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1 Introduction

Geodesics play an important role in our understanding of curved spacetimes, both at a
classical and semiclassical level. For instance, it is known that correlation functions of
quantum field theories in fixed curved backgrounds are related to geodesics. In the worldline
formalism [1, 2], one can schematically compute G(X,Y ), the correlator of a free massive
scalar field between two points X and Y , as a path integral,

G(X,Y ) =
∫
DP e−mL[P] ≈

∑
g ∈ geodesics

e−mLg , (1.1)

where m is the mass of the scalar field, P is a path connecting X and Y , and L[P] is
the length of that path. In the large mass limit, it is possible to take a saddle point
approximation that reduces the path integral to a sum over geodesic lengths Lg. These
discussions go back to the seminal work by Bekenstein and Parker [3]. See also [4, 5].

This formula might look surprising since it is well known [6, 7] that not all points in a
Lorentzian spacetime can be connected by geodesics.1 For instance, in de Sitter (dS) space

1By the upper semi-continuity of arc-length, spacelike geodesics in Lorentzian manifolds always have
(locally) maximal lengths [8]. However, it is possible to find scenarios where curve lengths connecting two
points are unbounded from above, and in those cases, geodesics do not exist at all.
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certain spacelike separated points are not connected by a geodesic. The global metric of
dSd is given by

ds2

`2
= −dT 2 + cosh2 TdΩ2

d−1 , (1.2)

where T ∈ R is the global time and dΩ2
d−1 is the metric on the unit (d− 1)-sphere. The de

Sitter length scale ` will be set to one from now on. An inertial observer in this spacetime
does not have access to the full geometry and is instead confined inside a cosmological event
horizon. The causal region that such an observer has access to is described by the static
patch metric,

ds2 = −(1− r2)dt2 + dr2

1− r2 + r2dΩd−2 , (1.3)

where t ∈ R and 0 ≤ r ≤ 1 for d > 2, while −1 ≤ r ≤ 1 for d = 2. Early work on static
patch correlation functions includes [9–11]. Geodesics in dS2 have been recently studied
in [12, 13]. Extremal surfaces in dS (including geodesics in d = 3) have been studied in [14],
while other extended objects such as Wilson lines have been studied in [15]. The geodesic
approximation for late time correlators in dS3 has recently been studied in [16].

As mentioned above, in dS there are no real geodesics connecting certain spacelike
separated points. However, at those points the two-point correlator for a free massive scalar
field in the dS invariant, Bunch-Davies (or Euclidean) state is well-defined. In fact, this
correlator is known analytically for all points and all spacetime dimensions [17, 18]. The
two-point function between points X and Y in dS only depends on the dS invariant distance
between the two points, which we call PX,Y . In the large mass limit, we find that

G(PX,Y ) ≈ m
d−3

2

2(2π)
d−1

2

 e−m cos−1 PX,Y(
1− P 2

X,Y

) d−1
4

+ (−1)
d−1

2 e−m(2π−cos−1 PX,Y )

(1− P 2
X,Y )

d−1
4

 , (1.4)

where this asymptotic form is valid for all points satisfying

|1− P 2
X,Y | & m−2 . (1.5)

If PX,Y > −1, there is always a geodesic connecting X and Y , and its length is given by
Lg = cos−1 PX,Y .2 In this case, the second term in (1.4) is always exponentially suppressed
in the large mass limit and can be neglected, and so the correlator takes the form in
equation (1.1), as expected. The term in the denominator can be computed from quadratic
fluctuations around the geodesic length.

If PX,Y < −1, on the other hand, the two points are spacelike separated, but there
are no real geodesics connecting them. In that case, both terms in (1.4) contribute to the
correlator in the large mass limit, and it naively seems as if the geodesic length becomes
complex. But spacelike geodesics have real length, so in this case it is not clear how to
reconcile the prescription in equation (1.1) with the fact that geodesics do not exist between
such points.

2Points with −1 < PX,Y < 1 are spacelike separated, while for PX,Y > 1 points become timelike separated.
In our conventions, timelike separated points have imaginary geodesic length.
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In this paper, we solve this apparent tension by considering Euclidean geodesics. The
analytic continuation of dS to Euclidean signature is given by the sphere. There always
exist two geodesics that form a great circle between any two points on the sphere. We
compute the lengths of these geodesics as well as the one-loop correction to the Euclidean
correlator coming from quadratic fluctuations of the geodesic length.

We show that for PX,Y < −1, it is necessary to keep the contributions from both
(Euclidean) geodesics even though on the sphere only one has the shortest length. Upon
analytically continuing back to Lorentzian signature, we reproduce the precise form of (1.4),
up to an overall coefficient. There exist other geodesics that wrap around the great circle
more than once, but these are always suppressed in the large mass limit. Our results are
valid in any number of spacetime dimensions and for any choice of points in dS provided
that (1.5) holds.

The remainder of the text is organised as follows. In section 2, we review the computation
of the Wightman correlator in dS and compute its large mass expansion. In section 3,
we review the calculation of Lorentzian geodesics in dS, recovering the result that not all
spacelike separated points in dS are connected by a real geodesic. In section 4, we move
to the sphere and compute the Euclidean correlator in the geodesic approximation. We
also compute one-loop corrections around each saddle point. In section 5, we analytically
continue this result to Lorentzian signature to obtain the correct Lorentzian correlator.
We apply our findings to several examples of timelike and spacelike geodesics, including
those between opposite stretched horizons, i.e., surfaces of fixed r in (1.3). This leads into
section 6, where we discuss these results in the light of recent developments regarding dS
space and holography. We relegate some technical details to appendices. In appendix A, we
recover the asymptotic form of the two-point correlator from a WKB approximation. In
appendix B, we solve the quantum mechanical path integral needed to compute one-loop
corrections to the Euclidean correlator. In appendix C, we discuss sphere geodesics in
d ≥ 2. Finally, in appendix D we give details on the computation of correlations between
stretched horizons.

Note added. During the preparation of this paper we became aware of [19], which
presents a related discussion on the role of complex geodesics in de Sitter space.

2 The scalar two-point function in dS

Consider the action for a free massive scalar field in dSd,

Sφ = −1
2

∫
ddx
√
−g

[
gµν∂µφ∂νφ+m2φ2

]
, (2.1)

where m is the mass of the scalar field and gµν is the d-dimensional de Sitter metric. We
will study the Wightman two-point function in the Bunch-Davies (or Euclidean) vacuum
state |E〉 [17, 18], G(X,Y ) = 〈E|φ(X)φ(Y )|E〉, where X and Y are arbitrary points on
global de Sitter. This two-point function is a solution to the Klein-Gordon equation in dSd,

(�−m2)G(X,Y ) = 0 . (2.2)
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Given that the Euclidean state is invariant under the dS isometries, the two-point function
can only depend on the two points through their de Sitter invariant length PX,Y . This
quantity can be easily defined in embedding space as

PX,Y ≡ ηIJXIY J , ηIJ = diag
d+1︷ ︸︸ ︷

(−1, 1, . . . , 1) . (2.3)

Note that in this last expression X and Y are coordinates describing the embedding of
the d-dimensional de Sitter hyperboloid inside (d+ 1)-dimensional Minkowski space. For
instance, if we choose to parameterise the hyperboloid with global coordinates, the de Sitter
invariant length is given by

PX,Y = − sinh TX sinh TY + cosh TX cosh TY
d∑
i=1

ωiXω
i
Y , (2.4)

where ωi are coordinates on the (d− 1)-sphere, i.e.,
∑d
i=1

(
ωi
)2 = 1.

It is interesting to note that [17]

PX,Y > 1 , for timelike separated points ;
PX,Y = 1 , for coincident or null separated points ;
PX,Y < 1 , for spacelike points ;
PX,Y = −1 , when X is null separated from the antipodal point of Y ;
PX,Y < −1 , when X is timelike separated from the antipodal point of Y .

Going back to the two-point function, if we write G(X,Y ) = G(PX,Y ), then the Klein-
Gordon equation becomes,

(1− P 2
X,Y )∂2

PX,Y
G(PX,Y )− dPX,Y ∂PX,YG(PX,Y )−m2G(PX,Y ) = 0 . (2.5)

The unique solution to this hypergeometric equation that correctly reproduces the
expected short distance behaviour of the two-point function (and does not have singularities
at antipodal points) is given by

G(PX,Y ) = Γ(h+)Γ(h−)
(4π)d/2Γ

(
d
2

) 2F1

(
h+,h−; d2 ; 1+PX,Y

2

)
, h±= (d−1)

2 ±

√(
d−1

2

)2
−m2 .

(2.6)
Note that, by definition, this is also the two-point function obtained from analytically
continuing the two-point function on Sd to Lorentzian dS spacetime.

We are interested in the large mass expansion of the above correlator. The asymptotic
form of the hypergeometric function when some of the parameters are large is non-trivial.
The expansion of interest in our case is the one where the first two parameters become
large in the imaginary direction (and with opposite signs). Asymptotic expressions in this
limit were first found in [20]. See also [21] for the latest state of affairs.
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There are two different large mass expansions for the hypergeometric function, depending
on whether its last argument is positive or negative. When PX,Y < −1, the form of the
correlator in the large mass limit is given by [20]

G(PX,Y ) ≈ m
d−3

2

2(2π)
d−1

2

 e−m cos−1 PX,Y(
1− P 2

X,Y

) d−1
4

+ (−1)
d−1

2 e−m(2π−cos−1 PX,Y )

(1− P 2
X,Y )

d−1
4

 ,

= m
d−3

2

(2π)
d−1

2
Re

 e−m cos−1 PX,Y

(1− P 2
X,Y )

d−1
4

 , PX,Y < −1 .

(2.7)

In the first line, the correlator is written in a form inspired by the geodesic approximation.
In the second line the correlator is manifestly real, consistent with the fact that the points
are spacelike separated.

When PX,Y > −1, the second term in (2.7) is always exponentially suppressed in the
large mass limit, so the correlator takes the form

G(PX,Y ) ≈ m
d−3

2

2(2π)
d−1

2

exp
(
−m cos−1 PX,Y

)
(
1− P 2

X,Y

) d−1
4

, PX,Y > −1 . (2.8)

For −1 < PX,Y < 1, it is straightforward to check that the correlator is real. When
points become timelike separated, then PX,Y > 1 and the expression becomes manifestly
complex, consistent with the fact that, in our conventions, timelike geodesics have an
imaginary length.

Both (2.7) and (2.8), can be obtained by solving the Klein-Gordon equation (2.5) in a
WKB expansion, which provides an independent check of these asymptotic expansions; see
appendix A.

It is clear that both approximations break down when PX,Y ∼ ±1. When PX,Y is close
to one, the correlator is chosen to mimic the short distance singularity in flat space [17], so
it takes the form

G(PX,Y ∼ 1) ≈
Γ
(
d
2

)
(2π)

d
2 (d− 2)

1
(1− PX,Y )

d
2−1

, (2.9)

which is independent of m.3 When PX,Y = −1, the last argument in the hypergeometric
function is zero, so in the large mass limit we obtain

G(PX,Y = −1) ≈ md−2

Γ(d/2)2d−1πd/2−1 e
−mπ . (2.10)

It is easy to see that these limits do not commute with taking the large mass limit first.

3Note that in d = 2 the correlator actually diverges logarithmically as G(PX,Y ∼ 1) ≈
− log (1 − PX,Y ) /4π, which is consistent with the expected QFT behaviour.
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3 The geodesic approximation

So far, we have obtained the two-point correlator in the large mass limit by finding the
asymptotic form of the relevant hypergeometric function. A WKB approach yields the
same answer, see appendix A. The main purpose of this work is to reconcile these results
with the expression coming from the geodesic approximation,

G(PX,Y ) =
∫
DPe−mL[P] ≈

∑
g ∈ geodesics

e−mLg , (3.1)

even when real geodesics do not exist. Here, the path integral is over all possible paths P
connecting the points X and Y , and L[P] is the length of that path. In the large mass
limit, the path integral can be approximated in a saddle point approximation by computing
the geodesic length Lg connecting the two points. If there is more than one geodesic, we
need to sum over them appropriately.

We start by reviewing how to compute geodesics in dS in cases where real geodesics do
exist. For simplicity, we demonstrate this in d = 2, but the results can be generalised to
higher dimensions.

3.1 Review of real geodesics in dS2

The global metric of dS2 is given by,

ds2 = −dT 2 + cosh2 T dϕ2 , (3.2)

with ϕ ∈
[
−π

2 ,
3π
2

)
and T ∈ R. The length functional is given by

L =
∫
ds =

∫
dλL

(
T, Ṫ , ϕ, ϕ̇, λ

)
=
∫
dλ

√(
−Ṫ 2 + cosh2 T ϕ̇2

)
, (3.3)

where the dots represent derivatives with respect to the parameter λ along the geodesic.
Recall that we are working in a slightly unusual convention where timelike geodesics will
have a complex length. The Lagrangian L does not depend explicitly on ϕ, so we can define
the following conserved quantity

∂L
∂ϕ̇
≡ Q = ϕ̇ cosh2 T

(
−Ṫ 2 + cosh2 T ϕ̇2

)−1/2
. (3.4)

Since the length functional is invariant under reparametrisation, we may select λ such that
it is an affine parameter,

L2 =
(
ds

dλ

)2
= ±1 = −Ṫ 2 + cosh2 T ϕ̇2 , (3.5)

where the ± depends on whether the geodesic is spacelike or timelike, respectively. The first
order equations (3.4) and (3.5) can be integrated to find the trajectories of the geodesics,
which read

tan(ϕ+ ϕ̃) = Q sinh T√
Q2 − cosh2 T

, (3.6)

– 6 –
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Out[ ]=

(a) T1 = 0.

Out[ ]=

(b) T1 = 1.

Figure 1. Penrose diagram for (half of) dS2 with geodesics in blue. The horizons are drawn
in red, and past and future infinity are in green. In dashed black, we also plot the position of
stretched horizons.

where ϕ̃ is a constant of integration which, as well as Q, can be determined by the choice of
the endpoints of the geodesic.

The length of the geodesic can be expressed in terms of its endpoints at (T1, ϕ1) and
(T2, ϕ2) as

Lg = cos−1 PX,Y = cos−1 [cosh T1 cosh T2 cos(ϕ2 − ϕ1)− sinh T1 sinh T2] . (3.7)

Timelike separated points have PX,Y > 1, and their geodesic length is complex. For example,
geodesics between points (T1, ϕ0) and (T2, ϕ0) have vanishing conserved charge, Q = 0, and
so their length is given by Lg = i|T2 − T1|.

On the other hand, spacelike separated points have PX,Y < 1, but real geodesics only
exist for −1 ≤ PX,Y < 1. As an example, consider points on opposite sides of the spatial
circle, i.e., (T1, ϕ0) and (T2, ϕ0 + π), for which PX,Y ≤ −1. Requiring equation (3.7) to
be real imposes that T1 = −T2 and PX,Y = −1. In this case, we have a one-parameter
family of geodesics whose charges are given by |Q| > cosh T1. All of them have geodesic
length Lg = π [12, 22]. See figures 1(a) and 1(b). This result contrasts with the AdS2 black
hole case, where geodesics exist for arbitrarily long times and their length grows linearly
with time [23].

3.2 From geodesics to two-point correlators

One would like to use the results obtained for the real geodesics in dS to reproduce the
form of the correlators studied in section 2. However, it is clear from the result just shown
for points on opposite sides of the spatial circle that real geodesics are not enough.

One can always formally define Lg = cos−1 PX,Y , so that (2.7) becomes

G(Lg) ≈
m

d−3
2

2(2π)
d−1

2

 e−mLg

(sinLg)
d−1

2
+ e−m(2π−Lg)

(sin(2π − Lg))
d−1

2

 . (3.8)
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For any PX,Y > −1, the second term is always exponentially suppressed, and so the
propagator can be written in the form of the geodesic approximation (3.1). Moreover,
we showed that, in those cases, the geodesic length is actually Lg = cos−1 PX,Y , both for
spacelike and timelike separated points. The only term that needs to be explained is the
denominator, that will come from perturbations around the geodesic length.

If PX,Y < −1, there seems to be more tension. In this case, we derived that there
are no real geodesics connecting these points in dS. The naive continuation of Lg gives a
complex geodesic length. Moreover, from the form of (3.8), it seems that there are two
geodesics contributing to the correlator. As in the previous case, the denominator in each
term needs to be explained.

In the next section, we will show that the tension for PX,Y < −1 can be cured by
looking at geodesics on the sphere. In all cases, denominators will appear as one-loop
corrections to the geodesic length.

Before moving on, let us comment on the special degenerate case of PX,Y = −1. In
this case, we showed that Lg = π, which is consistent with PX,Y = −1. But we found that
there are infinitely many geodesics, which would naively yield an infinite correlator, unless
properly regulated. Note also that equation (2.8) diverges in this limit, but that the correct
large mass correlator is (2.10). In what follows, we will restrict to PX,Y 6= −1.

4 Euclidean two-point functions

In this section, we compute the two-point correlator on the sphere, where we know that any
two points are connected by a geodesic with real (Euclidean) length. We start by focusing
on d = 2.

Considering the sphere is natural since it is the Euclidean continuation of Lorentzian
dS spacetime. In fact, if we analytically continue global dS2 using T → −iθ, the metric in
equation (1.2) becomes

ds2 = dθ2 + cos2 θ dϕ2 , (4.1)

which is the round metric on S2. Here ϕ ∈ [−π/2, 3π/2) and θ ∈ [−π/2, π/2]. Note that the
analytic continuation of the static patch metric also gives the sphere, in a slightly different
coordinate system.

It is known that, given two points on the sphere, there is always a great circle that
passes through them. The great circle is defined by the intersection of the plane containing
the two points and the origin with the sphere. The two segments of the great circle are
geodesics connecting the two points.

It will be convenient to use a new set of coordinates {Θ,Φ}, where the Φ angle moves
around the great circle between the two points, Φ ∈ [0, 2π) and Θ ∈ [−π/2, π/2]. The great
circle lies at Θ = 0. Note that you can always move to this coordinate frame for any two
points X and Y on the sphere. The metric on this coordinate system is given by

ds2 = dΘ2 + cos2 Θ dΦ2 , (4.2)

so the length functional becomes

L̃[ΦX ,ΦY ,Θ] =
∫ ΦY

ΦX
dΦ
√

Θ̇2(Φ) + cos2 Θ(Φ) . (4.3)

– 8 –
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In this section, we use tildes to denote Euclidean quantities. We would like to compute the
Euclidean two-point function on the sphere, using the geodesic approximation, i.e.,

G̃(ΦX ,ΦY ) =
∫ Θ(ΦY )=0

Θ(ΦX)=0
DΘ(Φ) exp(−mL̃(ΦX ,ΦY ,Θ)) . (4.4)

We start by considering geodesics in d = 2 in section 4.1. We then consider perturbations to
the geodesic length in section 4.2 and finally, we generalise our results to higher dimensions
in section 4.3.

4.1 Euclidean saddle points

In the large mass limit, (4.4) is dominated by its saddle points which are the geodesics
connecting X and Y . To find these, we extremise the length (4.3). The equation of motion
stemming from this length functional is

Θ̈ + 2Θ̇2 tan Θ + sin Θ cos Θ = 0 , (4.5)

which is solved by

Θ(Φ) = ± sin−1

 √c1 − 1 tan(Φ + c2)√
1 + c1 tan2(Φ + c2)

 , (4.6)

where c1 and c2 are constants of integration. Boundary conditions at the endpoints of
integration set Θ(ΦX) = Θ(ΦY ) = 0. A generic solution obeying the boundary conditions
has c1 = 1, reducing the solution to Θgeodesic = 0, i.e., the geodesic goes through the great
circle, as expected. Evaluating the action on-shell gives the length of the shorter geodesic,

L̃g =
∫ ΦY

ΦX
dΦ
√

Θ̇2
geodesic + cos2 Θgeodesic = ΦY − ΦX , (4.7)

assuming without loss of generality that 0 < ΦY − ΦX ≤ π. There is also another geodesic
that goes around the other side of the great circle and has length

L̃+ =
∫ 2π+ΦX

ΦY
dΦ
√

Θ̇2
geodesic + cos2 Θgeodesic = 2π − (ΦY − ΦX) = 2π − L̃g . (4.8)

Note that, generically, L̃g ≤ L̃+, so only L̃g will contribute to the Euclidean correlator
in the large mass limit. However, as we will see in section 5, we require both geodesics in
certain cases to reproduce the correct Lorentzian correlator from analytic continuation of
the Euclidean result.

There also exist another (infinite) set of geodesics that wrap multiple times around the
great circle. Their lengths are given by ±L̃g + 2πn with n ∈ N, and their contribution to
the correlator will always be exponentially suppressed in the large mass expansion, even
after analytic continuation to Lorentzian spacetime.4

On the sphere, the only case where both L̃g and L̃+ will contribute corresponds to
having ΦY − ΦX = π. In this case, there is another set of solutions to (4.6) that satisfy the

4With the exception of −L̃g + 2π, which is actually L̃+.
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boundary conditions. These are a one-parameter family labeled by c1 ∈ R≥1 and obtained
by setting c2 = −ΦX in (4.6). These geodesics are given by,

Θ(Φ) = ± sin−1

 √c1 − 1 tan(Φ− ΦX)√
1 + c1 tan2(Φ− ΦX)

 , (4.9)

and correspond to rotating the great circle around the sphere, while keeping ΦY and ΦX

fixed. Note that you can only do this when ΦY −ΦX = π. The length of all these geodesics
is the same and reads

L̃g = π , (4.10)

independently of the choice of c1. In what follows, we will assume that ΦY − ΦX < π.

4.2 Quadratic perturbations

We have found geodesics that are saddle points of the Euclidean propagator (4.4). Now
we can compute the corrections to the propagator stemming from quadratic perturbations
to the geodesic length on the sphere. One-loop path integrals on the sphere have been
computed in, for instance, [24, 25]. Recall that we are parameterising our paths as Θ(Φ),
so we want to consider perturbations to the geodesics of the form

Θ(Φ) = Θgeodesic(Φ) + δΘ(Φ) , (4.11)

where the geodesic equation just gives Θgeodesic(Φ) = 0 . The variation of the Euclidean
two-point function (4.4) is given by5

G̃(ΦX ,ΦY ) ≈
∑
∗=g,+

(
e−mL̃∗(ΦX ,ΦY )

∫
DδΘ(Φ) exp

(
−mδL̃∗(ΦX ,ΦY , δΘ, δΘ̇)

))
,

(4.12)
where, evaluating the length functional (4.3) to second order around each geodesic, we
obtain that,

L̃(ΦX ,ΦY , δΘ) = L̃∗(ΦX ,ΦY ) + δL̃∗(ΦX ,ΦY , δΘ, δΘ̇) , (4.13)

with
δL̃∗(ΦX ,ΦY , δΘ, δΘ̇) ≡ 1

2

∫
dΦ
(
δΘ̇(Φ)2 − δΘ(Φ)2

)
, (4.14)

where the integration limits in the last integral depend on which geodesic we are expanding
around, and are the same as in equations (4.7) and (4.8). Given that δL̃∗ is quadratic in
δΘ, this path integral can be computed exactly. In general, consider the following quantum
mechanical path integral,

Z(Φ0,ΦN ) ≡
∫ δΘ(ΦN )=0

δΘ(Φ0)=0
DδΘ(Φ) exp

(
−m2

∫ ΦN

Φ0
dΦ
(
δΘ̇2 − δΘ2

))
, (4.15)

5In principle, the measure in this path integral should include a factor of cos(Θ) that comes from
the determinant of the metric (4.2). The inclusion of this factor is needed for the path integral to be
diffeomorphism invariant [3]. Note, however, that this term will not contribute to the path integral in the
large mass expansion.
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where the generic endpoints of the path integral are named Φ0 and ΦN , we assume ΦN > Φ0,
and we require a vanishing variation of the trajectory at these points. In appendix B, we
show how to compute a more general class of quadratic path integrals in quantum mechanics,
including this one. The final result is

Z(Φ0,ΦN ) =
√

m

2π sin(ΦN − Φ0) . (4.16)

Inserting this back into equation (4.12), we can write the correlator between any two points
on the sphere, in the large mass limit, as a function of the geodesic length L̃g between the
two points. This yields,

G̃(L̃g) =
√

m

2π sin L̃g
e−mL̃g +

√
m

2π sin(2π − L̃g)
e−m(2π−L̃g) , (4.17)

which looks suggestively similar to (3.8) with d = 2. We stress that this result is valid for
any arbitrary two points on the sphere, as long as L̃g & m−1 and π − L̃g & m−1.

As previously mentioned, in Euclidean signature the second term in (4.17) will always be
exponentially suppressed in the large mass limit. However, we will keep both saddle points,
because, interestingly, in some cases, after doing the analytic continuation back to Lorentzian
signature, they will both contribute to the Lorentzian, large mass two-point correlator.

4.3 Higher dimensions

It is possible to generalise the calculation on S2 to higher dimensions. In this case, the
analytic continuation of the global dS metric in equation (1.2) is given by the round metric
on Sd,

ds2 = dθ2 + cos2 θ dΩ2
d−1 . (4.18)

In any dimension, it is also true that the geodesics between any two points are sections of
the great circle between those two points. As in the case of two dimensions, it is convenient
to rotate the coordinates to a frame where the Φ coordinate goes around the great circle
between the two endpoints. We will call these coordinates {Θ1, · · · ,Θd−1,Φ}. In this frame,
the metric on Sd is given by

ds2 = dΘ2
1 + cos2 Θ1dΘ2

2 + cos2 Θ1 cos2 Θ2dΘ2
3 + · · ·+ cos2 Θ1 cos2 Θ2 · · · cos2 Θd−1dΦ2 ,

(4.19)
so that the great circle lies at Θi = 0. As in the two dimensional case, we can use Φ to
parameterise the geodesic, which will follow a path (Θ1(Φ), · · · ,Θd−1(Φ)), that extremises
the length functional,

L̃ =
∫
dΦ
√

Θ̇2
1 + cos2 Θ1

(
Θ̇2

2 + cos2 Θ2Θ̇2
3 + · · ·+ cos2 Θ2 · · · cos2 Θd−1

)
. (4.20)

In appendix C, it is shown that the equations of motion imply that the saddle point is
given by

Θ(geodesic)
i = 0 , for 1 ≤ i ≤ d− 1 . (4.21)
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As in the case of two dimensions, this implies that there will be two geodesics leading the
saddle point approximation. The one with minimal length is

L̃g =
∫ ΦY

ΦX
dΦ = ΦY − ΦX , (4.22)

where again we assume that 0 < ΦY − ΦX < π. The other geodesic goes around the
remainder of the great circle and has length

L̃+ =
∫ 2π+ΦX

ΦY
dΦ = 2π − (ΦY − ΦX) = 2π − L̃g . (4.23)

The contributions from other geodesics that wrap around the great circle multiple times
will be exponentially suppressed in the two-point function, so we neglect them. We can
expand the length functional around each geodesic trajectory, Θi = 0 + δΘi, and this gives

L̃ =
∫
dΦ
(

1 + 1
2

d−1∑
i=1

(
δΘ̇2

i − δΘ2
i

))
, (4.24)

where each of the (d− 1) terms in the sum give the same contribution to the path integral,
and this is exactly the same contribution as in the two-dimensional case. So, finally, we get
that for most6 two points on the higher dimensional sphere, the Euclidean correlator in the
large mass limit can be written as a function of the geodesic length between the two points.
The Euclidean correlator, to this order, is given by

G̃(L̃g) =
(

m

2π sin L̃g

) d−1
2

e−mL̃g +
(

m

2π sin(2π − L̃g)

) d−1
2

e−m(2π−L̃g) . (4.25)

5 Lorentzian two-point functions

We will now use the results of the last section to reproduce the Lorentzian two-point function
for a free massive scalar field in the Euclidean state |E〉. For simplicity, consider d = 2. On
the Euclidean sphere, the geodesic distance between any two points (θ1, ϕ1) and (θ2, ϕ2) is
given by

L̃g = cos−1 [cos θ1 cos θ2 cos(ϕ2 − ϕ1) + sin θ1 sin θ2] . (5.1)

Analytically continuing back to Lorentzian dS space by taking θ → iT , we recover Lg =
cos−1 PX,Y , with PX,Y as in equation (3.7), even in the regime where Lorentzian geodesics
do not exist. So it is straightforward to verify that

G̃(L̃g)
∣∣∣
θ→iT

= 2mG(Lg) . (5.2)

Using (3.8) and (4.25), one can also verify that the same formula holds in higher d.
The apparent tension in section 3.2 is now resolved. For PX,Y < −1, the complex nature

of the Lorentzian geodesic length comes from analytic continuation of Euclidean geodesic
lengths on the sphere. In this particular case, the Lorentzian geodesic length can be written

6The same restrictions as in the d = 2 case apply, i.e., L̃g & m−1 and π − L̃g & m−1.
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as Lg = π − i cosh−1 |PX,Y |. The second saddle (corresponding to the Euclidean geodesic
encircling the sphere from the opposite side) has length 2π − Lg and so, in Lorentzian
signature, they both have the same real part. Thus, neither of them can be neglected in
the large mass limit. This explains the need for both terms in (3.8).

When PX,Y > −1, it is always true that the second saddle is exponentially suppressed,
as it will always have a larger real part than Lg, after analytically continuing back the
Euclidean answer.

For any PX,Y , it is important to keep the next order correction to the saddle point
answer in order to reproduce the large mass correlator.

In the remainder of this section, we explore several choices of points that illustrate the
different features of the correlator and the geodesics in the different regimes.

Timelike separated points. As a first example, consider a fixed point on the spatial
Sd−1, at two different global times T1 and T2. In this case, PX,Y = cosh(T2 − T1) > 1 and
the relevant geodesics have a complex length Lg = i cosh−1 |PX,Y |.

It follows from (2.8) that in the large mass limit the correlator is given by

G(PX,Y ) ≈ m
d−3

2

2
d+1

2 π
d−1

2 sinh
d−1

2 |T2 − T1|
e−im|T2−T1|e−i

π
4 (d−1) . (5.3)

This correlator can be obtained from the geodesic approximation both in Lorentzian and
in Euclidean signature. Given that Lg is purely imaginary, it is clear that the contribution
coming from the geodesic with length L̃+ = 2π − L̃g will always have a larger real part
when taken to Lorentzian signature, so it will be exponentially suppressed.

To illustrate this case, consider the sphere for d = 2. We choose points with the same
spatial angle ϕ = ϕ0. On the sphere they will look as in figure 2(a). The Euclidean geodesic
length will be given by θY − θX , with θY > θX , and this is enough to reproduce (5.3)
for d = 2.

Spacelike separated points. Next, consider opposite points on the Sd−1 at a given
global time T . In this case, PX,Y = − cosh 2T < −1. In the large mass limit, it follows
from equation (2.7) that,

G(PX,Y ) ≈ m
d−3

2

2
d
2π

d−1
2

e−mπ

sinh
d−1

2 2|T |

(
cos

(
2m|T | − πd

4

)
− sin

(
2m|T | − πd

4

))
. (5.4)

The correlator is real, but it oscillates with a frequency of 2m. Furthermore, it exponentially
decays as a function of time and the decay rate does not depend on the mass. There do not
exist real geodesics to account for this behaviour. This result for the two point function
was first found for d = 2 and d = 4 in [13] and [26], respectively.

Again, to illustrate this behaviour we focus on d = 2. On the sphere, it is natural to
choose points opposite to each other at a given latitude θ = θ0 (one at ϕ = −π

2 and the
other one at ϕ = π

2 ), as in figure 2(b). Then, the Euclidean geodesic lengths are given by

L̃g(θ0) = π − 2θ0 , L̃+(θ0) = π + 2θ0 . (5.5)
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(a) Timelike separated points. (b) Spacelike separated points.

Figure 2. Upon analytic continuation to the Euclidean sphere, we look for two different types of
geodesics, depending on the type of correlator under consideration. The geodesic with shorter length
is shown in red, while the one going on the other side of the great circle is shown in black.

Note that, in this case, both will have the same real part when we analytically continue
back to Lorentzian spacetime, and so neither can be neglected. Plugging this L̃g into (4.17),
it is straightforward to verify (5.2).

Spacelike separated points between stretched horizons. So far we have only con-
sidered points for which either PX,Y > 1 or PX,Y < −1. It is interesting to consider a case
where PX,Y goes through the transition point PX,Y = −1.

A concrete example of this involves studying the form of the correlator between points
anchored at opposite stretched horizons, as a function of the static time; see figure 3(a).
For simplicity, we again restrict to d = 2. As discussed, all we need in order to find the
correlator is PX,Y between these points. The stretched horizon rst is defined as a constant
r surface in the static patch metric (1.3). In order to get the position of the opposite
stretched horizon, we need to relate static patch coordinates to global coordinates. Explicit
expressions are shown in appendix D.

It is clear that opposite points on the Penrose diagram with a fixed r = rst will have
the same T0 and their angles will be at ϕ0 and −ϕ0. In this setup then, one point is at
embedding coordinates X and the second one, Y , is at the same coordinates except for
Y2 = −X2. This gives,

P stX,Y = −(X0)2 + (X1)2 − (X2)2 =
(
r2
st − 1

)
cosh 2t+ r2

st . (5.6)

Note that P stX,Y = −1 at the critical time

tc ≡
1
2 cosh−1

(
1 + r2

st

1− r2
st

)
= 1

2 log
(1 + rst

1− rst

)
. (5.7)
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(a) Penrose diagram.
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Figure 3. (a) Penrose diagram showing the geodesics (in blue) between two stretched horizons (in
dashed black). The position of the stretched horizon is set to rst = 2/3. (b) Exact (dashed red)
and large mass (solid blue) correlator for two symmetric points on opposite stretched horizons as a
function of the static patch time. At early times we observe a decay of the correlation function while
at later times we observe an oscillatory behaviour. We multiply by emπ in the inset to make the
oscillations apparent. In the plot, m = 20 and rst = 0.99, so tc ∼ 2.65. Given the stretched horizon
is very close to the actual horizon, at t ∼ 0, the two points become very close to each other, and so
the approximation breaks down.

For times between 0 < |t| < tc, the de Sitter invariant length has range 1 > P stX,Y > −1,
but for |t| > tc, the range becomes P stX,Y < −1. The large mass correlator will then be
given by (2.8) with P stX,Y before tc, and by (2.7), after. We plot the correlator in figure 3(b).
Before tc the correlator decays monotonically, while afterwards it starts oscillating with
frequency proportional to the mass.

We can easily obtain geodesics anchored at the stretched horizon by simply cutting
parts of the geodesics obtained in section 3.1. See figure 3(a). Note that this breaks the
degeneracy of geodesics at T = 0, and now there is at most one geodesic at each static time
t. Their length is simply given by Lg = cos−1 P stX,Y , up to |t| = tc. At these times, the last
geodesics have length Lg = π, as we are just removing two null pieces from the geodesics
from section 3.1 that have that same length.

After tc, there are no more real geodesics. To find the complex geodesics, on the sphere
we look for points at (θ0, ϕ0) and (θ0,−ϕ0). Using the geodesic length formula (5.1), we
find that

L̃g = cos−1
[
cos2 θ0 cos(2ϕ0) + sin2 θ0

]
, (5.8)

and for the longer geodesic, we have L̃+ = 2π − L̃g. After analytic continuation, we
can transform the global coordinates into static patch ones, and this Euclidean geodesic
length recovers the Lorentzian two-point function, as in (5.2). For |t| > tc, we do need the
contributions from both geodesics. But it is interesting to note that the Euclidean length
above works for both P stX,Y smaller and larger than −1, so it seems that the Euclidean
computation does not know about tc.
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6 Outlook

In this paper, we studied the two-point correlator of a free massive scalar field in a fixed dS
background, in the Euclidean state. The aim of this work was to reproduce the asymptotic
form of the correlator in the large mass limit using the geodesic approximation. This
was naively puzzling, since certain points in dS are not connected by geodesics. The
resolution was to look at the Euclidean problem, where on the sphere any two points are
connected around a great circle by two geodesics. Upon analytically continuing them back
to Lorentzian space, we found that these geodesic can have complex lengths, that they
both contribute to the correlator in the large mass limit and that, complemented with the
one-loop correction around each geodesic length, they give the precise asymptotic form of
the two-point correlator (up to a proportionality factor). This result is valid for almost any
two points in any number of dimensions.

We then studied the correlator for some particular choices of points, including both
timelike and spacelike correlators, and we interpreted them in terms of Euclidean geodesics.
Given the perfect matching we found, one can ask whether this prescription can be used in
more general setups (of course, in this case, the choice of a Euclidean state was crucial to
obtain the right results).

In particular, the geodesic approximation has been widely used in the context of
holography, starting with the work in [27, 28], where boundary conformal correlators of
heavy operators were reproduced both at zero and finite temperature from a bulk geodesic
calculation. Geodesics have also been used to explore dynamical settings in holography,
such as in [29–31], and quantum chaos [32, 33], among other things. Complex geodesics in
AdS have been studied, for instance, in [34–36].

Recently, there has been an increased interest in applying the standard tools of AdS/CFT
to probe the static patch of dS. A non-comprehensive list includes [37–53]. One approach is
to study flow geometries that interpolate between an AdS boundary and a dS interior [54–
56].7 Here, the presence of an asymptotic, timelike boundary permits us to interpret bulk
correlators in terms of correlation functions of the boundary quantum mechanics. For heavy
fields, we can employ a geodesic approximation to compute such correlators. In the two
sided geometries, the result is that geodesics between opposite boundaries only exist for a
short period of time (of order of the inverse temperature), after which there are no more
real geodesics [12]. The last geodesic is almost null and goes all the way to the future (or
past) infinity. This is reminiscent of what happens for the AdS double-sided black hole
in dimensions higher than 3. In that case, the singularity in the Penrose diagram bends
inwards, and spacelike geodesics from the boundary are able to reach it [34, 35]. However,
the boundary correlator is not expected to have singularities of this type. The resolution is
that there exist complex geodesics, whose contributions to the correlator are necessary to
reproduce the correct answer for the boundary correlator. A similar story might hold for
flow geometries where both the correlator and the geodesics can be computed in the bulk.

From a different perspective, it has also been advocated that the dual theory to dS
might live on a stretched horizon [57–59]. The microscopic candidate theory is an SYK
model in a particular double-scaled limit [60–63]. We computed correlation functions of

7Most of these constructions are two dimensional, but see [26] for higher dimensional examples.
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Figure 4. Density plot of |G(PX,Y )| for d = 4 and m = 25. In the large-m limit zeroes (blue dots)
accumulate near PX,Y = −1.

bulk scalar fields anchored at opposite stretched horizons in section 5. The conclusion is
that real geodesics exist only up to some critical time tc, that depends on the position of
the stretched horizon. After this time, the correlator starts exhibiting oscillations, and
the geodesic length becomes complex. Using holography, we would expect the boundary
theory to know about this time scale. It looks hard to envision how a standard SYK model
would incorporate this scale. Other proposals relating non-Hermitian SYK models to dS
include [64–66].

One might worry that some of the effects shown here might be hard to observe, due to
the exponential suppression in the large mass limit. However, the characteristic oscillations8

of the two-point function will already be present for large separations in the exact correlator
as soon asm > (d−1)/2. A harder question is whether there are signatures of the breakdown
of the approximation in the exact correlator at PX,Y = −1 in the large mass limit. As
in [34], we see subtle but distinct signatures of this breakdown in the exact correlator that
show up as an accumulation of zeroes near PX,Y = −1 as we increase the mass; see figure 4.

It would be interesting to study the role of complex geodesics in interacting quantum
field theories in dS, perhaps along the lines of the Källen-Lehmann representation [69], or
in other backgrounds with positive cosmological constant, such as dS black holes.

Finally, geodesics are not the only interesting extended extremal objects used in
holography. For instance, co-dimension 2 surfaces are related to entanglement entropy [70],
and co-dimension 1 (or zero), to holographic complexity [71, 72]. It is reasonable to expect
the existence of complex surfaces in the context of dS [14]; see also [22]. However, it would
be hard to interpret complex areas or volumes as measures of these naturally real quantities.
As we have seen, in the case of the two-point function, the complex geodesics combine such
that the final answer is real. It would be interesting to understand the more general role
that complex surfaces might play in holography.
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A WKB approximation

The Klein-Gordon equation as a function of P ≡ PX,Y can be solved systematically, order
by order in the large mass expansion, through a WKB approach. A similar procedure is
followed in appendix B of [73] for the case of timelike geodesics in AdS.

To start, we recall here equation (2.5),

(1− P 2)∂2
PG(P )− dP∂PG(P )−m2G(P ) = 0 . (A.1)

We take the ansatz,
G(P ) ∝ exp (−mX(P )) , (A.2)

where X is assumed to be independent of m. At leading order in the large mass limit, it
satisfies the equation, (

P 2 − 1
)
X ′(P )2 + 1 = 0 . (A.3)

This equation is solved by

X
(1)
± (P ) = c

(1)
± ± cos−1 P , forP < −1 , (A.4)

X
(2)
± (P ) = c

(2)
± ± cos−1 P , for − 1 < P < 1 , (A.5)

X
(3)
± (P ) = c

(3)
± ± cos−1 P , forP > 1 . (A.6)

The six constants c(i)
± will be fixed later. To next order, we add functions A(i)

± (P ), such
that now,

G(j)(P ) = mα
∑
i=±

A
(j)
i (P ) exp

(
−mX(j)

i (P )
)
, (A.7)

where α is an arbitrary constant and we again assume that the functions A(i)
± (P ) are

independent of m. Plugging this back in the Klein-Gordon equation, we obtain

(d− 1)PA(j)
i + 2

(
P 2 − 1

)
∂PA

(j)
i = 0 , (A.8)
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which is solved by
A

(j)
i (P ) = a

(j)
i (1− P 2)

1−d
4 , (A.9)

where a(j)
i are constant factors. Although a(j)

i and c(i)
± are a priori not independent, they

represent multiplicative factors with different powers of m, and thus they have to be
treated separately.

The general solution we obtain for the propagator at this order is given by

G(j)(P ) = mα

(1− P 2)
d−1

4

[
a

(j)
+ e−m(c(j)

+ +cos−1 P ) + a
(j)
− e
−m(c(j)

− −cos−1 P )
]
. (A.10)

The solutions (A.4)–(A.6) break down near P = ±1 when 1− P 2 ∼ m−2. In order to
connect the solutions in the three disjoint domains, we need to solve (A.1) exactly near
P = ±1 and then match the solution to the adjacent WKB solutions.

Let us start with P = −1. In the vicinity of this point, (A.1) simplifies to

2(P + 1)∂2
PG(P ) + d∂PG(P )−m2G(P ) = 0 , (A.11)

which is solved by

G(P ) = (P + 1)
1
2−

d
4
[
aI d

2−1

(
m
√

2P + 2
)

+ bK d
2−1

(
m
√

2P + 2
)]

, (A.12)

where a and b are two constants and I and K are modified Bessel functions. In order to
recover (2.10), we need to set

a = 2
1
2−

3d
4 m

d
2−1π1− d2 e−mπ , b = 0 . (A.13)

This completely fixes the form of the correlator. We now proceed to match this locally
exact solution to the WKB solutions in (A.4)–(A.5). For P < −1 taking the large-m limit
of (A.12) gives

G(P ) = −2
3
4 (1−d)m

d−3
2 π

1
2−

d
2 e−mπ(−1− P )

1
4−

d
4 sin

(
m
√
−2− 2P − π(d+ 1)

4

)
. (A.14)

Using cos−1 P ≈ π−i
√

2
√
−1− P , (A.4) can be matched to (A.14). This fixes the constants

to be

α = d− 3
2 , a

(1)
− = id−12−

d+1
2 π

1−d
2 , a

(1)
+ = 2−

d+1
2 π

1−d
2 , c

(1)
− = 2π , c

(1)
+ = 0 .

Plugging these back into (A.4), we obtain the simple expression

G(1)(P ) = m
d−3

2 (2π)
1−d

2 Re
[
e−m cos−1 P

(1− P 2)
d−1

4

]
, valid for P < −1 . (A.15)

This expression recovers (2.7), which has been obtained from a large-m limit of the exact
(hypergeometric) solution to (A.1).

Similarly, for P > −1 taking the large-m limit of (A.12) gives

G(P ) = 2−
3d+1

4 π
1
2−

d
2 (1 + P )

1
4−

d
4 em

√
2+2P−mπ . (A.16)
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Using cos−1 P ≈ π −
√

2
√
P + 1, this can be matched to the solution in (A.5) with the

plus sign,
a

(2)
− = 0 , a

(2)
+ = 2−

d+1
2 π

1−d
2 , c

(2)
+ = 0 .

Note that the only difference compared to the P < −1 solution is that the X− component
is exponentially suppressed and therefore no longer present.

The WKB solution to the correlator becomes

G(2)(P ) = 1
2 ×m

d−3
2 (2π)

1−d
2

e−m cos−1 P

(1− P 2)
d−1

4
, valid for − 1 < P < 1 . (A.17)

The expression recovers (2.8).
In order to connect the solution in the middle domain to that in P > 1, we need to

investigate the P ≈ 1 region. Here we have the locally exact solution

G(P ) = (1− P )
1
2−

d
4
[
ãI d

2−1

(
m
√

2− 2P
)

+ b̃K d
2−1

(
m
√

2− 2P
)]

. (A.18)

Matching it to (A.17) fixes the constants

ã = 0 , b̃ = 2
1
2−

3d
4 m

d
2−1π−

d
2 . (A.19)

En passant, we note that matching (A.18) to (A.6) implies that (A.17) remains valid in the
P > 1 region,

G(3)(P ) = G(2)(P ) , valid for P > 1 . (A.20)

Finally, note that in this WKB approximation the equation is solved order-by-order in
m, and so this method validates the subtle limit of the hypergeometric function that we
took in the main text.

B Quantum mechanical path integral

In this appendix, we would like to evaluate the following (Euclidean) path integral,

Z(Φ0,ΦN ) =
∫ δΘ(ΦN )=0

δΘ(Φ0)=0
DδΘ exp

(
−m

∫ ΦN

Φ0
dΦL(Φ, δΘ, δΘ̇)

)
, (B.1)

for a generic quadratic Lagrangian of the form

L(Φ, δΘ, δΘ̇) = 1
2δΘ̇

2 + α(Φ)
2 δΘ2 , (B.2)

with α(Φ) an arbitrary function of Φ. This path integral is the quadratic correction to the
saddle-point solution, and so we want the fluctuations to vanish at the endpoints. This is a
textbook path integral that can be solved by discretising the Φ interval, see for instance [74].

By definition, we would like to compute

Z(Φ0,ΦN ) = lim
N→∞

(
m

2π∆Φ

)N/2
∫
dδΘ1 · · ·

∫
dδΘN−1 exp

−m∆Φ
N−1∑
j=0

(
(δΘj+1 − δΘj)2

2∆Φ2 + αj
2 δΘ

2
j

) , (B.3)
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where Φj = Φ0 + j∆Φ and αj = α(Φj). The exponent in the previous equation can be
written in a quadratic form,−m∆Φ

N−1∑
j=0

(
(δΘj+1 − δΘj)2

2∆Φ2 + αj
2 δΘ

2
j

) = −
N−1∑
j,k=1

δΘj ajk δΘk , (B.4)

where ajk are the matrix elements of the following (N − 1)× (N − 1) matrix,

(ajk) = m

2∆Φ



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2


+ m∆Φ

2



α1 0 0 . . . 0 0
0 α2 0 . . . 0 0
0 0 α3 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . αN−2 0
0 0 0 . . . 0 αN−1


. (B.5)

If det(ajk) 6= 0, then we can do the multiple Gaussian integrals to obtain,

Z(Φ0,ΦN ) = lim
N→∞

(
m

2π∆Φ

)N/2( πN−1

det ajk

)1/2

= lim
N→∞

m

2π
1

∆Φ
(

2∆Φ
m

)N−1
det ajk


1/2

.

(B.6)
It is convenient to define the following function,

f(Φ0,ΦN ) ≡ lim
N→∞

(
∆Φ

(2∆Φ
m

)N−1
det ajk

)
. (B.7)

In order to take the N →∞ limit, we first define the discrete determinant,

DN−1 ≡
(2∆Φ

m

)N−1
det ajk

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 + ∆Φ2α1 −1 0 . . . 0 0
−1 2 + ∆Φ2α2 −1 . . . 0 0
0 −1 2 + ∆Φ2α3 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2 + ∆Φ2αN−2 −1
0 0 0 . . . −1 2 + ∆Φ2αN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(B.8)

Now we assume that the dimension of the matrix is variable, so n = N − 1 can vary. We
take the determinant using the last column to obtain the following recursion relation,

Dn =
(
2 + ∆Φ2αn

)
Dn−1 −Dn−2 . (B.9)

The first two determinants are given by D1 = 2 + ∆Φ2α1 and D2 = 3 + 2∆Φ2(α1 +
α2) + ∆Φ4α1α2. Using these along with (B.9), we can analytically continue the discrete
determinant to n ∈ Z≤0, finding, for example, D0 = 1 and D−1 = 0. Rewriting the recursion
relation in a more suggestive way, we obtain

Dn+1 − 2Dn +Dn−1
∆Φ2 = αn+1Dn . (B.10)
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But now we are interested in the continuum limit of this expression, where ∆Φ → 0 (or
N →∞), so we may interpret the above recursion relation as a second order differential
equation in the variable Φ = N∆Φ + Φ0. Note that the extra factor of ∆Φ in (B.7) cancels
since the above equation is linear in D. We then get,

d2f(Φ0,Φ)
dΦ2 = α(Φ)f(Φ0,Φ) . (B.11)

The boundary conditions D0 = 1 and D−1 = 0 give,

f(Φ0,Φ0) = lim
N→∞

∆ΦD−1 = 0 , (B.12)

df(Φ0,Φ)
dΦ

∣∣∣∣
Φ=Φ0

= lim
N→∞

∆Φ(D0 −D−1)
∆Φ = 1 . (B.13)

Now that we have f , we can go back to (B.6) to find the final result for the path integral,
which reads

Z(Φ0,ΦN ) =
√

m

2πf(Φ0,ΦN ) . (B.14)

In the main text we have α(Φ) = −1, so we get f(Φ0,ΦN ) = sin(ΦN−Φ0). This is the result
we use in the main text to compute the first correction to the geodesic length, see (4.16).

C Geodesic equation in higher dimensions

In this appendix, we show that the geodesic equations for the d-dimensional sphere are
solved by Θi = 0. The metric of dSd can be written compactly as

ds2 =
d∑
a=1

(
a−1∏
m=1

cos2 Θm

)
dΘ2

a , (C.1)

where −π
2 ≤ Θi ≤ π

2 for 1 ≤ i < d− 1 and 0 ≤ Θd < 2π with Θd ≡ Φ.
As in the two-dimensional case, we can use Φ to parameterise the geodesic so that it

will follow a path (Θ1(Φ), · · · ,Θd−1(Φ)), that extremises the length functional,

L̃d =
∫
dΦ

√√√√ d∑
a=1

(
a−1∏
m=1

cos2 Θm

)
Θ̇2
a , (C.2)

where again the dot represents a derivative with respect to Φ ≡ Θd, so that Θ̇d = 1. The
Euler-Lagrange equations are

∂L
∂Θi

− d

dΦ

(
∂L
∂Θ̇i

)
= 0 , (C.3)

where L is the integrand of (C.2). We find that

∂L
∂Θ̇i

= Θ̇i

L

i−1∏
m=1

cos2 Θm ,

∂L
∂Θ i

= −sin Θi cos Θi

L

(
i−1∏
n=1

cos2 Θn

) d∑
a=i+1

 a−1∏
m=i+1

cos2 Θm

 Θ̇2
a

 .

(C.4)
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with i = 1, . . . , d− 1. It can be shown that

d

dΦ

(
∂L
∂Θ̇i

)
=

Θ̈i

L
− Θ̇i

L2
dL
dΦ −

2Θ̇i

L

i−1∑
j=1

tan ΘjΘ̇j

 i−1∏
n=1

cos2 Θn . (C.5)

The equation of motion will therefore have an overall factor of
∏i−1
n=1 cos2 Θn. We will choose

the endpoints of the geodesics to lie at Θi(Φ1) = 0 and Θi(Φ2) = 0 for all i = 1, . . . , d− 1.
Therefore, although it appears that Θi = ±π

2 would solve the equation of motion for
i = 2, . . . d− 1, this solution does not obey the boundary conditions and so we neglect it.
For i = 1 this product evaluates to 1, and so we can focus on the equation without this
overall factor. Therefore, the equation of motion is

(
sin Θi cos Θi

 d∑
a=i+1

 a−1∏
m=i+1

cos2 Θm

 Θ̇2
a

 + Θ̈i −
Θ̇i

L
dL
dΦ − 2Θ̇i

i−1∑
j=1

tan ΘjΘ̇j

)
= 0 ,

(C.6)

where
dL
dΦ = ∂L

∂Θ̇i

Θ̈i + ∂L
∂Θ i

Θ̇i , (C.7)

with the various terms above defined in equation (C.4). Therefore, we can see that Θi = 0,
for i = 1, . . . d− 1 is a solution to equation (C.6).

D Details on the stretched horizon

It is useful to relate the global and static coordinates in embedding space. These are related
to the three-dimensional Minkowski coordinates by

X0 = sinh T =
√

1− r2 sinh t ,
X1 = cosϕ cosh T = r , (D.1)

X2 = sinϕ cosh T =
√

1− r2 cosh t .

Rearranging, we can write the global coordinates in terms of the static ones as

T (r, t) = sinh−1
(√

1− r2 sinh t
)
, (D.2)

ϕ(r, t) = cos−1
(

r√
cosh2 t− r2 sinh2 t

)
. (D.3)

It is clear from this that the points opposite each other with a fixed r = rst will have
the same T0 and their angles will be at ϕ0 and −ϕ0. This gives the dS invariant distance
written in the main text,

P stX,Y = −(X0)2 + (X1)2 − (X2)2 =
(
r2
st − 1

)
cosh 2t+ r2

st . (D.4)

We can also recover the critical time from geometric arguments. Starting from t = 0 and
increasing in time, note that there are two final geodesics at a time |t| = tc that are almost
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Figure 5. Illustration of the null rays involved in fixing the critical static time tc, after which
symmetric geodesics between the two stretched horizons do not exist anymore.

null. After this, there are no more real geodesics. Let us compute PX,Y for the endpoints of
the final geodesics. Recall that in d = 2 the full Penrose diagram is two copies of the usual
square. If we call Y the point on the right of the Penrose diagram, it is easy to see that its
antipodal point Ȳ will be outside the Penrose diagram and will be null separated to X, the
left endpoint of the geodesic, see figure 5. If X is null separated from the antipodal point of
Y , then the last geodesics have PX,Y = −1. To compute tc we just need to use the metric
in static coordinates (1.3), and find a null ray that passes through the point (r = 0, t = 0).
That ray intersects r = rst at exactly the tc given by (5.7). So, we have recovered this time
scale from a geometric point of view.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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