)n
e−iω1q13,⊥·x⊥ . (3.27)
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Using the parameterizations of momenta (2.3) in the eikonal configuration (3.7) with
qi � 1,8

p+
1 = −2ω1, p−2 = −2ω2, p+

3 = 2ω3, p−4 = 2ω4, (3.28)

while the components with +↔ − vanish to leading order. Then

Ãeik =
∫ ∞

0

4∏
i=1

dωi
ωi

ω∆i
i (2π)44δ(p+

1 + p+
3 )δ(p−2 + p−4 )δ(2)(p1,⊥ + p2,⊥ + p3,⊥ + p4,⊥)

× 4ω1ω2

∞∑
n=1

1
n!

∫
d2x⊥

(
ig2

2 · 4ω1ω2
G⊥(x⊥)

)n
ei(p1,⊥+p3,⊥)·x⊥ , (3.29)

and since
δ(4)(p) = 2δ(p+)δ(p−)δ(2)(p⊥), s ' 4ω1ω2 (3.30)

we find

Ãeik =
4∏
i=1

(∫ ∞
0

dωi
ωi

ω∆i
i

)
Aeik. (3.31)

This shows that the celestial eikonal amplitude (3.21) is precisely the Mellin transform
of the momentum space eikonal formula (3.2). On the one hand, this result seems to follow
from the defining relations (2.6), (2.8), (2.9). On the other hand, our first derivation in
appendix B invokes the approximations (3.16), (3.17) for the external line propagators
in a conformal primary basis which are valid at large ∆1,∆2. Here, we see instead that
∆1,∆2 need to be large in order for the integrand of (3.31) to be dominated by eikonal
kinematics. We regard this perfect match as evidence that (3.21) describes the behavior of
scalar celestial 4-point scattering to leading order in the celestial eikonal limit (3.21) and to
all orders in the coupling g. We conclude by pointing out that the Mellin transform of the
eikonal phase (3.31) is not strictly convergent. This issue can be cured by allowing for the
phase-shift to acquire an imaginary part. Physically, this could be for example due to black
hole production [91], or due to radiation-reaction effects [92, 93]. It would be interesting to
further study the implications of the convergence of celestial amplitudes, in relation to the
conjecture proposed in [20] (for recent work in this direction see also [94]).

In the next section we show that the leading term in an expansion of (3.21) in powers
of g reproduces the tree-level celestial scalar 4-point amplitude with a massive t-channel
exchange in the z → 0 limit.

3.2 Perturbative expansion

As a warm up, let us start by evaluating the disconnected contribution

Ã0 = 4(2π)2
∫
d2x⊥

i∆1+∆3Γ(∆1 + ∆3)
(−q13,⊥ · x⊥)∆1+∆3

∫
d2x̄⊥

i∆2+∆4Γ(∆2 + ∆4)
(−q24,⊥ · x̄⊥)∆2+∆4

(3.32)

given by setting n = 0 in (3.19). While this term has been removed in our formulas, we
expect it to reduce to the product of two scalar celestial two point functions with the correct

8Here p+ = p0 + p3, p− = p0 − p3.
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normalization given in [13]. These integrals can be evaluated by writing the integrands
in their Mellin representations and evaluating the integrals over the transverse coodinates
which give rise to delta functions,

Ã0 = 4(2π)2
[
(2π)2δ(2)(q13,⊥)

∫ ∞
0

dω1ω
(∆1+∆3−2)−1
1

]
×
[
(2π)2δ(2)(q24,⊥)

∫ ∞
0

dω2ω
(∆2+∆4−2)−1
2

]
. (3.33)

The remaining Mellin transforms follow from [13]9

δ(i∆) = 1
2π

∫ ∞
0

dωω∆−1, (3.34)

therefore Ã0 factorizes as

Ã0 =
[
(2π)4δ(2)(z13)δ(∆1 + ∆3 − 2)

] [
(2π)4δ(2)(w24)δ(∆2 + ∆4 − 2)

]
. (3.35)

(3.35) agrees with the product of two celestial two-point functions, or equivalently the
disconnected contribution to massless scalar 4-point t-channel scattering.

We now turn to the leading contribution to (3.21) in a small g expansion. This should
reproduce the celestial amplitude for massive t-channel exchange [19, 96]. We start with

Ã1 = 2π2ig2
∫
d2x⊥d

2x̄⊥G⊥(x⊥, x̄⊥) i
∆1+∆3−1Γ(∆1 + ∆3 − 1)
(−q13,⊥ · x⊥)∆1+∆3−1

i∆2+∆4−1Γ(∆2 + ∆4 − 1)
(−q24,⊥ · x̄⊥)∆2+∆4−1 .

(3.36)
ReplacingG⊥(x⊥, x̄⊥) by its Fourier representation (3.3), and using the Mellin representation
of the conformal primary wavefunctions, the integrals over x⊥ and x̄⊥ decouple and again
become delta functions

Ã1 = (2π)4ig2

2

∫ ∞
0

dω1
ω1

ω∆1+∆3−1
1

∫ ∞
0

dω2
ω2

ω∆2+∆4−1
2

×
∫
d2k⊥

1
k2
⊥ +m2 δ

(2)(k⊥ − ω1q13,⊥)δ(2)(k⊥ + ω2q24,⊥).
(3.37)

The remaining integrals are evaluated in appendix C and result in

Ã1 = (2π)4ig2

sin πβ/2
πmβ−2

4

(
−
q1

24,⊥
q1

13,⊥

)∆2+∆4−2

|q13,⊥|−β δ(q1
24,⊥q

2
13,⊥ − q2

24,⊥q
1
13,⊥). (3.38)

From (3.8) we immediately see that the delta function imposes reality of the cross-ratio,
z − z̄ = 0. Moreover, in the center of mass frame with z allowed to be complex,

q1,⊥ = (0, 0), q2,⊥ = (0, 0),

q3,⊥ =
(√

z +
√
z̄,−i

(√
z −
√
z̄
))
, q4,⊥ =

(
−
√
z −
√
z̄,−i

(√
z −
√
z̄
)) (3.39)

9Such integrals are formally valid for ∆i ∈ 1 + iλ for λ ∈ R, violating our eikonal conditions ∆1,∆2 � 1.
We regard the dimensions in (3.35) as analytically continued away from the principal series, see [95] for a
prescription to do so. Note that the eikonal conditions on ∆1,∆2 only translate into a condition on β for
connected celestial amplitudes.
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we find that

Ã1 = (2π)4i
(√
z
)−β

δ(z − z̄) g
2π

8m2
(m/2)β
sin πβ/2 + · · · . (3.40)

Here · · · denote subleading terms in the small z limit which don’t contribute at leading
order in the eikonal approximation (3.4).

To compare to the expected result (see [96] for the formula in the same conventions
used here up to a factor of (2π)4i)

Ãt−channel(∆i, zi, z̄i) = I13−24(zi, z̄i)Ngm(β)δ(z − z̄)|z|2|z − 1|h13−h24 , (3.41)

Ngm(β) = g2π

8m2
(m/2)β
sin πβ/2 (3.42)

we now evaluate (3.41) in the corresponding kinematic configuration

z1 = 0, z2 =∞, z3 =
√
z, z4 = − 1√

z
. (3.43)

We find10

lim
z2→∞,z→0

|z2|2∆2
∣∣√z∣∣−2∆4 Ãt−channel

(
0,∞,

√
z,− 1√

z

)
= g2π

8m2
(m/2)β
sin πβ/2δ(z − z̄)

(√
z
)−β

.

(3.44)
We hence see that the tree-level contribution to the eikonal expansion (3.21) agrees with
the t-channel massive scalar exchange celestial amplitude as it should.

3.3 Generalization to spinning exchanges

In this section we generalize the celestial eikonal formula (3.21) to the case where the
exchanges have arbitrary spin j.

Spinning propagators Gµ1...µjν1...νj
e (x, x̄) couple to the external lines via derivative

interactions. As argued in section 3.1, in the eikonal limit external propagators are
approximated by (3.16) and (3.17). This implies that, in analogy to the derivation in [54],
the dominant contribution from (celestial) spinning propagators in the eikonal limit is

G̃e(xi, x̄σ(i)) = (−2)jP 1
µ1 · · ·P

1
µjG

µ1...µjν1...νj
e (xi, x̄σ(i))P 2

ν1 · · ·P
2
νj , (3.45)

with11

G
µ1...µjν1...νj
e (x, x̄) ' η(µ1ν1 · · · ηµjνj)Ge(x, x̄). (3.46)

Here the indices µ, ν are separately symmetrized, Ge(x, x̄) is the scalar propagator given
in (3.18) and we defined the celestial massless momentum operators P 1

µ and P 2
µ acting on

external particles 1 and 2 [17]

P iµ = −(q̂i)µe∂∆i , i = 1, 2. (3.47)
10Note that 1, 3 and 2, 4 are evaluated in patches around the north and south poles respectively, hence

the Jacobian factor is needed in (3.44) for comparison with (3.40).
11We stick to the convention in [54] that the external particles are oppositely charged with respect to odd

j fields. Trace terms vanish since P1, P2 are on-shell, while terms where the derivatives are distributed over
all 1, 3 and the propagator are subleading in the eikonal limit.
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One can therefore follow through the same derivation in appendix B with the simple
replacement

Ge(xi, x̄σ(i))→ G̃e(xi, x̄σ(i)) ' (−2P 1 · P 2)jGe(xi, x̄σ(i)). (3.48)

Recalling that the eikonal kinematics are such that q̂1 · q̂2 ≈ −2, the final result is of the
same form as (3.21) with χ̂→ χ̂j , where

χ̂j = g2(4e∂∆1e∂∆2 )j−1

2 G⊥(x⊥, x̄⊥). (3.49)

For j = 0, we recover precisely (3.21). The same derivation goes through for massless
exchanges, with the transverse propagator (3.3) replaced by its massless counterpart with
m = 0. In this case the transverse propagator develops a logarithmic divergence which can
be regulated by introducing an IR cutoff. The AdS radius R provides a natural cutoff in AdS.
The IR divergence reappears in the limit as R→∞, as we will see in the related analysis of
shockwave two-point functions in section 4.4. We finally note that, for j = 2, the celestial
eikonal amplitude (3.31) is analytic in the right-hand complex net boost-weight β plane. A
similar analytic structure was found in [41] for celestial 2-2 scattering dominated by black
hole production at high energies. It would be interesting to further explore the relation
between non-perturbative aspects of gravitational scattering and the analytic properties of
celestial amplitudes.

In the remainder of this paper, we will focus on the formula for graviton exchanges,
namely j = 2 and m = 0, in which case g2 = 8πG. We will see that the celestial eikonal
exponentiation of graviton exchanges is related to the celestial two-point function of a
particle in a shockwave background. In particular, we will identify the source in the CCFT
that relates the two to leading order in perturbation theory. Interestingly, this relation is
analogous to the one in AdS/CFT and will be shown in section 4.4 to be directly recovered
in a flat space limit of the AdS result.

4 Celestial scattering in shockwave background

In this section we study the celestial amplitude describing the propagation of a scalar field
in the presence of a shock h−−(x−, x⊥) = δ(x−)h(x⊥). We compare the leading term in an
expansion of this two-point function in powers of h with the leading connected contribution
to the eikonal celestial amplitude involving a spin 2 exchange computed in section 3 and
find perfect agreement. Moreover, we show that this formula arises as the flat-space limit
of the scalar two-point function in the presence of a shock in AdS4. This establishes a
relation between celestial propagation in a shockwave background and the flat space limit of
four-point functions in CFT3 with operators inserted in small time windows around future
and past boundary spheres.

4.1 Review: scalar field in shockwave background

We consider the shockwave geometry

ds2 = −dx−dx+ + ds2
⊥ + h(x⊥)δ(x−)(dx−)2 (4.1)
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sourced by a stress tensor whose only non-vanishing component is

T−− = δ(x−)T (x⊥), (4.2)

localized along the null surface x− = 0. The metric (4.1) solves the full non-linear Einstein’s
equations provided that [53, 58, 59]

∂2
⊥h(x⊥) = −κ

2

2 T (x⊥), (4.3)

where κ2 = 32πG.12

On the other hand, the propagation of a scalar field in the background (4.1) is governed
by the wave equation

�shockφ(x) = 0 (4.4)

which reduces to
− 4∂−∂+φ− 4δ(x−)h(x⊥)∂2

+φ+ ∂2
⊥φ = 0. (4.5)

In a neighborhood of x− = 0, the transverse part can be neglected and (4.5) simplifies to

∂+∂−φ = −h(x⊥)δ(x−)∂2
+φ. (4.6)

Taking a Fourier transform of both sides with respect to x+ and integrating by parts, we
find

∂−φ̃(x−, k, x⊥) = −ikh(x⊥)δ(x−)φ̃(x−, k, x⊥), (4.7)

where we defined the Fourier transform of φ with respect to x+

φ̃(x−, k, x⊥) ≡
∫ ∞
−∞

dx+φ̃(x−, x+, x⊥)e−ikx+
. (4.8)

The solution is obtained by integrating (4.7) over x− with x− ∈ [−ε, ε] for infinitesimal
ε > 0. One finds that the scalar modes before and after the shock are simply related by a
phase shift

φ̃(ε, k, x⊥) = φ̃(−ε, k, x⊥)e−ikh(x⊥). (4.9)

Equivalently, upon inverting the Fourier transform we find the matching condition

φ(ε, x+, x⊥) =
∫ ∞
−∞

dk

2π φ̃(−ε, k, x⊥)e−ikh(x⊥)+ikx+ = φ(−ε, x+ − h(x⊥), x⊥). (4.10)

We hence recover the well known result [58] that upon crossing a shockwave, probe particles
acquire a time shift ∆x+ = h(x⊥).

12Our conventions follow from the Einstein-Hilbert action coupled to matter Sg+m =∫
d4x
√
−g
(

2
κ2R+ LM

)
.
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4.2 Celestial shock two-point function

Equipped with this result, it can be shown (see appendix D) that the scalar propagator in
the background of the shock (4.1) takes the form

Ashock(p2, p4) = 4πp−4 δ(p−4 + p−2 )
∫
d2x⊥e

i(p4,⊥+p2,⊥)·x⊥ei
h(x⊥)

2 p−2 . (4.11)

To express this in a conformal primary basis, we parameterize pi as in (2.3), (3.7) in which
case

p−i = 2ηiωi, pi,⊥ = ηiωi(zi + z̄i,−i(zi − z̄i)) ≡ ηiωiqi,⊥ (4.12)

and the momentum space amplitude (4.11) becomes

Ashock(p2, p4) = 4πω4δ(ω4 − ω2)
∫
d2x⊥e

i(ω4q4,⊥−ω2q2,⊥)·x⊥e−iω2h(x⊥). (4.13)

The celestial propagator is then found by evaluating Mellin transforms with respect to ω2
and ω4,

Ãshock(∆2, z2, z̄2; ∆4, z4, z̄4) =
∫ ∞

0
dω2ω

∆2−1
2

∫ ∞
0

dω4ω
∆4−1
4 Ashock(p2, p4). (4.14)

One of the Mellin transforms is easily computed due to the delta function in energy and
the remaining Mellin integral reduces to the standard Mellin transform of an exponential,
namely

Ãshock(∆2, z2, z̄2; ∆4, z4, z̄4) = 4π
∫ ∞

0
dω2ω

∆2+∆4−1
2

∫
d2x⊥e

−iω2[q24,⊥·x⊥+h(x⊥)]

= 4π
∫
d2x⊥

i∆2+∆4Γ(∆2 + ∆4)
[−q24,⊥ · x⊥ − h(x⊥) + iε]∆2+∆4

.
(4.15)

This formula is remarkably similar to its counterpart in AdS4 [59]

〈O∆(p2)O∆(p4)〉shock = C∆

∫
H2
d2x⊥

Γ(2∆)
(2q · x⊥ − h(x⊥) + iε)2∆ , (4.16)

where p2 = −(0, 1, 0), p4 = (q2, 1, q),13 are embedding space (here R1,1 ×R1,2) coordinates,
h(x⊥) is a solution to the AdS counterpart of (4.3) and C∆ is a normalization constant
given by

C∆ ≡
1
π2

R2(∆−1)

Γ
(
∆− 1

2

)2 . (4.17)

In section 4.4 we explain how it can be obtained from a flat space limit. Before that, we
clarify the relation between (4.15) and the celestial amplitude that resums the eikonal spin
2 exchanges.

13Our h is defined with respect to a future-pointing x+ hence the apparent sign difference with respect
to [59].
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4.3 Relation to eikonal amplitude

The momentum space scalar propagator (4.11) reproduces the plane wave basis four-point
eikonal amplitude of massless scalars interacting by graviton exchange, given an appropriate
choice for the shockwave source [58]. In this section we identify the shockwave source in
the CCFT following a similar procedure to that of [59] in the AdS context.

To this end, we consider the leading term in the expansion of the celestial eikonal
amplitude for graviton exchange, namely

Ãj=2
1 = 8π2iκ2

∫
d2xd2x̄⊥G

m=0
⊥ (x⊥, x̄⊥)

× i∆1+∆3+1Γ(∆1 + ∆3 + 1)
(−q13,⊥ · x⊥)∆1+∆3+1

i∆2+∆4+1Γ(∆2 + ∆4 + 1)
(−q24,⊥ · x̄⊥)∆2+∆4+1 . (4.18)

On the other hand, expanding (4.15) to linear order in h(x⊥), we find

Ã1
shock = −4πi

∫
d2x⊥

i∆2+∆4+1Γ(∆2 + ∆4 + 1)
(−q24,⊥ · x⊥ + iε)∆2+∆4+1h(x⊥). (4.19)

Upon choosing

h(x⊥) = −2πκ2
∫
d2x̄⊥G

m=0
⊥ (x⊥, x̄⊥) i

∆1+∆3+1Γ(∆1 + ∆3 + 1)
(−q13,⊥ · x̄⊥)∆1+∆3+1 , (4.20)

with
T = T (x̄⊥) = −4π i

∆1+∆3+1Γ(∆1 + ∆3 + 1)
(−q13,⊥ · x̄⊥)∆1+∆3+1 , (4.21)

we see that (4.19) reproduces (4.18). Note that while in a momentum space basis, the
energy-momentum tensor carries a scale associated with the energy of the source,14 (4.21)
provides a definition of the source intrinsic to the CCFT. Up to normalization, (4.21) is
analogous to the CFT3 source found in [59] when relating the AdS shockwave two-point
function to the AdS eikonal amplitude. It is obtained by comparing the leading term in the
perturbative expansion of (4.15) in h(x⊥) to the celestial amplitude (3.36) for t-channel
graviton exchange. As such the stress tensor (4.21) corresponds to a point source in a
conformal primary basis. In the next section we clarify this connection by showing that
the celestial formulas can be obtained directly as flat space limit of CFT3 correlators with
particular kinematics.

4.4 Flat space limit of shockwave two-point function in AdS4

The symmetries of celestial amplitudes inherited from 4D Lorentz invariance are the same
as the symmetries that preserve codimension-1 slices of CFT3. Since in the flat space
limit, CFT3 operators are known to localize on such global time slices [74, 76, 77, 81], it is
natural to expect a direct relation between CFT3 correlation functions in the flat space
limit and celestial amplitudes. In this section we illustrate how this works in the case of
the shockwave two-point function (4.15). Specifically, after reviewing the calculation of

14We thank Tim Adamo for an interesting discussion on this point.
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the shockwave two-point function in AdS4, we show that for particular kinematics, in the
limit of large AdS radius R, this two-point function reduces to the celestial propagator in a
shockwave background (4.15).

Consider the embedding of a 4-dimensional hyperboloid

− (X0)2 − (X1)2 +
4∑
i=2

(Xi)2 = −R2 (4.22)

in R1,1 × R1,2 with metric

ds2 = −dX+dX− − (dX1)2 +
3∑
i=2

(dX i)2 (4.23)

and where
X± = X0 ±X4 (4.24)

are lightcone coordinates in R1,1.
Parameterizing

X+ = −Rcos τ − sin ρΩ4
cos ρ , X− = −Rcos τ + sin ρΩ4

cos ρ ,

X1 = −R sin τ
cos ρ, X i = R tan ρΩi, i = 2, 3,

(4.25)

with ∑4
i=2 Ω2

i = 1, (4.23) becomes the AdS4 metric in global coordinates

ds2 = R2

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρdΩ2

S2

)
. (4.26)

The (τ, ρ) coordinates cover the ranges ρ ∈ [0, π2 ], τ ∈ [−π, π] and the boundary is approached
as ρ→ π

2 . Up to conformal rescaling, points on the boundary are parameterized by

p = lim
ρ→π/2

1
2R
−1 cos ρX (4.27)

with p2 = 0. We denote AdS4 bulk points by X =
(
X+, X−, X i

)
and boundary points by

p.
Following [59] we consider the AdS4 shock geometry

ds2
shock = −ds2

AdS4 + dX−dX−δ(X−)h(Xi), (4.28)

where for X− = 0,

− (X1)2 +
3∑
i=2

(Xi)2 = −R2 (4.29)

and hence on the shock front, h depends only on transverse directions x⊥ ∈ H2 in the
2-dimensional hyperbolic space H2 defined by (4.29). Einstein’s equations imply h is a
solution to the sourced wave equation on H2 [59][

�H2 −
2
R2

]
h(x⊥) = −κ

2

2 T(x⊥). (4.30)
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p2

p4
π

π
2

−π

− π
2

τ Ω

ρ

0

X−X+

p2

p4
π
2

0

τ′￼

ρ

∝ R−1− π
2

Figure 3. Left: Poincaré patch of AdS4 with a shockwave along the horizon at X− = 0. The
boundary is approached as ρ → π

2 and Ω parameterize S2 constant τ boundary slices. Right:
Zooming into a bulk flat space region of AdS around the shock at ρ = 0. As R → ∞, the AdS4
shockwave two-point function with p2,p4 inserted around τ ′2 = −π2 and τ ′4 = π

2 respectively becomes
the celestial shockwave two-point function.

Note also that the shock front is chosen to lie along the Poincaré horizon as illustrated in
figure 3.

The two-point function in this shockwave background takes the form [59]

〈O∆(p2)O∆(p4)〉shock = C∆

∫
H2
d2x⊥

Γ(2∆)(
2∑3

i=1 q
iXi(x⊥)− h(x⊥)

)2∆ , (4.31)

with C∆ given in (4.17) and without loss of generality, the boundary operators are inserted
at

p2 = − (0, 1, 0) , p4 =
(
q2, 1, q

)
. (4.32)

The relative sign is chosen such that the operators are inserted on opposite sides of the shock,
otherwise the two point function can be shown to take the same form as in empty AdS.

We would like to zoom in around the flat space region around τ = π
2 , ρ = 0. To this

end we consider the shifted coordinate

τ ′ = τ − π

2 (4.33)

and take the limit R→∞ with
τ ′ = t

R
, ρ = r

R
(4.34)

and (t, r) fixed, as illustrated in figure 3. It is straightforward to show that in this limit

X+ → t+ rΩ4 +O(R−1) = x+, X− → t− rΩ4 +O(R−1) = x−,

X1 → −R+O(1), X i → rΩi = xi⊥, i = 2, 3,
(4.35)
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and hence the shockwave metric becomes that of a planar shock in Minkowski space

ds2 = −dx+dx− + ds2
⊥ + (dx−)2δ(x−)h(x⊥) (4.36)

with

�⊥h(x⊥) = −κ
2

2 T (x⊥). (4.37)

Finally, parametrizing
q = (− cos τ ′q, Ω̃2, Ω̃3), (4.38)

where τ ′q ∈ [0, π] we find

lim
R→∞

〈O∆(p2)O∆(p4)〉shock = C∆

∫
d2x⊥

Γ(2∆)(
−R cos τ ′q + x⊥ · Ω̃− h(x⊥)

)2∆ . (4.39)

Unless τ ′q = π
2 + O(R−1), we see that (4.39) is suppressed15 by a factor R−2∆ and the

amplitude will vanish. This is to be expected as otherwise the point in the bulk at which
O interacts with the shockwave will be outside the flat space region we are zooming into
(see figure 3). It is also consistent with the HKLL prescription that relates bulk scattering
states in the flat space limit to boundary operators localized in windows of width ∆τ ∼ R−1

around τ ′ = ±π
2 [75, 76]. It follows that for this configuration, the shockwave two-point

function reduces to

lim
R→∞

〈O∆(p2)O∆(p4)〉shock = C∆

∫
d2x⊥

Γ(2∆)
(−x⊥ · q24,⊥ − h(x⊥))2∆ , (4.40)

which precisely agrees with the celestial result (4.15). Placing O∆(p4) anywhere else in the
∆τ = O(R−1) window results in a constant shift that can be absorbed in the definition of h.16

We conclude that

lim
R→∞

〈O−∆(p2)O+
∆(p4)〉shock = R2(∆−1)

4π3i2∆ Γ
(

∆− 1
2

)−2
Ãshock(∆, q̂2; ∆, q̂4), (4.41)

where the + (−) labels on the l.h.s. indicate that the CFT3 boundary operators are to be
inserted at global times τ = π

2 + τ0 (τ = −π
2 + τ0) provided that the bulk flat space region

of interest lies at τ0. It would be interesting to generalize this analysis for the scattering of
arbitrary spin particles in spherical shock backgrounds (see [84] in the massless background
limit for a recent example). It would also be interesting to study the flat space limit of
scattering in AdS black hole backgrounds and in particular its implications for signatures
of chaos in CCFT [97, 98].

15It is assumed that the “parent” boundary CFT3 is unitary and hence the operators have positive dimen-
sions.

16Recall that (4.37) determines h up to solutions of �⊥h = 0.
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5 Celestial amplitudes from flat space limits of Witten diagrams

The discussion in the previous section is a particular instance of a general result namely,
that celestial amplitudes arise naturally as the leading term in a large radius expansion of
AdS4/CFT3 Witten diagrams. More generally, in this section we show that scalar Witten
diagrams in AdSd+1/CFTd reduce to CCFTd−1 amplitudes in the flat space limit. We
restrict to non-derivative interactions for simplicity. In establishing this correspondence we
assume the following:

• The boundary CFTd operators O∆i
(pi) are inserted on global time slices τ = ±π

2 .

• The two spheres at τ = ±π
2 on the boundary of AdS are antipodally matched.17

We start by studying the individual building blocks of AdSd+1 Witten diagrams —
external lines, vertices and internal lines — and their expansion in a large R limit. We will
see that they map precisely to (d+ 1)-dimensional flat space Feynman diagrams computed
in a basis of external conformal primary wavefunctions, or equivalently, CCFTd−1 celestial
amplitudes.

5.1 External lines

Let K∆(p,x) be the bulk-to-boundary propagator in the embedding space representa-
tion [80],18

K∆(p,x) = Cd∆
(−2p · x + iε)∆ (5.1)

and
Cd∆ ≡

Γ(∆)
2πd/2Γ

(
∆− d

2 + 1
)
R(d−1)/2−∆

. (5.2)

Parameterizing respectively bulk and boundary points x and p with (τ, ρ,Ω) and (τp,Ωp)
as in (4.25), (4.27) where Ωp,Ω ∈ Sd−1, setting τ = t/R and ρ = r/R and expanding at
large R, we find

K∆(p,x) = Cd∆

[
1

(R cos τp + t sin τp − rΩp · Ω +O(R−1) + iε)∆

]
. (5.3)

Like in the shockwave analysis, we see that assuming ∆ ≥ 0, unless τp = ±π
2 , the leading

contribution to the bracket in (5.3) vanishes as R → ∞. On the other hand, choosing
τp = π

2 we have

K∆(p,x) = Cd∆

[ 1
(−q̃ · x+ iε)∆ +O(R−1)

]
, (5.4)

17It would be interesting to understand the physical meaning of such a matching condition in AdS, perhaps
by studying asymptotic field configurations as the boundary is approached along different null directions.
We thank Laurent Freidel for a discussion on this point.

18This representation of K∆(p,x) is valid only in particular Poincaré patches [54]. It is sufficient in our
case since we restrict to configurations with boundary insertions at τ = ±π2 and bulk points close to the
center of AdS.
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where x = (t, rΩ) ∈ R1,d is the point in flat space and where q̃ = (1,Ωp) ∈ R1,d is a null
vector in the direction Ωp. As a result, up to normalization, K∆(p,x) maps (up to a phase)
under R→∞ to an outgoing conformal primary wavefunction, when τp = π

2 . Likewise if
we choose τp = −π

2 ,

K∆(p,x) = Cd∆

[ 1
(q̃ · x+ iε)∆ +O(R−1)

]
, (5.5)

where x is the same, but now q̃ = (1,ΩA
p ) with ΩA

p = −Ωp the antipodal point of Ωp on the
sphere. In this case we see that the bulk-to-boundary propagator maps (up to a phase) to
an incoming conformal primary wavefunction.

Outgoing or incoming iε prescriptions are obtained depending on the sign of τp = ±π
2 .

Moreover, the antipodal identification is needed to ensure Lorentz covariance of the resulting
conformal primary wavefunctions. Note that placing the operators at other global times
τp = ±π

2 + ∆τp with ∆τp ∝ R−1 leads, in the flat space limit, to conformal primary
wavefunctions that diagonalize boosts with respect to different origins in spacetime.

5.2 Vertices

For the particular case of non-derivative coupling we are considering, AdSd+1 vertices take
the form

ig

∫
AdSd+1

dd+1x. (5.6)

Writing the measure explicitly in global coordinates (τ, ρ,Ω), and transforming to τ = t/R

and ρ = r/R, we have its large R expansion

dd+1x = dd+1x+O(R−2). (5.7)

Moreover since t = Rτ and r = Rρ, it follows that t ∈ (−∞,∞) and r ∈ [0,∞) in the flat
space limit. Hence

ig

∫
AdSd+1

dd+1x = ig

∫
R1,d

dd+1x+O(R−2), (5.8)

and the rule for the vertex in AdSd+1 maps to the rule for the vertex in R1,d.

5.3 Internal lines

To discuss the internal lines we recall that the AdSd+1 bulk-to-bulk propagator of dimension
∆ obeys the equation [59](

�AdSd+1 −
∆(∆− d)

R2

)
Π∆(x, x̄) = iδAdSd+1(x, x̄). (5.9)

On the one hand the Laplacian is

�AdSd+1 = −cos2 ρ

R2 ∂2
τ + cosd+1 ρ

sind−1 ρ
∂ρ

(
sind−1 ρ

cosd+1 ρ

√
γ

cos2 ρ

R2 ∂ρ

)
+ cos2 ρ

R2 sin2 ρ

1
√
γ
∂A
(√

γγAB∂B
)

= �R1,d +O(R−2), (5.10)
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where γ is the round Sd−1 metric and �R1,d is the flat space Laplacian. On the other hand
the delta function is

δAdSd+1(x, x̄) = δ(τ − τ̄)δ(ρ− ρ̄)δd−1(Ω− Ω̄)√−gAdSd+1

= δR1,d(x, x̄) +O(R−2), (5.11)

where δR1,d(x, x̄) is the Minkowski space delta distribution. Altogether the large R expansion
of the defining equation for the bulk-to-bulk propagator is[(

�R1,d +O(R−2)
)
− ∆(∆− d)

R2

]
Π∆(x, x̄) = iδR1,d(x, x̄) +O(R−2). (5.12)

It follows that the AdSd+1 propagator has a large-R expansion

Π∆(x, x̄) = G(x, x̄) +O(R−2), (5.13)

where G(x, x̄) ought to obey

(�R1,d −m2)G(x, x̄) = iδR1,d(x, x̄), m ≡ lim
R→∞

∆
R
. (5.14)

Therefore, we either recover massive exchanges when ∆ = O(R) or massless exchanges
when ∆ = O(1).

A final remark is that while equation (5.14) does not have a unique solution, the fact
that Π∆(x, x̄) computes time-ordered two-point functions in AdSd+1 implies that its leading
behavior G(x, x̄) also computes time-ordered two-point functions in R1,d. This imposes one
additional condition on (5.14) which singles out the Feynman propagator.

5.4 Forming the diagrams

Combining all of the ingredients, we find that none of the large-R corrections contribute at
leading order. As a result, the leading term in a large R expansion of a Witten diagram
reduces to the position space Feynman diagram for the same interaction in flat space
with external wavefunctions taken to be conformal primaries. By the definition (2.8), this
coincides with the corresponding celestial amplitude!

We exemplify by considering a t-channel exchange Witten diagram

〈O∆1(p1)O∆2(p2)O∆3(p3)O∆4(p4)〉 = (ig)2
∫
AdSd+1

dd+1xdd+1yΠ∆(x,y) (5.15)

×K∆1(p1,x)K∆3(p3,x)K∆2(p2,y)K∆4(p4,y).

Taking p1 and p2 inserted at τ = −π
2 and p3 and p4 inserted at τ = π

2 , we find

K∆i
(pi,x) = N d

∆i

[
ϕ∆i

(x;−q̂i) +O(R−1)
]
, i = 1, 2, (5.16)

K∆i
(pi,x) = N d

∆i

[
ϕ∆i

(x; q̂i) +O(R−1)
]
, i = 3, 4, (5.17)
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where N∆i
are given by

N d
∆i

=
Cd∆i

i∆iΓ(∆i)
= R−(d−1)/2+∆i

2πd/2i∆iΓ
(
∆i − d−1

2

) . (5.18)

Assuming further that the exchanged operator has ∆ = mR+O(1), then

〈O−∆1
(p1)O−∆2

(p2)O+
∆3

(p3)O+
∆4

(p4)〉=
( 4∏
i=1
N d

∆i

)

×
(

(ig)2
∫
R1,d

dd+1xdd+1yGe(x,y)ϕ∆1(x;−q̂1)ϕ∆2(y;−q̂2)ϕ∆3(x; q̂3)ϕ∆4(y; q̂4)+O(R−1)
)
,

(5.19)

and up to normalization the leading term in the large R expansion is the corresponding
flat space Feynman diagram computed with position space Feynman rules and conformal
primary external wavefunctions. More generally, in the flat space limit, CFTd correlators
with operators inserted at τi = ±π

2 +O(R−1) are related to CCFTd−1 amplitudes of in/out
operators with the same dimensions, namely

Ã(∆i, zi, z̄i) = lim
R→∞

( 4∏
i=1
N d

∆i

)−1

〈O−∆1
(p1)O−∆2

(p2)O+
∆3

(p3)O+
∆4

(p4)〉. (5.20)

Celestial amplitudes of operators with arbitrary dimensions (such as conformally soft ones)
may then be obtained by analytic continuation.

At the operator level, what we have shown is that a generic CFTd quasi-primary
operator O∆(p) inserted on past/future global time slices Sd−1 maps in the flat space limit
to an incoming/outgoing celestial operator O±∆(~z) in CCFTd−1 via

O±∆(~z) ≡ lim
R→∞

(N d
∆)−1O±∆

(
τ = ±π2 , ~z

)
, (5.21)

where the limit holds in the weak sense,

〈O±∆(~z) · · · 〉 = lim
R→∞

(N d
∆)−1

〈
O±∆

(
τ = ±π2 , ~z

)
· · ·
〉
. (5.22)

This prescription beautifully matches with the relation between two-point functions in a
shock background found by explicit calculation in (4.41).

6 Discussion

In this paper we have studied the imprints of high-energy, eikonal physics in 4D asymptoti-
cally flat spacetimes on 2D CCFT. We first identified a new universal regime in CCFT of
large net scaling dimension β and small cross ratio z in which massless 4-point celestial
amplitudes are governed by a simple formula (3.21). This formula resums an infinity of
massive scalar exchanges resulting in an operator-valued eikonal phase. On the one hand,
the celestial eikonal phase is directly related to the flat space one upon trading the center
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of mass energy in the latter for an appropriate weight-shifting operator. On the other hand,
the fact that it manifestly computes the scattering of particles in a conformal primary basis
leads to similarities with the analog eikonal formula in AdS4.

We generalized this formula to exchanges of arbitrary spin j. The expected relation
between the j = 2 result and two-point functions in shockwave backgrounds motivated us
to compute the associated celestial two point function of scalars. Again, our result (4.15)
is strikingly similar to the two-point function in the background of a shock in AdS4. In
analogy to the AdS case [59] we identified the stress tensor source in the CCFT that relates
this formula to the one for a single graviton exchange computed through the celestial
eikonal amplitude.

Finally, we showed that celestial two-point functions in a shock background can be
simply recovered from a flat space limit of the propagation of a particle in the background
of a shock in AdS4. This calculation suggests that celestial amplitudes can be directly
recovered in the flat space limit from CFT3 correlators with particular kinematics. Indeed,
such a relation is suggested by the flat space limit of the HKLL prescription [75, 76] that
relates bulk scattering states in flat space to boundary operators on particular time slices
of the boundary CFT. However, working with celestial amplitudes instead of momentum
space amplitudes allowed us to bypass the construction of bulk energy eigenstates via HKLL
and directly relate CFT observables to flat space, celestial observables.

Our work suggests that AdS/CFT holography may provide more insights into flat space
holography that one would have naively thought. There are many aspects of these intriguing
connections which we believe deserve further study. At the level of the global symmetries
it is natural to expect CCFT-like observables to arise from a flat space limit of CFT3
observables: indeed the non-trivial boundary observables in a large AdS4 radius limit reside
on codimension-1 slices of the boundary whose global conformal group SO(3, 1) ⊂ SO(3, 2)
coincides with the 4D Lorentz group. The restriction of the SO(d+ 1, 1) conformal group to
SO(d, 1) results in a decomposition of d+ 1 dimensional blocks into an infinite sum over d
dimensional ones [99]. These decompositions bear some similarities to the conformal block
decompositions of massless scalar celestial amplitudes [96], perhaps suggesting that such
celestial amplitudes also arise from a flat space limit of CFT3 4-point correlators.

On the other hand, at face value celestial CFT are governed by a much larger symmetry
group arising from towers of soft theorems in the 4D bulk [35–37, 100–102]. It would be
extremely interesting to understand the nature of CFT3 that could accommodate such a
large amount of symmetry in the flat space limit. It seems likely that a boundary perspective
will shed some light on some of the challenges encountered in attempts at recovering BMS4
symmetries from a flat space limit of AdS4 [103, 104]. A related issue are the matching
conditions implied by the soft theorems in 4D AFS, which our analysis suggests should link
past and future global time slices in CFT3. It therefore seems important to understand if
such an infinity of matching conditions can indeed exist in AdS/CFT.

The link between the eikonal phase, time delays of probes in shockwave backgrounds and
causality has been extensively studied in both flat space [105, 106] and AdS/CFT [54, 59, 107–
110]. In particular, it is known that bulk causality places strong constraints on the allowed
low energy effective field theories of gravity. For example higher derivative couplings can
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modify graviton three-point couplings and lead to time advances in the absence of an
additional infinite tower of massive higher spin states [105]. It would be interesting to
understand how causality in 4D AFS emerges from 2D CCFT. A first step in this direction
would be to generalize the analysis herein to the case of 4 graviton scattering in theories
of gravity with higher derivatives. One could then study whether the tower of celestial
soft symmetries [35, 36] (or their higher derivative corrected versions [33, 102]) place any
constraints on the form and in particular the sign of the eikonal phase. On the other hand,
it would be important to understand how other flat space bulk observables such as the
scattering angle are extracted from the CCFT eikonal formula. To this end it may be
useful to work out the celestial counterpart of the Regge regime in holographic CFTs [111],
perhaps via the flat limit proposed in this paper.

The eikonal phase seems to be closely related to the imaginary part of Weinberg’s expo-
nentiated infrared divergences arising from exchanges of low energy photons/gravitons [56].
While the real part of this phase has been extensively studied and linked to the existence of
asymptotic symmetries in 4D AFS [39–43, 46, 47, 89, 112–117], the imaginary part appears
to have received much less attention.19 In addition to its relation to causality, this phase
appears to be important when scattering conformal primary states or superpositions of
all energy eigenstates as opposed to momentum eigenstates as it can lead to interference
effects due to its dependence on external energies. We hope to address some of these issues
in the near future.
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A Celestial propagators in eikonal regime

In this appendix we show that in a conformal primary basis, in a limit of large external
dimensions, the external leg propagators become nearly on-shell. For massless scalars the
Klein-Gordon equation in (x−, x+, x⊥) coordinates (3.10) reads(

−4∂−∂+ + ∂2
⊥

)
G∆(x; q̂) = 2iδ(x+)δ(x−)δ(2)(x⊥). (A.1)

19The usual argument is that phases are unobservable and hence unimportant.
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Integrating this equation against a generalized conformal primary wavefunction [32] with
eikonal kinematics like in (3.14), we find

∫
d4x

f(x2)
(x− − qi,⊥ · x⊥)∆i

[ (
−4∂−∂+ + ∂2

⊥

)
G∆i

(x, x0; q̂i)

− 2iδ(x− − x−0 )δ(x+ − x+
0 )δ(2)(x⊥ − x⊥,0)

]
= 0.

(A.2)

Upon integration by parts,

∫
d4x

(
−4∂−∂+f(x2) + ∂2

⊥f

(x− − qi,⊥ · x⊥)∆i
+ ∆i

4∂+f(x2) + 2qi,⊥ · ∂⊥f
(x− − qi,⊥ · x⊥)∆i+1

)
G∆i

(x, x0; q̂i)

− 2i
∫
d4x

f(x2)
(x− − qi,⊥ · x⊥)∆i

δ(x− − x−0 )δ(x+ − x+
0 )δ(2)(x⊥ − x⊥,0)

]
= 0.

(A.3)

For ∆i � 1, and |qi,⊥| = 2√qi � 1, the only term that survives in the first line is

∫
d4x∆i

4∂+f(x2)
(x− − qi,⊥ · x⊥)∆i+1G∆i

(x, x0; q̂i)

− 2i
∫
d4x

f(x2)
(x− − qi,⊥ · x⊥)∆i

δ(x− − x−0 )δ(x+ − x+
0 )δ(2)(x⊥ − x⊥,0)

]
= 0

(A.4)

and so

−4∆i(x−−qi,⊥ ·x⊥)−1∂+G∆i
(x, x0; q̂i) = 2iδ(x−−x−0 )δ(x+−x+

0 )δ(2)(x⊥−x⊥,0), i = 1, 3.
(A.5)

Repeating the same calculation with wavefunctions as in (3.15) we find that the propagators
for the external lines can therefore be approximated in the celestial eikonal limit by

G∆i
(x, x0; q̂i) = − i(x

− − qi,⊥ · x⊥)
2∆i

δ(x− − x−0 )Θ(x+ − x+
0 )δ(2)(x⊥ − x⊥,0), i = 1, 3,

G∆i
(x, x0; q̂i) = − i(x

+ − qi,⊥ · x⊥)
2∆i

Θ(x− − x−0 )δ(x+ − x+
0 )δ(2)(x⊥ − x⊥,0), i = 2, 4,

(A.6)

as promised.

B Eikonal amplitude in CCFT

Applying position space Feynman rules to the ladder diagrams with n exchanges we have

Ãn = (ig)2n
∫
d4x1 · · ·d4xnd

4x̄1 · · ·d4x̄nϕ∆3(xn; q̂3)G(xn−xn−1) · · ·G(x2−x1)ϕ∆1(x1;−q̂1)

×ϕ∆4(x̄n; q̂4)G(x̄n− x̄n−1) · · ·G(x̄2− x̄1)ϕ∆2(x̄1;−q̂2)
×
∑
σ∈Sn

Ge(x1− x̄σ(1)) · · ·Ge(xn− x̄σ(n)). (B.1)
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The propagators G(xk − xk−1) connecting particles 1 and 3 and G(x̄k − x̄k−1) connecting
particles 2 and 4 can respectively be approximated by (A.6). In this approximation, writing
the integrals in the (3.10) coordinates, we find

Ãn =
(
ig

2

)2n ∫
ϕ∆1(x1;−q̂1)ϕ∆2(x̄1;−q̂2)ϕ∆3(xn; q̂3)ϕ∆4(x̄n; q̂4)

×
n∏
k=2

−i(x−k − q1,⊥ · x⊥,k − iε)
2∆1

δ(x−k − x
−
k−1)Θ(x+

k − x
+
k−1)δ(2)(x⊥,k − x⊥,k−1)

×
n∏
k=2

−i(x̄+
k − q2,⊥ · x̄⊥,k−iε)

2∆2
Θ(x̄−k − x̄

−
k−1)δ(x̄+

k − x̄
+
k−1)δ(2)(x̄⊥,k − x̄⊥,k−1)

×
∑
σ∈Sn

n∏
k=1

Ge(xk, x̄σ(k))
n∏
k=1

(
dx−k dx

+
k d

2x⊥,kdx̄
−
k dx̄

+
k d

2x̄⊥,k
)
. (B.2)

Integrating over the delta functions sets x−k = x−1 , x⊥,k = x⊥,1, x̄+
k = x̄+

1 and x̄⊥,k = x̄⊥,1
for all k and (B.2) reduces to

Ãn =
(
ig

2

)2n ( −1
4∆1∆2

)n−1 ∫ (−i)∆1Γ(∆1)
(x− − q1,⊥ · x⊥−iε)∆1+1−n

(−i)∆2Γ(∆2)
(x̄+ − q2,⊥ · x̄⊥−iε)∆2+1−n

× i∆3Γ(∆3)
(x− − q3,⊥ · x⊥+iε)∆3

i∆4Γ(∆4)
(x̄+ − q4,⊥ · x̄⊥+iε)∆4

dx−d2x⊥dx̄
+d2x̄⊥

×
∫ n∏

k=2
Θ(x−k − x

−
k−1)Θ(x̄+

k − x̄
+
k−1)

∑
σ∈Sn

n∏
k=1

Ge(xk, x̄σ(k))
n∏
k=1

(dx+
k dx̄

−
k ). (B.3)

Now thanks to the theta functions the integrals on the third line decouple [54] and

Ãn =
(
ig

2

)2n( −1
4∆1∆2

)n−1 1
n!

∫ (−i)∆1Γ(∆1)
(x−−q1,⊥ ·x⊥−iε)∆1+1−n

(−i)∆2Γ(∆2)
(x̄+−q2,⊥ ·x̄⊥−iε)∆2+1−n

× i∆3Γ(∆3)
(x−−q3,⊥ ·x⊥+iε)∆3

i∆4Γ(∆4)
(x̄+−q4,⊥ ·x̄⊥+iε)∆4

(∫
dx̄−dx+Ge(x, x̄)

)n
dx−dx̄+d2x⊥d

2x̄⊥.

(B.4)

Using the Fourier representation (3.18) of Ge(x, x̄) one can show that∫
dx̄−dx+Ge(x, x̄) = −2iG⊥(x⊥, x̄⊥), (B.5)

where
G⊥(x⊥, x̄⊥) ≡

∫
d2k⊥
(2π)2

eik⊥·(x⊥−x̄⊥)

k2
⊥ +m2 − iε

. (B.6)

Further combining everything to the power n we have

Ãn = 4
∫
dx−dx̄+d2x⊥d

2x̄⊥
(−i)∆1+1Γ(∆1 + 1)

(x− − q1,⊥ · x⊥ − iε)∆1+1−n
(−i)∆2+1Γ(∆2 + 1)

(x̄+ − q2,⊥ · x̄⊥ − iε)∆2+1−n

× i∆3Γ(∆3)
(x− − q3,⊥ · x⊥ + iε)∆3

i∆4Γ(∆4)
(x̄+ − q4,⊥ · x̄⊥ + iε)∆4

(−1)n
n!

(
ig2

8∆1∆2
G⊥(x⊥, x̄⊥)

)n
,

– 28 –



J
H
E
P
0
3
(
2
0
2
3
)
0
3
0

which at large ∆1,∆2 can be approximated by

Ãn = 4
∫
dx−dx̄+d2x⊥d

2x̄⊥
(−i)∆1+1−nΓ(∆1 + 1− n)

(x− − q1,⊥ · x⊥ − iε)∆1+1−n
(−i)∆2+1−nΓ(∆2 + 1− n)

(x̄+ − q2,⊥ · x̄⊥ − iε)∆2+1−n

× i∆3Γ(∆3)
(x− − q3,⊥ · x⊥ + iε)∆3

i∆4Γ(∆4)
(x̄+ − q4,⊥ · x̄⊥ + iε)∆4

1
n!

(
ig2

8 G⊥(x⊥, x̄⊥)
)n

,

since
(∆i)n = ∆i(∆i − 1) · · · (∆i − n+ 1) ' ∆n

i , i = 1, 2. (B.7)
The shifts in n can then be written in terms of weight-shifting operators e−n∂∆1 , e−n∂∆2

and therefore the connected eikonal celestial amplitude is

Ãeik. =
∞∑
n=1
Ãn = 4

∫
dx−dx̄+d2x⊥d

2x̄⊥
(
eiχ̂ − 1

) (−i)∆1+1Γ(∆1 + 1)
(x− − q1,⊥ · x⊥ − iε)∆1+1

× (−i)∆2+1Γ(∆2 + 1)
(x̄+ − q2,⊥ · x̄⊥ − iε)∆2+1

i∆3Γ(∆3)
(x− − q3,⊥ · x⊥ + iε)∆3

i∆4Γ(∆4)
(x̄+ − q4,⊥ · x̄⊥ + iε)∆4

,

(B.8)

where the eikonal phase is now an operator

χ̂ ≡ ig2

8 e−∂∆1−∂∆2G⊥(x⊥, x̄⊥). (B.9)

Note that (B.9) is the same as the momentum space formula with the center of mass energy
promoted to an operator s→ ŝ ' 4e∂∆1+∂∆2 .

Since χ̂ is independent of x−, x̄+ we can further evaluate these integrals upon shifting
x− → x− + q1,⊥ · x⊥ and x̄+ → x̄+ + q2,⊥ · x̄⊥ and then rescaling x− → (q13,⊥ · x⊥)x− and
x̄+ → (q24,⊥ · x̄⊥)x̄+. The resulting integrals can be evaluated in terms of the standard
identity [118] ∫ ∞

−∞
dz

1
zx

1
(1− z)y = 2ix sin(πy)

1− x− y B(x+ y, 1− y), (B.10)

yielding

Ãeik. = 4× (2π)2
∫
d2x⊥d

2x̄⊥
(
eiχ̂ − 1

) i∆1+∆2i∆3+∆4Γ(∆1 + ∆3)Γ(∆2 + ∆4)
(−q13,⊥ · x⊥)∆1+∆3(−q24,⊥ · x̄⊥)∆2+∆4

. (B.11)

C t-channel exchange

In this section we evaluate the tree-level contribution to the eikonal celestial amplitude. We
start with (C.4) and compute the integral over k⊥,

Ã1 = (2π)4ig2

2

∫ ∞
0

dω1
ω1

ω∆1+∆3−1
1

∫ ∞
0

dω2
ω2

ω∆2+∆4−1
2

1
(ω1q13,⊥)2 +m2 δ

(2)(ω1q13,⊥+ω2q24,⊥)

(C.1)
The integral over ω2 can be done by first noting that given two two-dimensional vectors
v = (v1, v2) and w = (w1, w2),

δ(2)(ξv + ξ′w) = δ(ξv1 + ξ′w1)δ(ξv2 + ξ′w2)

= 1
ξ
δ

(
ξ′ + ξ

v1

w1

)
δ(w1v2 − v1w2). (C.2)
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As a result,

δ(2)(ω1q13,⊥ + ω2q24,⊥) = 1
ω1
δ

(
ω2 + ω1

q1
24,⊥
q1

13,⊥

)
δ(q1

24,⊥q
2
13,⊥ − q2

24,⊥q
1
13,⊥) (C.3)

and we can integrate over ω2

Ã1 = (2π)4ig2

2

(
−
q1

24,⊥
q1

13,⊥

)∆2+∆4−2

δ(q1
24,⊥q

2
13,⊥ − q2

24,⊥q
1
13,⊥)

×
∫ ∞

0

dω1
ω1

ω∆1+∆2+∆3+∆4−4
1

1
(ω1q13,⊥)2 +m2 . (C.4)

Relabeling β = ∑
i ∆i − 4 and changing variables by rescaling ω1 → 1

|q13,⊥|ω1, we find

Ã1 = (2π)4ig2

2

(
−
q1

24,⊥
q1

13,⊥

)∆2+∆4−2

δ(q1
24,⊥q

2
13,⊥ − q2

24,⊥q
1
13,⊥)

×
(

1
|q13,⊥|

)β ∫ ∞
0

dω1ω
β−1
1

1
ω2

1 +m2 . (C.5)

Finally, the remaining integral is a standard Mellin transform20

∫ ∞
0

dω1ω
β−1
1

1
ω2

1 +m2 = πmβ−2

2
1

sin πβ/2 , (C.6)

and (C.4) can be put into the form

Ã1 = πmβ−2

4
(2π)4ig2

sin πβ/2

(
−
q1

24,⊥
q1

13,⊥

)∆2+∆4−2

|q13,⊥|−βδ(q1
24,⊥q

2
13,⊥ − q2

24,⊥q
1
13,⊥). (C.7)

C.1 Eikonal kinematics

By studying the small scattering angle kinematics in a center of mass frame one finds that
the momenta of the particles can be written as

p1 = −
√
s

2 (1, 0, 0, 1), p2 = −
√
s

2 (1, 0, 0,−1), (C.8)

p3 =
√
s

2
(
1, 2
√
z, 0, 1

)
, p4 =

√
s

2
(
1,−2

√
z, 0,−1

)
. (C.9)

This motivates us to define

q̂i = (1 + qi, qi,⊥, 1− qi), i = 1, 3, (C.10)
q̂i = (1 + qi, qi,⊥,−1 + qi), i = 2, 4. (C.11)

In this case small z kinematics are equivalent to qi � 1. Note that setting

q̂i = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), i = 1, 3, (C.12)
q̂i = (1 + wiw̄i, wi + w̄i,−i(wi − w̄i),−1 + wiw̄i), i = 2, 4, (C.13)

20While the integral converges for β ∈ (0, 2), the result can be analytically continued.
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implies that (zi, z̄i) and (wi, w̄i) are coordinates in different charts of S2, namely, the
stereographic projections based respectively on the north and the south poles of the sphere.
To express the momenta in the same chart, we perform an inversion, (wi, w̄i) =

(
1
z̄i
, 1
zi

)
which yields

q̂i = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), i = 1, 3, (C.14)

q̂i = 1
ziz̄i

(1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), i = 2, 4. (C.15)

In particular, one sees that the center of mass momenta (C.8) are obtained by choosing

z1 = 0, z2 =∞, z3 =
√
z, z4 = − 1√

z
. (C.16)

Notice that it immediately follows from (C.8) and (C.16), that in the eikonal approximation,
z is indeed −t/s and also the two-dimensional cross-ratio:

z = − t
s

= z13z24
z12z34

. (C.17)

Our derivation of the celestial eikonal amplitude will therefore assume external conformal
primary wavefunctions ϕ∆i

(x; ηiq̂i) with null vectors of the form (C.10) satisfying qi � 1.
This kinematic configuration is illustrated in figure 2

D Propagator in shockwave background

In this section we review the evaluation of the momentum space scalar propagator

A(p1, p2) ≡ 〈0|aout(p2)a†in(p1)|0〉 (D.1)

in a shockwave background. Let vin/out
p (x) and uin/out

p (x) be solutions to the Klein-Gordon
equation behaving respectively as e−ipx and eipx in the in/out regions of the spacetime
under consideration. Define the Bogoliubov coefficients α(p, q) and β(p, q) by the expansion

vin
q (x) =

∫
H+

0

dΩ(p)
[
α(p, q)vout

p (x) + β(p, q)uout
p (x)

]
, (D.2)

where H+
0 is the zero mass shell and dΩ(q) = d3q

(2π)32q0 is the Lorentz invariant measure.
Recalling that in/out fields are defined by

φin/out(x) =
∫
H+

0

dΩ(p)
(
ain/out(p)uin/out

p (x) + a†in/out(p)v
in/out
p (x)

)
, (D.3)

and that they are related to interacting fields through

φ(x)→
√
Zφin/out(x), as t→ ±∞, (D.4)

where Z is the wavefunction renormalization, one may show that

a†in(q) =
∫
H+

0

dΩ(p)
[
α(p, q)a†out(p)− β(p, q)aout(p)

]
. (D.5)
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For the particular case β(p, q) = 0, in which case the in/out vacua coincide, this immediately
allows one to show that

A(p1, p2) = α(p2, p1). (D.6)

To evaluate α(p, q) consider vin
q (x) = e−iq·x when x− < 0. Using the boundary condition

relating the solution at x− < 0 and x− > 0 one finds that

vin
q (ε,x+,x⊥) = vin

q (−ε,x+−h(x⊥),x⊥) (D.7)

=
∫
H+

0

dΩ(p)
(

4πp−δ(p−−q−)
∫
d2x′⊥e

−i
h(x′⊥)

2 q−eix
′
⊥·(p⊥−q⊥)

)
ei
x+
2 p−e−ip⊥·x⊥ .

Comparison with the definition of the Bogoliubov coefficients shows that β(p, q) = 0 and
allows one to read off the propagator:

Ashock(p1, p2) = 4πp−2 δ(p−2 − p−1 )
∫
d2x⊥e

i(p2,⊥−p1,⊥)·x⊥e−i
h(x⊥)

2 p−1 . (D.8)
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