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1 Introduction

Recently, there have been some interest in the subject of µT T̄ deformed quantum field
theories [1, 2]. This deformation was defined originally for quantum field theories in 1+1
dimensions, for which the deforming operator is µ detT = µ(TzzT̄z̄z̄ − T 2

zz̄). This deforma-
tion is special in that the energy spectrum of the deformed theory on cylindrical space-time
R × S1, of radius R, can be deduced from the spectrum of the undeformed theory via a
flow equation of the form

∂

∂µ
Ei(R,µ) + Ei(R,µ) ∂

∂R
Ei(R,µ) + P 2

i (R)
R

= 0 (1.1)

where i is the index variable labeling the states, and

Ei(R,µ = 0) = Ei(R), Pi(r) = ni
R

(1.2)

is the spectrum of the undeformed theory. This flow equation can be recognized as the
Burgers equation and admits a formal solution which can be found for instance in (5.5)
of [1]. If we restrict to the case that the undeformed theory is conformal, we can impose that

REi(R,µ) (1.3)

is independent of R, and the deformed spectrum can be written more explicitly as

Ei =
√
R2

4µ2 + REi
µ

+ P 2
i −

R

2µ . (1.4)

There is some qualitative differences in the nature of the deformed spectrum depending on
the sign of µ [3]. We will primarily focus on the case where µ > 0 so that for every state
labeled by i of the undeformed spectrum, there is a deformed state with real energy Ei.

Following common practice, we will loosely refer to the µ detT deformation as the
µT T̄ deformation in this note. What is remarkable about this deformation is the fact that
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the theory is well defined as a quantum theory, in the sense that the spectrum is well
defined, despite the fact that the deforming operator is irrelevant. This is contrary to the
expectation based on conventional wisdom in renormalization group theory. The point
of [1, 2] was to emphasize how the T T̄ deformation is special and is an exception to this
general expectation.

Another interesting feature of T T̄ deformation is that it exhibits Hagedorn behavior
in the ultraviolet. An easy way to show this is to first note that a generic undeformed field
theory in two dimension will exhibit Cardy behavior in its ultraviolet spectrum1

S(E) ∼
√
cRE . (1.5)

Here, we are taking c ∼ cL ∼ cR to simplify the notation. We will restrict our consideration
to set of states with vanishing Pi. Then, for sufficiently large E compared to R/µ, we see
from (1.4) that the relation between the deformed and undeformed energy of the ith state is

Ei =
√
REi
µ

. (1.6)

From this, we can infer that
S(E) ∼ √cµE (1.7)

and from the coefficient of the linearly growing term for S as a function of E , we read off
the Hagedorn temperature

T T T̄H ∼ 1
√
cµ

(1.8)

up to numerical constants of order one which are not important for our discussion.2

The fact that the spectrum of generic T T̄ deformed theories is Hagedorn suggests
an intimate connection with stringy dynamics and various possible non-local phenomena.
Numerous extensions and generalizations have been considered and discussed by many
authors which by now are too long to list. We will instead refer to the review article [5] to
access additional references.

The issue which we wish to pursue in this note is what happens if the undeformed
theory has faster than Cardy growth in the density of states. For sake of arguments, let us
consider a spectrum which gives rise to the scaling

S(E) = #Eγ (1.9)

for some γ > 1/2. The same argument presented above leads to the conclusion that if
such a spectrum is T T̄ deformed, the resulting entropy for E > R/µ (where the effects of
T T̄ -deformation dominates) scales according to

S(E) = #′E2γ . (1.10)
1There are some subtleties in the precise definition of the concept of entropy which we discuss in ap-

pendix A.
2See [4] for a related analysis for the more general µT T̄ + ε+JT̄ + ε−T J̄ deformation.
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We see that if γ > 1/2, then the specific heat

dE

dT
= 1

d
dE

(
dS
dE

)−1 = −T−2
(
d2S

dE2

)−1

= T−2
(
#′(1− 2γ)2γE2γ−2

)−1
(1.11)

is a negative quantity. Because of this relation, the positivity of specific heat is also
expressed as the concavity condition3

d2S

dE2 < 0 . (1.12)

What this suggests is that if a conformal field theory exhibits a spectrum whose entropy
grows like (1.9) for γ > 1/2, then, it’s T T̄ deformation leads to a system which is thermally
unstable.

2 T T̄ deformed symmetric orbifold CFT

An immediate question which arises at this point is whether a scaling of the form (1.9)
for γ > 1/2 ever arises in a conformal field theory. It surely can’t arise in the ultraviolet
region because one expects a Cardy behavior there. In order for the scaling different than
Cardy behavior to be manifested over a large span of energies, some large dimensionless
parameter needs to appear as a data in specifying the theory.

Fortunately, one does not need to look very hard to find such a construction. The
large N symmetric product CFT

MN =MN/SN , (2.1)

where M represents some CFT with central charge c1, exhibits such behavior, as was
analyzed in [6]. We use the notation c1 to avoid confusion between the central charge of
M and the central charge c1N of MN/SN . (We will also be considering compact CFTs
M whose spectrum is discrete.) The analysis in [6] was mostly in the canonical ensemble,
but the corresponding microcanonical expression can be found in (1.12) and (5.8) of [7].
Let us take c1 to be of order one4 as opposed to scaling with N . One can infer the scaling
behavior of the entropy for the set of states with vanishing momentum P as5

S(E) ∼


2π
√
c1N∆

3 for c1N
6 � ∆

2π∆ for O(1)� ∆� c1N
6

O(1)→ 0 for 0 < ∆ < O(1)
, (2.2)

3There is some subtelty in this statement on which we will elaborate in the discussion that follows.
4We will take N to be a large but finite integer. We will also explore wide range of values for N−5/2 <

µ/R2 < N1/2 as is illustrated in figure 1. R sets the over-all scale of the problem.
5In [7], entropy for fixed potential conjugate to P was computed, but one expects fixed P = 0 entropy

and the fixed µ = 0 entropy to be the same in the thermodynamic limit. One way to see this is to note
that e4π

√
mm̄ ∼ e2π

√
E2−P2 in (2.6) of [6] is peaked at P = 0. In considering the T T̄ deformation, the sum

over P at most contributes terms depending logarithmically on E to S(E).
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where

∆ = RE + c1N

12 (2.3)

is the dimension of the operators of the symmetric orbifold CFT associated with the state
of energy E. The minimum energy Emin = −c1N/12R is the vacuum Casimir energy. The
size of the intermediate Hagedorn scaling region increases for large N . Above that region, in
the ultraviolet, the spectrum is that of Cardy.6 This Hagedorn behavior can be interpreted
as corresponding to a first order phase transition which is in the universality class as
Hawking-Page phase transition [9] which is expected to take place at the temperature
of order

THP ∼ 1
R

(2.4)

for CFT’s which admit a gravity dual. We expect the spectrum to be dense down to
∆ ∼ O(N0) ≡ O(1) corresponding to the operator of lowest dimension other than the
identity operator in the symmetric orbifold theory. These low lying states comes from the
untwisted sector of the symmetric orbifold CFT7 [10]. Strictly speaking, the system is
gapped in this region and the thermodynamic approximation breaks down. We will only
use the fact that S(T ) → 0 and 〈E〉 → −c1N/12R as T → 0 to be consistent with the
third law of thermodynamics (and the existence of a non-degenerate vacuum) which we
represent as O(1)→ 0 in equation (2.2).

The effect of T T̄ deformation on this spectrum can be obtained by substituting

E = E + µ

R
E2 (2.5)

into S(E) given in (2.2) illustrated in figure 1.
The behavior illustrated in figure 1 is quite reasonable. If T T T̄H > THP, then one finds

a cross-over from the Cardy behavior to the T T̄ deformed Hagedorn behavior at E ∼ R/µ
where T = T T T̄H =

√
1/c1Nµ. Things gets a bit more interesting when T T T̄H < THP. In this

case, the density of states must interpolate between S(E) = E/THP behavior at E < R/µ,
then cross over to the interpolating behavior S(E) ∼ µE2 in the range R/µ < E <

√
c1N/µ,

and S(E) = E/T T T̄H for
√
c1N/µ < E . Note that in the interpolating region, the entropy

scales as E2.
The take away message at this point is that the specific heat associated with this

system, in the interpolating region, is negative. Thermodynamics of systems with negative
specific heat is a subject which by now is well established [11–13], but some aspects can
be subtle and confusing at a first pass. We will therefore make several comments about
the negative specific heat using the T T̄ deformed symmetric product CFT as a concrete
example to highlight some of the basic points.

6The entropy S(∆) (2.2) matches at the cross-over points ∆ ∼ c1N/6 and ∆ ∼ O(1) in the spirit of [8].
7We thank T. Hartman for discussion on this point.
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Figure 1. S(E) and E(T ) for the T T̄ deformed symmetric product CFT. We actually plot S(∆)
and ∆(T ) ≡ RE(T ) + c1N/12 in a log-log plot to schematically highlight the scaling feature. We
are using ∆(T ) as a convenient parametrization of energy since it is dimensionless and is zero for
the vacuum state. Where the entropy scales as S(E) ∼ Eα, the slope of these lines correspond to α.
When the slope is one, the spectrum has Hagedorn density. Where the slope is 1/2, the spectrum
is Cardy like. The spectrum is super-Hagedorn and exhibits negative specific heat in the segment
where the slope is greater than one. The thick blue line describes the undeformed theory. We have
taken µ = R2(c1N)−n/2, or TT T̄H = (c1N)n/2−1/R, for n taking values −1, 1, 3, and 5, corresponding
to the brown, light green, dark green, and red lines, respectively. The strength of T T̄ deformation
increases as one goes from red to brown in the figure. The light green and brown corresponds to the
case where µ, the coefficient of the T T̄ deformation, is large so that TT T̄H < THP ∼ 1/R. We have
taken c1N = exp(100) so that the Hagedorn region of the undeformed CFT is hierarchically large.
In the deep IR, S(∆) goes from being O(1) to zero as ∆ goes from O(1) to zero in accordance
with the third law of thermodynamics. This corresponds to the infrared gap. This will cause
∆(T ) ∼ exp(−1/T ) to bend slightly to the left as is illustrated in plot (b) and eventually intersect
the dotted line at ∆ ∼ exp

(
−
√
c1Nµ/R2

)
as illustrated in figure 2. The dotted line indicates

the expected behavior of ∆(T ) for the system coupled with a heat bath through Gibbsian ruling.
The case illustrated with the brown curve (n = −1) has the T T̄ deformation parameter µ set so
large that the onset of TT T̄H Hagedorn spectrum is below the scale of the gap, but these features
are shielded by the Gibbsian ruling. Strictly speaking, the first order phase transition temperature
illustrated with the dotted line is slightly smaller than the TH . This is hard to see in a log-log
plot but is illustrated better in figure 2 which is a linear plot. What appears as sharp bends are
actually smooth transitions for large but finite N . Some numerical factors of order one have been
massaged to make the figure fit without changing the general feature. As such these figures should
be considered schematic.

3 Negative specific heat and the Gibbsian ruling

One standard lore is that given a partition function Z(β), one can write

T 2 d

dT
〈E〉 = d

dβ2 log(Z(β)) = Z ′′(β)
Z(β) −

(
Z ′(β)
Z(β)

)2
= 〈E2〉 − 〈E〉2 = ∆E2 > 0 , (3.1)

which appears to suggest that if a quantum system has a spectrum for which the Boltzmann
partition sum is well defined, the specific heat d〈E〉/dT is always positive. This appears
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then to imply that
∂2S

dE2 = d

dE

1
T

= −T 2 dT

dE
< 0 (3.2)

for S(E) in (1.10) with γ > 1/2, but there is a subtlety which invalidates this statement.8

What is correct is that 〈E〉(T ) is a monotonic function in T provided that the system
is coupled to a heat bath and that the thermodynamic equilibrium is achieved. When
the specific heat is negative, however, S(T ) is not a single valued function. One can still
define a Boltzmann sum over these states and 〈E〉(T ) will be monotonic, but the system
undergoes a phase transition jumping from one stable branch to another satisfying the
condition analogous to the Clausius-Clapeyron condition.9 This mechanism is referred to
as the “Gibbsian Ruling” in [12].

In other words, when a system is isolated, one can characterize its thermodynamic
properties using the microcanonical parameters, and one can explore the regions in pa-
rameter space where the specific heat is negative. As soon as a heat bath is introduced,
however, the unstable states are physically driven toward the coexistence state of stable
states. Negative specific heat of the T T̄ deformed symmetric product CFT simply indicate
that the system undergoes a first order phase transition. Since the symmetric product
CFT exhibited Hawking-Page phase transition even prior to the T T̄ deformation, all this
means is that the Hagedorn behavior of the T T̄ deformation and that of Hawking-Page
merge in the phase diagram. In more concrete terms, one expects the Hagedorn branch
illustrated by the vertical dotted lines in 1(b) to continue until it meets the thick blue line
bending toward small values of T as ∆ is decreased. In 1(a), the Hagedorn line of slope one
simply continues toward small ∆ but its slope gradually decreases so that T approaches
zero as ∆ approaches zero. This is best seen by drawing the S(E) in linear, rather than in
logarithmic, scale as is illustrated in figure 2(a).

To reiterate, spectrum giving rise to negative specific heat in microcanonical ensemble
gives rise to first order phase transition in the canonical ensemble.10 Our claim then is
simply the statement that T T̄ deformation of large N symmetric product CFT gives rise
to such a system. It is important to keep in mind, however, that the system cannot be in
equilibrium at temperature higher than T T T̄H (when THP < T T T̄H ) since the UV spectrum
is Hagedorn due to T T̄ deformation. When T T T̄H < THP, T T T̄H is the critical temperature
for the phase transition.

Similar general discussion about negative specific heat in T T̄ deformed conformal field
theories and in quantum mechanics was discussed11 in [16]. The physical interpretation
that the negative specific heat gives rise to first order phase transition in canonical ensemble
is explained there as well. In [16], the possibility of negative specific heat was explored
as arising from the small correction to the Hagedorn behavior of the T T̄ deformation

8In [11], the hydrogen-like spectrum is presented as a concrete example of a well defined spectrum giving
rise to a negative specific heat, violating the bound (3.2).

9It is straight forward to carry out an exercise where one assumes a concrete form of S(E) which leads
to a non-single valued S(T ) and then to explicitly compute 〈E〉(T ) for a Boltzman distribution which
necessarily comes out as a single valued function.

10Similar points were made about black holes in asymptotically anti de-Sitter space in [14, 15].
11The “Gibbsian ruling” in [12] is referred to as “Maxwell construction” in [16].
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Emin

S’’(E)>0
A

B

S

E

B

E

T

A

(a) (b)

Figure 2. (a) S(E) when 1/c1N � µ/R2 � 1 in linear plot is illustrated schematically in green.
The same data was also illustrated in green in figure 1(a) in a log-log plot. In order to fit all of the
features in one plot, this figure is not drawn to scale. For large E, the entropy S(E) asymptotes to
grow linear in E due to the Hagedorn spectrum of the T T̄ deformation. The dotted line between the
points A and B indicates the effect of Gibbsian ruling which eliminates the region which contians
the interval with negative specific heat (where S′′(E) > 0) and gives rise to a first order phase
transition. The slope of the S(E) curve corresponds to T−1. This plot shows that the temperature
associated with the Gibbsian ruling illustrated using the dotted line is slightly smaller than the
temperature associated with the Hagedorn temperature of the T T̄ deformation. The dotted line is
tangent to the S(E) curve at points A and B. Point B appears in figure 1(a). Point A appears as a
result of almost parallel lines meeting at ∆ ∼ O(1) because of O(1) corrections which are hard to see
in the logarithmic scale used in figure 1(a). The five tick marks on the horizontal axis corresponds
to E − Emin of order exp(−

√
c1Nµ/R2)/R, 1/R, R/µ,

√
c1N/µ, and c1N/R, respectively in the

increasing order. It should be stressed that B occurs near E ∼
√
c1N/µ which is set hierarchically

larger than A which is at E −Emin ∼ exp
(
−
√
c1Nµ/R2

)
. The blue line is S(E) of the symmetric

orbifold theory without any T T̄ -deformation. At E ∼ c1N/R (the right most tick mark), the blue
curve is crossing over from the Hagedorn behavior S ∼ RE to Cardy behavior S ∼

√
c1NRE. (b)

E(T ) for the same system. The five tick marks on the E axis are the same as plot (a). The tick
marks on the T axis corresponds to T = TT T̄H ∼ 1/

√
c1Nµ and T = THP ∼ 1/R.

of a system with Cardy like density of states. What we provide here is a simple and
concrete realization of negative specific heat in the T T̄ deformed largeN symmetric product
CFT system.

In figure 2, we illustrate S(E) for our system schematically so that the Gibbsian ruling
can be seen more easily than in figure 1(a).

4 Discussions

Now that we understand that there is a first order phase transition for T T T̄H < THP, in the
T T̄ -deformed large N symmetric orbifold CFT, there are a number of interesting questions
one might explore. One is whether there is an order parameter which can be used to
distinguish the different phases at the critical temperature. It is natural to expect that
some CFT operator could function as an order parameter. Perhaps it is a Wilson loop type
operator as was discussed in [9]. Once the order parameter is identified, it would be very
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interesting to look for a domain wall configuration interpolating between the two phases.
This issue can also be explored for the Hawking-Page transition itself, and should admit a
concrete realization as a solution on the gravity side of the holographic correspondence.

In this article, we considered the double trace (
∑
Ti)(

∑
T̄i) deformation, where Ti refers

to the stress energy tensor of the ith block of the product CFT. In a symmetric product
CFT, one can also consider the single trace

∑
i TiT̄i deformation which has interesting

features especially on the gravity side of the holographic correspondence [17–19]. It would
be interesting to explore the thermodynamic equation of states for the single trace T T̄
deformed symmetric product CFT and explore the interplay between Hawking Page and
T T̄ scales [4, 20].

Another interesting question is whether there are other situations where 1 + 1 field
theory exhibits scaling γ > 1/2 for the density of states (1.9). One simple system exhibiting
such a feature is the large N supersymmetric Yang-Mills theory in 1+1 dimensions with
16 supercharges [8]. This model contains states whose density scales as

S(E) ∼
√
Ng
−1/3
YM E2/3R1/3,

gYM√
N

< E < gYM
√
N. (4.1)

Naively, we have
γ = 2

3 >
1
2 . (4.2)

One must however account for the fact that the 1+1 SYM is not a conformal field theory,
and as such, we can not blindly apply (1.4). Nonetheless, one expects from experience that
the effects of T T̄ deformation tends to be universal. It seems reasonably likely that the T T̄
deformed 1+1 SYM will also exhibit first order phase transition in the canonical ensemble.
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A Microcanonical and thermal entropy

Entropy S(E) is defined in terms of the spectrum by the relation

Smicro(E) = log(ρ(E)) = (log
∑
i

δ(E − Ei)), (A.1)

where the overline refers to smearing over some range of energies

ρ(E) =
∫
dε f(Lε)ρ(E + ε), (A.2)

where f(Lε) is some smearing function centred around ε = 0, and L is a constant with
dimension of length. There is some arbitrariness in the definition of Smicro(E) which follows
from the arbitrariness of f(Lε) but this arbitrariness is sub-leading in the thermodynamic
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(large central charge) limit. More discussions on this subtle issue can be found in ap-
pendix A of [7]. We can also define S(E) parametrically in terms of

Sthermo(T ) = d

dT
T logZ(T ), 〈E〉 = T 2 d

dT
logZ(T ), Z(T ) =

∫ ∞
Emin

dE ρ(E)e−
E
T

(A.3)
and we expect Smicro(E) and Sthermo(〈E〉) to agree in the thermodynamic limit as long as
the equation of state S(T ) is single valued. We will henceforth drop the subscript “micro”
and “thermo.” Third law of thermodynamics will imply that S(E) approaches a constant
S0 as E → 0. We can set that constant S0 = S(E = Emin) = 0 by adjusting the overall
normalization of f(Lε). Sthermo(〈E〉) automatically goes to zero and 〈E〉 = Emin when
T = 0.
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