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Abstract: Accounting for isospin-breaking corrections is critical for achieving subpercent
precision in lattice computations of hadronic observables. A way to include QED and
strong-isospin-breaking corrections in lattice QCD calculations is to impose C? boundary
conditions in space. Here, we demonstrate the computation of a selection of meson and
baryon masses on two QCD and five QCD+QED gauge ensembles in this setup, which
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preserves locality, gauge and translational invariance all through the calculation. The
generation of the gauge ensembles is performed for two volumes, and three different values
of the renormalized fine-structure constant at the U-symmetric point, corresponding to the
SU(3)-symmetric QCD in the two ensembles where the electromagnetic coupling is turned
off. We also present our tuning strategy and, to the extent possible, a cost analysis of the
simulations with C? boundary conditions.

Keywords: Hadronic Spectroscopy, Structure and Interactions, Lattice QCD, Lattice
Quantum Field Theory
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1 Introduction

At the subpercent level of accuracy the hadronic universe is described by QCD+QED.
So-called gold-plated hadronic observables, such as meson masses, leptonic and semileptonic
decay rates of light pseudoscalar mesons and leading hadronic corrections to the muon
g− 2, are calculated in QCD by means of lattice simulations with a subpercent error (see [1]
for a recent review). In order to push the frontier of the precision tests of the hadronic
sector of the Standard Model to the subpercent level of accuracy, it is necessary to perform
first-principles lattice QCD+QED calculations. By now, the necessity of including QED
and strong-isospin-breaking corrections in nonperturbative lattice QCD calculations is fully
recognized by the lattice community.

When QED is considered in a finite volume with periodic boundary conditions, Gauss’s
law forbids the existence of electrically-charged states. Over the years, several methods
have been considered to circumvent this problem [2–9]. Some of these approaches give up
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locality in the finite-volume theory, potentially generating a breaking of renormalization
by local counter terms [10] and of effective-field-theory descriptions [11–14]. Due to the
long-range nature of the electromagnetic force, a theoretical understanding of finite-volume
effects is essential, but also particularly challenging, see e.g. [5, 7, 9, 11, 13–20]. By now,
a vast literature exists on numerical calculations that include electromagnetic effects to
various hadronic observables, as in the case of hadron masses [3, 6, 15, 21–33], decay rates
of light mesons [16, 18, 34–36], the hadronic-vacuum-polarization contribution to the muon
anomalous magnetic moment [20, 22, 37–43].

In our long-term research program, aimed at a precise calculation of electromagnetic
corrections to hadronic observables, we define QCD+QED in finite volume by imposing
C? boundary conditions along the spatial directions [5, 44–47]. This is the only known
approach which allows to describe charged states in finite volume while preserving locality,
translational invariance and gauge invariance at all stages of the calculation. We also choose
to simulate QCD+QED nonperturbatively, even though our setup can be consistently used
also with a perturbative expansion in the electromagnetic coupling constant à la RM123 [30].

In this paper we present a status update of our project. The main results are the
masses of the K±, K0, π±, D±, D0 and D±s mesons, the Ω− baryon and the octet baryons,
calculated on seven gauge ensembles. The simulations were performed using the openQ*D
code [48] at fixed value of the bare strong coupling, three different values of the renormalized
fine-structure constant (αR ' 0, 1/137, 0.04), two different volumes (L ' 1.6 fm, 2.4 fm),
and heavier-than-physical light-quark masses corresponding to the U -spin symmetric point
(ms = md). Although tiny isospin-breaking effects may be resolved leveraging the correlation
between observables [3, 23] even at the physical value of the fine-structure constant, we
simulate at several values of the fine-structure constant αR following [6, 15, 32, 33]. The
measured isospin-breaking effects are magnified, and in the long run, this may allow us to
reduce the error on observables by fitting the functional dependence on αR. We define a
renormalization (or matching) scheme which allows us to compare QCD+QED at different
values of the fine-structure constant. In practice our matching procedure requires the tuning
of the bare quark masses in such a way that certain hadronic observables get a prescribed
value. Our tuning strategy, designed to keep the cost under control, is described in detail
in this paper.

One peculiarity of C? boundary conditions is that the integration of a dynamical quark
field yields the pfaffian of a matrix which is trivially related to the Dirac operator. The
fermionic pfaffian is real but not necessarily positive. The absolute value of the pfaffian is
included in the simulated probability distribution of the gauge configurations, while its sign
is included in the observables as a reweighting factor. It is important to stress that this
sign problem is mild, in the sense that the probability to find a negative sign goes to zero
in the continuum limit. Nevertheless, a fully local approach to QCD+QED requires the
evaluation of the sign of the fermionic pfaffian, which we have done systematically for all
our configurations. The algorithm used to calculate the sign is based on standard methods
which follow the flow of eigenvalues of the hermitian Dirac operator with the quark mass.
However, it is worth noticing that our variant is significantly less expensive than similar
algorithms commonly used in the lattice community (e.g. [49]). A first version of this
algorithm was already presented in [50], an even more optimized version is presented here.
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The paper is organized as follows. The hadronic renormalization scheme used in this
study is presented in section 2, together with the target values of the parameters in the
continuum theory. Section 3 provides an overview of numerical setup and results, and is
organized in various subsections. The used lattice action, the generated gauge ensembles
with corresponding parameters and diagnostic observables are presented in subsections 3.1
and 3.2; meson and baryon masses and mass-differences, calculated on the original and mass-
reweighted ensembles, are presented in subsection 3.3; finite-volume effects are discussed in
subsection 3.4. Technical details, which are not essential to the presentation of the general
results but are important to guarantee reproducibility, are postponed to section 4 and its
subsections. The definition of the used gradient-flow observables is provided in subsection 4.1;
the definition of the interpolating operators for mesons and baryons, the strategy used to
extract effective masses and identify mass plateaux are discussed in subsections 4.2 and 4.3;
a detailed presentation of our tuning strategy is given in subsection 4.4; the methods used
for the statistical analysis and in particular for the calculation of the autocorrelation times
are outlined in subsection 4.5; the algorithm used to calculate the sign of the pfaffian is
discussed in subsection 4.6; the algorithmic parameters are presented in subsection 4.7. The
properties of the fermionic pfaffian related to the Dirac matrix are presented in appendix A,
and the computational cost for the generation of our ensembles is discussed in appendix B.

2 Parametrization of four-flavour QCD+QED

Continuum four-flavour QCD+QED is a class of theories uniquely defined by six parameters.1

The particular choice of these parameters is largely arbitrary, and different choices are often
referred to as different renormalization schemes or simply as different schemes. For instance,
a renormalization scheme which makes sense in perturbation theory is defined by the ΛQCD
in the MS scheme, the renormalized fine-structure constant at zero energy (which is scheme
independent) and the four renormalization-group-invariant quark masses. Here we use a
nonperturbative scheme defined by the standard gradient-flow scale (8t0)1/2, the gradient-
flow fine-structure constant αR at energy t0, and the following dimensionless observables

φ0 = 8t0
(
M2
K± −M

2
π±

)
,

φ1 = 8t0
(
M2
π± +M2

K± +M2
K0

)
,

φ2 = 8t0
(
M2
K0 −M2

K±

)
α−1
R ,

φ3 =
√

8t0
(
MD±s

+MD0 +MD±

)
. (2.1)

In the above formulae MX is the mass of the meson X. Details on the definition of these
observables will be given in the subsequent sections. The convenience of this scheme relies
on the fact that all involved observables can be calculated with very good precision and
accuracy on the lattice. However, this scheme cannot be used directly to find the physical
point, i.e. the point in parameter space which describes the real hadronic universe at the

1Strictly speaking, the continuum limit of QCD+QED does not exist because of the triviality of QED.
Nevertheless, the continuum limit exists and is universal at every fixed order in the fine-structure constant
in the perturbative regime of QED, which is the relevant one at typical hadronic energies.
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level of subpercent precision, since the scale t0 can not be obtained from experimental
data.2 Eventually, the matching to the real hadronic universe needs to be done by going to
a hadronic scheme, e.g. by replacing t0 with the mass of the Ω− baryon.

Even though at this stage we are not able to locate the physical point at the subpercent
precision level, we can get close to it by using the value of t0 calculated by various
collaborations via QCD simulations. For instance, using the central value of the CLS
determination [51] of (8t0)1/2, the meson masses and the fine-structure constant from the
PDG [52], we obtain for the physical point:

(8tphys
0 )1/2 ' 0.415 fm , αphys

R ' 1/137 ' 0.007299 , (2.2)

φphys
0 ' 0.992 , φphys

1 ' 2.26 , φphys
2 ' 2.36 , φphys

3 ' 12.0 .

As a side remark, the φ observables have been designed to be maximally sensitive to certain
combinations of the quark masses. This can be understood semi-quantitatively by means
of leading order SU(3) chiral perturbation theory coupled to QED. In fact, within this
approximation, one easily shows [53, 54] that

φ0 = A(ms,R −md,R) + . . . , (2.3a)
φ1 = 2A(mu,R +md,R +ms,R) + 2BαR + . . . , (2.3b)
φ2 = Aα−1

R (md,R −mu,R)−B + . . . , (2.3c)

where A and B are some low-energy constants, and m?,R are the renormalized quark masses.
The observable φ0 is sensitive to the strange/down mass difference. The observable φ1
has been already used in other contexts, e.g. [55, 56], and is sensitive to the average of
the light-quark masses as long as αR is constant. The φ2 observable is sensitive to the
ratio between strong and electromagnetic isospin-breaking effects. We remark that chiral
perturbation theory is never used in our calculation, nor in the following arguments, and
eqs. (2.3) only provide a rough interpretation for the observables φ0, φ1 and φ2. Finally, φ3
cannot be understood in terms of chiral perturbation theory, and is used essentially to fix
the charm quark mass, and has been already used e.g. in [57].

In this paper we present simulations far away from the physical point. There are two
main reasons to consider unphysical values of the parameters.

1. We expect that at the physical value of αR we will not be able to have enough
statistical precision (except for a handful of observables) to resolve isospin-breaking
effects. Following [6, 15, 32, 33], we simulate at several values of the fine-structure
constant αR, including αR = 0. Isospin-breaking effects at the physical value of αR
can be extracted by interpolation, while keeping the statistical error under control.

2. We simulate up and down quarks that are heavier than the physical ones in order
to make simulations less expensive (while the strange quark is lighter than physical).

2In fact, our αR cannot be obtained from experimental data either. However, this is less relevant here
because we are truly interested in matching to the real hadronic universe only up to errors of order α2

R. At
this level of precision αR is scheme-independent and can be matched to the PDG value.
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This makes sense especially considering the exploratory character of the presented
calculation: our current priority is to investigate the stability of the chosen simulation
setup and to develop tuning strategies. The physical value of the quark masses will
be approached in future studies.

The simulations presented in this paper are performed close to the unphysical line defined
by fixing

(8t0)1/2 = 0.415 fm , φ0 = 0 , φ1 = 2.11 , φ2 = 2.36 , φ3 = 12.1 , (2.4)

while αR is varied from 0 to 0.04. Notice that the condition φ0 = 0 is simply satisfied by
choosing md = ms. In fact, since the down and strange quarks have the same electric charge,
if their bare masses are chosen equal, then QCD+QED enjoys an enlarged SU(2) flavour
symmetry which rotates down and strange quarks into each other. This symmetry, often
called U-spin symmetry, trivially implies MK± = Mπ± and, hence, φ0 = 0. For this reason,
we will refer to the line in parameter space defined above as the U-symmetric line. Since φ2
is kept constant while αR is varied, in the αR → 0 limit one must have that MK0 = MK±

which also implies that mu = md. Therefore the point αR = 0 on the U-symmetric line is
nothing but SU(3)-symmetric QCD. At this stage, choosing φ1 close to its physical value
ensures that the three degenerate light quarks have mass roughly equal to the average of
the three physical light-quark masses.3 The target lines are represented in figure 1, together
with the meson masses calculated on our best-tuned ensembles presented in this paper. An
overview of our gauge ensembles and of the observables needed for the tuning is given in
sections 3.2 and 3.3. Technical details on our tuning strategy are discussed in section 4.4.

3 Overview of numerical results

3.1 Lattice action

All configurations have been generated with the openQ*D code [48]. For a complete descrip-
tion of actions and algorithms we refer the reader to [58], while we provide here only a
quick summary.

All our simulations are performed on a (T/a)× (L/a)3 lattice with periodic boundary
conditions in time, and C? boundary conditions in all spatial directions. We employ the
Lüscher-Weisz discretization for the SU(3) gauge action, and the Wilson action with an
unconventional normalization for the U(1) gauge action

Sg,U(1)(z) = 1
8πq2

elα

∑
x

∑
µ 6=ν

[
1− PU(1)

µν (x)
]
, (3.1)

where PU(1)
µν (x) is the plaquette in x extending in the directions µ and ν, constructed with

the compact U(1) field z(x, µ), and α is the bare fine-structure constant. In the compact
3Notice that the chosen value of φ1 and φ3 are close but not equal to the ones given in eq. (2.2). This is

because we chose to match φ1 and φ3 to the ones calculated on our gauge configurations with αR = 0, rather
than to the physical ones. This is not essential since at this point the physical values given in eq. (2.2) are
affected by an unspecified error that comes from the fact that we do not know the exact value of t0.
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Figure 1. The solid lines are the target values for the K0 mass (purple), the K± mass (green),
the average D mass MDave = 1

3 (MD±
s

+ MD0 + MD±) (black) as functions of αR, determined by
solving the tuning conditions given in eq. (2.4). In the left plots, the data points with error are
meson masses calculated on the ensemble A400a00b324 (αR = 0) and on the reweighted ensembles
A380a07b324+RW1 (αR ' 1/137) and A360a50b324+RW2 (αR ' 0.04). In the right plots, the data
points with error are meson masses calculated on the ensembles B400a00b324 (αR = 0) and
C380a50b324 (αR ' 0.04). These correspond to our best-tuned ensembles. The comparison between
left and right plots indicates how finite-volume effects affect the tuning. For an overview of our
gauge ensembles, see section 3.2. The calculation of meson masses and φ observables is presented in
section 3.3. Values in MeV are obtained by using the reference value (8t0)1/2 = 0.415 fm [51].

formulation the electric charge is quantized, and it must be an integer multiple of the
parameter qel which can be chosen arbitrarily. In practice, we set qel = 1/6 which allows
us to construct gauge-invariant interpolating operators for charged hadrons as detailed in
section 6 of [5]. We simulate at a fixed value β = 3.24 which corresponds roughly to a
lattice spacing of a ' 0.054 fm, and several values of the bare fine-structure constant α.

We simulate four flavours of O(a)-improved Wilson fermions. In particular, we consider
the non-physical case in which the up and down quarks are heavier than physical, the strange
quark is lighter than physical, and the down and strange quarks are degenerate. In the case
of QCD+QED the improved Wilson-Dirac operator includes two Sheikholeslami-Wohlert
(SW) terms: the first one depends on the SU(3) field tensor with coefficient cSU(3)

sw , and the
second one depends on the U(1) field tensor with coefficient cU(1)

sw . For our QCD ensembles
we use the improvement coefficient cSU(3)

sw , non-perturbatively determined in [59]. For our
QCD+QED ensembles we use the same value of cSU(3)

sw which is correct up to O(α) terms,
and cU(1)

sw = 1 which corresponds to tree-level improvement.
Like in the case of periodic boundary conditions, individual flavours of Wilson fermions

introduce a mild sign problem. After integrating out the fermions, the path-integral weight
is real but generally non-positive. However, the probability to find a negative sign vanishes
in the continuum limit. In the case of C? boundary conditions the sign of the path-integral
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Figure 2. History of the topological charge for two ensembles.

weight is determined by the sign of the fermionic pfaffian, and has been systematically
calculated on our gauge ensembles. Details are given in section 4.6.

3.2 Gauge ensembles

We have generated 7 ensembles with three different values of α. The ensembles are named
with a string that contains a letter in one-to-one correspondence with the lattice size
(A = 64× 323, B = 80× 483, C = 96× 483), the approximative mass of the charged pion, the
letter a followed by the two digits in α = 0.0xx . . . denoted by x, the letter b followed by
the value of 100× β. The action parameters for all ensembles are summarized in table 1,
while the number of generated configurations and a number of diagnostic observables are
summarized in table 2.

We observe that, among all observables that we have considered, t0/a2 has always the
largest integrated autocorrelation time. On our 64× 323 lattices this turns out to be about
100 MDU. On the larger lattices the integrated autocorrelation time of t0/a2 seems to be
smaller; however, it is reasonable to think that we are just underestimating it because of
the reduced statistics. We have also monitored the topological charge, and we observe that
we do not incur topological freezing despite using periodic boundary conditions in time (see
figure 2).

Compact QED displays a first-order phase transition in bare parameter space [60–62]
which separates a strong-coupling confining phase and a weak-coupling Coulomb phase. In
the pure gauge theory, the average U(1) plaquette PU(1) shows a jump across the phase
transition: PU(1) is small in the confining phase and close to 1 in the Coulomb phase.
Standard weak- and strong-coupling analysis suggests that the two regimes survive also in
presence of fermions. Since we use a compact action for QED and larger than physical values
of α, a legitimate question is whether we are in the Coulomb phase and far enough from the
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ensemble lattice β α κu κd = κs κc

A400a00b324 64× 323 3.24 0 0.13440733 0.13440733 0.12784
B400a00b324 80× 483 3.24 0 0.13440733 0.13440733 0.12784
A450a07b324 64× 323 3.24 0.007299 0.13454999 0.13441323 0.12798662
A380a07b324 64× 323 3.24 0.007299 0.13459164 0.13444333 0.12806355
A500a50b324 64× 323 3.24 0.05 0.135479 0.134524 0.12965
A360a50b324 64× 323 3.24 0.05 0.135560 0.134617 0.129583
C380a50b324 96× 483 3.24 0.05 0.1355368 0.134596 0.12959326

Table 1. Action parameters. All ensembles have C? boundary conditions in space and periodic
boundary conditions in time. The improvement coefficients are cSU(3)

sw = 2.18859 and cU(1)
sw = 1.

ensemble n. cnfg acc. rate 〈e−∆H〉 τint(t0) τint(Q2) τint(αR)
A400a00b324 2000 95% 0.9979(55) 51(18) 6.4(2.3) —
B400a00b324 1082 98% 0.9950(25) 31(10) 8.0(2.8) —
A450a07b324 1000 94% 0.9978(46) 44(19) 6.5(3.0) 2.3(1.6)
A380a07b324 2000 92% 1.0017(46) 46(15) 10.3(3.5) 2.7(1.5)
A500a50b324 1993 97% 0.9961(21) 21.4(5.5) 11.6(2.6) 1.40(55)
A360a50b324 2001 95% 0.9956(45) 47(16) 8.5(2.6) 1.1(1.0)
C380a50b324 600 98% 1.004(12) 12.5(3.9) 10.6(4.1) 3.0(1.2)

Table 2. For each ensemble: the number of configurations which corresponds to the number
of MD trajectories, the acceptance rate, the diagnostic observable 〈e−∆H〉 = 1, the integrated
autocorrelation times (in units of MD trajectories) for the scale t0/a2, the squared topological charge
Q2, and the renormalized fine-structure constant αR. One MD trajectory is equal to τ = 2 MD units.

phase transition. In the conventions of [62], our largest value of α = 0.05 corresponds to

βU(1) = 1
4πq2

elα
' 57 (3.2)

which is certainly much larger than the critical value βU(1)
c ' 1.01 of the pure gauge theory.

The deviation of the average U(1) plaquette from one is 1− PU(1) = 4.19405(21)× 10−3 on
the ensemble A360a50b324, which is a clear indication that our ensembles are always deep
in the weak electromagnetic coupling phase.

3.3 Tuning and hadron masses

Once the theory is discretized on the lattice, it depends on six dimensionless bare parameters:
the inverse bare strong coupling β, the bare fine-structure constant α and the hopping
parameters κf . In our simulation strategy these six parameters are treated in different ways:
we choose the values of β and α, while we tune the values of κf=u,d,s,c. Changing β changes
the lattice spacing, and eventually we want to simulate at different values of β and then
take the continuum limit by extrapolating to β →∞. Pretty much like in QCD, we do care
about choosing β in a range such that the lattice spacing is as fine as we can afford, but we
do not care about tuning the lattice spacing to specific values. If we wanted to match the
renormalized fine-structure constant αR to its physical value, we would need to tune the
bare fine-structure constant α. Instead we only want to scan several values of αR, which
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means that we can choose the value of α in a reasonable range and then simply calculate
αR. On the other hand, for each chosen value of β and α, we want to tune the four hopping
parameters κf in such a way that the four dimensionless φ observables match the chosen
values in eq. (2.4). In fact, on the U-symmetric line, U-spin symmetry fixes md = ms and
we truly have to tune only three parameters. Finally, values of observables in lattice units
are converted into physical units by using the reference value for t0 given in eq. (2.4).

The tuning of the hopping parameters has been carried out with a combination of
techniques, described in some detail in section 4.4. In particular, we have used mass
reweighting to explore the space of hopping parameters in the vicinity of the simulated
point. The specific implementation of the mass reweighting procedure used in this work is
described in [63], the peculiarity being that we need to reweight the determinant of the
rational approximation of a generic power of D†D. One can use mass reweighting also
to correct for a small mistuning, which we have done to some extent. We label all mass
reweighting factors used in this work by the code RWi where i is an index. In table 3 we
summarize all mass reweighting factors, together with the ensembles on which they are
calculated and the target quark hopping parameters.

The calculated values of the lattice spacing a and renormalized fine-structure constant,
with and without mass reweightings, are presented in table 4. Some details on the calculation
of these observables are given in sections 4.1. We have calculated the masses of the π±,
K0, K±, D0, D±, D±s mesons, and the mass differences for the charged-neutral K mesons
and D mesons: results are presented in table 5 and the methods used are described in
section 4.2. It is interesting to notice that, at the tuned points, we are able to distinguish
clearly the K0/K

± mass difference from zero even at the physical value of αR, while the
signal is somewhat less clear for the D0/D

± mass difference. The φ observables, which are
used for tuning, are presented in table 6. Notice that, at the tuned points, we were able to
determine φ1 with a relative statistical error of about 3%, φ2 with a relative statistical error
in the range 5–10%, and φ3 with a relative statistical error of 0.5%. Unsurprisingly, since
φ2 is proportional to the isospin-breaking corrections, it is the hardest to get, especially
at smaller values of αR. The meson masses calculated at the tuned points are plotted
in figure 1.

We have also calculated the masses of the octet baryons and the Ω− baryon in all our
small-volume QCD+QED ensembles, together with various baryon mass differences: the
results are presented in tables 7 and 8. A description of the methods used in this calculation,
together with the plots of a selection of effective masses, can be found in section 4.3. Here
we notice that we obtain baryon masses with a statistical error in the range 1–5%, while the
statistical error on the baryon mass differences is less uniform. As expected, the statistical
error on the baryon masses is generally higher for ensembles with heavier pions. The baryon
masses measured on our ensemble A360a50b324+RW2 (αR ' 0.04) have significantly larger
errors than the other ensembles. This can be due to a combination of factors: lighter pions,
smaller number of stochastic sources, and perhaps larger effect of the reweighting factor.
We plan to investigate this issue in the future. We have not attempted a systematic study
of excited state contaminations (which is milder for heavier-than-physical pions) and we do
not attempt an estimate of the systematic error due to a misidentification of the plateau
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reweighting ensemble κu κd = κs κc

RW1 A380a07b324 0.13457969 0.13443525 0.12806355
RW2 A360a50b324 0.13553680 0.1345960 0.12959326

Table 3. For each mass reweighting factor: the ensemble on which it is calculated and the target
values of the hopping parameters.

ensemble(+rw) t0/a
2 a [fm] αR π

√
3L−1 [MeV]

A400a00b324 7.402(66) 0.05393(24) 0 —
B400a00b324 7.383(40) 0.05400(14) 0 —
A450a07b324 7.198(84) 0.05469(32) 0.007076(24) 613.5(3.6)
A380a07b324 7.599(79) 0.05323(28) 0.007081(19) 630.4(3.3)
A380a07b324+RW1 7.525(77) 0.05349(27) 0.007080(22) 627.3(3.2)
A500a50b324 7.789(42) 0.05257(14) 0.040772(85) 638.2(1.7)
A360a50b324 8.427(89) 0.05054(27) 0.040633(80) 663.9(3.5)
A360a50b324+RW2 8.285(79) 0.05098(24) 0.04069(26) 658.2(3.2)
C380a50b324 8.400(26) 0.050625(79) 0.04073(11) 441.86(69)

Table 4. For each ensemble (possibly with mass reweighting): reference observable t0/a2, lattice
spacing a calculated from the measured value of t0/a2, the renormalized fine-structure constant αR,
the tree-level energy gap of the photon π

√
3L−1. Values in physical units are obtained by using the

reference value (8t0)1/2 = 0.415 fm [51].

region in our effective masses, but we have checked the stability of our results against
the inclusion of interpolating operators with different levels of smearing in a generalized
eigenvalue problem.

As discussed in [5], C? boundary conditions partially break flavour symmetries producing
some unphysical mixings, which are pure finite-volume effects and vanish exponentially
fast in the infinite-volume limit even in QCD+QED. Of the considered baryons, the Ξ−

mixes with the proton, the Ξ0 mixes with the neutron, and the Ω− mixes with the Σ∗+.
As we will discuss in section 4.3, these mixings are generated by some quark-quark and
antiquark-antiquark Wick contractions in the baryon two-point functions which are allowed
because of the boundary conditions. In our calculation we neglect these contributions, which
means that we truly consider partially-quenched baryons made of auxiliary valence quarks
for which the mixing is forbidden. For instance our Ω− is really a properly-symmetrized
ss′s′′ baryon where s′ and s′′ are valence quarks with the same mass and charge as the
strange quark s. The two-point functions of these partially-quenched baryons differ from the
two-point functions of the unitary baryons by exponentially suppressed finite-volume effects.

3.4 Finite-volume effects

Most of the presented ensembles correspond to a 64× 323 lattice. In order to estimate finite
volume effects, we have generated two larger lattices: an 80× 483 lattice for α = 0 and a
96× 483 for α = 0.05. This allows us to get an idea of the finite-volume effects in particular
on the light meson masses.

In the QCD case, our spatial volumes correspond to MπL ' 3.5 for the A400a00b324
ensemble and MπL ' 5.2 for the B400a00b324 ensemble. It is useful to compare our results
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ensemble(+rw) Mπ± = MK± MK0 MK0 −MK± MD± = MD±s
MD0 MD± −MD0

[MeV] [MeV] [MeV] [MeV] [MeV] [MeV]
A400a00b324 398.5(4.7) 398.5(4.7) 0 1912.7(5.7) 1912.7(5.7) 0
B400a00b324 401.9(1.4) 401.9(1.4) 0 1908.5(4.5) 1908.5(4.5) 0
A450a07b324 451.2(4.3) 451.6(4.7) 0.8(1.1) 1919.8(7.3) 1916.0(8.0) 3.6(1.2)
A380a07b324 383.6(4.4) 390.7(3.7) 7.01(26) 1926.4(7.8) 1921.1(7.6) 5.03(46)
A380a07b324+RW1 398.8(3.7) 403.1(3.8) 4.26(31) 1925.2(7.1) 1919.3(7.6) 5.8(1.1)
A500a50b324 495.0(2.8) 519.1(2.5) 24.0(1.0) 1901.1(4.1) 1870.1(4.4) 31.6(1.6)
A360a50b324 358.6(3.7) 388.8(3.5) 29.5(2.4) 1937.8(6.8) 1912.0(7.7) 26.0(2.8)
A360a50b324+RW2 398.9(3.4) 425.1(4.1) 26.1(1.3) 1926(10) 1898.8(5.8) 26.9(2.2)
C380a50b324 386.5(2.4) 414.5(2.0) 26.89(49) 1932.0(3.9) 1894.3(6.9) 34.5(5.6)

Table 5. For each ensemble (possibly with mass reweighting): meson masses, and charged-neutral
meson mass differences. Values in MeV are obtained by using the reference value (8t0)1/2 =
0.415 fm [51]. Notice that some mesons are degenerate because in our simulations md = ms.

ensemble(+rw) φ1 φ2 φ3

A400a00b324 2.107(50) — 12.068(36)
B400a00b324 2.143(15) — 12.042(28)
A450a07b324 2.703(53) 0.44(60) 12.097(51)
A380a07b324 1.977(37) 3.39(14) 12.132(48)
A380a07b324+RW1 2.126(39) 2.13(17) 12.122(47)
A500a50b324 3.357(37) 2.60(11) 11.864(28)
A360a50b324 1.806(35) 2.41(19) 12.114(41)
A360a50b324+RW2 2.208(38) 2.348(97) 12.040(58)
C380a50b324 2.088(22) 2.350(44) 12.020(29)
target 2.11 2.36 12.1

Table 6. φ parameters for each ensemble (possibly with mass reweighting), together with the target
value used to define the lines of constant physics.

ensemble(+rw) Mp = MΣ+ Mn = MΞ0 MΞ− = MΣ− MΛ0 MΩ− = M∆−

[MeV] [MeV] [MeV] [MeV] [MeV]
A450a07b324 1214(14) 1215(15) 1216(16) 1215(15) 1473(35)
A380a07b324 1147(19) 1151(19) 1157(18) 1151(19) 1458(26)
A380a07b324+RW1 1164(15) 1167(13) 1175(14) 1167(13) 1448(20)
A500a50b324 1280(15) 1288(13) 1339(11) 1296(13) 1614(23)
A360a50b324+RW2 1212(20) 1226(22) 1268(32) 1227(24) 1584(59)

Table 7. For each ensemble (possibly with mass reweighting): baryon masses. Values in MeV
are obtained by using the reference value (8t0)1/2 = 0.415 fm [51]. Notice that some baryons are
degenerate because in our simulations md = ms.
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ensemble(+rw) Mn −Mp MΞ0 −MΞ− MΣ+ −MΣ−

[MeV] [MeV] [MeV]
A450a07b324 -0.89(0.38) -2.44(0.49) -1.77(0.89)
A380a07b324 1.80(0.52) -8.37(0.75) -9.96(0.79)
A380a07b324+RW1 0.90(0.37) -5.97(0.63) -6.81(0.68)
A500a50b324 9.2(1.5) -38.2(2.4) -46.7(2.7)
A360a50b324+RW2 10.5(6.0) -30.2(4.7) -52(11)

Table 8. For each ensemble (possibly with mass reweighting): baryon mass differences. Values in
MeV are obtained by using the reference value (8t0)1/2 = 0.415 fm [51].

with the ones of the ALPHA collaboration [57] obtained with periodic boundary conditions
(the action parameters are identical). In figure 3 we show the pion mass for two volumes
and different boundary conditions. It is interesting to notice that finite volume corrections
tend to increase the mass in the case of periodic boundary conditions, while they tend to
decrease the mass in the case of C? boundary conditions. This behavior is captured by
chiral perturbation theory at leading order (for the periodic case see e.g. [64, 65]):

MP(L) = M + ξ

3
∑

n∈Z3\{0}

2
L
K1(nML) , (3.3)

MC(L) = M − ξ

3
∑

n∈Z3\{0}

1− 3(−1)
∑

k
nk

nL
K1(nML) , (3.4)

where n = |n|, ξ = M2/(4πF )2 with F being the pion decay constant, K1 is a modified
Bessel function of the second kind, the subscripts P and C denote periodic and C? boundary
conditions, respectively. In figure 3 we plot also the result of the simultaneous fits with the
two above functions in the parameters M and ξ. On the large volumes, finite volume effects
on the pion mass are surely not larger than 1%. While the statistical errors on the pion
masses on the smaller volumes are fairly large and a definite interpretation would require
higher statistics, figure 3 suggests that finite volume effects are sizable in this case.

When QCD is coupled to QED the pion mass gets power corrections which vanish like
inverse powers of the volume. In the case of C? boundary conditions these finite-volume
effects have been derived in [5]:

MC(L) = M − α
{
q2ζ(1)

2L + q2ζ(2)
πML2 +

∞∑
`=0

(−1)`ζ(2`+ 2)
4πML4+2` T`

}
+O(α2) , (3.5)

where q is the charge of the pion, the generalized zeta function ζ(p) is defined by

ζ(p) =
∑

n∈Z3\{0}

(−1)
∑

k
nk

|n|p , (3.6)

and the coefficients T` are related to the coefficients of the Taylor expansion with respect to
the on-shell photon energy of the forward Compton scattering amplitude of the pion (for
more details see [5]). The first two terms of the 1/L-expansion are structure independent
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Figure 3. Pion masses for our A400a00b324 and B400a00b324 ensembles with C? boundary
conditions, and for the A1 and A2 from [57] with periodic boundary conditions. In both cases
physical units have been introduced by setting (8t0)1/2 = 0.415 fm [51]. The curves are the results
of the simultaneous fit to the LO χPT formulae with uncertainty bands.

Mπ± = MK± [MeV] MD± = MD±s
[MeV]

ensemble(+rw) no-FV LO-FV NLO-FV no-FV LO-FV NLO-FV
A360a50b324+RW2 393.4(3.4) 397.7(3.4) 398.9(3.4) 1922(10) 1926(10) 1926(10)
C380a50b324 383.1(2.4) 386.0(2.4) 386.5(2.4) 1929.0(3.9) 1931.9(3.9) 1932.0(3.9)

Table 9. For the two ensemble with αR ' 0.04 and tuned values of the quark masses: π± and Dπ±

masses calculated with no subtraction of the structure-independent finite-volume corrections (no-FV),
with the subtraction of only the 1/L finite-volume correction (LO-FV), with the subtraction of the
1/L and 1/L2 finite-volume corrections (NLO-FV). The 1/L2 finite volume correction produces a
0.3% shift on the π± mass on the smaller volume, and a 0.1% shift on the π± mass on the larger
volume. Values in MeV are obtained by using the reference value (8t0)1/2 = 0.415 fm [51].

and they have been already subtracted in all hadron masses presented in the tables of this
paper, accordingly to the procedure detailed in section 4.2. The only exception is table 9,
in which we present the masses of charged mesons for a couple of ensembles without the
subtraction of the structure-independent finite-volume effects, and with the subtraction of
only the 1/L term. For the charged pion on our C380a50b324 ensemble (L/a = 48 and
α = 0.05), the structure-independent contributions to the finite-volume effects turn out
to be about 0.9% and most of the effect comes from the leading 1/L term. Hence it is
reasonable to assume that QED finite-volume effects are well under control in our largest
volume, even though a more detailed study would be desirable.
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4 Technical details

4.1 Flow observables

The gradient flow is used to define the auxiliary observable t0 and the renormalized fine-
structure constant αR. In particular, we use the Wilson-flow discretization [66] for the
SU(3) flow equation

a2∂tUt(x, µ) = −g2
{
∂x,µSw,SU(3)(Ut)

}
Ut(x, µ) , (4.1)

where Ut is the SU(3) gauge field at positive flow time, and Sw,SU(3)(U) is the standard
SU(3) Wilson action. For the U(1) flow equation we use the obvious generalization

a2∂tzt(x, µ) = −4πα
{
∂x,µSg,U(1)(zt)

}
zt(x, µ) , (4.2)

where zt is the compact U(1) gauge field at positive flow time, Sg,U(1)(z) is the action given
in eq. (3.1). If Ĝt,µν(x) and F̂t,µν(x) are, respectively, the clover discretizations of the SU(3)
and U(1) field tensors at positive flow time, we define the clover action densities as

ESU(3)(t) = 1
2
∑
µν

〈tr Ĝ2
t,µν〉 , EU(1)(t) = 1

4q2
el

∑
µν

〈F̂ 2
t,µν〉 . (4.3)

The auxiliary observable t0 is defined as usual by means of the equation

t20ESU(3)(t0) = 0.3 , (4.4)

while the renormalized fine-structure constant is defined at the scale t0 as

αR = N t20EU(1)(t0) . (4.5)

Following [67], the normalization N is chosen in such a way that αR coincides with α at
tree level in the lattice perturbative expansion. Its explicit formula is given by

N−1 = 2πt20
TL3

∑
p

∑
µν p̊

2
µc

2
ν −

∑
µ p̊

2
µc

2
µ∑

µ p̂
2
µ

e
−2t0

∑
µ
p̂2
µ , (4.6)

where the sum runs over all momenta allowed by the boundary conditions

p0 ∈
2πa
T

{
0, 1, 2, . . . , T

a
− 1

}
, pk ∈

πa

L

{
1, 3, 5, . . . , 2L

a
− 1

}
, (4.7)

and the following definitions have been used:

p̂µ = 2
a

sin
(
apµ
2

)
, p̊µ = 1

a
sin(apµ) , cµ = cos

(
apµ
2

)
. (4.8)
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4.2 Meson masses and φ observables

Since we use the compact formulation of QED, we do not need to fix the gauge. With
this choice, physical states (even charged ones) are invariant under SU(3) and U(1) local
gauge transformations. In finite volume with C? boundary conditions, global U(1) gauge
symmetry is broken down to the Z2 subgroup which allows to distinguish states with even
and odd electric charge (see [5] for an extended discussion). Gauge-invariant quark bilinears
are constructed as usual, but the elementary quark fields ψf and ψ̄f need to be replaced
with the dressed ones:

Ψf (x) = Df (x)ψf (x) , Ψ̄f (x) = ψ̄f (x)D∗f (x) , (4.9)

where the dressing factor Df (x) has been chosen to be the (q̂f/2)-th power of the spatial
U(1) Polyakov loops starting from x, averaged over the three spatial directions, i.e.

Df (x) = 1
3

3∑
k=1

L/a∏
s=0

zq̂f/2(x+ ask̂, k) . (4.10)

One easily checks that the dressed quark fields are invariant under local U(1) gauge
transformations thanks to C? boundary conditions. Moreover, the dressing factor Df (x) is
invariant under 90◦ rotations around x. The parameter q̂f is the charge of the quark field
in units of the gauge-action parameter qel. With our choice qel = 1/6, up-type quarks have
q̂ = 4 and down-type quarks have q̂ = −2. In all cases the quantity q̂f/2, which appears in
the exponent of the dressing factor, is an integer.

Because of the boundary conditions, eigenstates of the momentum operator are auto-
matically eigenstates of the charge conjugation operator. In particular, C-even fields are
periodic and C-odd fields are antiperiodic in all spatial directions. In order to construct
zero-momentum fields, one needs to construct C-even combinations first. The C-even
zero-momentum interpolating operators of pseudoscalar mesons are given by

Pfg(x0) =
∑

x

{
Ψ̄fγ5Ψg(x0,x) + Ψ̄gγ5Ψf (x0,x)

}
, (4.11)

for generic flavour indices f and g, and two-point functions are defined as

Cfg(x0) = 〈Pfg(x0)Pfg(0)〉 . (4.12)

In this work we consider only the two-point functions with f 6= g which can be written in
terms of standard quark-connected diagrams. We stress that, even though the interpolating
operators Pfg(x) are non-local because of the dressing factors, they are local in time, and
the zero-momentum two-point function has a standard spectral representation which allows
the extraction of Hamiltonian eigenstates from its exponential decay at large x0.

Given the zero-momentum two-point function C(x0), we define the effective massM(x0)
by solving the following equation numerically:

C(x0 + a)
C(x0) =

cosh
[(
x0 + a− T

2

)
M(x0)

]
cosh

[(
x0 − T

2

)
M(x0)

] . (4.13)
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Figure 4. Meson effective masses and effective φ observables for the ensemble A380a07b324+RW1,
together with the selected plateaux and the fits to a constant. Values in MeV are obtained by using
the reference value (8t0)1/2 = 0.415 fm [51].

Hadron masses get power-law finite-volume corrections due to the coupling to the
photon. In the case of C? boundary conditions these have been calculated in [5]. The LO
and NLO corrections in 1/L are universal and are subtracted from the effective mass by
means of the formula

Mc(x0) = M(x0)− αRq2
{
ζ(1)
2L + ζ(2)

πM(x0)L2

}
, (4.14)

where ζ(1) = −1.7475645946 . . . and ζ(2) = −2.5193561521 . . . and q is the charge of the
considered hadron. The meson mass is simply obtained by fitting the plateaux of the
corrected effective mass Mc(x0) to a constant, and by checking the stability of the result
under variation of the plateau.4 The effective φ1,2,3(x0) observables have been calculated by
applying the definition (2.1) to the corrected effective masses of the relevant mesons. The
φ observables are obtained by fitting the plateaux of the corresponding effective quantity
to a constant, and by checking the stability of the result under variation of the plateaux.
A selection of effective masses and φ’s with the corresponding plateau fits are shown in
figures 4 and 5. As noted e.g. in [3, 23], the correlations between different observables in
QCD+QED lead to a statistically more accurate result for the quantities involving meson
and baryon mass-differences.

4.3 Baryon masses

Baryon interpolating operators are written in terms of Gaussian-smeared fermion fields
defined by

Ψ(s) = (1 + ωH)nΨ , Ψ̄(s) = Ψ̄(1 + ωH)n , (4.15)
4The choice to apply the finite-volume correction to the effective mass first and to fit to constant

afterwards is arbitrary. Perhaps a more natural strategy would be to fit the plateau of the effective mass
first and to apply the finite-volume correction afterwards. In fact, the finite-volume correction modifies
the way the plateau is approached. However, the two strategies yield the same value of the energy of the
ground state.
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Figure 5. Meson effective masses and effective φ observables for the ensemble A360a50b324+RW2,
together with the selected plateaux and the fits to a constant. Values in MeV are obtained by using
the reference value (8t0)1/2 = 0.415 fm [51].

where Ψ and Ψ̄ are the dressed fermion fields defined in eq. (4.9), ω and n are adjustable
parameters, and H is the spatial hopping operator given by

HΨ(x) =
3∑

k=1

{
V (x, k)Ψ(x+ aêk) + V (x− aêk, k)†Ψ(x− aêk)

}
. (4.16)

In this formula V is an SU(3) smeared link variable. In practice, we construct V by means
of a generalization of the gradient flow restricted to a single time slice, i.e. we solve a
discretized version of the following differential equation

∂sUs(x, k) = ∂x,k
∑
i 6=j

trPs,ij(x) , (4.17)

where Ps,ij(x) is the plaquette in x on the plane identified by the indices (i, j), constructed
with the field Us, and the initial condition U0 = U is used. The smeared field V is identified
with Us at the chosen maximum value of the auxiliary flowtime s. We notice that the
smeared fields are local in time and invariant under U(1) gauge transformations.

For definiteness, we consider the chiral representation of the gamma matrices and
C = iγ0γ2. The C-even zero-momentum interpolating operator for the Ω− baryon considered
in this work can be written in the form

Ωjα(x0) =
∑

x

∑
BCD

{
Wjα;BCDS

(s)
B S

(s)
C S

(s)
D (x) +W jα;BCDS̄

(s)
B S̄

(s)
C S̄

(s)
D (x)

}
, (4.18)

where B = (b, β), C = (c, γ) and D = (d, δ) are collective color-spin indices, j is a spatial-
vector index. S(s) = Ψ(s)s is the smeared dressed field of the strange quark, while the tensors
W and W are defined by

Wjα;bβcγdδ = 1
3
∑
k

εbcd

{(
δjkI4 − 1

3γjγk
)
αβ

(Cγk)γδ + (β ↔ γ) + (β ↔ δ)
}
, (4.19)

W jα;bβcγdδ = Wjα;bβ′cγ′dδ′Cβ′βCγ′γCδ′δ . (4.20)
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These tensors are skew-symmetric with respect to the permutation of the pairs of indices
(b, β), (c, γ) and (d, δ). The zero-momentum two-point function is defined as

C(x0) = a3

L3

∑
j

〈Ωt
j(0)C 1 + γ0

2 Ωj(x0)〉 . (4.21)

By working out the quark contractions (denoted in the following with the Wick-contraction
symbol), one can decomposed the two-point function

C(x0) = C3(x0) + C1(x0) (4.22)

in a contribution characterized by three fermion lines connecting the two interpolating
operators:

C3(x0) =− 12
∑

x

∑
j

∑
αα′

∑
BCD

∑
B′C′D′

Wjα;BCD

(
C

1 + γ0
2

)
αα′

×
{
W jα′;B′C′D′〈S

(s)
B (x)S̄(s)

B′ (0)S(s)
C (x)S̄(s)

C′ (0)S(s)
D (x)S̄(s)

D′(0)〉

+Wjα′;B′C′D′〈S
(s)
B (x)S(s)

B′ (0)S(s)
C (x)S(s)

C′ (0)S(s)
D (x)S(s)

D′(0)〉
}
, (4.23)

and a contribution characterized by only one fermion line connecting the two interpolat-
ing operators:

C1(x0) =18
∑

x

∑
j

∑
αα′

∑
BCD

∑
B′C′D′

Wjα;BCD

(
C

1 + γ0
2

)
αα′

×
{
W jα′;B′C′D′〈S

(s)
B (x)S̄(s)

B′ (0)S(s)
C (x)S(s)

D (x)S̄(s)
C′ (0)S̄(s)

D′(0)〉

+Wjα′;B′C′D′〈S
(s)
B (x)S(s)

B′ (0)S(s)
C (x)S(s)

D (x)S(s)
C′ (0)S(s)

D′(0)〉
}
. (4.24)

We recall [5] that the quark-quark and antiquark-antiquark contractions do not vanish
because of C? boundary conditions, however they must vanish in the infinite-volume limit.
In particular, the one-line contribution C1 is a pure finite-volume effect, and we drop it
completely in the present calculation. It is also interesting to notice that the C3 and C1 can
be interpreted as the two-point functions of certain partially-quenched baryon operators.
In fact, a few lines of algebra yield

C3(x0) = 6a3

L3

∑
j

〈Ω̃t
123;j(0)C 1 + γ0

2 Ω̃123;j(x0)〉 , (4.25)

C1(x0) = 9a3

L3

∑
j

〈Ω̃t
122;j(0)C 1 + γ0

2 Ω̃133;j(x0)〉 (4.26)

where the interpolating operator appearing in the above equation is defined as

Ω̃fgh,jα(x0) =
∑

x

∑
BCD

{
Wjα;BCDS

(s)
f,BS

(s)
g,CS

(s)
h,D(x) +W jα;BCDS̄

(s)
f,BS̄

(s)
g,C S̄

(s)
h,D(x)

}
. (4.27)
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Here S(s)
f and S̄

(s)
f with f = 1, 2, 3 are the smeared dressed field associated to three

valence quarks and antiquarks identical to the strange quark and antiquark, respectively.
The mixed two-point function C1 is the expectation value of an operator with non-zero
flavour numbers, which does not vanish only because C? boundary conditions break flavour
symmetry. The analysis in appendix A of [5] implies that C1 is exponentially suppressed
in the volume. Therefore the unitary two-point function C(x0) (which we want) and the
three-line-connected two-point function C3(x0) (which we calculate) differ by exponentially
suppressed finite-volume effects. It is also interesting to notice that, thanks to the Z2
residual flavour symmetries [5] the Σ∗+ baryon can propagate in the unitary two-point
function C(x0), as well as the one-line-connected two-point function C1(x0), but not in
the three-line-connected two-point function C3(x0). Therefore, by dropping the one-line
connected contributions, we remove the mixing with the Σ∗+ baryon.

The C-even zero-momentum interpolating operators for spin-1/2 baryons considered in
this work can be all written in the form

B(x0) =
∑

x

∑
abc
fgh

εabcFfgh (4.28)

×
{

Ψ(s)faΨt
(s)gbCγ5Ψ(s)hc(x0,x)− CΨ̄t

(s)faΨ̄(s)gbCγ5Ψ̄t
(s)hc(x0,x)

}
,

where a, b, c are color indices and f, g, h are flavour indices (spin indices are implicit or
contracted). Different baryons are obtained by choosing particular tensors Ffgh, according
to the table 10. In this case the zero-momentum two-point function is defined as

C(x0) = 〈Bt(0)C 1 + γ0
2 B(x0)〉 . (4.29)

Also in this case we drop the one-line connected contributions and we calculate only the
three-line connected two-point function C3(x0).

In practice we use point sources to calculate the needed two-point functions. For each
configuration we construct 12h point sources (running over each color and spin index, and
located at h random timeslices), where h = 8 for all ensembles except A500a50b324 and
A360a50b324+RW2 for which we have used h = 4. We used the Generalized Eigenvalue
Problem [68, 69] to optimize the smearing parameters. The results given in this paper use
a smearing s = 3.6, n = 400 and ω = 0.5 for the source and no smearing for the sink.

Given the three-line-connected zero-momentum two-point function C3(x0), we define
the effective mass M(x0) simply as:

M(x0) = 1
a

log C3(x0)
C3(x0 + a) . (4.30)

The effective massMc(x0) corrected for structure-independent finite-volume effects is defined
as for the mesons using eq. (4.14). A selection of effective masses and mass differences with
the corresponding plateau fits are shown in figures 6 and 7.

4.4 Tuning strategy

For fixed values of α and β, the bare quark masses need to be tuned to obtain the
desired values of the φ variables given by eq. (2.4). Since we have chosen to work with
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(1/2)+ Baryon Non-zero components of Ffgh
p Fuud = 1
n Fddu = 1

Λ0 Fsud = 2, Fdus = 1, Fuds = −1
Σ+ Fuus = 1
Σ− Fdds = 1
Ξ0 Fssu = 1
Ξ− Fssd = 1

Table 10. Flavour tensor Ffgh defining the interpolating operators for spin-1/2 baryons via
eq. (4.28). The flavour indices can take values u, d, s, c.
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Figure 6. Baryon effective masses for the ensemble A380a07b324+RW1, with the selected plateaux
and the fits to a constant. Values in MeV are obtained by using the reference value (8t0)1/2 =
0.415 fm [51].

md = ms ≡ mds, this is a three-parameter tuning problem. In practice, we have followed
the following steps:

1. Generate some ensembles with smaller statistics (∼200 thermalized configurations),
and get a rough estimate m̂(0) = (m(0)

u ,m
(0)
ds ,m

(0)
c ) for the quark masses.

2. Generate an ensemble with full statistics (at least 1000 thermalized configurations)
with quark masses equal to m̂(0). Calculate the values of the φ(0) = (φ(0)

1 , φ
(0)
2 , φ

(0)
3 )

observables on these configurations.
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Figure 7. Baryon effective masses and effective φ observables for the ensemble A360a50b324+RW2,
with the selected plateaux and the fits to a constant. Values in MeV are obtained by using the
reference value (8t0)1/2 = 0.415 fm.

3. Choose three new sets of quark masses m̂(i) with i = 1, 2, 3 fairly close to m̂(0), and
calculate the values of the φ(i) observables corresponding to these quark masses, by
means of mass reweighting. Find the tuned values of the quark masses m̂(t) by linear
interpolation, i.e. by assuming that the φ observables depend on the masses m̂ as in
φ = Am̂+ b, where A is a 3× 3 matrix and b is a 3-vector. A few attempts may be
necessary in order to find values for m̂(i) for which the reweighting does not have an
overlap problem, and for which the tuned value is found either by interpolation or by
a mild extrapolation.

4. Generate an ensemble with full statistics (2000 thermalized configurations) with
quark masses equal to m̂(t). Calculate the values of the φ(t) observables on these
configurations.

5. If the extrapolation in point 2 is too long, then one does not get the target value for
the φ observables, and one needs to repeat everything from step 2 with m̂(0) ← m̂(t).
On the other hand, some residual small mistuning due to the linear approximation is
corrected by repeating step 2 with m̂(0) ← m̂(t). In this case a corrected tuned value
m̂(t) is found, and the observables are calculated by mass reweighting to the corrected
tuned value, without generating new configurations.
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In this paper we describe all ensembles with full statistics that we have generated in the
tuning procedure, but not all intermediate mass reweighting factors.

It is worth noticing that we have tried carrying out step 2 by changing only the valence
quark masses, i.e. without including a mass reweighting factor. However, we usually incurred
into a problem of overshooting which rendered this strategy unusable. Nevertheless, if one
starts from a value of m̂(0) which is far away from the target value, a first tuning iteration
performed by changing only the valence quark masses can be a relatively inexpensive way
to move towards the correct region of parameter space.

4.5 Statistical analysis

Errors are calculated with the gamma method in the particular incarnation of [70]. The
integrated autocorrelation time is calculated first with the Wolff’s automatic windowing
procedure [71] with parameter S = 1. Among all considered observables t0/a2 has the
largest integrated autocorrelation time and we use this as an estimate of the exponential
autocorrelation time τexp, which is a property of the particular Markov chain rather than of
the observable. For each observable the autocorrelation function Γ(t) is calculated from data
for t = 0, 1, . . . , t̄, where t̄ is chosen in such a way that the central value of Γ(t) is positive
for any t ≤ t̄ and negative for t = t̄+ 1. Then the autocorrelation function is extended for
t > t̄ with a single exponential Γ(t) = Γ(t̄) exp[−(t− t̄)/τexp]. The extended autocorrelation
function is used in the gamma method to calculate errors and integrated autocorrelation
times. The analysis has been carried out with our own code, which implements the
ideas of [72].

4.6 Sign of the pfaffian

Given a quark field ψ, we introduce the corresponding antiquark field ψC = C−1ψ̄t, where
the charge-conjugation matrix C can be chosen to be iγ0γ2 in the chiral basis. C? boundary
conditions for the fermion fields can be written as(

ψ(x+ Lk̂)
ψC(x+ Lk̂)

)
=
(
ψC(x)
ψ(x)

)
≡ K

(
ψ(x)
ψC(x)

)
. (4.31)

With C? boundary conditions the Dirac operator D acts on the quark-antiquark doublet
in a non-diagonal way, and it is therefore a 24V × 24V matrix, where V = TL3/a4. An
explicit representation for the Dirac operator is given in appendix A. The integration of
a quark-antiquark pair in the path integral yields the pfaffian pf(CKD) in place of the
standard fermionic determinant, where CKD is an antisymmetric matrix (see proposition 2
in appendix A). The absolute value of the pfaffian is given by

|pf(CKD)| = |detD|1/2 , (4.32)

and can be simulated by means of a standard RHMC algorithm, while the sign of the
pfaffian can be incorporated as a reweighing factor.

In order to calculate this sign, it is convenient to relate the pfaffian to the spectrum
of the hermitian Dirac operator Q = γ5D. It turns out that the spectrum of Q is doubly
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degenerate (see proposition 3 in appendix A). Let λn=1,...,12V ∈ R be the list of eigenvalues
of Q, each of them appearing a number of times equal to half their degeneracy. The following
simple formula holds (see proposition 4 in appendix A):

pf(CKD) =
12V∏
n=1

λn . (4.33)

It follows that the pfaffian is positive (resp. negative) if the number of negative eigenvalues
λn is even (resp. odd). In practice, we calculate the sign by following the eigenvalue flow as
a function of the quark mass m. We use the crucial fact that the eigenvalues of Q(m) can
be labeled in such a way that they are continuous functions of m. As m is continuously
varied, the pfaffian flips sign every time a degenerate pair of eigenvalues of Q(m) crosses
zero. It follows that

sgn pf[CKD(m)] = (−1)c(m,M) sgn pf[CKD(M)] , (4.34)

where we have highlighted the mass dependence of the Dirac operator, we have defined
c(m,M) =

∑12V
n=1 cn(m,M), and cn(m,M) is the number of times λn(µ) crosses zero as the

mass µ is continuously varied from m to M .
If M is chosen very large, then Q(M) is approximately equal to Mγ5 and the number

of negative λn’s is even and equal to 6V . Hence, the pfaffian of CKD(M) is positive, and
eq. (4.34) implies that the sign of the pfaffian of CKD(m) can be calculated by counting
the crossings through zero between the target mass m and some large mass M : the pfaffian
is positive if this number is even and negative otherwise.

In the particular case of QCD+QED simulations with 4 flavours we use the following
observation to eliminate the arbitrariness associated to the choice of M . If D+2/3(m) is the
Dirac operator for a quark with electric charge +2/3, then the Dirac operators for the up
and charm quarks are simply Du = D+2/3(mu) and Dc = D+2/3(mc), since the two quarks
differ only for their mass. Using eq. (4.34), one gets the contribution to the sign of up and
charm quarks as:

sgn pf(CKDu) sgn pf(CKDc) = (−1)c+2/3(mu,mc) , (4.35)

where the subscript of c+2/3 stresses the fact that we need to count the eigenvalue crossings
of the hermitian Dirac operator for a quark with electric charge +2/3. Analogously, the
contribution to the sign of down and strange quarks is:

sgn pf(CKDd) sgn pf(CKDs) = (−1)c−1/3(md,ms) . (4.36)

The reweighting factor needed to account for the sign of the fermionic pfaffian is then
given by:

Wsgn =
∏

f=u,d,s,c
sgn pf(CKDf ) = (−1)c+2/3(mu,mc)(−1)c−1/3(md,ms) . (4.37)

At the U-symmetric point md = ms one has trivially c−1/3(md,ms) = 0, and one needs to
count the number of eigenvalue crossings only for up-type quarks as the mass is varied from
the up-quark mass to the charm-quark mass.
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We give a brief account of the techniques used in this work to calculate c(m,M), i.e. to
count the number of eigenvalue crossings of Q as the mass is varied continuously from m to
M . Our method is based on two stages:

1. A first fast algorithm finds an interval I ′ ⊂ I = [m,M ] in the considered range of
bare masses, with the property that no sign flip occurs in the complement of I ′.
Typically I ′ is much smaller in length than the original I = [m,M ] and, for most
configurations, I ′ turns out to be empty. This algorithm needs to calculate only the
smallest eigenvalue of |Q(µ)| for a list of values of the quark mass µ in the initial
interval I.

2. If the interval I ′ is not empty, then one resorts to the methods described in [49, 73]. In
this case, one follows the flow of a certain number of eigenvalues which are the closest
to zero, as a function of the mass inside the typically small interval I ′. A sign flip
occurs every time an eigenvalue crosses zero. Since one can calculate the eigenvalues
only at discrete values of the mass, in order to identify the eigenvalue flow, one also
needs to calculate the corresponding eigenvectors, as explained in [49, 73]. Since a
rather accurate determination of eigenvectors is required for a rather fine scan of the
mass, this stage of the algorithm is intrinsically more expensive than the previous
one. However, in practice, it needs to be applied only to a relatively small number of
configurations and to small mass intervals.

To the best of our knowledge, the first part of our method has never been used in similar
calculations. Since it speeds up significantly the calculation of the sign of the fermionic
pfaffian, and it can be used also in different contexts (e.g. for the calculation of the sign of
the fermionic determinant in QCD, or the sign of the fermionic pfaffian in gauge theories
with adjoint fermions), we discuss it here in detail. The starting point is the following
simple proposition.

Proposition 1. Let q(µ) be the smallest eigenvalue of |Q(µ)|, i.e.

q(µ) = min
n
|λn(µ)| . (4.38)

For a given value of the mass µ̄, if q(µ̄) > 0, then no eigenvalue λn(µ) flips sign as long as
µ is in the interval defined by µ̄− q(µ̄) < µ < µ̄+ q(µ̄).

Proof. We define δµ = µ − µ̄. Let v be a normalized vector. Using the identity Q(µ) =
Q(µ̄) + δµ γ5, the triangular inequality and the unitarity of γ5, one readily derives

‖Q(µ)v‖ ≥ ‖Q(µ̄)v‖ − |δµ| ‖γ5v‖ = ‖Q(µ̄)v‖ − |δµ| ≥ q(µ̄)− |δµ| . (4.39)

In the last step we have also used the fact that q(µ̄) is the smallest eigenvalue of |Q(µ̄)|. If
we choose for v any of the eigenvectors of Q(µ), the above inequality specializes to

|λn(µ)| ≥ q(µ̄)− |δµ| . (4.40)

If |µ− µ̄| = |δµ| < q(µ̄) then |λn(µ)| > 0. Since λn(µ) is continuous in µ, it is either always
positive or always negative in the interval defined by |µ− µ̄| < q(µ̄).
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Figure 8. Smallest eigenvalue of |Q| for up-type quarks as a function of the valence mass m0 (red
points), calculated on a representative configuration (C380a50b324 ensemble). Proposition 1 implies
that |Q| has no eigenvalues in the grey areas. In particular, no eigenvalue of Q crosses zero between
the up-quark mass (left dashed vertical line) and the charm-quark mass (right dashed vertical line).
One can see that we are able to flow the lowest eigenvalue across two orders of magnitude in only
six steps. The inset is a zoom-in of the yellow area.

This result allows us to design the following iterative algorithm which restricts the
original interval I = [m,M ], in which we search for sign flips, to the interval I ′ constructed
in the following way:

1. Set m0 = m and M0 = M , and n = 0.

2. Calculate q(mn) and q(Mn) defined as in eq. (4.38), if they have not been previously
calculated.

3. If Mn − (1− ε)q(Mn) < mn + (1− ε)q(mn), set I ′ = ∅ and stop the algorithm.

4. If n > 0 and q(mn) < q(mn−1), set I ′ = [mn + (1− ε)q(mn),Mn − (1− ε)q(Mn)] and
stop the algorithm.

5. If q(mn) ≤ q(Mn), set Mn+1 = Mn − (1− ε)q(Mn) and mn+1 = mn.

6. If q(Mn) < q(mn), set mn+1 = mn + (1− ε)q(mn) and Mn+1 = Mn.

7. Repeat from step 2 with n← n+ 1.

Here, ε is a tunable small positive parameter, used to make the algorithm safer against
numerical errors. In practice we choose ε = 0.1. Proposition 1 guarantees that no sign flip
occurs in I \ I ′. For most configurations, the lowest eigenvalue q(µ) is an increasing function
of µ. In this situation this part of the algorithm excludes sign flips the whole interval I (i.e.
it returns I ′ = ∅) in a handful of steps, as illustrated in figure 8. If the interval I ′ is not
empty, then one resorts to the second stage of the algorithm outlined above.
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4.7 Algorithmic parameters

In this section we report on the algorithmic parameters chosen to generate the presented
gauge configurations, with a particular emphasis on integration scheme, solvers and rational
approximations.

Rational approximations. Because of C? boundary conditions, we need to simulate
the following fermionic determinant

det(D̂†uD̂u)1/4 det(D̂†dsD̂ds)1/2 det(D̂†cD̂c)1/4 (4.41)

for the QCD+QED ensembles (α 6= 0, md = ms) and the following fermionic determinant

det(D̂†udsD̂uds)3/4 det(D̂†cD̂c)1/4 (4.42)

for the QCD ensembles (α = 0, mu = md = ms). Here D̂ denotes the even-odd pre-
conditioned Dirac operator. The inverse operators (D̂†D̂)−γ with γ = 1/4, 1/2, 3/4 are
approximated with rational functions of D̂†D̂.

In practice, we construct the rational function R(x) of order (N,N) that minimizes
the relative precision, i.e. the maximum of |1− xγR(x)| over some interval x ∈ [r2

a, r
2
b ]. The

approximation range is chosen in such a way that the eigenvalues of D̂†D̂ are included
in [r2

a, r
2
b ] most of the time. In table 11 we report the parameters defining the rational

approximations used for this work.
The error introduced by the rational approximation is corrected by means of a reweight-

ing factor. This strategy is identical to the one adopted in the openQCD code [74]. The
generalization to any value of γ of the reweighting factor can be found in [58]. The parame-
ters of the rational functions have been chosen in such a way that the reweighting factor
does not introduce any detectable increase in the errors of the considered observables.

When a rational approximation is used, the Dirac operator always appears in the
pseudofermion actions in the combination D̂†D̂ + µ2 for strictly positive values of µ. The
rational approximation has the effect of removing the infinite potential barrier encountered
when the fermionic determinant or pfaffian tries to change sign [49], pretty much in the
same way as the twisted-mass reweighting procedure proposed in [75]. However, if the ratio
rb/ra becomes too large or if the precision of the rational approximation is chosen to be
too high, then the smallest twisted mass µ becomes too small, and the potential barrier
may become large enough to jeopardize ergodicity and stability of the algorithm. For this
reason we have progressively reduced the precision of the rational approximations used in
our runs, settling for a precision of a few units of 10−6 in our latest runs.

Pseudofermion actions and solvers. For a given flavour, the approximated determi-
nant detR−1 is represented by means of a sum of pseudofermion actions in the following
way. We start from the rational function

R = A
N∏
k=1

D̂†D̂ + ν2
k

D̂†D̂ + µ2
k

. (4.43)
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In the following we assume the ordering ν1 < ν2 < · · · < νN and µ1 < µ2 < · · · < µN . We
introduce a pseudofermion action for each factor in the above equation with k = 1, . . . , N2,
and a single pseudofermion action for the remaining factors, i.e.

Sk = φ†k
D̂†D̂ + ν2

k

D̂†D̂ + µ2
k

φk , for k = 1, . . . , N2 , (4.44)

SN2+1 = φ†N2+1

 N∏
k=N2+1

D̂†D̂ + ν2
k

D̂†D̂ + µ2
k

φN2+1 . (4.45)

In practice, the pseudofermion actions are represented by means of partial fraction decom-
positions as explained in [76]. The chosen values for N2 are reported in table 11.

One needs to invert the operator (D̂ + iµk) in the calculation of the pseudofermion
actions, and the operator (D̂ + iνk) in the generation of the pseudofermion fields. The
multishift conjugate gradient is used for the pseudofermion action SN2+1, while a deflated
generalized conjugate residual method [77], preconditioned with the Schwarz alternating
procedure [78], is used for all other pseudofermion actions. We use a 10−8 residue for all
solvers used in the calculation of the force, and a 10−10 residue for all solvers used in the
calculation of the action and in the generation of the pseudofermion fields.

A distinctive feature of the QCD+QED simulations is the need for different deflation
subspaces for different values of the electric charge (q̂ = 2, 4 in our simulations). Using the
notation of the openQ*D input files [76], we used mu = 0.001 for the 64× 323 lattices and
mu = 0.005 for the other ones, nkr ≥ 24, and a total of Ns = 20 deflation vectors. The size
of the deflation blocks have been chosen to be as large as possible, compatibly with the size
of the local lattice and the constraints of the simulation code.

HMC parameters and integration of Molecular Dynamics. The sum of the gauge
and pseudofermion actions is simulated with the Hybrid Monte Carlo (HMC) algorithm with
Fourier acceleration for the U(1) field [79, 80]. The Molecular Dynamics (MD) equations
are solved by means of a symplectic multilevel integrator [81]. We use a MD trajectory
length τ = 2 and a three-level scheme for all our simulations. For each level one needs
to specify: the number of integration steps, the forces to be integrated and the type of
integrator.

The fermionic forces corresponding to the pseudofermion actions Sk with k = 1, . . . , N1
(with N1 ≤ N2) are integrated in the outermost level with the Omelyan-Mryglod-Folk
(OMF) [82] second-order integrator. All other fermionic forces are integrated in the
intermediate level with the OMF fourth-order integrator. Finally, the gauge forces are
integrated in the innermost level with the OMF fourth-order integrator. The chosen values
for N1 and also the number of steps for each integration level are reported in table 11.

5 Outlook

We have presented seven (two QCD and five QCD+QED) gauge ensembles with C?

boundary conditions. Three different values of the renormalized fine-structure constant
(αR ' 0, 1/137, 0.04) and two different volumes (L ' 1.6 fm, 2.4 fm) have been considered. In
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ensemble int. steps flavours γ [ra, rb] N [prec.] N1 N2

A400a00b324 (1,1,8) uds 3/4 [0.00132,8.0] 18 [4.02e-08] 6 10
c 1/4 [0.25500,8.0] 8 [7.97e-08] 0 0

B400a00b324 (1,1,16) uds 3/4 [0.00132,8.0] 18 [4.02e-08] 6 10
c 1/4 [0.25500,8.0] 8 [7.97e-08] 0 0

A450a07b324 (1,1,12) u 1/4 [0.0004,10.0] 15 [4.73e-06] 5 8
ds 1/2 [0.0010,10.0] 14 [5.46e-06] 4 7
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

A380a07b324 (1,1,12) u 1/4 [0.0020,10.0] 13 [4.00e-06] 3 6
ds 1/2 [0.0010,10.0] 13 [1.38e-05] 3 6
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

A500a50b324 (1,1,12) u 1/4 [0.00070,9.0] 15 [2.09e-06] 5 8
ds 1/2 [0.00132,9.0] 15 [1.25e-06] 5 8
c 1/4 [0.20000,8.0] 9 [1.84e-08] 0 0

A360a50b324 (1,1,12) u 1/4 [0.0004,10.0] 15 [4.73e-06] 5 8
ds 1/2 [0.0010,10.0] 14 [5.46e-06] 4 7
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

C380a50b324 (1,1,18) u 1/4 [0.0004,10.0] 15 [4.73e-06] 5 8
ds 1/2 [0.0010,10.0] 14 [5.46e-06] 4 8
c 1/4 [0.2000,10.0] 7 [2.36e-06] 0 0

Table 11. Parameters defining the integration scheme and the pseudofermion actions. In the second
column (int. steps) we report the number of integration steps for the innermost, intermediate and
outermost integration levels. For each degenerate multiplet of quarks specified in the third column
(flavours), we use a rational approximation for the operator (D̂†D̂)−γ . We report the exponent γ,
the chosen range [ra, rb], the order (N,N) of the rational approximation, and its relative uniform
precision. N1 denotes the number of factors integrated in the outermost level of the integrator, and
N2 denotes the number of factors that have been split into independent pseudofermion actions.

all cases we have simulated close to the SU(3)-symmetric point: in particular the simulated
up and down quarks are heavier than the physical ones, and the simulated strange quark is
lighter than the physical one. We have calculated a number of observables: pseudoscalar
meson masses, octet baryon masses, and the Ω− mass, the flow scale t0 and the renormalized
fine-structure constant in the gradient-flow scheme. While this is only the first step of a
long-term research project, we comment here only on our goal for the near future.

Baryon masses are unsurprisingly very noisy. Since the Ω− is needed to set the scale
in our simulations, we plan to implement state-of-the-art noise-reduction techniques and
to invest significant resources in order to bring the error down. In baryon correlators, we
have also neglected the quark-disconnected contractions, which are peculiar of C? boundary
conditions. This is equivalent to calculating the masses of some partially-quenched baryons
which become degenerate with the physical baryons in the infinite-volume limit. We plan
to investigate the impact of the disconnected contributions in detail.

The sheer number of parameters in QED+QCD simulations makes the tuning particu-
larly expensive. We have presented a tuning strategy, based on a number of tricks which
include mass-reweighting and linear interpolations and extrapolations in parameters space.
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It turns out that on the smaller volumes, there is no point in pushing the precision of the
tuning too much, since finite-volume effects are still significant. Volumes larger than the
ones presented here will need to be simulated in order to gain better control on finite-volume
effects. However, a first analysis already indicates that finite-volume effects are smaller
than the statistical errors on the larger volume presented in this paper.

We also want to move towards physical quark masses, by making the up and down
quarks lighter, and the strange quark heavier. Besides the obvious phenomenological
motivation, it will be interesting to see how the cost of simulations changes when the up
quark gets lighter.
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A Properties of the pfaffian

In this appendix we review the main properties of the Dirac operator and its pfaffian. We
use here a = 1. The Dirac operator acts on the quark-antiquark doublet

χ =
(
ψ

ψC

)
=
(

ψ

C−1ψ̄t

)
, (A.1)

and can be written as a sum of terms

D = m+Dw + δDsw . (A.2)
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The Wilson-Dirac operator has the standard form

Dw = 1
2
∑
µ

{
γµ(∇µ −∇†µ)−∇†µ∇µ

}
, (A.3)

but the forward covariant derivative ∇µ is constructed keeping in mind that the quark and
antiquark fields transform under different representations of the gauge group, one being the
complex conjugate of the other, i.e.

∇µχ(x) =
(
zq̂(x, µ)U(x, µ) 0

0 z−q̂(x, µ)U∗(x, µ)

)
χ(x+ µ̂)− χ(x) , (A.4)

where U(x, µ) and z(x, µ) are the SU(3) and U(1) link variables, and q̂ is the electric charge
of the quark in units of qel which appears in eq. (3.1). With our choice qel = 1/6, up-type
quarks have q̂ = 4 while down-type quarks have q̂ = −2. In finite volume, the definition of
the forward derivative is supplemented with the boundary conditions

χ
(
x+ T

a 0̂
)

= χ(x) , χ
(
x+ L

a k̂
)

= Kχ(x) , (A.5)

for k = 1, 2, 3. The matrix

K =
(

0 1
1 0

)
(A.6)

exchanges quark and antiquark, and implements C? boundary conditions in this formalism.
The Sheikholeslami-Wohlert term also takes into account the fact that quark and antiquark
fields transform in different representations of the gauge group, and is given explicitly by

δDsw = −1
4
∑
µ,ν

σµν

{
cSU(3)

sw

(
Ĝµν 0

0 −Ĝ∗µν

)
+ q̂ cU(1)

sw

(
F̂µν 0
0 −F̂ ∗µν

)}
. (A.7)

Ĝµν and F̂µν are the clover discretizations of the hermitian SU(3) and U(1) field tensors,
and σµν = i

2 [γµ, γν ].

Proposition 2. The matrix CKD is antisymmetric.

Proof. For definiteness, we choose to work in the chiral basis for the Euclidean gamma
matrices (γ5 is diagonal, γ0,2 are real, γ1,3 are imaginary), and we define the charge
conjugation matrix as

C = iγ0γ2 . (A.8)

Notice that C is imaginary and antisymmetric, and satisfies C2 = 1. Using the gamma
matrix identities

γ5CγµCγ5 = γ∗µ , (A.9)
γ5CσµνCγ5 = −σ∗µν , (A.10)
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and the following identities involving the K matrix

K

(
zq̂U 0

0 z−q̂U∗

)
K =

(
zq̂U 0

0 z−q̂U∗

)∗
, (A.11)

K

(
Ĝµν 0

0 −Ĝ∗µν

)
K = −

(
Ĝµν 0

0 −Ĝ∗µν

)∗
, (A.12)

K

(
F̂µν 0
0 −F̂ ∗µν

)
K = −

(
F̂µν 0
0 −F̂ ∗µν

)∗
, (A.13)

one easily proves

γ5CKDKCγ5 = D∗ , (A.14)

or, equivalently,

CKD = γ5D
∗γ5CK = DtCK = −(CKD)t . (A.15)

In the third equality we have used γ5-hermiticity of the Dirac operator, and in the last step
we have used Ct = −C and Kt = K.

Proposition 3. The spectrum of the operator Q = γ5D is doubly degenerate.

Proof. The matrix U = CKγ5 has the following properties

U = U † = U−1 = −U t = U∗ . (A.16)

Proposition 2 implies

UQ∗ = CKD∗ = −(CKD)∗ = (CKD)† = γ5Dγ5CK = QU . (A.17)

As a simple application of the above relations, it follows that:

1. if v is an eigenvector of Q with eigenvalue λ, then Uv∗ is also an eigenvector of Q
with the same eigenvalue:

QUv∗ = UQ∗v∗ = U(λv)∗ = λUv∗ , (A.18)

where the last equality follows from the fact that λ is real;

2. v and Uv∗ are orthogonal:

(Uv∗, v) = vtU †v = vtUv = 0 , (A.19)

where the last equality follows from the fact that U is antisymmetric;

3. if w is orthogonal to v and Uv∗, then Uw∗ is also orthogonal to v and Uv∗:

(Uw∗, v) = wtUv = −vtUw = −(v∗, Uw) = −(Uv∗, w) = 0 , (A.20)
(Uw∗, Uv∗) = wtU2v∗ = v†w = (v, w) = 0 . (A.21)
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A straightforward modification of the Gram-Schmidt algorithm, in which one alternates an
orthogonalization step with the construction of an eigenvector of the form Uv∗i , allows to
prove that the degeneracy d of any eigenvector is even, and an orthonormal basis for the
corresponding eigenspace can be chosen of the form:

v1, Uv
∗
1, v2, Uv

∗
2, . . . , vd/2, Uv

∗
d/2 . (A.22)

Proposition 4. Let λn=1,...,12V ∈ R be the list of eigenvalues of Q, each of them appearing
a number of times equal to half their degeneracy. Then the following formula holds

pf (CKD) =
12V∏
n=1

λn . (A.23)

Proof. The pfaffian of a matrix is a polynomial in the entries of the matrix. Since D
depends linearly on the bare mass m, then the function

f(m) = pf [CKD(m)] (A.24)

is a polynomial in m. Since Q is hermitian and depends linearly on m, for every m its
eigenvalues λn can be labeled in such a way that they are analytic functions of m even at
level crossings [83]. Then the function

g(m) =
12V∏
n=1

λn(m) (A.25)

is analytical for every real value of m.
For m→ +∞ one has D ' mI24V , which implies

lim
m→+∞

f(m) = lim
m→+∞

m12V pf(C ⊗K ⊗ I3V ) = lim
m→+∞

m12V = +∞ . (A.26)

For m → +∞ one has Q ' mI6V ⊗ γ5, which implies that half of the eigenvalues are
asymptotically equal to +m and the other half are asymptotically equal to −m. Therefore

lim
m→+∞

g(m) = lim
m→+∞

12V∏
n=1

λn = lim
m→+∞

m6V (−m)6V = +∞ . (A.27)

From the two limits it follows that a value M exists such that both f(m) and g(m) are
positive for every m > M .

Using properties of the pfaffian and the determinant one easily shows that, for every m,

f(m)2 = pf [CKD(m)]2 = det [D(m)] = det [Q(m)] =
12V∏
n=1

λ2
n(m) = g(m)2 . (A.28)

For m > M both functions are positive, therefore the above equality implies f(m) = g(m).
Since f(m) and g(m) are analytic function of m, and they are equal for every m > M ,

it follows that they are equal everywhere.
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B Cost of simulations

Generating QCD+QED configurations with C? boundary conditions is computationally
more costly than generating QCD gauge configurations, and we comment on the total
computational time invested in generating our configurations with unphysical pion masses
thus far. At this stage, we do not make an attempt to compare the cost to other approaches
to QCD+QED, although it is clear that our simulations are on the expensive side. In our
opinion, it is important to invest in setups where the long-range interactions are treated in
full compliance with the basic principles of quantum field theory. Although C? boundary
conditions provide a conceptually clean framework, comparisons with complementary
approaches to QCD+QED simulations [4, 6–8, 15, 32, 33] will be highly beneficial.

Our production runs have been performed on a variety of machines: Lise at HRLN,
Marconi at CINECA, Eagle at PSNC and Piz Daint at CSCS. In order to be able to
compare the production costs, we have measured the time needed to generate a thermalized
configuration on Lise5 at HLRN for all gauge ensembles. The results are shown in table 12;
in particular, we report the specific cost, i.e. the cost in core×seconds per molecular
dynamics unit divided by the number of lattice points.6 Comparing specific costs makes
sense particularly if the machine is always used in a regime of reasonably good scaling,
which seems to be the case for the presented runs. In table 12 we have also reported the
production cost for the QCD ensemble A1 generated by the ALPHA collaboration on Lise
and presented in [57]. The production cost is not reported in the paper and has been kindly
provided by the authors of [57].

The ensemble A1 can be compared directly with our ensemble A400a00b324. The
two QCD ensemble use the same discretization of the action, the same values of β, bare
quark masses and improvement coefficients, but differ for the volume and the boundary
conditions. The ensemble A1 uses a 96 × 323 lattice with open boundary conditions in
time and periodic boundary conditions in space, while our ensemble A400a00b324 uses a
64× 323 lattice with periodic boundary conditions in time and C? boundary conditions in
space. The two ensembles differ also by a number of algorithmic parameters, rendering a
precise cost comparison between the two ensembles complicated. In the following, we use a
back-of-the-envelope calculation to argue that we understand the most important effects
contributing to the cost ratio:[specific cost(A400a00b324)

specific cost(A1)

]
measured

' 0.42
0.35 = 1.2 . (B.1)

5Lise has 1236 standard nodes with 384 GB memory, each of them with 2 CPUs. The CPUs are Intel
Cascade Lake Platinum 9242 (CLX-AP) with 48 cores each. The nodes are connected with an Omni-Path
network with a fat tree topology, 14 TB/s bisection bandwidth and 1.65 µs maximum latency. Source:
https://www.hlrn.de/supercomputer-e/hlrn-iv-system/?lang=en.

6The reader familiar with openQ*D knows that C? boundary conditions are implemented by means of an
orbifold procedure which effectively doubles the lattice size. In the code, one distinguishes between physical
and extended (i.e. doubled) lattice. Throughout this paper we always refer to the physical lattice. When we
talk about lattice volume, we always refer to the volume of the physical lattice. In particular, in order to
reconstruct the total cost from table 12, one needs to multiply the specific cost times the number of points
of the physical lattice.
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1. Because of C? boundary conditions, the Dirac operator is a matrix that acts on a vector
space with dimension 24V , as opposed to 12V in case of periodic boundary conditions.
This means that the application of the Dirac operator on a single pseudofermion costs
twice as much as the periodic case if the physical volume is the same. C? boundary
conditions contribute with a factor of two to the ratio (B.1).

2. A three-level integrator has been used in both cases: 8 steps of second-order Omelyan
in the outermost level, 1 step of fourth-order Omelyan in the intermediate level, 1 step
(for A400a00b324) or 2 steps (for A1) of fourth-order Omelyan in the innermost level.
The difference in the innermost level is expected not to have a significant impact on
the total cost since only the gauge forces are integrated in that level in both cases.
Therefore, we estimate that the difference in integrator steps contributes with a factor
of roughly one to the ratio (B.1).

3. In the case of the ensemble A1, the HMC with frequency splitting has been used
for the up/down doublet and two different rational approximations have been used
for the strange and charm. In the case of the ensemble A400a00b324, a single
rational approximation has been used for the degenerate up/down/strange triplet,
and a separate rational approximation has been used for the charm. In spite of this
difference, it turns out that the total number of fermionic forces that need to be
calculated is not so different in the two cases. For A400a00b324 and A1, the outermost
level integrates six and five pseudofermion forces, respectively, and the intermediate
level integrates six and eight pseudofermion forces, respectively. Since the forces of
the intermediate level are calculated much more often than the ones on the outer
level, we consider only the intermediate level for this back-of-the-envelope calculation.
Therefore, we estimate that the difference in pseudofermion forces contributes with a
factor of roughly 6/8 = 0.75 to the ratio (B.1) (reducing the cost gap between the
two ensembles).

4. Smaller residues have been typically used in A1 for the solvers used to calculate
pseudofermion forces, reducing the cost gap between A400a00b324 and A1 even
further. The impact of this effect has been estimated by looking at how many times
the Dirac operator is applied by the various solvers. We estimate that the difference in
residues contributes with a factor of roughly 0.84 to the ratio (B.1) (further reducing
the cost gap between the two ensembles).

Multiplying all the above factors together we obtain the following estimate for the cost ratio[specific cost(A400a00b324)
specific cost(A1)

]
estimated

' 2× 1× 0.75× 0.84 = 1.26 , (B.2)

which is remarkably close to the measured ratio (B.1).
The comparison between A380a07b324 and A360a50b324 (fairly similar algorithmic

parameters where used in these two runs) suggests that the computational cost does not
depend significantly on α in the interesting region. The comparison between these two
ensembles on the one hand and the ensemble A400a00b324 on the other hand shows a clear
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ensemble global volume n. cores specific cost[
cores×secs

MDUs×points

]
A1 [57] 96× 323 6144 0.35

A400a00b324 64× 323 4096 0.42
B400a00b324 80× 483 2560 0.62
A450a07b324 64× 323 4096 1.07
A380a07b324 64× 323 4096 1.03
A500a50b324 64× 323 4096 0.88
A360a50b324 64× 323 4096 1.05
C380a50b324 96× 483 3072 1.40

Table 12. Cost comparison of all production runs presented in this paper, plus the Nf = 3 + 1 QCD
ensemble A1 produced by the ALPHA collaboration [57]. All wall times have been measured on Lise
at HLRN. For each run we report the global lattice volume, the number of cores, and the specific
cost i.e. the cost in coresecs per molecular dynamics unit (MDU) divided by the global volume.

cost gap between the QCD+QED and QCD simulations, yielding e.g.[specific cost(A360a50b324)
specific cost(A400a00b324)

]
measured

' 1.05
0.42 = 2.5 . (B.3)

In a certain measure this is due to physics: the QCD ensemble has an SU(3) flavour
symmetry which allows us to use a single rational approximation for the three light quarks,
while the QCD+QED ensembles have only an SU(2) flavour symmetry forcing us to use
a rational approximation for the up quark and a different rational approximation for the
down/strange quarks. However we also notice that we need to increase the number of
integration steps in our QCD+QED ensembles (from 8 to 12 in the outermost level) in
order to keep the acceptance rate to a reasonable level. The source of this effect is unclear,
and we plan to investigate in the future whether it is possible to avoid it by optimizing the
algorithmic parameters.

The specific cost is essentially the same for the A380a07b324 and A450a07b324 ensem-
bles, modulo fluctuations in performance. In particular we detect no significant dependence
on the light quark masses.

The increase in specific cost from the A360a50b324 to the C380a50b324 is completely
accounted for by the increase in the number of integration steps in the outermost level
(from 12 to 18) needed to compensate the reduction in acceptance rate due to the larger
volume. However, a posteriori we have overdone it, and we could have probably used some
intermediate value. The increase in specific cost from the A400a00b324 to the B400a00b324
is partly accounted for by the increase in the number of integration steps in the outermost
level (from 12 to 16), while the extra cost may be due to a decrease in efficiency due to use
of a highly-asymmetric local lattice.

More details on the choice of algorithmic parameters are provided in section 4.7.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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