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1 Introduction

Local ground states in physical systems, described by a field theory, may not be stable. A
deeper minimum may exist, or appear with varying temperature, and quantum/thermal
tunneling can trigger a first-order phase transition. Such a transition takes the system from
the metastable false vacuum (FV) to a deeper minimum, called the true vacuum (TV). It
is initiated by a sudden appearance of a bubble of TV upon the homogenous configuration
of FV and the probability of such events is given by the FV decay rate.

The theory of bubble nucleation was pioneered by the works of Langer [1], and applied
to field theory by Kobzarev et al. [2]. These initial results were rigorously derived and
extended in seminal papers by Coleman on the bounce [3] (see also [4, 5]), the first quantum
corrections with Callan [6] and gravitational effects with de Luccia [7]. Derivation of the
rate was revisited in [8] and recently in [9, 10], elucidating and confirming previous results.

Developing a theoretical understanding of bubble nucleation and subsequent expansion
is important for several reasons. The stability of the potential in the Standard Model (SM)
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depends largely on the masses of the SM Higgs and the top. The bound on the Higgs
mass was historically considered in [11, 12], based on absolute stability, and in [13, 14] from
metastability/longevity. There has been tremendous progress on quantifying the SM rate,
for example in recent works [15, 16] and references therein. In most theories beyond the
SM, the presence of new particles may affect the stability of the Higgs vacuum or even
alter the landscape of the vacua altogether. From these, only the physical vacua need to be
selected, which requires them to be either globally stable or at least sufficiently long-lived
when metastable. Thus, a precise knowledge of the decay rate puts specific constraints on
the parameter space of such models.

Furthermore, the shape of the potential may change significantly at high temperatures
in the early universe, leading to a first-order phase transition [17–19]. At a sufficiently high
temperature, the time dimension compactifies and gets replaced by temperature [20, 21].
The FV decay rate at finite T then depends on the three-dimensional bounce and the
fluctuations come from the D = 3 determinant as well [22], see also the recent works [23–27]
regarding theoretical progress on the uncertainties of thermal rates.

Colliding bubbles in the early universe create gravitational waves [28–37]. These may
be strong enough to be detected by the present observatories aLIGO [38] and aVIRGO [39],
although most TeV scale phase transitions typically predict signals in reach of upcoming
detectors, such as LISA [40–42], DECIGO [43] and BBO [44, 45]. Moreover, the expanding
bubble walls may carry CP-violating interactions and be responsible for the creation of
matter over anti-matter, for example in electroweak baryogenesis [46] or in extended scalar
sectors. Other examples in which phase transitions are relevant include the creation of
primordial B-fields [47–51], relation to [52, 53] and creation of dark matter [54], neutrino
physics [56, 57] and primordial black holes [58], among others.

The usual approach to the calculation of the bubble nucleation rate is based on the
semi-classical saddle point approximation in Euclidean spacetime. This requires finding
the bounce solution, which is an unstable [59] instanton configuration that extremizes the
action and interpolates between the two minima. An important simplification is that the
bounce is proven to be O(D) symmetric [60] for single field theories in flat spacetime with
mild restrictions on the potential. This proof was extended to multi-fields in [61].

Currently, various ways of finding the bounce configuration are available. The first
solution was found already in the original work [3] and was derived in the so-called thin
wall (TW) limit, where the two minima are nearly degenerate. In such a setting, the size of
the instanton becomes large, and therefore the transition region (or the wall of the bounce)
from FV to TV becomes narrow, hence thin wall. This limit may be useful as an order of
magnitude estimate, e.g. in thermal field theory when the nucleation temperature is not far
away from the critical one. However, its applicability is limited and deteriorates [62, 63]
when minima become more separated.

It is obviously desirable to have analytic control over the bounce part of the rate and
some examples of exact solutions exist, for instance the Fubini-Lipatov instanton [64, 65]
and its generalization [66], pure quartic [67], logarithmic [68, 69] and quartic-quartic
potentials [70, 71]. Also notable is the triangular potential with two piecewise linear
segments that was solved exactly in D = 4 [72], see also [73]. The validity of such kink
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solutions was studied in [74] for a single field and in [75] for multi-field theories. The
linear-quadratic solution was found in [70], while [76] performed the analytic continuation
to Minkowski space.

Based upon the piecewise linear solution [72], a general construction was developed
in [77]. An arbitrary number of linear segments were joined into a polygonal shape, which
was solved semi-analytically in D = 2, 3, 4, 6, 8 dimensions. The piecewise linear was
perturbatively expanded to second-order corrections in the potential and most significantly
to any number of fields. This approach was implemented in the FindBounce package [78],
which allows for a fast and arbitrarily precise evaluation of the bounce. In recent years, new
approaches to the bounce calculation were proposed, based on the tunneling potential [79, 80],
machine learning techniques [81] and real time formalism [9, 82–84]. Nowadays, several
publicly available tools exist that tackle the issue, even with multiple fields [85–88].

Once the bounce is found, one can include one quantum corrections [6], which is a
rather more involved calculation. It includes fluctuations from all the fields that couple
to the bounce and thus enter into the second variation of the action, which ought to be
evaluated in the presence of the bounce. This is similar to the path integral in quantum
mechanics [89, 90], where one computes the (semi)classical particle trajectory and then
performs the path integral around it. To compute the path integral in field theory, we
have to find the eigenvalues of the fluctuation operator, which is the second functional
derivative of the action, and then integrate over the resulting Gaussian coefficients. We are
thus left with a functional determinant [6], a product of all the eigenvalues of the operator.
Because the bounce is O(D) symmetric, the fluctuations also come from a radially symmetric
operator, which can therefore be decomposed into orbital multipoles. The product over
all the multipoles is divergent and has to be properly regulated, e.g. with dimensional
regularization, where poles of Γ functions and the renormalization scale enter. When the
rate is written in terms of renormalized couplings, these artifacts go away, and one is left
with a finite result. This much was stated already in the original work, however, an explicit
solution is missing.

Following the original derivation of the rate [6], a couple of works found solutions in
the TW, in particular [91] in D = 4 and [92] in D = 3. In more recent years, another
calculation [93] was done using Green’s functions, claiming a numerical discrepancy with [91].
These works used explicit eigenfunctions with fixed (Dirichlet) boundary conditions. Instead
of having to find all of these, one can use the Gel’fand-Yaglom [94] theorem1 and consider
solving a semi-open boundary condition, which automatically gives the product of eigen-
values without having to compute them.2 This approach was adopted when deriving the
renormalized rate using the WKB [100] and ζ function [101] formalism, using a finite orbital
cutoff [100]. It is well suited for numerically evaluating the rate [102] and was used to obtain
an analytic result for the complete parameter space of the quartic-quartic potential [71]
in D = 4. Progress has also been made regarding the precise treatment of gauge bosons,
leading to gauge invariant rates [103, 104] in single and multi-field theories [105].

1The paper [94] is a survey article, where the first instance of the actual theorem is attributed to Cameron
& Martin [95] and the derivation due to Montroll [96], see also [5].

2For pedagogical examples involving functional determinants and physical applications, see [90, 97–99].
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The aim of the present paper is to work out the TW decay rate analytically, including
the bounce and quantum fluctuations via the Gel’fand-Yaglom theorem, while keeping the
number of dimensions arbitrary. The paper is organized in the following way. We start by
giving the expressions for the decay rate in D = 3, 4 in section 2. This is followed by the
general setup for the calculation of the rate at one loop in section 3. The entire section 4
is devoted to the Euclidean action, where we define the thin wall expansion and give the
bounce field configuration in section 4.1, followed by the counter-terms and the running of
parameters in section 4.2. Section 5 focuses on the quantum fluctuations. After defining
the problem and setting up the expectations for the behavior of the fluctuations, we first
derive the results for low multipoles in section 5.1. These contain the single negative
unstable eigenvalue and the D translational zero modes, which are removed perturbatively
in section 5.2. We then move on to high orbital modes in section 5.3 and find an expression,
which is valid in the UV. In section 6 we regularize the functional determinant and show
that the final decay rate is free of divergences and independent of the renormalization
scale. We conclude and give an outlook in section 7. Technicalities are delegated to the
appendices. The Euclidean action, valid to higher orders can be found in the appendix A,
details on the functional determinants are given in B and the UV integrals that enter in the
renormalization procedure are collected in C. In appendix D we compute the renormalized
functional determinant for the single real quartic using the ζ formalism and show that it
matches the one using Feynman diagrams. The final appendix E contains a general result
for the functional determinant in any dimension.

2 Summary of the results

We consider the following potential for a real scalar field φ,

V = λ

8
(
φ2 − v2

)2
+ λ∆ v3 (φ− v) , (2.1)

which is a slightly rewritten form of what was considered in [3, 6]. This notation introduces
a dimensionless coupling ∆, which governs the tunneling and defines the TW limit when
∆→ 0. The linear term in φ is proportional to ∆ and tilts the mexican hat potential, which
breaks the degeneracy of the two minima, as seen in figure 1.

We assume that 0 < λ� 1 and 0 < ∆� 1 are small enough for the theory to remain
perturbative and for the TW expansion to be applicable. We chose ∆ > 0 to keep the FV
on the right (see figure 1), while an upper bound from having the second minimum is given
by ∆ < 1/(3

√
3) ' 0.19. In this regime we compute the FV decay rate analytically and find

Γ
V
'
((

S

2π

) 12
eD−1λv

2
)D/2

exp

−S − 1
∆D−1


20+9 ln 3

54 , D = 3 ,
45−4π

√
3

192 , D = 4 ,

 (2.2)

with the Euclidean bounce action given by

S = 1
∆D−1


25πv
34
√
λ

(
1−

(
9π2

4 − 1
)

∆2
)
, D = 3 ,

π2

3λ

(
1−

(
2π2 + 9

2

)
∆2
)
, D = 4 .

(2.3)
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V (')� V ('FV)

Figure 1. The potential (2.1) as a function of ϕ ≡ φ/v with VFV subtracted, such that the difference
vanishes at the FV. We set λv4 = 1, ∆ = 0.05 in the plot.

Here the ∆3 corrections vanish, hence S is valid up to O(∆4). The rate in (2.2) consists of
the prefactor and the exponent. Both λ and v are dimensional parameters in general D,3
but λv2 always has mass dimension 2, or equivalently (length)−2, and ∆ is dimensionless.
The argument of the exponent in (2.2) is dimensionless and has two parts. The first comes
from the renormalized bounce action in (2.3), given in terms of renormalized couplings,
defined at the scale µ0 =

√
λv. The second one comes from the functional determinant (6.9)

in D = 3, and (6.20) in D = 4. We omit the O(∆2/∆D−1) and higher corrections in such a
term. As expected, the rate goes to zero either when λ→ 0, in which case the potential
vanishes, or when ∆ → 0, in which case the vacua are degenerate. Depending on the
relative size of the couplings, the ∆2 correction of the action in (2.3) and the one loop
contribution from the functional determinant in (2.2) may be comparable and they should
both be included.

3 Setup

The problem of computing the FV decay rate was lucidly set up in [3, 6]. The rate at one
loop is given by (3.11) of [6], which we write for generic D dimensions in Euclidean space as

Γ
V

=
(
SR
2π~

)D
2
∣∣∣∣∣ det′O
detOFV

∣∣∣∣∣
− 1

2

e−
SR
~ −Sct (1 +O(~)) , (3.1)

where O = −∂µ∂µ + V (2), SR is the renormalized bounce action and Sct is its one loop
counterterm. The second derivative of the potential with respect to φ is denoted by V (2)

and is calculated on the bounce field configuration, while V (2)
FV is evaluated at the FV. The

det′ signifies the omission of zero eigenvalues from the determinant. There are D such
eigenvalues associated with the translational symmetry in D dimensions. The removal of
each zero mode brings about the insertion of

√
S/(2π~), hence we get the first factor in the

equation above. In order to keep the tree level action finite, we subtract the constant FV
3In particular, at tree level [λ] = 4−D, [φ] = [v] = D/2− 1, and [∆] = 0.
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part of the potential, as shown in figure 1. Likewise, the FV of the action counter-term
must be subtracted to keep Sct finite at one loop.

The rate is thus a properly renormalized expression, free of UV divergences and
independent of the renormalization scale µ at a given loop level. As we will see, the lnµ
and 1/ε terms4 coming from SR and Sct in the exponent, will be compensated by the terms
coming from the regularized functional determinant.

We kept factors of ~ explicit in (3.1), but from here on we set ~ = 1. One can
recover the ~ counting from the dimensionless action by considering the kinetic term to be
(∂µφ)2 = v2(∂µϕ)2, while the potential term has an overall λv4 factor when expressed in
terms of ϕ. Rescaling v → ~−1/2v and λ→ ~λ gives S → S/~.

4 The bounce

Let us begin with the bounce field configuration, which enjoys a spherical O(D) symmetry,
as shown in [3, 60]. The bounce extremizes the Euclidean action

S =
∫
D

(1
2 φ̇

2 + V − VFV

)
,

∫
D

= Ω
∫ ∞

0
dρ ρD−1 , Ω = 2πD/2

Γ(D/2) , (4.1)

where ρ2 = t2 + x2
i is the Euclidean radius, Ω is the D-dimensional surface element and the

dot denotes a derivative over ρ. We need to subtract the FV constant VFV, i.e. the value of
the potential at the FV, to make the action finite. The extremization of S corresponds to
solving the Euler-Lagrange equations of motion with appropriate boundary conditions:

φ̈+ D − 1
ρ

φ̇ = dV
dφ , φ̇(0) = φ̇(∞) = 0 ,

φ(0) = φin , φ(∞) = φFV .

(4.2)

These conditions ensure that the solution remains finite [3], while φin is in principle arbitrary.
As we shall see, the TW expansion automatically sets φin to the TV value φTV.

4.1 Thin wall expansion of the action

Throughout this work, we use ∆ as an expansion parameter for the bounce action and the
fluctuations. The entire perturbation series is set in powers of ∆: the expansion for the
fields, the Euclidean action and the functional determinant. It is convenient to work with
the dimensionless field ϕ and the dimensionless Euclidean coordinate z, defined as

φ

v
≡ ϕ =

∑
ϕn ∆n , z =

√
λv ρ− r , (4.3)

where n ≥ 0 counts the powers of ∆, starting from the leading n = 0 term. The size of the
bounce instanton (or the bubble wall) is set by the dimensionless Euclidean radius r, which
becomes infinite in the TW, when ∆→ 0. This justifies the expansion

r = 1
∆
∑

rn ∆n . (4.4)

4The lnµ is only present in even D dimensions. Using dimensional regularization, we define ε = 4−D in
four dimensions, and analogously in generic D.
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Figure 2. Bounce field configuration in D = 4 with ∆ = 0.1. Left: leading order ϕ0, center: ϕ2
from (4.7) and on the right: ϕ = ϕ0 + ∆ϕ1 + ∆2ϕ2.

The bounce equation in (4.2) is rewritten using dimensionless variables, expanded in
powers of ∆ and solved in appendix A at each order, such that

ϕ0 = thz2 , (4.5)

ϕ1 = −1 , (4.6)

ϕ2 = 3
4(D − 1)ch2(z/2)

(
(2−D − 2 (4 + chz) ln(1 + ez)) shz

− z (D − ez (4 + shz)) + 3(Li2(−ez)− Li2(−e−z))
)
.

(4.7)

At the leading order the bounce solution ϕ0 interpolates between the two symmetric
minima. At next-to-leading order the bounce gets shifted by a constant ϕ1, while at n = 2
the ϕ2 describes a non-trivial deformation of the bubble profile, as illustrated on figure 2.
Examining the asymptotics at ρ = 0,∞ or z = ±∞, we have

ϕ0(z → ±∞) = ±1 , ϕ1(z → ±∞) = −1 , ϕ2(z → ±∞) = ∓3
2 , (4.8)

as in figure 1. This implies that the extremal ends of the bounce correspond to the two
vacua φ(ρ = 0) = φin = φTV, φ(ρ→∞) = φFV, with increasing level of precision at higher
orders of ∆. While this construction does not allow for an arbitrary φin outside of the TV,
one does get a more accurate estimate of the action at higher powers of ∆, as reported in
appendix A, where we go up to ϕ3.

Solving the bounce equation at the leading order gave us the shape of the bounce in
ϕ0, but not its position. In order to complete the extremization, we need to fix the bubble
radius r. To fix r ∼ r0/∆ we have to go to n = 1. This can be done by either extremizing
the action explicitly as in [3] or implicitly by solving (4.2) at n = 1. These two procedures
are equivalent and interchangeable at any order. As explained in appendix A, the radii up
to second order, are given by

r0 = D − 1
3 , r1 = 0 , r2 = 6π2 − 40 +D(26− 4D − 3π2)

3(D − 1) . (4.9)

With the shape and position of the bounce fixed, the leading order action is given by

S0 = Ω v4−D

λD/2−1∆D−1

(
D − 1

3

)D−1 2
3D . (4.10)
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While v and λ are dimensional, the combination v4−D/λD/2−1 that enters in S0 is dimension-
less in any D. The action diverges as 1/∆D−1 and thereby suppresses the rate in the TW
limit. In D = 4 we have S0 = π2/(3λ∆3), so the decay rate goes as Γ ∝ exp (−π2/(3λ∆3)).
This is reminiscent of the exp(−1/g2) behaviour of gauge instantons [106], with g the gauge
coupling, since quartics like λ act as g2. It is also closely related to the unstable quartic of
the SM, where Γ ∝ exp(−8π2/(3λ)). The TW result in (4.10) multiplies it by 1/∆3, which
further suppresses the rate.5

Proceeding to higher orders, as worked out in appendix A, we get the following correction

S = S0

(
1 + ∆2

(
1 +D

(
25− 8D − 3π2)
2(D − 1)

))
, (4.11)

which is valid up to O
(
∆4), since the ∆3 term vanishes. This result is of interest for two

reasons: it provides a more precise estimate of the TW action in any D, and serves as an
upper bound for ∆, below which the TW approximation is still valid.

4.2 Renormalized bounce action

Because we are calculating a one loop quantity, we need to renormalize the bounce action,
which requires adding the action counter-terms and running the relevant couplings. We
follow the usual procedure with dimensional regularization, where one encounters a pole
near integer even dimensions. Here we discuss the D = 4 case, where the deviation from
the integer D is given by the usual ε = 4−D.

Four dimensions.

Counterterms. We begin with the textbook derivation of counter-terms that renormalize
the potential without the ∆ term. We then turn on the linear ∆ term and show that it does
not affect the UV structure of the theory at one loop. In other words, the ∆ counter-term
is zero and this parameter does not run.

Let us define the counter-term potential Vct and a shorthand V (n) for the n-th derivative,
evaluated at φ = 〈φ〉,

Vct = δm2

2 φ2 + δλ
4 φ

4 , V (n) ≡ dnV
dφn (〈φ〉) . (4.12)

Removing the infinity from the four-point function fixes the quartic counter-term

+ = 0 , ⇒ δλ = 1
(4π)2 2ε

V (4)2 . (4.13)

The 1/ε pole in the 3-point function vanishes under the condition

+ = 0 , iff V (3) = 〈φ〉V (4) . (4.14)

5As discussed above, the dimensions of λ and v are such that their ratio v4−D/λD/2−1 in (4.10) is
dimensionless. However, in D = 4 thermal field theory fields have dimension 1, while [λ] = 0, whereby the
S3 action from (4.10) has dimension 1. In such an instance, the 3D action gets divided by T to keep the
exponent S3/T in the rate dimensionless.
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This relation is automatically satisfied when the cubic term, i.e. V (3), comes solely from
expanding the quartic after spontaneous breaking. Moving on to the tadpole, we remove
the divergence with the quadratic counter-term

+ = 0 , δm2 = 1
(4π)2 ε

V (4)
(
V (2) − 1

2V
(4)〈φ〉2

)
. (4.15)

Using this counter-term and the relation in (4.14), the two-point infinities cancel automati-
cally

+ + = 0 . (4.16)

This procedure was set up for an arbitrary potential, now we can apply it to our V , given
in (2.1). When the two minima are degenerate, the potential reduces to the simple quartic
with 〈φ〉 = v, where all the consistency relations, derived above, are valid.

Now turn on the linear ∆ term. The fourth and third derivatives remain the same, such
that the δλ in (4.13) and the running of λ is unaffected. On the other hand, the position of
the minima shifts away from v, so 〈φ〉 is ∆-dependent. However, the finiteness of tadpoles
and 2-point functions was derived for arbitrary 〈φ〉 and remains valid for any ∆. Thus, even
if we were to add a counter-term for ∆, we would have to set it to zero and ∆ does not run.

With the δλ and δm2 at hand, we can calculate the counter-term for the Euclidean
action. Plugging the V from (2.1) into (4.13) and (4.15), we have

δλ = 9λ2

(4π)2 2ε
, δm2 = − 3λ2v2

(4π)2 2ε
. (4.17)

The 〈φ〉 terms in (4.15) cancel away and δm2 does not depend on ∆ to all orders in n.
With (4.17) we can compute the one-loop counter-term action:

Sct =
∫
D

(Vct − VctFV) = 3λ2

8 (4π)2 ε

∫
D

(
3
(
φ4 − φ4

FV

)
− 2v2

(
φ2 − φ2

FV

))
' − 3

16ε∆3 .

(4.18)

This integration was performed in the TW expansion up to O(∆2), which requires including
ϕ0 and ϕ1, see (A.61) and (A.64).

Running. With the δλ computed in (4.13), we get the usual one loop βλ function that
defines the running of λ

βλ = dλ
d lnµ = 9λ2

(4π)2 , λ(µ) ' λ0 + 9λ2
0

(4π)2 ln µ

µ0
. (4.19)

Here µ2
0 ∼ V

(2)
FV ∼ λ0v

2 is the scale where the renormalized λ0 is measured by an anxious
observer in the FV. Plugging the running coupling λ(µ) into the action, and including the
counter-terms in (4.18), we obtain

SR + Sct = S

(
1− 9λ0

(4π)2

(1
ε

+ ln µ

µ0

))
, (4.20)
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with S the tree-level bounce action given in (4.11). This is the combination that enters at
the exponent in (3.1), and as we shall see, these are precisely the terms that will cancel the
divergence and the µ-dependence from the functional determinant. Moreover, while the
semi-classical S in (4.10) goes as ~−1, the running and counterterms are one loop suppressed,
and thus one order higher in ~, i.e. ~0.

Other dimensions. In the MS scheme the poles of Γ functions vanish in odd dimensions
and there are no associated infinities and no renormalization scale, such that SR + Sct = S.
In higher even dimensions, diagrams with more than two propagators become divergent,
which means one has to introduce further counterterms for φ6 in D = 6 and so on. These
all get fixed, starting from the last divergent diagram with the highest number of external
legs, and then going down to the quartics and tadpoles. In the end, all of them depend
only on λ and v, and no new parameters enter. In case there is a clear physical motivation
to consider a particular dimension D ≥ 6, one can follow through these steps. However, the
main focus of this work is on the functional determinant, therefore a general treatment of
counterterms for any D goes beyond our scope.

5 Fluctuations

With the Euclidean action and the associated bounce at hand, we are ready to move on to
the main objective, the calculation of the fluctuations. We wish to evaluate the ratio of
determinants in (3.1) ∣∣∣∣∣ det′O

detOFV

∣∣∣∣∣
− 1

2

=
∣∣∣∣∣
∞∏
l=0

det′Ol
detOlFV

∣∣∣∣∣
− 1

2

. (5.1)

Exploiting the O(D) symmetry of the problem, we perform the angular separation of the
radial variable ρ, and expand the fluctuations in hyper-spherical multipoles l:

Ol = − d2

dρ2 −
D − 1
ρ

d
dρ + l (l +D − 2)

ρ2 + V (2) , (5.2)

where V (2) = d2V/dφ2 is evaluated on the bounce. The operator OlFV is the same as Ol,
with V (2) replaced by V (2)

FV . The prime in det′ means that the zero eigenvalues are removed.
The functional determinant detOl is computed around the bounce configuration, i.e.

φ = φ+ ψ, where φ is the bounce solution computed in the previous section and ψ are the
fluctuations around it. To compute the determinant, one needs to define the basis for ψ and
find the eigenvalues of the fluctuation operator with fixed Dirichlet boundary conditions at
ρ = 0 and ∞, and then multiply them. However, instead of solving the entire eigensystem,
we take advantage of the Gel’fand-Yaglom theorem [94], according to which

detOl
detOlFV

= lim
ρ→∞

(
ψl(ρ)
ψlFV(ρ)

)dl
, (5.3)

where the degeneracy is given by [90, 101]

dl = (2l +D − 2)(l +D − 3)!
l!(D − 2)! . (5.4)
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Setting l = 0 we get d0 = 1 regardless of D and thereby a single s-wave eigenmode, whose
eigenvalue should be negative [107]. On the other hand, plugging l = 1 into (5.4) gives
d1 = D and corresponds to translations of the nucleated bubble in all possible D directions.
Since the bounce is O(D) symmetric and can nucleate anywhere, we expect to get D
eigenmodes with zero eigenvalues due to translational symmetry. We will take care of them
in section 5.2.

The ψl and ψlFV that enter in (5.3) are now solutions of

Ol ψl = 0 , OlFV ψlFV = 0 , (5.5)

with the boundary conditions ψl(ρ ∼ 0) ∼ ρl, ψlFV(ρ ∼ 0) ∼ ρl fixed only at the origin.
The theorem allows to compute the ratio of the two determinants

Rl ≡
ψl
ψlFV

, and detOl
detOlFV

= Rl(∞)dl , (5.6)

without explicitly computing all the eigenvalues. We can trade the ψl in (5.5) for Rl (see
appendix B), and solve

ψ̈lFV + D − 1
ρ

ψ̇lFV =
(
l (l +D − 2)

ρ2 + V
(2)

FV

)
ψlFV , (5.7)

R̈l + 2
(
ψ̇lFV
ψlFV

)
Ṙl =

(
V (2) − V (2)

FV

)
Rl , (5.8)

with boundary conditions

ψlFV(ρ ∼ 0) ∼ ρl , Rl(ρ = 0) = 1 , Ṙl(ρ = 0) = 0 . (5.9)

The main advantage of analyzing Rl directly [108] is that it is bounded on the entire ρ
interval, because V (2) − V (2)

FV
ρ→∞−−−→ 0. This was not the case for ψl and ψlFV, which diverge

exponentially when ρ→∞, even though their ratio stays finite. Once we solve (5.8) and
find Rl(∞), we expect the following behavior

Rl(∞) =


< 0, l = 0 ,
0, l = 1 ,
1, l� 1 .

(5.10)

The first two come from the instability of the bounce and translational invariance. We will
calculate the spectrum in this low multipole/IR limit in the upcoming section 5.1 and then
show how to remove the zeroes from the determinant in 5.2. The last limit in (5.10), when
l� 1, becomes obvious upon examining (5.2). In this UV limit, the orbital term dominates
over the rest, and the V (2) term can be neglected. Therefore, there is no significant difference
between Ol and OlFV, so that ψl → ψlFV or Rl → 1. The behavior of Rl in the UV will be
examined separately in section 5.3.
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5.1 Low multipoles

To study the low multipoles, let us start with the FV part in (5.7). Introducing

ν = l + D

2 − 1 , (5.11)

rescaling ψlFV → ρ
D−1

2 ψlFV and switching to dimensionless variables, (5.7) simplifies to

dψ2
lFV

dz2 =
(
ν2 − 1

4
(z + r)2 + Ṽ

(2)
FV

)
ψlFV , (5.12)

with the FV constant given by

Ṽ
(2)
FV = 1

2(3ϕ2
FV − 1) = 1− 3∆− 3∆2 . (5.13)

We are only interested in terms up to ∆2 and will consistently be dropping the ∆p>2 powers
in this section, such that

dψ2
lFV

dz2 =
(

1− 3∆− 3∆2 + ∆2
(
ν2 − 1

4
r2

0

))
ψlFV . (5.14)

It becomes clear why we need to go to O(∆2): there is no l dependence at lower orders.
Moreover, up to this order, there is no z dependence6 on the right hand side of (5.14), so
the FV solution is simply

ψlFV(z) ' cFV exp
[(

1− 3
2∆ +

(
ν2 − 1

4
2r2

0
− 21

8

)
∆2
)
z

]
. (5.15)

We expanded the exponent in powers of ∆ and dropped the term proportional to e−z in
order to satisfy the boundary condition (5.9) at z → −∞, corresponding to ρ = 0. The FV
solution has the form ψlFV = ψlFV0ψ

∆
lFV1ψ

∆2
lFV2 . . . that motivates taking a multiplicative

expansion for Rl

Rl =
∏
n≥0

R∆n

ln , lnRl =
∑
n≥0

lnRln∆n . (5.16)

One further simplifying technicality in the calculation of Rl is to work with an exponentially
compensating variable x = ez, which turns (5.8) into

d2Rl
dx2 + 1

x

(
2dψlFV/dz

ψlFV
+ 1

) dRl
dx = 1

x2

(
Ṽ (2) − Ṽ (2)

FV

)
Rl . (5.17)

Here Ṽ (2) = 1
2(3ϕ2 − 1), with ϕ the bounce solution from section 4.1. We plug the bounce

expansion from (5.16) into (5.17) and solve it up to order ∆2. Up to this order, the
combination dψlFV/dz

ψlFV
does not depend on x. Further details of the calculation of Rl are

6The z dependence enters from O(∆3) onwards.
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deferred to appendix B, here we only discuss the results. From the first equation in (5.16),
we have

Rl = Rl0

(
1 + ∆ lnRl1 + ∆2

(1
2 ln2Rl1 + lnRl2

))
, (5.18)

and the solutions of (5.17) up to n = 2 are found to be

Rl0 = 1
(1 + x)2 , (5.19)

lnRl1 = 3 (r + ln x) , (5.20)

lnRl2(x→∞) = 3
4

(l − 1) (l +D − 1)
(D − 1)2 x2 . (5.21)

In the last equation, we only show the high-x part of lnRl2, as prescribed by the Gel’fand
Yaglom theorem (5.3), which grows as x2. In this limit, the Rl0 goes as x−2, implying that
Rl → 0 for the first two orders and a non-vanishing result comes in at O(∆2). Indeed,
lnRl2 ∝ x2, which compensates exactly the large-x behavior of Rl0. As anticipated, the
first non-trivial l-dependent term appears at second order in ∆ and is obtained by plugging
the solutions into (5.18), such that

Rl(∞) = ∆2eD−1 3
4

(l − 1) (l +D − 1)
(D − 1)2 . (5.22)

Some comments on the low-l fluctuations are in order.

• The final expression in (5.22) conforms to expectations from (5.10): the ratio of
multiplied eigenvalues is negative for l = 0 and vanishes for l = 1.

• The Rl(∞) does not go to 1 when l� 1, as argued in (5.10), because the entire setup
applies only for low l. Looking back at our starting point in (5.14), the l dependence
enters via the ∆2ν2 term, which was counted as O(∆2). Such power counting only
makes sense as long as ν < 1/∆. In the following section, we will have to adapt it in
order to access the higher multipoles.

• The factor eD−1 in (5.22) comes from R∆
l1 = e(3r0/∆+3 lnx)∆, tracing back to the

3r term in (5.20). This in turn is needed to implement the boundary condition at
the origin ρ = 0, corresponding to z = −r. As explained in appendix B, proper
implementation of the boundary conditions is crucial in order to keep the ∆ power
counting valid.

5.2 Zero removal

The det′Ol that enters (5.1) and the total rate in (3.1), contains the truncated product of
eigenvalues with the removed l = 1 zeroes due to the translational invariance of the bounce.
In the Gel’fand-Yaglom approach, we cannot simply handpick and remove any individual
eigenvalue, because all the eigenvalues with the same l are multiplied together. Instead,
we subtract the zeroes perturbatively [16, 103, 104, 109] by first off-setting the fluctuation
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potential with a small dimensionful parameter µ2
ε and then finding the corresponding

solution of (
O1 + µ2

ε

)
ψε1 = 0 . (5.23)

By introducing such a dimensional regulator in the off-set, the ratio of determinants does
not approach zero as in (5.22), but instead goes to

Rε1(∞) = ψε1(∞)
ψFV

1 (∞)
'
(
µ2
ε + γ1

)∏∞
n=2 γn∏∞

n=1 γ
FV
n

= µ2
εR
′
1(∞) . (5.24)

Here, the n refers to the collective index over all the eigenvalues and γ1 corresponds to the
D-fold degenerate l = 1 eigenvalue. It also becomes clear from (5.24) that the dimension of
R′1 is reduced by 2 with respect to Rl. To calculate the reduced determinant, we thus have
to compute

R′1(∞) = lim
µ2
ε→0

1
µ2
ε

Rε1(∞) . (5.25)

In the TW power counting scheme, the l dependence in the determinant appears at
the ∆2 order. Therefore, it is enough to lift the fluctuation potential at the same order,
i.e. V (2) → V (2) + ∆2µ2

ε in the Rl equation (5.8). This does not affect the FV, which has
no zeroes to begin with. It also does not affect the l = 1 fluctuations at the leading and
next-to-leading order, i.e. Rl0 and Rl1 remain the same. However, it does impact the Rl2
fluctuations at the second order, where the solution for l = 1 is found to be

lnRε12 = 1
12

µ2
ε

λv2x
2 . (5.26)

The technical details of this derivation are left to the appendix B, see (B.62)–(B.68).
Plugging the result back into the multiplicative expansion defined in (5.18) and using (5.25),
we have

R′1(∞) = Rl0(∞)eD−1 lim
µ2
ε→0

1
∆2µ2

ε

∆2 lnRε21 = eD−1

12
1
λv2 . (5.27)

This is exactly what we would expect on dimensional grounds because each removal of zero
gives us an additional power of 1/(λv2) and [λv2] = 2. The first part of the determinant
is thus ∣∣∣∣∣ det′O

detOFV

∣∣∣∣∣
− 1

2

=
(
|R0|R′D1

∞∏
l=2

detOl
detOlFV

)− 1
2

, (5.28)

which is how the dimensional part enters in (2.2).
It may be insightful to derive this result in an alternative way. We can look for the

explicit l = 1 eigenvalue γ1 with Dirichlet boundary conditions, and then divide Rl by
it. To this end, consider the ansatz ψl = YlmΦ̇, inspired by the fact that ∂µΦ satisfies
the equations of motion with zero eigenvalues [110]. Plugging it into Olψl = γ1ψl with Ol
from (5.2), we have

−
...
Φ − D − 1

ρ
Φ̈ + V (2)Φ̇ + l (l +D − 2)

ρ2 Φ̇ = γ1Φ̇ . (5.29)
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Taking the derivative of the bounce equation (4.2) with respect to ρ and rearranging the
terms, we get to the following identity

−
...
Φ − D − 1

ρ
Φ̈ + V (2)Φ̇ = −D − 1

ρ2 Φ̇ . (5.30)

Plugging it into (5.29), using ρ = (r + z)/(
√
λv), r = r0/∆, with r0 = (D − 1)/3, and

expanding in ∆, we obtain the desired Dirichlet eigenvalue

γ1 = 9λv2∆2 (l − 1)(l +D − 1)
(D − 1)2 . (5.31)

After dividing Rl in (5.22) by γ1, the reduced determinant comes about

R′l(∞) = Rl(∞)
γ1

= eD−1

12
1
λv2 , (5.32)

which is in agreement with (5.27).

5.3 Generic multipoles

The functional determinant in (5.1) involves a product of orbital multipoles up to infinity.
However, the ratio of eigenvalues Rl, given in section 5.1, only applies for low l. We need to
modify the ∆ power counting such that we can access the UV part of the spectrum with
arbitrary high ν, given by the UV-valid ratio Rν .

The orbital numbers ν enter in the Rl equation (5.8) via the FV solution ψlFV that
comes from solving (5.12). The key change here is to treat the combination ∆ν, which
enters into the FV equation (5.12) in the TW expansion, as an order one parameter. With
such modification, the ν multipoles enter the iterative expansion already at the leading
order (instead of ∆2 as in section 5.1). The leading order FV solution is thus given by

ψνFV ' ekνz , k2
ν = 1 + ∆2ν2

r2
0

, (5.33)

where the multipoles are characterized by kν , which goes from 1 for low multipoles (in
agreement with the low multipole solution) and up to ∞. Next, we consider the UV-valid
equation for Rν at the leading order, written in terms of the FV fluctuations

d2

dx2Rν + 2kν + 1
x

d
dxRν −

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
Rν = 0 , (5.34)

which is solved by

Rν0 = 1
(1 + x)2

(
1 + 4 kν − 1

2kν + 1x+ (kν − 1) (2kν − 1)
(kν + 1) (2kν + 1)x

2
)
. (5.35)

For low multipoles we have kν → 1, which reduces the above to Rν0 ' 1/(1 + x)2 and
matches with (5.19). On the other hand, at large x we have

Rν0(∞) = (kν − 1) (2kν − 1)
(kν + 1) (2kν + 1) . (5.36)
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However, the leading term alone is not enough, one needs to proceed to all orders in n,
to recuperate and sum all the O(∆0) terms. A systematic procedure of isolating all such
terms is explained in detail in appendix B. While getting the individual terms is rather
complicated, the final result after all the orders are summed up is remarkably simple

U = 3r0

(
kν −

√
k2
ν − 1

)
. (5.37)

Together with Rν0 in (5.36), one gets the complete leading-order result

Rν(∞) = Rν0(∞)eU , (5.38)

lnRν(∞) = ln (kν − 1)(2kν − 1)
(kν + 1)(2kν + 1) + 3r0

(
kν −

√
k2
ν − 1

)
. (5.39)

Before proceeding, let us comment on the salient features of this elegant result.

• The final result in (5.38) is a complete expression for the product of eigenvalues at a
given multipole, which is non-zero at the leading order in ∆. This is in contrast to
the low-l result in (5.22), where the first non-vanishing term appeared at O(∆2). If
we expand (5.38) for low multipoles (ν � 1/∆) up to O(∆2), using the definition of
kν in (5.33), we do not recover (5.22). This is not a surprise: the result (5.38) is only
valid at the leading order, O(∆0), does not include all the O(∆2) corrections, so it
cannot reproduce (5.22). That is why we needed a separate calculation for the low
multipoles. Note when kν → 1 one gets U(kν → 1) = 3r0, confirming the eD−1 factor
which appears in (5.22), and traces back to (5.20). As we shall see in the following
section, the large multipoles are the ones that dominate in the determinant, and at
the leading order those are fully accounted for by (5.39).

• At large multipoles when kν →∞, the determinant goes to unity, in agreement with
the expectation from (5.10). Higher order corrections in U behave as ∼ 1/kν and
vanish for large kν , such that they do not affect the correct behavior of Rν0. However,
they do provide sub-leading powers of kν , which are important in the sum we have to
perform to obtain the determinant, as we will see in the next section.

6 Renormalized determinant

In the previous section we computed the negative l = 0 eigenmodes and removed the zero
modes with l = 1, now we wish to evaluate the infinite product in (5.28). Taking the log
and using Gel’fand-Yaglom (5.3), one has

ln
( detO

detOFV

)
=

∞∑
ν=D/2−1

dν lnRν , (6.1)

where in this section we denote the asymptotic value Rν(∞) with Rν , to ease the notation.
The sum in (6.1) formally starts from l = 0, corresponding to ν = D/2− 1, and goes to ∞,
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but as we shall shortly see, it is dominated by large multipoles in the TW limit.7 The low
multipoles are suppressed by powers of ∆ and we can use the generic multipole fluctuations
from (5.39) to obtain the dominant contribution to the sum.

Let us examine the structure of divergences in the UV limit when ν → ∞. The
degeneracy factor in terms of ν is given by

dν =
2ν
(
ν + D

2 − 2
)
!

(D − 2)!
(
ν − D

2 + 1
)
!
' 2

(D − 2)!ν
D−2 , (6.2)

where the last approximation is valid in general D for large ν, but is exact for any ν in
D = 2, 3, 4. Then we expand (5.39) up to including O(ν−3)

∑
ν�1

dν lnRν�1 ∼ −
3r0(2− r0)
(D − 2)!∆

∑
ν�1

νD−2
(

1
ν
− 1
ν3

(
r0
2∆

)2
)
. (6.3)

This sum clearly diverges and the number of divergent terms depends on the dimension
D. In D = 2, 3, only the first term diverges: it produces a log divergence in D = 2 and a
linear one in D = 3. In D = 4, the first term gives a quadratic divergence and the second a
logarithmic one, and so on to higher dimensions.

This is hardly surprising — the functional determinant is a one-loop quantity, which
may diverge and must be regularized. To obtain a consistent finite result, we have to use the
same regularization scheme that was adopted to compute the renormalized bounce action
in section 4.2, i.e. the MS scheme. That can be done either by computing the one-loop
effective action using Feynman diagrams [108], or with the ζ-function regularization scheme
developed in [101], which was shown to be equivalent to MS.8 In the rest of this section we
compute the renormalized determinant explicitly in three and four dimensions. We begin
with some specifications useful in generic dimensions.

Finite sum. To perform the sum over the multipoles in (6.1) we use the Euler-Maclaurin
(EuMac) approximation. For later convenience it is useful to define ΣD as the log of the
determinant for generic D, with individual terms in the sum σD given by

ΣD =
∞∑

ν=ν0

σD =
∞∑

ν=ν0

dν (lnRν − lnRaν) . (6.4)

The lower boundary is given by ν0 = D/2 − 1 and the lnRaν term stands for the generic
asymptotic subtraction, needed to regulate the UV part (ν →∞) and make the sum finite.
The EuMac formula approximates the sum as an integral, Σ

∫
D, plus corrections from the

7The sum starting at l = 0 is in contrast with the product left in (5.28) starting at l = 2. However it is
convenient to define the starting point at l = 0 here, in order to deal properly with the regularization, as we
will see shortly.

8As a further check that the two schemes are indeed equivalent we provide an explicit example in
appendix D, where we use the bounce solution for a purely quartic potential [16], which has a simpler form
compared to the TW bounce.
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boundaries, Σbnd
D , which in our case consist of the summand σD and its derivatives σ(j)

D

evaluated at ν0,

ΣD ' Σ
∫
D + Σbnd

D +Rp , (6.5)

Σ
∫
D =

∫ ∞
ν0

dν σD , Σbnd
D = 1

2σD(ν0)−
b p2c∑
j=1

B2j
(2j)!σ

(2j−1)
D (ν0) . (6.6)

Here, B2j are the Bernoulli numbers and Rp is the remainder, dependent on p, which is the
desired order of approximation. In general Σbnd

D also contains σD evaluated at the upper
boundary. Here, such terms σ(p≥0)

D (∞), vanish because the subtraction of the asymptotic
part guarantees that the sum is finite.

Three dimensions. The renormalized functional determinant [100, 101] requires the
subtraction of a single term

ln
( detO

detOFV

)
=
∑
ν

dν

(
lnRν −

1
2ν I1

)
. (6.7)

Here dν = 2ν. The first term in the parenthesis is the ratio of determinants that we
computed in (5.39). The second term is the asymptotic subtraction lnRaν , which makes the
sum finite. Note we only have to remove terms proportional to 1/ν. The I1 coefficient is
given by [100, 101]

I1 =
∫ ∞

0
dρ ρ

(
V (2) − V (2)

FV

)
' −3 (2− r0)

(
r0
∆

)
. (6.8)

It is convenient to introduce y = ∆ν/r0, which counts as O(∆0) and thus helps to clarify
the overall ∆ dependence. The variable kν , which enters in lnRν , see (5.39), is related
to y as kν =

√
1 + y2. Using (6.8), r0 = 2/3, and comparing (6.7) to (6.4), we get the

asymptotic form lnRaν = −2/y. The integral piece of the EuMac approximation, after
performing the change of variable ν → y, is given by

Σ
∫
3 ' 2

(
r0
∆

)2 ∫ ∞
y0

dy y
(

lnRν + 2
y

)
= 1

∆2
20 + 9 ln 3

27 , (6.9)

and does not depend on the precise value of the lower boundary of y, which can be extended
to zero. Here it becomes clearer why the low-multipole result (5.22) is not important when
we sum (integrate) over multipoles. Were we to use (5.22), instead of Rν from (5.38),
in (6.9) to integrate over low multipoles, we would get a contribution suppressed by ∆2

compared to (6.9). That is subdominant, and we are only interested in the leading order
terms in this section. We learn that the integral in (6.9) is manifestly dominated by the
high multipoles.

For the remaining terms in the EuMac, we need to evaluate σ3(ν0) by treating ν = O(1)
and expanding in small ∆. The leading term comes from the asymptotic part and goes as
σ3 ' 8/(3∆) +O(∆0), and is therefore suppressed compared to the leading ∆−2 dependence
in (6.9). When taking higher derivatives over ν, we get corrections that are further
suppressed by powers of ∆; the Bernoulli terms are thus irrelevant.
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The final result for the determinant is ln
(

detO
detOFV

)
= Σ

∫
3 , with Σ

∫
3 given in (6.9). This

enters directly in the final expression for the decay rate (2.2). Recall that we are working
in the MS scheme, so there are no counter-terms and no running in D = 3.

Thermal field theory. At high temperatures, when the periodic boundary conditions go
below the size of the instanton, the time coordinate in 4D quantum field theory gets
compactified and we end up with a 3D theory. In such case [20–22] (see also [19]), the rate
is given by

Γ
V
'
(
λ−
2π

)(
S3

2πT

) 3
2

√
detOFV
det′O e−S3/T , (6.10)

where (−λ2
−) is the single negative eigenvalue of the 3D fluctuation operator. The Euclidean

action is exactly the one given as S3 in (4.10), but with the usual 4D counting of dimensions.
Likewise, the determinant in (6.10) has to be calculated in D = 3, precisely what we got
in (6.9) above, and is given by

ln
√

detOFV
det′O ' −1

2Σ3 . (6.11)

Four dimensions. In this case the renormalized determinant needs the following sub-
tractions [100, 101],

ln
( detO

detOFV

)
=
∑
ν

dν

(
lnRν −

1
2ν I1 + 1

8ν3 I2

)
− 1

8 Ĩ2 . (6.12)

Here we have dν = ν2. The I1 coefficient in (6.8) is also valid for D = 4, while I2 and Ĩ2
are obtained by inserting two powers of V (2). In the TW limit one has

I2 =
∫ ∞

0
dρ ρ3

(
V (2)2 − V (2)2

FV

)
' −3 (2− r0)

(
r0
∆

)3
, (6.13)

Ĩ2 =
∫ ∞

0
dρ ρ3

(
V (2)2 − V (2)2

FV

)(1
ε

+ γE + 1 + ln
(
µρ

2

))
' I2

(1
ε

+ γE + 1 + ln
(

µr0

2
√
λv∆

))
.

(6.14)

We anticipate that the I2 will be valid for the asymptotic subtractions in higher D. Note
that the Ĩ2 part of the renormalized determinant is outside the sum. It contains the 1/ε pole
and depends on the renormalization scale µ. The role of lnRaν = I1/(2ν)− I2/(8ν3), inside
the sum, is to remove the divergent parts of lnRν : the I1 term regulates the quadratic
divergence, while I2 removes the logarithmic one.

Using r0 = 1 and the variable y = ∆ν/r0, we have lnRaν = −3/(2y) + 3/(8y3) that
enters in (6.4). The integral part of the EuMac approximation is then

Σ
∫
4 '

1
∆3

∫ ∞
y0

dy y2
(

lnRν + 3
2y −

3
8y3

)
= 3

8∆3

(
9− 4

√
3π

36 + ln 2y0

)
. (6.15)
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Here, the finite piece 3
8∆3

(
9−4
√

3π
36

)
comes from intermediate multipoles with ∆ν ∼ 1 and

behaves as 1/∆3. As in the D = 3 case discussed above, the low-multipole contribution
from (5.22) would be suppressed, so we do not need to account for it in the integral. On
the other hand, we get a ln y0 term that seems to depend on the low multipoles. It comes
solely from the term in the asymptotic subtraction lnRaν which goes as 1/y3 and integrates
into ln y0, due to lower boundary y0 = ∆ν0/r0 in (6.15). However, this is an artifact of the
ζ-regularization scheme. As we shall see, y0 is just a regulator that will disappear from the
final result.

Let us move on to the EuMac corrections given by Σbnd
D in (6.5). Here the lower

boundary is at ν0 ∼ 1, so we can expand the summands σD from (6.4) in small ∆ and keep
only the leading part, which is of order ∆−3. The only terms that contribute come from
the 3/8y3 piece of lnRaν , and are of the form σ

(j)
4 (ν0) = 3(−)j+1j!/(8∆3νj+1

0 ), with j ≥ 0.
Recall that the superscript (j) here denotes the j-th derivative with respect to ν. Since
ν0 ∼ 1, when we plug σ(j)

4 (ν0) into the EuMac approximation in (6.5), the Bernoulli terms
eventually grow large and the sum starts to diverge.

We can delay the onset of this divergence by raising the ν0 in the Bernoulli terms. To
accomplish this, we split the original sum in (6.4) as follows

ΣD = Σlow
D + Σhigh

D =
ν1∑

ν=ν0

σD +
∞∑

ν=ν1+1
σD . (6.16)

Here the splitting point is such that O(1) = ν0 � ν1 < 1/∆. To evaluate Σhigh
D we use

the EuMac formula and replace ν0 in (6.6) with ν1 + 1 ' ν1. Following the reasoning
above, we now find that the EuMac boundary corrections Σbnd containing σ(j)

4 (ν1) are
formally suppressed, because ν1 � 1, so we can neglect them. Then the high sum is well
approximated by the integral (6.15), with y0 replaced by y1 = ∆ν1/r0, such that

Σhigh
4 = 3

8∆3

(
9− 4

√
3π

36 + ln 2y1

)
. (6.17)

The low sum Σlow
4 can be performed explicitly. In the range up to ν1 < 1/∆ the leading

piece in the summand σ4 comes from the 3/(8y3) term in lnRaν , that is 3/(8∆3ν) once
multiplied by dν = ν2. Compared to it, all the other terms in σ4 are suppressed by powers
of ∆, so we neglect them. Then Σlow

4 is given by the Harmonic number Hν1 , which can be
expanded for ν1 � 1

Σlow
4 = − 3

8∆3

ν1∑
ν=1

1
ν

= − 3
8∆3Hν1 ' −

3
8∆3 (ln ν1 + γE) . (6.18)

The low-multipole sum of the fluctuations from (5.22) still do not play any role. They
would give terms suppressed by ∆2 compared to (6.18), which we neglect. Adding up (6.18)
and (6.17), we get

Σ4 = 3
8∆3

(
9− 4

√
3π

36 − γE + ln 2∆
)
. (6.19)

It is reassuring that the dependence on the arbitrary point of separation ν1 is gone.
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Renormalized rate. To complete the calculation of the decay rate, we need to sum up the
renormalized functional determinant, consisting of the finite sum Σ2 above and the Ĩ2 term
in (6.14),

ln
( detO

detOFV

)
= Σ4 −

Ĩ2
8 , (6.20)

with the renormalized Euclidean action SR + Sct in (4.20), that gives

ln Γ
V
3 −SR − Sct −

1
2

(
Σ4 −

Ĩ2
8

)
= −S − 1

∆3
45− 4π

√
3

192 . (6.21)

The action S is given in (4.11) in terms of renormalized couplings. The finite expression (6.21)
enters in the final result of (2.2). Both, the 1/ε pole and the lnµ from the running of λ
have canceled out. The remaining µ0 '

√
λv in (4.20) cancels with

√
λv in the ln part

of (6.14), and the combination −γE + ln 2∆ in (6.19) also cancels against the analogous
terms in (6.14).

The procedure of obtaining a finite functional determinant can be generalized to any
even or odd dimension in general. This is done in appendix E.

7 Conclusions and outlook

In this work we presented a dimensionally unified treatment of the false vacuum decay for a
single real scalar in the benchmark TW limit. We started by reviewing the bounce solution,
which is valid for any D, including the second order correction in the expansion parameter
∆, as well as the counter-terms and RGE running. Employing the Gel’fand-Yaglom theorem,
we found the orbital multipoles of the functional determinant around the bounce in two
regions. The first region was the low multipole one, where the negative eigenvalues and the
translational zeroes appear. The zeroes are removed perturbatively and that is how we get
the correct physical dimension of the rate. The second region is computed by modifying
the ∆ counting such that ∆l = O(1) and is therefore valid for higher multipoles, going up
to infinity.

The renormalization section shows how the infinities in the orbital summation get
regulated in the TW limit. In particular, we review how the subtractions in inverse powers
of multipoles, 1/ε poles and the µ dependence are derived and evaluated in the TW limit,
which gives us the asymptotic part of the determinant that subtracts the leading divergencies.
Finally, we show how the multipoles are added up using the Euler-Maclaurin approximation.

It turns out that the summations are somewhat different for even and odd dimensions.
In odd dimensions, the dominant contribution to the determinant comes from higher
multipoles and no renormalization scale dependence appears. In even dimensions, the single
term from the asymptotic subtraction brings in a dependence on low multipoles, which
has to be treated carefully. We resolve this issue by splitting the sum into two parts and
deriving a consistent result for lower and larger multipoles, while showing that the exact
point of separation does not enter in the final result.
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A natural extension of this work would be to include additional degrees of freedom,
such as a globally symmetric potential with additional scalars, would-be-Goldstones, gauge
bosons and fermions [111], analytically in the TW limit. This would require a somewhat
general approach to renormalization, similar to the simplification that was done for the
running of couplings [112]. It may also be desirable to develop a framework for evaluating
the total rate at one loop for general potentials. Such a formalism may be developed from
a semi-analytical polygonal bounce [77] setup, where the shape of the bounce is given
explicitly on each segment. The upshot of this construction is that it applies to a broad
class of models and matches exactly to the known Euclidean action in the TW limit. Most
significantly, the bounce part was already suited for multi-fields, which would make it a good
starting point for developing the theory of one-loop fluctuations for generic BSM setups.
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A Calculation of the bounce and the Euclidean action

Here we provide a detailed derivation of the bounce field configuration and the bounce
action. The starting point is eq. (4.2), which in terms of the dimensionless variables reads

d2ϕ

dz2 + D − 1
z + r

dϕ
dz −

1
2ϕ(ϕ2 − 1)−∆ = 0 . (A.1)

This is subject to the boundary conditions

dϕ
dz (z =∞) = dϕ

dz (z = −r → −∞) = 0 , (A.2)

ϕ(z =∞) = ϕFV = 1−∆− 3
2∆2 − 4∆3 +O(∆4) . (A.3)

It is useful to recall that at the true vacuum

ϕTV = −1−∆ + 3
2∆2 − 4∆3 +O(∆4) . (A.4)

Using the expansions

ϕ =
∑
n≥0

∆nϕn , r = 1
∆
∑
n≥0

∆nrn , (A.5)
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in (A.1) we get

d2ϕ0
dz2 −

1
2ϕ0(ϕ2

0 − 1) (A.6)

+ ∆
[
d2ϕ1
dz2 + 1

2ϕ1
(
1− 3ϕ2

0

)
− 1 + (D − 1) 1

r0

dϕ0
dz

]
(A.7)

+ ∆2
[
d2ϕ2
dz2 + 1

2ϕ2
(
1− 3ϕ2

0

)
− 3

2ϕ0ϕ
2
1 + (D − 1)

( 1
r0

dϕ1
dz −

z + r1
r2

0

dϕ0
dz

)]
(A.8)

+ ∆3
[
d2ϕ3
dz2 + 1

2ϕ3
(
1− 3ϕ2

0

)
− 3ϕ0ϕ1ϕ2 −

1
2ϕ

3
1

+(D − 1)
(

1
r0

dϕ2
dz −

z + r1
r2

0

dϕ1
dz + z2 + 2zr1 + r2

1 − r0r2
r3

0

dϕ0
dz

)] (A.9)

+O(∆4) = 0 . (A.10)

The strategy is to first solve the n = 0 part, (A.6), plug the ϕ0 solution into the n = 1
equation, (A.7) solve for ϕ1, and so on iterating to higher orders. We will clarify how
solving the equations for n ≥ 1 fixes the rn coefficients.

The leading order. By noting that

d2ϕ0
dz2 = d(dϕ0/dz)

dϕ0

dϕ0
dz , (A.11)

we can write (A.6) as
d(dϕ0/dz)dϕ0

dz = 1
2ϕ0(ϕ2

0 − 1)dϕ0 . (A.12)

Integrating both sides, requiring the derivative to vanish at z →∞, gives

dϕ0
dz = −1

2(ϕ2
0 − 1) , (A.13)

where we chose the minus sign in order to satisfy the boundary conditions.
Integrating once more with the boundary condition (A.3), that is ϕ0(z =∞) = 1, we

get
∫
dϕ0/(1− ϕ2

0) = athϕ0 = z/2. The bounce configuration at the leading order is thus

ϕ0 = thz2 . (A.14)

This is odd under z → −z, and interpolates between the FV at z = ∞ and the TV at
z = −∞.

Plugging the leading order solution into the action (4.1), we have

S0 = Ωv4−D

λD/2−1∆D−1

∫ ∞
−r

dz (r0 + ∆z)D−1
(

1
2

(dϕ0
dz

)2
+ 1

8
(
ϕ2

0 − 1
)2

+ ∆ (ϕ0 − 1)
)
.

(A.15)

Here the index n in Sn refers to the order of the expansion in ∆n. The first two terms
of the integral are even under parity and vanish exponentially as z → ±∞, because

– 23 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
9

(dϕ0/dz)2 = 1/4(ϕ2
0 − 1)2 ∝ exp(∓2z). For such terms we can extend the lower limit of

integration from −r ∼ −r0/∆ ∆→0−−−→ −∞, which amounts to neglecting terms9 of the form
e−1/∆. The integral then becomes, upon using (A.13),∫ ∞

−r
dz rD−1

0

(
1
2

(dϕ0
dz

)2
+ 1

8
(
ϕ2

0 − 1
)2
)

= rD−1
0

∫ ∞
−∞

(dϕ0
dz

)2
dz (A.16)

= rD−1
0

∫ 1

−1
dϕ0

dϕ0
dz = 2

3r
D−1
0 , (A.17)

where we omitted the sub-leading ∆z terms, which will be added once we get to the ∆2

corrections below. The last term in (A.15) looks as if it should not belong to n = 0, because
it is proportional to ∆. However, this is not the case. The combination (ϕ0 − 1) goes to
a constant, −2, as z → −r → −∞, implying that the lower limit of integration cannot
be extended to −∞. We can either integrate the term directly, keeping −r as the lower
boundary, which brings in the 1/∆ power to bring down the term to n = 0, or equivalently
integrate by parts (using ∆z as the integration variable):∫ ∞

−r
d∆z (r0 + ∆z)D−1 (ϕ0 − 1) (A.18)

= 1
D

(r0 + ∆z)D (ϕ0 − 1)
∣∣∣∞
−r0
− 1
D

∫ ∞
−∞

dz (r0 + ∆z)D dϕ0
dz (A.19)

= − 1
D
rD0

∫ ∞
−∞

dz dϕ0
dz = − 1

D
rD0 ϕ0

∣∣1
−1 = − 2

D
rD0 . (A.20)

In (A.19) the boundary term vanishes, while in the integral with dϕ0/dz we can extend
the lower limit to −∞, committing only an exponentially small error. We keep only the
rD0 term, since the rest is sub-leading in ∆. We refer to this as a volume term, since it is
proportional to rD0 , while (A.17) is a surface term, proportional to rD−1. Combining them
we get

S0 = Ωv4−D

λD/2−1∆D−1

(2
3r

D−1
0 − 2

D
rD0

)
, (A.21)

that can be extremized over r0

dS0
dr0

= 0 ⇒ r0 = D − 1
3 . (A.22)

We end up with the Euclidean bounce action (4.10) at the leading order. A sanity check
can be made by splitting the action into the kinetic T term, which is 1/2 of the surface
term in (A.17), and the potential piece V, coming from the other half of the surface plus
the volume term:

S0 = Ωv4−D

λD/2−1∆D−1
rD−1

0
3

(
1 + D − 6r0

D

)
= T + V . (A.23)

This verifies that the two terms of the action are indeed related by

(D − 2) T = −DV , (A.24)

as stated by Derrick’s [59] theorem, once the action is properly extremized by r0 in (A.22).
9Terms with e−1/∆ go to zero faster than any power of ∆ when ∆→ 0. That is why it is consistent in

our approach, based on counting powers of ∆, to always drop such exponentially suppressed terms.
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Higher order corrections. The equations for n ≥ 1, as we see in (A.7), (A.8), (A.9),
all have the form

d2ϕn
dz2 + 1

2ϕn
(
1− 3ϕ2

0

)
= fnhom(ϕj<n(z), rj<n) , (A.25)

with the homogeneous part on the left hand side, the non-homogeneous part on the right
hand side. With ϕ0 = th(z/2), the solution to the homogeneous part,

ϕhom
n = c1n

4ch2(z/2)
+ c2n

4ch2(z/2)
[6z + 8sh(z) + sh(2z)] , (A.26)

is the sum of an even function in z, multiplied by c1n, and an odd function, multiplied
by c2n.

At n = 1 we have (A.7):

d2ϕ1
dz2 + 1

2ϕ1
(
1− 3ϕ2

0

)
= 1− (D − 1) 1

r0

dϕ0
dz . (A.27)

We can understand some features by inspection. As ϕ0 is an odd function of z, ϕ2
0 and

dϕ0/dz are even functions. Hence the equation admits a solution ϕ1 which is even. Moreover,
as ϕ2

0(z = ±∞) = 1 and the derivatives of the field must vanish at z = ±∞, we have
ϕ1(z = ±∞) = −1. Therefore we know immediately that ϕ1 is forced to interpolate between
the FV and the TV at order ∆. The solution to (A.27) is

ϕ1 = c11

4ch2(z/2)
+ c21

4ch2(z/2)
[6z+8sh(z)+sh(2z)] (A.28)

+ 1
3r0 (ez+1)2 [ch(z) ((D−1)(3z+1)−9r0(z+1))+(D−1)(3z+2)sh(z)

−4D−3r0(ch(2z)+sh(z)(3z+2ch(z)+4))+9r0 +4] .
(A.29)

The boundary condition ϕ1(z =∞) = −1 requires c21 = 0. This sets dϕ1/dz = 0 at z =∞.
Requiring dϕ1/dz = 0 also at z = −∞ fixes r0 = (D − 1)/3. With these, the solution
simplifies to

ϕ1 = −1 + c11

4ch2(z/2)
. (A.30)

This is an even function, as anticipated, and we see that the boundary conditions do not fix
the constant c11. We are free to set it to zero, so that

ϕ1 = −1 . (A.31)

Note that solving the bounce equation at this order gives us the same r0 as we found
in (A.22) by extremizing the action, and provides a further consistency check.

At n = 2, using ϕ1 and r0 from above into (A.8), we get

d2ϕ2
dz2 + 1

2ϕ2
(
1− 3ϕ2

0

)
= 3

2ϕ0 + 9
D − 1

dϕ0
dz (z + r1) . (A.32)

With the derivatives vanishing at z = ±∞, this equation implies ϕ2(z = ±∞) = ∓3
2 . Hence,

ϕ2 is also forced to interpolate between true and false vacua. Note that setting r1 = 0 at
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this stage would make it apparent that (A.32) admits a solution ϕ2 odd under z. Let us
keep r1 in the game for a moment. The solution then is

ϕ2 = c12

4ch2(z/2)
+ c22

4ch2(z/2)
[6z + 8sh(z) + sh(2z)] + ϕnhom

2 (z, r1) , (A.33)

with ϕnhom
2 (z, r1) a function of z and r1 computed from the non-homogeneous part on the

right hand side of (A.32). The boundary condition ϕ2(z = ∞) = −3
2 requires c22 = 0,

which also makes dϕ2/dz = 0 at z =∞. Asking that the derivative vanish also at z = −∞
requires r1 = 0. Thus, the boundary condition forces this parameter to vanish. We can fix
the remaining parameter by demanding that the solution be an odd function of z,

c12 = 3(π2 + 3D − 9)
2(D − 1) , (A.34)

so that

ϕ2 = 1
4r0ch2(z/2)

(
(2−D − 2 (4 + chz) ln(1 + ez)) shz

− z (D − ez (4 + shz)) + 3(Li2(−ez)− Li2(−e−z))
)
,

(A.35)

with the asymptotic behavior ϕ2(±∞) = ∓3/2.
At n = 3, using ϕ1 = −1, r1 = 0 into (A.9), we have

d2ϕ3
dz2 + 1

2ϕ3
(
1− 3ϕ2

0

)
= −3ϕ0ϕ2 −

1
2 − (D − 1)

(
1
r0

dϕ2
dz + z2 − r0r2

r3
0

dϕ0
dz

)
. (A.36)

As both ϕ0 and ϕ2 are odd functions of z, this equation admits an even solution ϕ3. Again,
by inspection we see that the asymptotics are such that ϕ3 interpolates between true and
false vacua. The solution, after plugging in ϕ0, ϕ2, r0, is

ϕ3 = c13

4ch2(z/2)
+ c23

4ch2(z/2)
[6z + 8sh(z) + sh(2z)] + ϕnhom

3 (z, r2) . (A.37)

The boundary condition ϕ3(z =∞) = −4 fixes

c23 = −3π2(D − 2)
(D − 1)2 , (A.38)

which results in dϕ3/dz = 0 at z =∞. Asking that the derivative vanish at z = −∞ fixes

r2 = 6π2 − 40 +D(26− 4D − 3π2)
3(D − 1) . (A.39)
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The parameter c13, analogously to c11 at n = 1, remains unfixed, and we can choose to set
it to zero. Finally we have

ϕ3 = − 1
16ch2(z/2)(D − 1)2

[
2ch(z)

(
16D2 +D

(
−72z + 24π2 − 77

)
+144(D − 1) log (ez + 1) + 72z(z + 1)− 48π2 + 97

)
+ 216(3D − 7)Li3 (−ez) + 72Li2 (−ez) (−3(D − 3)z + 8(D − 2)sh(z)

+ (D − 2)sh(2z)) + 27(D − 3)z2 + 9
(
4π2(D − 2)− 15(D − 1)

)
z

+ 270D log (ez + 1) + 12sh(z) (3z(−5D + 4z + 7)

+24(D − 3)z log (ez + 1) + 4π2(D − 2)
)

+ 3sh(2z)
(
3z(−D + 2z + 1) + 12(D − 3)z log (ez + 1) + 2π2(D − 2)

)
+ 3ch(2z)

(
3z(−D + 2z + 1) + 6(D − 1) log (ez + 1) + 2π2(D − 2)

)
+ 16(D − 4)(2D − 5)− 18π2(D − 2) + 36z3 − 270 log (ez + 1)

]
. (A.40)

We did not manage to compute analytically the bounce solution beyond n = 3.

Comments on the bounce solution. We have seen that with this iterative setup, the
bounce interpolates between the FV and the TV at any order n. This means that, with
the ∆ expansion initiated here, the field will never go beyond the TW in the sense that
φin = φTV for any power10 of ∆. By going to higher orders we are simply describing the
TW instanton between the TV and the FV more accurately.

Note that a shift of the radius in the leading order bounce solution produces

ϕ0(z + cshift
n ∆n) = ϕ0(z) + cshift

n

2ch2(z/2)
∆n +O(∆2n) . (A.41)

Comparing to (A.26) and to the expansion of r (A.5), we see that a nonzero coefficient
c1n in (A.26) results in a shift rn+1 → rn+1 + c1n/2. At n = 1 we chose to set c11 = 0.
An alternative choice would be to keep the c11 term in ϕ1 and set r2 = 0; in this case
the derivative boundary condition for the n = 3 equation would fix c11 to twice the value
of (A.39). There is no consistent solution with both c11 = 0 and r2 = 0, but this becomes
clear only when one gets to the n = 3 order. In conclusion, we learn that the ∆ expansion
of r is useful because by introducing more redundant parameters it allows for the bounce
solution ϕ to take a simpler form.

The bounce action at n = 2. As we shall see, both r2 and ϕ2 enter in the kinetic and
potential part of the action at ∆2, but eventually cancel out. So let us examine the several
second-order sources of the Euclidean action. We found that the leading contribution to
the action in (A.23) consists of the kinetic T and potential V terms at zero order

T0 = Ωv4−D

λD/2−1∆D−1
rD−1

0
3 , V0 = T0

(
1− 6r0

D

)
. (A.42)

10In order to have φin 6= φTV, one should reconsider the bounce equation and include the linear ∆ term
at the leading order and expand the friction term only.
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These were obtained by extremizing the action over r and plugging in the leading order
r ∼ r0/∆. Further expanding the bounce radius r ∼ (r0 + ∆2r2)/∆ to include the second
order correction, we get

T2 3
Ωv4−D

λD/2−1∆D−1
rD−1

0
3

(
1 + ∆2 r2

r0

)D−1
' T0

(
1 + 3∆2r2

)
, (A.43)

V2 3 V0 − T03∆2r2 , (A.44)

where T2 and V2 stand for the kinetic and potential parts of the action up to second
order. As expected, the action does not get corrected by r2, however individual kinetic and
potential contributions are modified. Keeping all the terms lead to a non-trivial validation
of extremization via Derrick’s theorem in (A.24), which has to hold at all orders of ∆ once
all the terms in the action are obtained.

Further corrections come from the inclusion of friction when expanding the ∆z poly-
nomial in (A.15). We will explicitly attribute the various contributions to the kinetic or
potential part, and check the validity of Derrick’s theorem at the end of the calculation.
We start with the corrections that concern only the effects of r2 and the damping of ϕ0.
The ∆ corrections vanish since the integrand is odd in z, while the ∆2 corrections give us
the following higher-order terms in the action (in the following few lines we omit the overall
constant Ωv4−Dλ1−D/2∆1−D in front of the action S2, not to overburden with notation),
proportional to

S2 3 2 rD−3
0 ∆2 (D − 1)(D − 2)

4

∫ ∞
−∞

dz z2
(dϕ0

dz

)2

− 1
D
rD−2

0 ∆2D(D − 1)
2

∫ ∞
−∞

dz z2dϕ0
dz

(A.45)

= 3
2∆2rD−1

0

(
3D − 2
D − 1

∫ ∞
−∞

dz z2
(dϕ0

dz

)2
−
∫ ∞
−∞

dz z2dϕ0
dz

)
(A.46)

= −∆2
(
π2 + 6(D − 2)

D − 1

)
rD−1

0 . (A.47)

We emphasize a factor of 2 in the first line of (A.45) as we have two equal contributions; one
belonging to the kintetic part and one to the potential part. The second line belongs to the
potential part only. The addition of ϕ1 = −1 brings in the following terms, proportional to

S2 3
∫ ∞
−r

dz (r0 + ∆z)D−1
(3

4∆2
(
ϕ2

0 − 1
)
− 1

2∆ϕ0
(
ϕ2

0 − 1
)
− 1

2∆3 (ϕ0 − 1)
)

(A.48)

=
∫ ∞
−r

dz (r0 + ∆z)D−1
(
−3

2∆2dϕ0
dz + ∆ϕ0

dϕ0
dz −

1
2∆3 (ϕ0 − 1)

)
(A.49)

= −3
2∆2rD−1

0

∫ 1

−1
dϕ0 + rD−2

0 (D − 1)∆2
∫ ∞
−∞

dz zϕ0
dϕ0
dz + D − 1

3D ∆2rD−1
0 (A.50)

= ∆2rD−1
0

(
3 + r0

D

)
, (A.51)

where all the terms in (A.48) belong to the potential part. The final remaining pieces,
depending on ϕ2, are found to be

S2 3∆2
∫ ∞
−r

dz (r0 + ∆z)D−1
(dϕ0

dz
dϕ2
dz − ϕ0

dϕ0
dz ϕ2 + 3∆dϕ0

dz ϕ2

)
= 0 . (A.52)
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This can be understood from the following identity

∫ ∞
−∞

dz d
dz

(dϕ0
dz ϕ2

)
= dϕ0

dz ϕ2

∣∣∣∣∞
−∞

= 0 =
∫ ∞
−∞

dz
(
dϕ0
dz

dϕ2
dz + d2ϕ0

dz2 ϕ2

)
(A.53)

=
∫ ∞
−∞

dz
(dϕ0

dz
dϕ2
dz + 1

2ϕ0
(
ϕ2

0 − 1
)
ϕ2

)
=
∫ ∞
−∞

dz
(dϕ0

dz
dϕ2
dz − ϕ0

dϕ0
dz ϕ2

)
, (A.54)

which shows that the first two terms in (A.52) sum up to zero. The last term in (A.52)
disappears, because ϕ2 is odd and dϕ0/dz is even and vanishes at the boundaries, allowing
the limits of integration to be extened to z → ±∞.

The final result is thus the Euclidean action, which can be written as

S2 = S0

(
1 + ∆2

(
1 +D

(
25− 8D − 3π2)
2(D − 1)

))
+O

(
∆4
)
. (A.55)

This result can be used to get an improved precision on the bounce part of the action
in (4.10) for any D. The ∆3 corrections vanish altogether, so this result is precise up to
O(∆4). Moreover, it serves an estimate on the upper bound on ∆, when the higher-order
corrections become relevant and thus the entire expansion becomes unreliable. One should
keep in mind that we have constructed such a TW setup, where higher orders of ∆ simply
describe the TV and FV more precisely and the bounce interpolates between those two.
To go beyond this ansatz, one would have to construct a bounce solution with ϕ0 6= ϕTV
already at leading order, which might be feasible but is certainly beyond the scope of
our paper.

It is useful to collect all of the corrections above and carefully attribute them to kinetic
and potential parts: we get the integrated kinetic and potential parts of the action

T2 = T0 + ∆2T0

(
1 +D(25− 8D − 3π2)

2(D − 1)

)
, (A.56)

V2 = V0 −∆2T0

(
D − 2
D

)(1 +D(25− 8D − 3π2)
2(D − 1)

)
, (A.57)

which demonstrates that Derrick’s theorem in (A.24) holds at second-order in ∆ and
therefore all of the terms at this order have been properly included.

Counter-term integration. When calculating the counterterm action in (4.18), we
encountered the following two integrals

∫
D

(
φ2 − φ2

FV

)
, and

∫
D

(
φ4 − φ4

FV

)
. (A.58)

These are evaluated in the TW limit using the same approach as above. To get the leading
order term proportional to 1/∆D−1 correctly, we must include the bounce up to n = 1, that
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is ϕ = ϕ0 + ∆ϕ1 = ϕ0 −∆. The first integral in (A.58) is

Ωv2−D

λD/2∆D−1

∫ ∞
−r

dz (r0 + ∆z)D−1
(
(ϕ0 −∆)2 − (1−∆)2

)
(A.59)

= Ωv2−D

λD/2∆D−1

(∫ ∞
−∞

dz rD−1
0

(
ϕ2

0 − 1
)
− 2

∫ ∞
−r

dz (r0 + ∆z)D−1 ∆ (ϕ0 − 1)
)

(A.60)

= Ωv2−D

λD/2∆D−1

(
−4rD−1

0 + 4
D
rD0

)
= −4 Ωv2−D

λD/2∆D−1 r
D−1
0

(
1− r0

D

)
, (A.61)

where we used the same integration by parts as in (A.19). Proceeding along the same lines,
the second term in (A.58) integrates into

Ωv4−D

λD/2∆D−1

∫ ∞
−r

dz (r0 + ∆z)D−1
(
(ϕ0 −∆)4 − (1−∆)4

)
(A.62)

= Ωv4−D

λD/2∆D−1

(∫ ∞
−∞

dz rD−1
0

(
ϕ4

0 − 1
)
− 4

∫ ∞
−r

dz (r0 + ∆z)D−1 ∆
(
ϕ3

0 − 1
))

(A.63)

= Ωv4−D

λD/2∆D−1

(
−16

3 r
D−1
0 + 8

D
rD0

)
= −16

3
Ωv4−D

λD/2∆D−1 r
D−1
0

(
1− 3r0

2D

)
. (A.64)

B Calculation of the fluctuations

In this appendix, we provide the details of the calculation of the fluctuations discussed in 5.
Starting from (5.1), We use the Gel’fand-Yaglom theorem, which states that

detOl
detOlFV

= lim
ρ→∞

(
ψl(ρ)
ψlFV(ρ)

)dl
. (B.1)

Recall that the radial operator

Ol = − d2

dρ2 −
D − 1
ρ

d
dρ + l (l +D − 2)

ρ2 + V (2) , (B.2)

has degeneracy

dl = (2l +D − 2)(l +D − 3)!
l!(D − 2)! , (B.3)

and the functions ψl are solutions of

Olψl = 0 , OlFVψlFV = 0 , (B.4)

with only one boundary condition fixed at ρ→ 0:

ψl(ρ→ 0) ∼ ρl ψlFV(ρ→ 0) ∼ ρl . (B.5)

It is convenient to introduce
ν = l + D

2 − 1 , (B.6)

and
ψν(ρ) = ρ

D−1
2 ψl(ρ) . (B.7)
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Then from Olψl = 0 we obtain Oνψν = 0, with

Oν = − d2

dρ2 +
ν2 − 1

4
ρ2 + V (2) . (B.8)

Thanks to the rescaling in (B.7), Oν has no friction term. Defining

Rν(ρ) ≡ ψν(ρ)
ψνFV(ρ) = ψl(ρ)

ψlFV(ρ) , (B.9)

we can rewrite the ratio of the determinants in equation (B.1) as

detOl
detOlFV

= detOν
detOνFV

=
(

lim
ρ→∞

Rν(ρ)
)dν

. (B.10)

Here the degeneracy factor

dν =
2ν
(
ν + D

2 − 2
)
!

(D − 2)!
(
ν − D

2 + 1
)
!
, (B.11)

is obtained from (B.3) using (B.6). Taking the logarithm of equation (5.1) and using the
Gel’fand-Yaglom theorem (B.10), we can finally write11

ln
∣∣∣∣ detO
detOFV

∣∣∣∣− 1
2

= −1
2

∞∑
ν=D

2 −1

dν ln
(

lim
x→∞

Rν(x)
)
. (B.12)

The parameter ν is an integer in even dimensions D ≥ 2, a half-integer in odd dimensions
D ≥ 3. Our goal is to compute the quantity in (B.12), which implies eventually performing
an infinite sum in ν. In this appendix we focus on computing the function Rν . To begin
with, we need an equation for it.

We can trade Oνψν = 0 for an equation with Rν , which we derive as follows. From (B.9)
we have

1
Rν

d
dρRν = 1

ψν

d
dρψν −

1
ψνFV

d
dρψνFV , (B.13)

1
Rν

d2

dρ2Rν −
( 1
Rν

d
dρRν

)2
= 1
ψν

d2

dρ2ψν −
( 1
ψν

d
dρψν

)2

− 1
ψνFV

d2

dρ2ψνFV +
( 1
ψνFV

d
dρψνFV

)2
,

(B.14)

with (B.14) obtained by taking the derivative of (B.13). From (B.13) we have

1
ψν

d
dρψν = 1

Rν

d
dρRν + 1

ψνFV

d
dρψνFV , (B.15)

which plugged into (B.14) gives

1
Rν

d2

dρ2Rν + 2 1
Rν

d
dρRν

1
ψνFV

d
dρψνFV = 1

ψν

d2

dρ2ψν −
1

ψνFV

d2

dρ2ψνFV . (B.16)

11We drop the prime from the determinant at the numerator here, we will comment on the removal of the
zero modes later on in the appendix.
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The terms on the right-hand side, using (B.8), are

1
ψν

d2

dρ2ψν =
ν2 − 1

4
ρ2 + V (2) . (B.17)

Thus, we arrive at the following system of equations:(
− d2

dρ2 +
ν2 − 1

4
ρ2 + V

(2)
FV

)
ψνFV = 0 , (B.18)

1
Rν

d2Rν

dρ2 + 2 1
Rν

dRν

dρ

(dψνFV/dρ
ψνFV

)
−
(
V (2) − V (2)

FV

)
= 0 , (B.19)

with boundary conditions

ψνFV(ρ→ 0) ∼ ρν+ 1
2 , (B.20)

Rν(ρ = 0) = 1 , dRν

dρ (ρ = 0) = 0 . (B.21)

(B.21) is obtained from the definition (B.9) and the conditions (B.5). Note that in the
second term of (B.19) the behavior

dψνFV/dρ
ψνFV

−−−→
ρ→0

1
ρ
, (B.22)

is compensated by the derivative condition in (B.21).
Equation (B.18) can be solved exactly:

ψνFV(ρ) = cFV
√
ρ Iν

(
ρ

√
V

(2)
FV

)
, (B.23)

with Iν a Bessel function. We have solved a second-order differential equation with one
boundary condition on the derivative at the origin, so we are left with one integration
constant, cFV. There is no need to fix this constant, as it cancels out in the ratio dψνFV/dρ

ψνFV
that enters the Rν equation, (B.19).

Equation (B.19) cannot be solved analytically. We are going to develop a method to
solve it perturbatively, using expansions in the small parameter ∆. As we will see shortly,
the parameter ν will enter the equations in the combination ∆ν. The final answer for the
determinant, see (B.12), involves values of ν up to infinity. This implies that for ν > 1/∆
the perturbation series in ∆ will be ill defined. To fix it we will consider the combination
∆ν as a leading order term in the expansion. First, however, we will go through the simpler
procedure of solving the Rν equation for ν � 1/∆. The result, (B.61), is more illuminating
written in terms of l rather than ν, as the negative eigenvalue for l = 0 and the zero
eigenvalues for l = 1 are immediately apparent. For this reason, in the next section, we will
relabel our functions with the subscript l instead of ν, to indicate that we are working with
small values of l.

We will use the dimensionless variables

z =
√
λv ρ− r , ϕ = φ/v , Ṽ (2) = 1

λv2V
(2) . (B.24)
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Perturbative solutions for low multipoles. Despite having the exact solution (B.23)
for ψlFV at hand, it is more useful to have an approximate, simpler solution to (B.18) with
an explicit ∆ dependence. We computed it in section 5.1 and found

ψlFV(z) = cFVExp
[(

1− 3
2∆ + 1

2

(
ν2 − 1

4
r2

0
− 21

4

)
∆2 +O(∆3)

)
z

]
. (B.25)

From this, we get the ratio

gl ≡
dψlFV/dz
ψlFV

= 1− 3
2∆ + 1

2

(
ν2 − 1

4
r2

0
− 21

4

)
∆2 +O(∆3) (B.26)

= gl0 + ∆gl1 + ∆2gl2 +O(∆3) . (B.27)

Introducing the variable
x = ez , (B.28)

the Rν equation (B.19) turns into

1
Rl

d2

dx2Rl + 2gl + 1
x

1
Rl

d
dxRl −

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
= 0 , (B.29)

with gl given in (B.26). We relabeled Rν → Rl to indicate the low l regime. The boundary
conditions from (B.21) become

Rl(x = e−r) = 1 , e−r
d
dxRl(x = e−r) = 0 . (B.30)

Note that we are retaining the e−r in front of the derivative condition. The reason is that
in our expansions we keep track of powers of ∆ but always drop exponentials of the form
e−r ∼ e−1/∆. Hence, we keep e−r explicit in (B.30) to indicate that even with d

dxRl(x = e−r)
equal to a constant or proportional to powers of r, the boundary condition is satisfied.

We take a multiplicative expansion for Rl,

Rl = Rl0R
∆
l1R

∆2
l2 R

∆3
l3 · · · (B.31)

= Rl0

(
1 + ∆ lnRl1 + ∆2

(1
2 ln2Rl1 + lnRl2

)
+O(∆3)

)
, (B.32)

and use the following expression(
Ṽ (2) − Ṽ (2)

FV

)
=
∞∑
n=0

∆n
(
Ṽ (2) − Ṽ (2)

FV

)
n

= 3
2(ϕ2

0 − 1) + 3∆ (1 + ϕ0ϕ1) + 3
2∆2

(
2 + ϕ2

1 + 2ϕ0ϕ2
)

+O(∆3) . (B.33)

At the zeroth order, Rl = Rl0, from (B.29) we have

1
Rl0

d2

dx2Rl0 + 3
x

1
Rl0

d
dxRl0 −

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
0

= 0 , (B.34)

with (
Ṽ (2) − Ṽ (2)

FV

)
0

= 3
2(ϕ2

0 − 1) = − 6x
(1 + x)2 . (B.35)
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The solution is

Rl0 = 1
(1 + x)2 . (B.36)

For orders ∆ and higher, it is convenient to introduce

fl ≡
1
Rl

d
dxRl , (B.37)

so that the second-order differential equation (B.29) turns into a first-order one,

d
dxfl + f2

l + 2gl + 1
x

fl −
1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
= 0 , (B.38)

subject to the boundary condition

e−rfl(e−r) = 0 , (B.39)

where again we mean that even with fl(e−r) equal to a constant or proportional to powers
of r, the boundary condition is satisfied (see the comment below (B.30)). We expand fl
in ∆,

fl = fl0 + ∆fl1 + ∆2fl2 +O(∆3) , (B.40)

and plug it into (B.38), then we proceed to solve the equation order by order in ∆. At the
lowest order, from (B.36) we have

fl0 = − 2
1 + x

. (B.41)

At the order ∆n, with n ≥ 1 we have the equations
d
dxfln +

(
2fl0 + 3

x

)
fln = Pfln , (B.42)

with the functions

Pfln = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
n
− 2
x

n∑
j=1

glj fl(n−j) −
n−1∑
j=1

flj fl(n−j) , (B.43)

growing at every iteration. The last sum in (B.43) contributes only for n ≥ 2. The solution
to (B.42) is given by

fln(x) = (1 + x)4

x3

∫ x

e−r
dt t3

(1 + t)4Pfln(t) . (B.44)

Here the lower limit of integration is set formally to e−r to guarantee the boundary
condition (B.39). In practice, however, one can set such a lower limit to 0, and check at
every order that this corresponds to dropping only terms exponentially suppressed in r,
that means terms of the form e−1/∆.

At the first order in ∆ we have(
Ṽ (2) − Ṽ (2)

FV

)
1

= 3(ϕ0ϕ1 + 1) = 6
1 + x

, (B.45)

Pfl1 = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
1

+ 3
x
fl0 = 6

x2
1− x
1 + x

, (B.46)
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so that

fl1 = (1 + x)4

x3

∫ x

e−r
dt t3

(1 + t)4Pfl1(t) = (1 + x)4

x3

(
3x2

(1 + x)4 −
3e−2r

(1 + e−r)4

)
. (B.47)

We can drop the last term in the squared parentheses as it is exponentially suppressed in r.
Then12

fl1 = 3
x
. (B.48)

At the second order we have(
Ṽ (2)− Ṽ (2)

FV

)
2

= 3
2(2+ϕ2

1 +2ϕ0ϕ2)

= 3
2

{
3− 1

r0x(1+x)3 (1−x)
[
x
(
−1+π2x+x2−3r0(x2−1)

+x(−3−6r0 +8x+x2) ln(x)+3x ln2(x)
)

−(−1−8x+8x3 +x4) ln(1+x)+12x2Li2(−x)
]}
, (B.49)

and
Pfl2 = 1

x2

(
Ṽ (2) − Ṽ (2)

FV

)
2

+ 3
x
fl1 −

1
x

(
ν2 − 1

4
r2

0
− 21

4

)
fl0 − f2

l1 . (B.50)

Here note that the terms 3
xfl1 − f

2
l1 cancel, given (B.48). We can compute the integral

in (B.44) analytically with Pfl2 . Setting the lower limit of integration e−r to zero, which is
again equivalent to neglecting exponentially suppressed terms, we find

fl2 =− 1
24r2

0x
3(x+ 1)2

(
144r0x

3Li2(−x) + 9r2
0x

6 + 6r0x
6 + 12r0x

6 ln(x+ 1)

+ 54r2
0x

5 + 24r0x
5 + 36r0x

5 ln(x+ 1) + 9r2
0x

4 + 60r0x
4

− 36r0x
4 ln(x+ 1)− 36r2

0x
3 + 12π2r0x

3 + 60r0x
3 + 36r0x

3 ln2(x)

+ 30r0x
2 + 36r0x

2 ln(x+ 1)− 12r0x
3
(
6r0 + x3 + 3x2 − 3x+ 5

)
ln(x)

+ 12r0x− 36r0x ln(x+ 1)− 12r0 ln(x+ 1)

− 4ν2x6 + x6 − 24ν2x5 + 6x5 − 36ν2x4 + 9x4 − 16ν2x3 + 4x3
)
. (B.51)

This function has the following asymptotic behavior:

fl2 −−−→
x→0

8ν2 − 18r0 ln2(x) + 6r0 (6r0 + 5) ln(x) + 18r2
0 −

(
55 + 6π2) r0 − 2

12r2
0

, (B.52)

fl2 −−−→
x→∞

−x
(
−4ν2 + 9r2

0 + 6r0 + 1
)

24r2
0

. (B.53)

Note that fl2 diverges linearly at large x.
Next, we compute lnRln, which from the definition (B.37) is simply given by

lnRln(x) =
∫ x

e−r
dtfln(t) . (B.54)

12The careful, and possibly skeptical reader might be bothered that (B.48) does not satisfy the boundary
condition (B.39). However, one can check that using (B.47), which does satisfy (B.39), instead of (B.48) to
continue the calculation at n ≥ 2, produces the same results after longer and more tedious algebra. The
lesson is that we can drop terms exponentially suppressed in r as soon as we encounter them.
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Here, the lower limit of integration is to enforce the boundary condition Rl(x = e−r) = 1.
At n = 1, using (B.48), we have

lnRl1(x) = 3 (ln(x) + r) , (B.55)

Rl1(x) = e
3r0
∆ x3 , R∆

l1(x) = e3r0x3∆ , (B.56)

where we have used r = r0/∆. At n = 2 we have

lnRl2(x) =
∫ x

0
dtfl2(t) . (B.57)

Here we can set the lower limit of integration to zero. Doing so, given the asymptotic
behavior (B.52), we are throwing away terms suppressed by e−r. The integral (B.57) can be
computed analytically plugging in (B.51). However, we only need its asymptotic behavior
at large x, which is easily obtained by integrating (B.53):

lnRl2(x→∞) =
∫ x

dtfl2(t→∞) = −x
2 (−4ν2 + 9r2

0 + 6r0 + 1
)

48r2
0

. (B.58)

We can now put together our low l result for Rl up to ∆2. Starting from (B.31)
and (B.32), and using (B.56), we can factor out e3r0 and write

Rl(x) = e3r0Rl0(x)
(

1 + 3∆ ln(x) + ∆2
(1

29 ln2(x) + lnRl2(x)
)

+O(∆3)
)
. (B.59)

We are interested in the x → ∞ limit. From (B.36) we have Rl0(x → ∞) = x−2, and
using (B.58) we obtain

Rl(x→∞) = −∆2e3r0−4ν2 + 9r2
0 + 6r0 + 1

48r2
0

+O(∆3) . (B.60)

Substituting ν = l +D/2− 1 and r0 = (D − 1)/3 we can rewrite it as

lim
ρ→∞

Rl(ρ) = Rl(x→∞) = ∆2 3
4e

D−1 (l − 1)(l +D − 1)
(D − 1)2 +O(∆3) , (B.61)

which corresponds to (5.22). Some comments are in order.

• The leading term in this low l result is of order ∆2, with the O(∆0) and O(∆) terms
vanishing. It has the structure we expected: it is negative for l = 0, it vanishes for
l = 1. The latter signals the zero eigenvalues related to the translational invariance of
the bounce. We will soon go through a procedure to remove them.

• The e3r0 is an overall factor in (B.59) and as such it ends up contributing to the first
term, that is zeroth order in the ∆ expansion. Note we got e3r0 at n = 1 [see (B.55)
and (B.56)], rather than n = 0, as a consequence of the boundary condition at x = e−r

(corresponding to ρ = 0). In other words, we set up our equations based on the ∆n

power counting, but then found a solution at n = 1 that fed back into n = 0. Let us
refer to it as an order-breaking term. While this feature might be puzzling at first
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sight, there is no reason to panic. The calculation is sensible and the procedure well
defined: at each order one computes fln from (B.44), and then checks from (B.54) if
there are contributions to lnRln from the boundary at x = e−r, with r = r0/∆, that
feed back into lower orders. In the low l calculation this happens only at n = 1. In
the next section, we will study the problem systematically for generic values of l (or,
better, of ν) and show that order-breaking terms will appear for every n ≥ 1, but
that indeed at low l only the one from n = 1 survives.

• There is at least another way of obtaining the e3r0 factor. Instead of using (B.31), one
can approach the problem with an additive expansion, Rl = Rl0 + ∆Rl1 + ∆2Rl2 + · · · ,
and solve the second order differential equation for Rl order by order. The calculation
is more involved, compared to the one we have presented here, and one finds at
each order boundary terms of the form ∆nrn, which therefore feed back into n = 0.
Summing all such terms, up to n =∞, one recovers exactly the exponential e3r0 .

Zero removal at low multipoles. With the explicit solution valid up to second-order
corrections in ∆2, one can proceed to perturbatively remove the zero eigenvalue, as discussed
in section 5.2. The orbital mode dependence comes in at O(∆2). To remove the l = 1
modes it is then sufficient to off-set the potential at this order with an infinitesimal
dimensional parameter

V (2) → V (2) + ∆2µ2
ε , or Ṽ (2) → Ṽ (2) + ∆2µ2

ε

λv2 . (B.62)

This offset does not affect the zero and first-order solutions, once µε → 0, thus R0 and R1
remain the same. On the other hand, the second-order solution with the above off-set is
easily obtained starting from (B.44),

f εl2(x) = (1 + x)4

x3

∫ x

e−r
dt t3

(1 + t)4

(
Pfl2(t) + µ2

ε

λv2
1
t2

)
(B.63)

= fl2 + µ2
ε

λv2
(1 + x)4

x3

∫ ∞
0

dt t

(1 + t)4 . (B.64)

= fl2 + µ2
ε

λv2
(1 + x)4

6x3 . (B.65)

From here, we plug the f εl2(x) into (B.54), such that

lnRε21 =
∫ x

dt f εl2(t) (B.66)

=
∫ x

dt
(
fl2 + µ2

ε

λv2
(1 + t)4

6t3

)
(B.67)

= lnR21 + µ2
ε

λv2
x2

12 = µ2
ε

λv2
x2

12 , (B.68)

which is precisely what was given in (5.26).
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Perturbative solutions for generic multipoles. In the previous section we computed
limx→∞Rν(x), but our result was only valid for small values of ν. In this section we are
going to revisit our calculation, generalizing it to generic values of ν. The starting point is
to consider the combination ∆ν as on order one parameter instead of a ∆ suppressed one.
Then the ψνFV equation, see (5.14), has the leading order solution

ψlead
νFV = cFVe

kνz , (B.69)

with

kν =
√

1 + ∆2ν2

r2
0

, (B.70)

which counts as an O(∆0) parameter. We define

1
ψνFV

d
dzψνFV ≡ gν =

∞∑
n=0

∆ngνn . (B.71)

Given (B.69), we immediately have that gν0 = kν . Note, as a rather trivial check, that
using (B.70), expanding in ∆ and keeping only the zeroth order, that is kν = 1, we match
the low l result: gν0(kν = 1) = gl0 = 1. With (B.71) the differential FV equation (5.12)
turns into

d
dz gν + g2

ν =
ν2 − 1

4
(z + r)2 + Ṽ

(2)
FV . (B.72)

With the counting stated above the right hand side has the expansion

ν2 − 1
4

(z + r)2 + Ṽ
(2)
FV = k2

ν +
(
−3− 2(k2

ν − 1) z
r0

)
∆ +

(
−3− 1

4r2
0

+ 3(k2
ν − 1)z

2

r2
0

)
∆2

+
(
−15

2 + z

2r3
0
− 4(k2

ν − 1)z
3

r3
0

)
∆3 +O(∆4) . (B.73)

Using this and pugging (B.71) into (B.72), we get the n = 1 equation

d
dz gν1 + 2kνgν1 = −3− 2(k2

ν − 1) z
r0
, (B.74)

which has the solution

gν1 = −2(k2
ν − 1)

2kν
z

r0
+ k2

ν − 1− 3kνr0
2k2

νr0
. (B.75)

Note the first term is linear in z, while the second is z independent. With this we can
solve (B.72) at n = 2, where we find

gν2 = 1
2kν

(
3(k2

ν − 1)− 4(k2
ν − 1)2 1

(2kν)2

)(
z

r0

)2
+terms with lower powers of z . (B.76)

Here we don’t bother writing explicitly the terms with lower powers of z because they are
not needed for the rest of the calculation, as we are going to explain. Let us keep the higher
orders gνn on hold for a moment, and turn to Rν .
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The Rν equation to solve for generic multipoles,

1
Rν

d2

dx2Rν + 2gν + 1
x

1
Rν

d
dxRν −

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
= 0 , (B.77)

reads the same as (B.29), but gl from (B.26) is replaced with gν from (B.71). At order zero
we have

1
Rν0

d2

dx2Rν0 + 2kν + 1
x

1
Rν0

d
dxRν0 −

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
0

= 0 , (B.78)

with the last term given by (B.35). The solution is

Rν0(x) = 1− 4x+ x2 + 2k2
ν(1 + x)2 + 3kν(1− x2)

(1 + kν)(1 + 2kν)(1 + x)2 . (B.79)

This matches the boundary condition Rν0(x→ 0) = 1, reduces to (B.36) for kν = 1, and
has the asymptotic behavior

Rν0(∞) = (1− kν)(1− 2kν)
(1 + kν)(1 + 2kν) . (B.80)

Then we introduce
fν ≡

1
Rν

d
dxRν , (B.81)

in terms of which (B.77) becomes

d
dxfν + f2

ν + 2gν + 1
x

fν −
1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
= 0 , (B.82)

with the boundary condition
e−rfν(e−r) = 0 . (B.83)

We expand

fν =
∞∑
n=0

∆nfνn , (B.84)

and gν with (B.71), then solve (B.82) order by order in ∆. The fν0 can be immediately
obtained from (B.79),

fν0(x) = −6(1 + kν − x+ kνx)
(1 + x) (1− 4x+ x2 + 2k2

ν(1 + x)2 + 3kν(1− x2)) . (B.85)

For order n ≥ 1, from (B.82) we get

d
dxfνn +

(
2fν0 + 2kν + 1

x

)
fνn = Pfνn , (B.86)

with

Pfνn = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
n
− 2
x

n∑
j=1

gνj fν(n−j) −
n−1∑
j=1

fνj fν(n−j) . (B.87)
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Here the last sum contributes only for n ≥ 2. The solution to (B.86) is

fνn(x) = x−(2kν+1)(1 + x)4

(1− 4x+ x2 + 2k2
ν(1 + x)2 + 3kν(1− x2))2∫ x

e−r
dt t

2kν+1

(1 + t)4

(
1− 4t+ t2 + 2k2

ν(1 + t)2 + 3kν(1− t2)
)2
Pfνn(t) ,

(B.88)

and from the definition (B.81) we have

lnRνn(x) =
∫ x

e−r
dt fνn(t) . (B.89)

Analogously to the low l case, in (B.88) we can always set the lower limit of integration
to zero, dropping only terms exponentially suppressed in r in doing so. On the contrary,
in (B.89) it is crucial to maintain e−r as the lower limit of integration, which implements the
boundary condition Rν(ρ = 0) = Rν(x = e−r) = 1. Note that, as Rν0(x = e−r → 0) = 1,
we must require lnRνn(x = e−r) = 0 for n ≥ 1.

Formally we have the recipe to compute lnRνn at any n and get the result

Rν = Rν0R
∆
ν1R

∆2
ν2 R

∆3
ν3 · · · (B.90)

= Rν0

(
1 + ∆ lnRν1 + ∆2

(1
2 ln2Rν1 + lnRν2

)
+O(∆3)

)
, (B.91)

up to the desired order in ∆. In practice, we can solve the integral in (B.88) analytically
only for n = 1, the result containing hypergeometric functions, but already fail when trying
to integrate it to compute the full form of lnRν1. We have already found that Rν0(x→∞)
in (B.80) does not vanish, in contrast with Rl0 in the low-l regime, which did vanish at
large x. Thus, it seems like we already have the leading order term in the expansion (B.90).
But is that the full contribution at the leading order? In the low-l calculation we found an
order-breaking term at n = 1 that fed back into n = 0. It came from the lower boundary
of integration of lnRl1. We should then check if we also get order-breaking terms in the
current calculation for generic multipoles. To do so, we must study the lower boundary
of the integral (B.89), for which it is sufficient to know the x → 0 limit of fνn. That is
obtained from (B.88):

fνn(x→ 0) = x−(2kν+1)
∫ x

0
dt t2kν+1Pfνn(t→ 0) . (B.92)

At n = 1, from (B.87) we have

Pfν1 = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
1
− 2
x
gν1 fν0 , (B.93)

with [see (B.45) and (B.75)]

(
Ṽ (2) − Ṽ (2)

FV

)
1

= 6
1 + x

gν1(x) = −2k
2
ν − 1
2kν

ln(x)
r0

, (B.94)
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and fν0 given in (B.85). Here we have kept only the highest power of z = ln(x) in gν1. In
the limit x→ 0:

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
1
−−−→
x→0

6
x2 , (B.95)

2
x
gν1 fν0 −−−→

x→0
2ln(x)

x

(
−2k

2
ν − 1
2kν

1
r0

)( −6
1 + 2kν

)
. (B.96)

From the first term, (B.95), using (B.92), we find

Pfν1(x→ 0) = 6
x2 , fν1(x→ 0) = 3

kνx
, (B.97)

which plugged into (B.89) gives

∆ lnRν1 3 ∆
∫
e−r

dx fν1(x→ 0) = 3r0
1
kν
≡ U1 . (B.98)

This is an order-breaking term which feeds back into the n = 0 result. When kν → 1 it
matches the factor in (B.56) we obtained in the low-l calculation. Note that U1 originates
from the second derivative of the potential, (B.95), calculated at n = 1, which involves the
bounce up to first order in ∆, that is ϕ1. It is easy to check that the other term, (B.96),
gives fν1(x → 0) ∝ ln(x), does not produce a boundary term in lnRν1, and so does not
feed back into n = 0. Recall that in (B.96) we have dropped a term coming from the
x-independent piece in gν1, see (B.75). Clearly, that cannot produce a boundary term in
lnRν1 either.

At n = 2 we have

Pfν2 = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
2
− 2
x

(gν1 fν1 + gν2 fν0)− f2
ν1 . (B.99)

Using (B.49), (B.85), (B.75), (B.76), (B.97), for x→ 0 we get:

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
2
−−−→
x→0

3
(
12r0(ln(x) + 2)− 6 ln2(x) + 6 ln(x)− 2π2 − 15

)
4r0x

, (B.100)

2
x
gν1 fν1 −−−→

x→0
2 · −2(k2

ν − 1)
2kν

1
r0

3
kν

ln(x)
x2 , (B.101)

2
x
gν2 fν0 −−−→

x→0
2k

2
ν − 1
2kν

(
3− 4(k2

ν − 1) 1
(2kν)2

) 1
r2

0

−6
1 + 2kν

ln2(x)
x

, (B.102)

f2
ν1 −−−→

x→0

9
k2
νx

2 . (B.103)

Here there are two contributions proportional to 1/x2: (B.103) and (B.101), which also
contains ln(x) from gν1. From the latter we find

Pfν2(x→ 0) = −2
x
gν1fν1(x→ 0) = 6

r0

k2
ν − 1
k2
ν

ln(x)
x2 , (B.104)

fν2(x→ 0) = 6
r0

1
2kν

k2
ν − 1
k2
ν

ln(x)
x

, (B.105)
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which gives the order-breaking contribution

∆2 lnRν2 3 ∆2
∫
e−r

dx fν2(x→ 0) = 3r0

(
− 1

2kν
+ 1

2k3
ν

)
≡ U2 , (B.106)

feeding back into n = 0. In the limit kν → 1 we get U2 → 0. This confirms the absence
of such a contribution in the low-multipole limit, in agreement with our low-l result.
From (B.103), one ends up with a boundary term ∆2 lnRν2 ∝ ∆2r = O(∆), which is also
order-breaking, but feeds back into n = 1 rather than n = 0, so it is not a leading order
contribution. From the other two terms, (B.100) and (B.102), both proportional to 1/x,
we get terms in ∆2 lnRν2 which are genuinely of order ∆2.

At n = 3 we have

Pfν3 = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
3
− 2
x

(gν1 fν2 + gν2 fν1 + gν3 fν0)− 2fν1 fν2 . (B.107)

Here, the term
1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
3

= 1
x2

(15
2 + 3ϕ1ϕ2 + 3ϕ0ϕ3

)
−−−→
x→0

1
x2 (15 +O(x)) , (B.108)

gives a contribution ∆3 lnRν3 ∝ O(∆2), which feeds back into n = 2, but not into the
leading order. The following pieces

Pfν3(x→ 0) = −2
x

(gν1 fν2 + gν2 fν1)(x→ 0) = − 9
r2

0

k2
ν − 1
k4
ν

ln2(x)
x2 , (B.109)

fν3(x→ 0) = − 9
r2

0

1
2kν

k2
ν − 1
k4
ν

ln2(x)
x

, (B.110)

give the contribution

∆3 lnRν3 3 ∆3
∫
e−r

dx fν3(x→ 0) = 3r0

(
− 1

2k3
ν

+ 1
2k5

ν

)
≡ U3 , (B.111)

which feeds back into n = 0. Here we have used (B.97), (B.105), and we have kept only
the terms with the leading power of z = ln(x) in gν1 and gν2 from (B.75) and (B.76);
sub-leading powers of z do not contribute to (B.111). Likewise, one can check that the
remaining terms in (B.107) don’t produce a contribution that feeds back into n = 0.

At n = 4 we have

Pfν4 = 1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
4
− 2
x

(gν1 fν3 + gν2 fν2 + gν3 fν1 + gν4 fν0)− 2fν1 fν3 − f2
ν2 ,

(B.112)
with

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
4

= 1
x2

3
2(16 + 2ϕ0ϕ4 + 2ϕ1ϕ3 + ϕ2

2) −−−→
x→0

O
(1
x

)
. (B.113)

The order-breaking contribution feeding back into n = 0, comes from

Pfν4(x→ 0) = −2
x

(gν1 fν3 + gν2 fν2 + gν3 fν1)(x→ 0) = − 3
r3

0

5− 6k2
ν + k4

ν

k6
ν

ln3(x)
x2 ,

(B.114)

fν4(x→ 0) = − 3
r3

0

1
2kν

5− 6k2
ν + k4

ν

k6
ν

ln3(x)
x

, (B.115)
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and is given by

∆4 lnRν4 3 ∆4
∫
e−r

dx fν4(x→ 0) = 3r0

( 1
8k3

ν

− 6
8k5

ν

+ 5
8k7

ν

)
≡ U4 . (B.116)

Here we have used gν3 ∝ z3 = ln3(x), see the derivation below. The terms in (B.112) not
included in (B.114) do not feed back into n = 0.

The pattern should be clear at this point. We are after order-breaking contributions of
the form ∆n lnRνn = O(∆0). They come from the lower limit of the integral (B.89), when
fνn has the form

fνn(x→ 0) ∝ lnn−1(x)
x

. (B.117)

This, in turn, is obtained from

Pfνn(x→ 0) ∝ lnn−1(x)
x2 , (B.118)

as one can check by plugging it into (B.92),

x−(2kν+1)
∫ x

0
dt t2kν+1 lnn−1(t)

t2
= 1

2kν
lnn−1(x) + · · ·

x
, (B.119)

with the dots denoting terms with powers of ln(x) lower than n− 1 in the numerator, which
we are dropping. Let us look into the general form of Pfνn in (B.87), which has the following
behavior. For the odd orders

1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
2j+1

−−−→
x→0

1
x2 [constant +O(x)] , (B.120)

while for the even orders
1
x2

(
Ṽ (2) − Ṽ (2)

FV

)
2j
−−−→
x→0

1
x2 [O(x)] . (B.121)

Such a behavior is a direct consequence of the boundary condition ϕ(x → 0) = ϕ(ρ =
0) = ϕTV of the bounce solution. Then we see that only for n = 1 such a term is of the
form (B.118), and from it we get first fν1, then U1. Proceeding to higher orders, n ≥ 2,
we can forget about the second-derivative-potential term in (B.87), as at most the odd
orders (B.120) will give contributions feeding back into the previous order, not back into
n = 0. We can also drop the last sum, −∑n−1

j=1 fνjfν(n−j), which never produces terms
like (B.118). We are left with the sum − 2

x

∑n
j=1 gνjfν(n−j). We have seen that only the

term with the highest power of z in gνn, that is zn, gives (B.118). Let us then compute the
coefficients of such terms. To do so, we have to get back to (B.72). From (B.73) we see
that we can write the expansion as

ν2 − 1
4

(z + r)2 + Ṽ
(2)
FV = k2

ν + (k2
ν − 1)

∞∑
n=1

(−)n(n+ 1)∆nzn

rn0
(B.122)

+
∑

n>q≥0
cn,q∆nzq . (B.123)
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Then we can write (B.72), using (B.71), for n ≥ 1 as

d
dz gνn + 2kνgνn = Pgn , (B.124)

with the function

Pgn = (−)n(n+ 1)(k2
ν − 1)z

n

rn0
−
n−1∑
j=1

gνj gν(n−j) , (B.125)

built iteratively. Here the last sum is present only for n ≥ 2. In Pgn we have dropped the
terms from (B.123), because they contain sub-leading powers of z, which we do not need.
The solution to (B.124) is

gνn(z) = e−2kνz
∫ z

−r
dt e2kνtPgn(t) . (B.126)

The lower limit of integration can be understood as follows. From (B.22), switching from ρ

to z, we get the boundary condition

gν(z → −r) = 1
z + r

= ∆
r0

∞∑
n=0

(−)n∆nzn

rn0
. (B.127)

The sum with alternating signs on the right hand side, obtained after expanding in ∆, implies
that gνn(z = −r = −r0/∆) = 0, as implemented in (B.126). We can infer from (B.125)
that Pgn is a polynomial in z of degree n. Hence, we can set −r → −∞ in the lower
limit of integration of (B.126), dropping terms exponentially suppressed in r. At n = 1,
from (B.125) we get

Pg1 = −2(k2
ν − 1) z

r0
. (B.128)

To get gν1 we must do the integral in (B.126). The following result is useful:

1
rn0
e−2kνz

∫ z

−∞
dt e2kνttn = 1

2kν

(
z

r0

)n
+ · · · , (B.129)

with the dots indicating terms with powers of z lower than n, which we will be dropping
systematically in what follows. With this we reproduce the first term of gν1 in (B.75).
Using it into (B.125), at n = 2 we have

Pg2 =
(

3(k2
ν − 1)− 4(k2

ν − 1)2 1
(2kν)2

)(
z

r0

)2
, (B.130)

which upon integration with (B.129) gives gν2 in (B.76). We can systematize the procedure
by writing

Pgn = cgn(kν)
(
z

r0

)n
, (B.131)

and using (B.129) to retain only the highest power of z at any order n

gνn = cgn(kν)
2kν

(
z

r0

)n
. (B.132)
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The coefficients cgn , which are functions of kν , are built iteratively from (B.125):

cgn(kν) = (−)n(n+ 1)(k2
ν − 1)− 1

(2kν)2

n−1∑
j=1

cgj (kν)cgn−j (kν) . (B.133)

Here the last sum is present only for n ≥ 2. The explicit form of gν3, which we used to
compute fν4 above, is

gν3 = k2
ν − 1
2kν

(
−16

(
k2
ν − 1

) 2

(2kν)4 + 12
(
k2
ν − 1

)
(2kν)2 − 4

)(
z

r0

)3
. (B.134)

With gνn at hand, we can return to the expression for Pfνn and focus on
− 2
x

∑n
j=1 gνjfν(n−j). The last term in this sum, 2

xgνnfν0 ∝ lnn(x)
x , does not have the

behavior of (B.118), and indeed does not feed back into n = 0, so we drop it. We are
left with

Pfνn(x→ 0) = −2
x

n−1∑
j=1

gνj fν(n−j) = 3
rn−1

0
cfνn(kν) lnn−1(x)

x2 , n ≥ 2 , (B.135)

where we have introduced the coefficients cfνn(kν), which are functions only of kν . Integrating
with (B.119) we get

fνn(x→ 0) = 3
rn−1

0

cfνn(kν)
2kν

lnn−1(x)
x

, n ≥ 2 . (B.136)

Now we can proceed iteratively. Note (B.135) and (B.136) start at n = 2, so the iteration
requires

cfν1 = 2 , fν1 = 3
kνx

, (B.137)

which we computed explicitly above, as the starting point. Plugging (B.132), with z = ln(x),
and (B.136) into (B.135) we get the recursive relation

cfνn(kν) = − 1
k2
ν

cgn−1(kν) + 1
2

n−2∑
j=1

cgj (kν) cfν(n−j)(kν)

 , n ≥ 2 , (B.138)

where we have used (B.137). Here the cgn coefficients are given by (B.133). We have thus
managed to formally isolate all the contributions ∆n lnRνn = O(∆0) which feed back into
the leading order. They are given by

Un ≡ ∆n 3
rn−1

0

cfνn(kν)
2kν

∫
e−r0/∆

dx lnn−1(x)
x

= 3r0

(
−(−)n

n

cfνn(kν)
2kν

)
. (B.139)

The U factor is obtained by summing13 over all of them:

U =
∞∑
n=1

Un = 3r0

(
kν −

√
k2
ν − 1

)
. (B.140)

13What we have to perform is a complicated nested sum, given (B.138), which in turn contains cgn , given
by (B.133). When we include enough orders in cfνn for a fixed n, the sum turns into

∞∑
n=1

(
− (−)n

n

cfνn(kν)
2kν

)
= 1
kν

∞∑
j=0

(2j)!
22j+1(j + 1)!j!

1
k2j
ν

= kν −
√
k2
ν − 1 .

– 45 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
9

With this, we have the full contribution at the leading order,

lim
x→∞

lnRν(x) = lnRν0(x→∞) + U +O(∆)

= ln (1− kν)(1− 2kν)
(1 + kν)(1 + 2kν) + 3r0

(
kν −

√
k2
ν − 1

)
+O(∆) , (B.141)

as in (5.39). After this long derivation, the result in (B.141) deserves some comments.

• Expression (B.141) holds in any number of dimensions D.

• Recall the definition of kν from (B.70) and remember we are treating kν as a leading
order parameter in the expansion in ∆. One could be tempted to expand Rν(∞) for
∆ν � 1,

eU
(1− kν)(1− 2kν)
(1 + kν)(1 + 2kν) −−−−→∆ν�1

∆2e3r0 ν2

12r2
0
, (B.142)

and compare to the result (B.60). The two do not quite match, and indeed we should
not expect so. The point is that the calculation we performed in this section is valid
up to O(∆), as written explicitly in (B.141): we cannot expect to get the ∆2 order
correctly and match the result at low ν, (B.60), which was derived consistently up
to that order in the earlier section. In other words, there are terms of order ∆2 in
O(∆) in (B.141) which we have not computed, and do not know how to compute for
generic values of ν. Such terms have the form (B.123), and we have dropped them
in our calculation. As we argued in section 6, when we perform the sum in ν our
result (B.141) is sufficient to compute the log of the determinant at the leading order
in ∆.

• When ν � 1/∆, kν = 1 +O(∆2), and U = U1 = 3r0, with Un = 0 for n ≥ 2. This
confirms what we anticipated at the end of the low l calculation: at low l (low ν)
the only order-breaking contribution comes from n = 1 and results in the factor e3r0

in Rl. For generic values of ν, we have found instead that there are order-breaking
contributions for any n ≥ 1 and we have managed to organize them systematically.

• The contribution to U from n = 1 is, in some sense, special. It is the only one that
survives at low ν, and the only one that originates from the potential, that is from
the term 1

x2

(
Ṽ (2) − Ṽ (2)

FV

)
1

= 3
x2 (1 + ϕ0ϕ1) , (B.143)

in Pfν1 , see (B.93). From this we got fν1(x→ 0) = 3/(kνx) and U1 = 3r0/kν . Then,
for n ≥ 2 we just had to iterate (B.135) and (B.136), and we could do it to arbitrary
order n. The knowledge of fν1 was the crucial starting point, then the iteration was
automatic. This implies that our result (B.141) is constructed only based on knowing
the bounce up to n = 1.

• What is often done in the literature, to compute analytically the fluctuations in the
TW limit, is to set z + r ' r in the denominator on the left hand side of (B.122),
based on the observation that the bounce radius r is large. For us, on the contrary, it
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is crucial to maintain the z dependence in that denominator, which then enters in the
expansion on the right hand side of (B.122). It is from such a z dependence that we
build the U factor, which is crucial to get the full correct result for the fluctuations at
the leading order.

C UV integrals

In the process of renormalization, we encounter integrals of the generic form

Im =
∫ ∞

0
dρ ρ2m−1

(
V (2)m − V (2)m

FV

)
. (C.1)

This section of the appendix deals with the evaluation of these integrals, starting from the
two explicit cases of I1,2 and then with the generic expression, valid for any m. After the
usual substitutions for ρ and the bounce, the calculation of I1 goes as

I1 =
∫ ∞
−r

dz (r + z)
(3

2
(
ϕ2 − 1

)
− 3∆

)
. (C.2)

The second term in the bracket is of higher-order, so we drop it here to get the leading
order

In=0
1 = −6r

∫ ∞
0

dx
x

x

(1 + x)2 = −6r . (C.3)

Here we are allowed to extend the limits of integration from x = e−r to 0. Moving on to
the higher-order and including ϕ1, we get

In=1,2
1 = ∆

∫ ∞
e−r

dx
x

(r + ln x)
( 6

1 + x

)
, (C.4)

where the ln x term is ∆ suppressed with respect to r and is thus counted as n = 2. These
two higher orders are dominated by the lower boundary, which cannot be extended to x = 0.
However, we may expand the integrand for small x and simplify the integration

In=1
1 ' 6∆r

∫
e−r

dx
x

= 6∆r2 , In=2
1 = 6∆

∫
e−r

dx
x

ln x = 6∆
∫
−r

dz z = −3∆r2 . (C.5)

Further including ϕ2 does not bring any additional 1/∆ terms to I1, they are ∆2 suppressed.
Combining all of the terms, we get

I1 = −6r + 3∆r2 ' −3 (2− r0)
(
r0
∆

)
, (C.6)

which agrees with the expression in (6.8). Note that the n = 0 part of I1 cancels the
divergence of lnRν0, while combining n = 1, 2 orders comes with an additional r0, just
like the U -factor and it precisely cancels its dependence. In other words n = 0 part of I1
constitutes the asymptotic lnRaν0 and the n ≥ 1 go into the Ua part of the subtraction.
Now that we have the complete expression for I1 collected in (6.8), we can move on.
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At the leading order, the I2 UV integral (after all the substitutions) can be written as

In=0
2 = −12r3

∫ ∞
0

dx
x

x
(
1− x+ x2)
(1 + x)4 = −6r3 . (C.7)

To get to the sub-leading orders, we add ϕ1 into V (2)2− V (2)2
FV = 12∆(1− x+ 4x2)/(1 + x)3,

which brings in one power of ∆. We then expand the integrand at small x, because that is
what dominates the integral, expand ρ3 = (r + z)3 and count each power of z as one order
higher, to end up with

In=1
2 =

∫
e−r

dx
x
r312∆

(
1− x+ 4x2

(1 + x)3

)

' 12∆r3
∫
−r

dz = 12∆r4 ,

(C.8)

In=2
2 = 12∆

∫
−r

dz 3r2z = −18∆r4 , (C.9)

In=3
2 ' 12∆

∫
−r

dz 3rz2 = 12∆r4 , (C.10)

In=4
2 ' 12∆

∫
−r

dz z3 = −3∆r4 . (C.11)

We dropped all the terms sub-leading in ∆ and collected the leading ∆0 powers. We now
have five orders in n = 0, . . . 4 and again the n = 0 matches the lnRaν0, while all the higher
orders combine and give an extra factor of r0 that matches to Ua; altogether, we have

I

∑
n

2 = −6r3 + 3∆r4 ' −3 (2− r0)
(
r0
∆

)3
, (C.12)

which is what is given in (6.13).

General order. We can carry out the above analysis for any order. First, expand the
integrand up to ∆

V (2)m − V (2)m
FV ∝ 1

2m
(
3ϕ2

0 − 1
)m
− 1− 3∆m

( 1
2m−1

(
3ϕ2

0 − 1
)m−1

ϕ0 − 1
)
. (C.13)

In the first piece, coming from the O(∆0) term in (C.13), we can extend the lower limit of
integration to zero. Furthermore, we can expand the power of ρ2m−1 ' r2m−1, the rest is
subdominant in ∆

In=0
m = r2m−1

∫ ∞
0

dx
x

( 1
2m

(
3ϕ2

0 − 1
)m
− 1

)
, ϕ0 = x− 1

x+ 1 . (C.14)

This integral is given as a finite sum of incomplete Beta functions and Harmonic numbers

In=0
m = r2m−1

2m−1

m∑
i=0

(
m

i

)
(−)i+13m−i

(
B (−1, 2(m− i), 0) + log 2 +H2(m−i)−1

)
, (C.15)

here we list some of them from m = 1 . . . 10
In=0
m

r2m−1 = −
{

6, 6, 36
5 ,

264
35 ,

282
35 ,

3222
385 ,

43476
5005 ,

44736
5005 ,

780462
85085 ,

1378158
146965 , . . .

}
. (C.16)
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For the linear term in (C.13), we have to keep the lower limit of integration, but we can set
x = 0, or equivalently ϕ0 = −1, in the integrand, such that

In≥1
m = 6∆m

∫
−r

dz (r + z)2m−1 = 6∆m
2m−1∑
i=0

(
2m− 1

i

)
r2m−1−i

∫
−r

dz zi (C.17)

= 6∆mr2m
2m−1∑
i=0

(
2m− 1

i

)
(−1)i
i+ 1 = 6∆mr2m 1

2m ' 3r0

(
r0
∆

)2m−1
. (C.18)

D Quartic functional determinant

We discuss the calculation of the functional determinant of an (unstable) quartic potential,
specified by V = λ/4φ4, where λ < 0. It can be computed either by use of Feynman
diagrams or via the ζ/WKB formalism. The bounce is given by φ =

√
8/(−λ)R/(R2 + ρ2)

and the ratio of multipoles Rl can be calculated using Gel’fand-Yaglom [15, 16, 71] with
Rl = l(l − 1)/(l + 2)/(l + 3). To compute the determinant, we have to regulate the sum of
dl lnRl, such that we first subtract the divergent growth at large l and then renormalize it.

The Feynman diagrammatic approach [15, 16] specifies the subtraction of lnRl in
powers of V (2) − V (2)

FV insertions. The renormalization in D = 4 is performed by calculating
the Feynman diagrams with one and two insertions in momentum space, using the MS
scheme. After performing the finite sum and adding back the renormalized determinant,
one gets

−1
2 ln

(
det′O

detOFV

)
= 3
ε
− 5

4

(
1− 2 ln

(5
6

))
+ 3 ln

(
µR

2

)
+ 6ζ ′(−1) , (D.1)

as stated e.g. in eq. (5.6) of [16] (here we translated to our convention ε = 4−D).
According to the ζ/WKB prescription, we use (6.12) with the UV integrals coming

from integrating V (2) = 3λφ2 using the quartic bounce given above, such that

I1 = −12 , I2 = −48 , Ĩ2 = 48
(1
ε

+ 1 + γE + ln
(
µR

2

))
. (D.2)

The finite sum is performed by starting from l = 2 (or ν = 3)

Sfin =
∞∑
ν=3

ν2
(

lnRl + 6
ν

+ 6
ν3

)
= −37

2 + 9 ln 2 + 5 ln 3− 12ζ ′(−1) . (D.3)

To complete the calculation, we have to add the l = 0 and l = 1 terms. This includes the
lnRl with zeroes removed, given by R′0 = −1/5 and R′1 = 1/10 (see e.g (4.37) of [16]), as
well as the asymptotic subtractions, such that

−1
2 ln

(
det′O

detOFV

)
= −1

2

(
ln |R′0|+ 4 lnR′1 +

2∑
ν=1

(
6ν + 6

ν

)
+ Sfin −

1
8 Ĩ2

)
. (D.4)

Although the intermediate steps in these two approaches differ significantly, the final result
precisely agrees with (D.1). This further confirms that a single integration over ρ in (6.12)
is equivalent to using Feynman diagrams in the MS scheme.
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E Finite determinants in generic dimensions

The procedure that we discussed for the specific D = 3, 4 above, deriving the asymptotics,
subtracting the infinities and applying the EuMac approximation, can be generalized for
generic D. We first focus on the asymptotic behavior of the determinant that needs to be
subtracted to regulate the sum, then on the sums in generic D. We treat odd and even
dimensions in separate sub-sections, starting with the easier odd ones. Some parts of the
summation are valid for any D, so we will keep the discussion general for as long as possible
and reduce to a specific choice when this becomes unavoidable.

Asymptotics of determinants. We will derive the asymptotic behavior of the determi-
nant for high multipoles in inverse powers of ν. To compute the finite sum in (6.4), we need
to obtain lnRaν that regulates the infinites with a minimal number of ν−j terms. The order
depends on the dimension, because the degeneracy factor at high ν scales as dν ∝ νD−2.
We thus have to expand to high enough powers of ν−j , to get to the lowest one, which is
dν lnRν ∼ ν−1. This defines the notion of minimal subtraction.

To keep track of the calculation, we will separate the asymptotic into two pieces: the
logarithmic one lnRaν0, and the U factor, such that lnRaν = lnRaν0 + Ua. In what follows
we will be evaluating the integrals by performing a large kν expansion of lnRν , integrating
the pieces of the sums and summing them back up. For this purpose, it is sensible to first
expand in large kν , which is by definition larger than one, thus the sums with k−jν converge,
and then further expand in powers of ν−j or better y−j . The last step brings us to the well
defined 1/ν expansions, which we get during the process of renormalization.

Let us start with the logarithmic piece and rewrite the log of (5.36) as:

lnRν0 = −2
∞∑
j=1

1 + 2−2j+1

2j − 1 k−2j+1
ν , (E.1)

where the powers of kν are going down by factors of 2. Further expanding the powers of kν
in various roots of large y � 1, using

k−2j+1
ν = y−2j+1

(
1 + y−2

)−j+ 1
2 = y−2j+1

∞∑
p=0

(
−j + 1

2
p

)
y−2p , (E.2)

we then express it as a double infinite sum

lnRν0 = −2
∞∑
j=1

1 + 2−2j+1

2j − 1

∞∑
p=0

(
−j + 1

2
p

)
y−2(j+p)+1 . (E.3)

As discussed above, the powers in the asymptotic functions have to stop when we reach ν−1.
To derive the upper bound in the sum, note that the degeneracy factor goes as dν ∝ yD−2

in the UV and we need to remove all the negative y powers, including the highest one with
y−1. Comparing the powers leads to the maximal one at j = m, for both odd and even
dimensions, where D = 2m+ 1 for the odd ones and D = 2m for the even, thus

lnRaν0 = −2
m∑
j=1

1 + 2−2j+1

2j − 1

m−j∑
p=0

(
−j + 1

2
p

)
y−2(j+p)+1 . (E.4)
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We proceed along similar lines to obtain the asymptotics of the U factor

U = −3r0

∞∑
j=1

(
1
2
j

)
(−)jk−2j+1

ν = −3r0

∞∑
j=1

(
1
2
j

)
(−)jy−2j+1

∞∑
p=0

(
−j + 1

2
p

)
y−2p , (E.5)

and truncating the series at the appropriate maximal power

Ua = −3r0

m∑
j=1

(
1
2
j

)
(−)jy−2j+1

m−j∑
p=0

(
−j + 1

2
p

)
y−2p . (E.6)

With these minimal subtractions in powers of y, the sum in (6.4) becomes convergent
and can be evaluated using the EuMac approximation in (6.5). Plugging the appropriate
boundaries in (E.4) and (E.6), we get precisely the asymptotic functions lnRaν , which were
calculated in D = 3, 4 via the integrals I1,2 in (6.8) and (6.13).

From the generic behavior of the asymptotics, we already see that the odd and even D
will behave differently. Because the degeneracy factor grows as yD−2 and the UV expansion
of lnRν0 + U behave as y−2j+1, we get y−1 terms only for even D. After the summation
in ν, these become ln y divergent terms. Conversely, there are no log divergencies in odd
dimensions, which makes them generally easier to handle.

Generic odd D. Let us generalize the summation procedure to generic D, beginning
with an integral part of the U -factor in the EuMac approximation

Σ
∫
U

D =
∫ ∞
ν0

dν dν (U − Ua) . (E.7)

We found out that inD = 3 the EuMac integral was insensitive to the lower bound/multipoles.
We shall argue that this is true for any odd D. The dominant contribution to the integral
comes from ν ∼ 1/∆ terms, where the degeneracy factor is approximated as

dν = 24−Dν

(D − 2)!

D−3
2∏
j=1

(
(2ν)2 − (2j − 1)2

)
' 2

(D − 2)!ν
D−2 . (E.8)

In the ν ∼ 1/∆ range, the 2j − 1 terms above are ∆2 suppressed with respect to ν2. Using
this approximation of dν , we get the following EuMac integral

Σ
∫
U

D = 2
(D − 2)!

∫ ∞
ν0

dν νD−2 (U − Ua) (E.9)

= 2
(D − 2)!

(
r0
∆

)D−1 ∫ ∞
√

1+y2
0

dkν kν(k2
ν − 1)

D−3
2 (U − Ua) , (E.10)

where we will use the two expansions for U in (E.5) and the asymptotic Ua in (E.6).
After recasting the integrands U,Ua into sums over j, it becomes clear that we can

divide (E.9) into a lower part with j ∈ [1,m] that contains the subtraction of Ua and the
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high region j ∈ [m+ 1,∞], which remains unsubtracted. The high region is given by

Σ
∫
U

D uns = − 6r0
(D − 2)!

(
r0
∆

)D−1 ∞∑
j=m+1

(−)j
(

1
2
j

)∫ ∞
√

1+y2
0

dkν k−2j+2
ν (k2

ν − 1)
D−3

2 (E.11)

= 6r0
(D − 2)!

(
r0
∆

)D−1 (D − 2)!
(
m− D

2

)
!

2D
(
D
2

)
!m!

. (E.12)

This result is already valid for any D and does not depend on the lower boundary y0. The
subtracted part contains a double sum coming from the lower part of the sum over j with
j ∈ [1,m]. When we take the difference U −Ua, the lower part of the sum over p is removed,
and we are left with the task of having to evaluate

Σ
∫
U

D sub = − 6r0
(D − 2)!

(
r0
∆

)D−1 m∑
j=1

(
1
2
j

)
(−)j

∞∑
p=m−j+1

(
−j + 1

2
p

)

×
∫ ∞
√

1+y2
0

dkν kν
(
k2
ν − 1

)D
2 −j−p−1

.

(E.13)

Let us focus first on the integral and perform the sum over p
∞∑

p=m−j+1

(
−j + 1

2
p

)∫ ∞
√

1+y2
0

dkν kν
(
k2
ν − 1

)D
2 −j−p−1

(E.14)

=
∞∑

p=m−j+1

(
−j + 1

2
p

)
y
D−2(j+p)
0

D − 2(j + p) (E.15)

=
(

1
2 − j

−j +m+ 1

)
−yD−2m−2

0
D − 2m− 2

× 3F2

(
1,m+ 1

2 ,m+ 1− D

2 ;m+ 2− D

2 ,m+ 2− j;− 1
y2

0

)
.

(E.16)

The result is also valid for any D, however, the dependence on y0 differs from odd to even.
Therefore, we need to specify that we are working in odd dimensions, so we set D = 2m+ 1
and expand for small y0 to end up with a simple coefficient

(E.16) D=2m+1−−−−−−→
y0→0

(−)m

m
(m−j+ 1

2
m

) . (E.17)

Now we come back to evaluate the remaining outer sum over j, which gives

Σ
∫
U

2m+1 sub = − 6r0
(D − 2)!

(
r0
∆

)D−1 m∑
j=1

(
1
2
j

)
(−)j+m

m
(m−j+ 1

2
m

) (E.18)

= − 6r0
(D − 2)!

(
r0
∆

)D−1 (−)m

m
(m+ 1

2
1
2

)
(

(m+ 1)
(

1
2

m+ 1

)
− 1

2

)
. (E.19)

Combining the subtracted sum with the unsubtracted part in (E.11), we get an elegant
expression for the U part in odd dimensions

Σ
∫
U

2m+1 = 2
(D − 2)!

(
r0
∆

)D−1 (−)m3r0

2m
(m+ 1

2
1
2

) . (E.20)
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Now we understand why the integral is dominated by ν ∼ 1/∆: the lowest multipoles
come with higher orders, expanded in y2 and would be y2

0 or ∆2 suppressed. This justifies the
approximation in (E.8). If we were to keep the additional constant terms next to ν2 in (E.8),
they would be ∆2 suppressed once we reach the intermediate multipoles with ν ∼ 1/∆.

Let us show that this is already the final answer and discuss why the additional EuMac
terms in (6.5) do not contribute. Inserting the lower boundary with ν0, dν ∼ O(1) and
y0 ∼ O(∆), we get the following orders in ∆

σ2m+1(ν0) ∝ O(1)

√∆2 + 1−∆−
m∑
j=1

(
1
2
j

)
∆−2j+1

 . (E.21)

Remember that the leading order result in (E.7) goes as ∆−D+1 or equivalently ∆−2m. On
the other hand, the term with the most negative power of ∆ in (E.21) is still ∆−2m+1,
which is suppressed compared to the leading one. The same argument goes through for
the higher derivatives of σ2m+1(ν0): when we multiply the last term with the degeneracy
factor, we will at most get a term ∝ ν. Taking higher derivatives of ν just makes it less
important and therefore the Bernoulli terms are negligible.

Let us proceed with the evaluation of the lnRν0 term using the same line of reasoning.
Using the expansions in (E.1), (E.3) and (E.4), we again split the sum into two pieces,

Σ
∫

ln
2m+1 = 2

(D − 2)!

(
r0
∆

)D−1 ∫ ∞
y0

dy yD−2 (lnRν0 − lnRaν0) (E.22)

= 2
(D − 2)!

(
r0
∆

)D−1 ∫ ∞
y0

dy yD−2

 m∑
j=1

. . .+
∞∑

j=m+1
. . .

 , (E.23)

where the first part in the parenthesis is the subtracted one and the second part is the
unsubtracted one, independent of lnRaν0. The latter part is again simpler, valid for any D
and independent of y0

Σ
∫

ln
D uns = 2

(D − 2)!

(
r0
∆

)D−1 1

(D − 1)(2m− 1)
(m−D2
m− 3

2

)
×
(

1 + D − 1
4m+1(m+ 1

2) 2F1

(
1,m+ 1− D

2 ;m+ 3
2; 1

4

))
.

(E.24)

The subtracted piece is slightly more involved. Taking the difference of lnRν0 and lnRaν0
in the subtracted region, where j ∈ [1,m], gives us

Σ
∫

ln
D sub = − 4

(D − 2)!

(
r0
∆

)D−1 m∑
j=1

1 + 2−2j+1

2j − 1

∞∑
p=m−j+1

(
−j + 1

2
p

)
(E.25)

×
∫ ∞
√

1+y2
0

dkν kν(k2
ν − 1)

D
2 −j−p−1 , (E.26)

which is very similar to the subtracted part of the U − Ua integration in (E.13). Indeed,
the integral and the sum over p are exactly the same as in (E.14) and once again we have
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to have to separate the odd ones by setting D = 2m+ 1 and expanding (E.14) for small y0
to get (E.17). What remains is a slightly different sum over the j index

Σ
∫

ln
2m+1 sub = − 4

(D − 2)!

(
r0
∆

)D−1 (−)m
m

m∑
j=1

1 + 2−2j+1

(2j − 1)
(m−j+ 1

2
m

) (E.27)

= 4
(D − 2)!

(
r0
∆

)D−1 (−)m+1

2m2

(1 +m 2F1
(
1,m− 1

2 ; 3
2 ; 1

4

)
( m
m− 1

2

)
−

1 + 4−m m
2m+1 2F1

(
1
2 , 1;m+ 3

2 ; 1
4

)
(− 1

2
m

) )
.

(E.28)

To wrap up the lnRν integration, we combine the subtracted part with the unsubtracted
piece from (E.24), where we set D = 2m+ 1, and end up with the following result

Σ
∫

ln
2m+1 = Σ

∫
ln

2m+1 uns + Σ
∫

ln
2m+1 sub (E.29)

= 2
(D − 2)!

(
r0
∆

)D−1 (−)m+1
(
1 +m 2F1

(
1, 1

2 −m; 3
2 ; 1

4

))
m2(m− 1

2
m

) . (E.30)

Before moving on to even dimensions, let us discuss the EuMac corrections for the log
terms. The reasoning here goes along the same lines as for the U -factor above. The lowest
power of ∆ comes from taking the ultimate term with p = m− j in the asymptotic lnRaν0,
given in (E.4), such that

lnRaν0 3
−2

y2m−1

m∑
j=1

1 + 2−2j+1

2j − 1

(
−j + 1

2
−j +m

)
(E.31)

= − 2
y2m−1

m

m− 1
2

(
1
2
m

)(
1 +

(
m− 1

2

)
2F1

(
1, 1−m; 3

2 ; 1
4

))
. (E.32)

Now we plug in the low values of ν0 and perform the same ∆ counting as in (E.21), to
realize again that the term with the most negative power of ∆ goes as ∆−2m+1. This is
suppressed compared to the leading one with ∆−2m and the higher derivatives even more
so, thus all the EuMac corrections are irrelevant here.

To summarize the situation for the odd D, we combine the integral of the log given
by Σ

∫
ln

2m+1 in (E.30) with the integral of the U -factor given by Σ
∫
U

2m+1 from (E.20). Perhaps
surprisingly, the final expression comes out to be remarkably simple

Σ2m+1 = Σ
∫
U

2m+1 + Σ
∫

ln
2m+1 (E.33)

= 2
(D − 2)!

(
r0
∆

)D−1 (−)m+1

m
(m− 1

2
m

) ( 1
m

+ 2F1

(
1, 1

2 −m; 3
2 ; 1

4

)
− 3

2r0

)
. (E.34)

Evaluating the hypergeometric function gives us the following numbers for a couple of low
odd Ds

ΣD = 2
(D − 2)!

(
r0
∆

)D−1


5
6 + 3

8 ln 3 , D = 3 ,
− 37

240 −
9
64 ln 3 , D = 5 ,

− 3
224 + 9

128 ln 3 , D = 7 .
(E.35)
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Generic even D. The main difference for generic even dimensions is the appearance
of a log term on the lower boundary and thus the importance of low multipoles in lnRaν .
This translates into the fact that the EuMac sum over the Bernoulli numbers diverges if we
apply the EuMac approximation naïvely on the entire interval from ν0 = O(1) to ∞, as we
explained in section 6.

Let us discuss how these issues appear and how to resolve them in general D = 2m. In
even dimensions, the asymptotic parts will always contain a term that goes as 1/ν. When
we take higher derivatives in the last term of (6.5) to sum over the Bernoulli numbers,
the 1/ν will turn into a term that goes as ν−(p>1). If we plug in the lower boundary with
ν = D/2− 1, the sum over the Bernoulli numbers will eventually diverge.

A way out of this impasse is the same as in D = 4: split up the sum over ν into two
parts, the first coming from ν0 = O(1) up to ν1 . r0/∆ and the other from ν1 to ∞. As
we shall see, the precise position of this separation is irrelevant, as long as ν1 � 1. Let us
now consider the low part of the sum in more concrete detail. Here we need to extract the
leading powers of ∆ from the asymptotic terms lnRaν0 and Ua, which means we have to set
p = m− j and perform the sum over j, just as in (E.32). This gives us the most relevant
low multipole terms, which can be written as

σ2m '
dν

y2m−1Cm , (E.36)

where the ν-independent coefficient Cm is given by

Cm = 2m
m− 1

2

(
1
2
m

)(
1 +

(
m− 1

2

)
2F1

(
1, 1−m; 3

2 ; 1
4

))
+ 3r0

(
1
2
m

)
. (E.37)

The sum over low multipoles gives

ΣlowU
2m =

ν1∑
ν=m−1

σ2m = 2Cm
(D − 2)!

(
r0
∆

)D−1 2m−3∏
j=1

ν −m+ 1 + j

ν2m−2 . (E.38)

We can further rework it into a product of pairs and ultimately into a sum

2m−3∏
j=1

ν −m+ 1 + j

ν2m−2 = 1
ν2m−3

m−2∏
j=1

(
ν2 − j2

)
= 1
ν

m−2∑
j=0

{
m− 2
j

}
(−)jν−2j , (E.39)

where the curly binomial stands for the multiply nested sum{
m− 2
j

}
≡

m−2∑
i1=1

m−2∑
i2=i1+1

. . .
m−2∑

ij=ij−1+1
(i1 . . . ij)2 . (E.40)

This is just a convenient way to write the numerical coefficients, which are independent of
ν. The finite sums of powers of 1/ν2p+1, on the other hand, are given by

ν1∑
ν=m−1

1
νn

=

ln ν1 − ψ(m− 1) , n = 1 ,
− 1

(n−1)!ψ
(n−1)(m− 1) , n ≥ 1 ,

(E.41)
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where ψ(n) is the n-th derivative of the digamma function. We thus end up with

Σlow
2m = 2Cm

(D − 2)!

(
r0
∆

)D−1 (
ln ν1 − ψ(m− 1) +

m−2∑
j=1

{
m− 2
j

}
(−)j+1

(2j)! ψ
(2j)(m− 1)

)
.

(E.42)

With the low-ν summation at hand, we can proceed to the second part of the sum
over high multipoles ν ∈ [ν1,∞] via the usual EuMac approximation in (6.5). Because
we delayed the lower end of the sum to ν1 � 1, we do not have to worry about EuMac
corrections in (6.5). All of the terms from the lower boundary at ν1 are ∆ suppressed and
we can drop them safely.

Most of the work needed for the high-multipole sum has already been done in the
previous section, so we can easily handle the EuMac integrals by specifying the even D = 2m
in the generic terms derived above. Let us begin with the simpler U -factor and augment
the unsubtracted part in (E.11) to even dimensions, such that

Σ
∫
U

2m uns = 6r0
(D − 2)!

(
r0
∆

)D−1 (2m− 2)!
4mm!2 . (E.43)

Moving on to the subtracted part, we take the expression from (E.16), specify D = 2m,
shift the lower bound from y0 → y1 and expand for smallish y1

(E.16) D=2m−−−−→
y1�1

j −m− 1
2m− 1

(
1
2 − j

m+ 1− j

)(
Hm−j −Hm− 3

2
+ 2 ln y1

)
, (E.44)

which leaves us with the following finite sum

Σ
∫
U

2m sub = 6r0
(D − 2)!

(
r0
∆

)D−1 m∑
j=1

(
1
2
j

)
(−)j(m+ 1− j)

2m− 1

×
(

1
2 − j

m+ 1− j

)(
Hm−j −Hm− 3

2
+ 2 ln y1

)
.

(E.45)

While we do not get a closed-form expression when summing the Hm−j term, the two
remaining terms, which are independent of j, nicely sum into

Σ
∫
U

2m sub 3 −
6r0

(D − 2)!

(
r0
∆

)D−1
(

1
2
m

)(1
2Hm− 3

2
− ln y1

)
. (E.46)

This again shows that when we combine with the low part of the sum in (E.42), the ν1
parameter cancels out (i.e. the part that comes from the U -factor of Cm), so that the final
result does not depend on the precise position where we split the sum.

The two final remaining pieces come from the integration of the log terms. The
unsubtracted one is

Σ
∫

ln
2m uns = − 1

(D − 2)!

(
r0
∆

)D−1
 1(

m− 1
2

)2 +
2F1

(
1, 1;m+ 3

2 ; 1
4

)
4m+ 1

2
(
m+ 3

2

) (
m+ 1

2

)
 . (E.47)
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The subtracted part is very similar to the U -factor above, where the sum over p was given
in (E.44). Here the coefficient enters into the sum defined by lnRaν0 in (E.4)

Σ
∫

ln
2m sub = 4

(D − 2)!

(
r0
∆

)D−1 m∑
j=1

1 + 2−2j+1

2j − 1
m+ 1− j

2m− 1

×
(

1
2 − j

m+ 1− j

)(
Hm−j −Hm− 3

2
+ 2 ln y1

)
.

(E.48)

Just as in the case of the U -factor, we do not find a closed-form expression when summing
over the Hm−j term, while the last two terms sum into

Σ
∫

ln
2m sub 3 −

4
(D − 2)!

(
r0
∆

)D−1 m

m− 1
2

(
1
2
m

)(1
2Hm− 3

2
− ln y1

)
×
(

1 +
(
m− 1

2

)
2F1

(
1, 1−m; 3

2 ; 1
4

))
.

(E.49)

Let us compare this to the first part of the Cm coefficient in (E.37) that multiplies the ln ν1
term in (E.42). Again, we see how the arbitrary splitting point defined by ν1 cancels out
and we are left with an unambiguous result for any even D.

To summarize this arduous section, the final result for the finite sum is obtained by
collecting all of the five terms above into

Σ2m = Σlow
2m + Σ

∫
2m = Σlow

2m + Σ
∫
U

2m uns + Σ
∫
U

2m sub + Σ
∫

ln
2m uns + Σ

∫
ln

2m sub . (E.50)

In this final result, the ln ν1 terms partially cancel with ln y1 ones, leaving us with a residual
dependence on ln ∆/r0. Combining the closed-form expressions obtained above does not
lead to a simple expression, as the one we found for odd Ds. Still, plugging in the integers
leads to rather compact expressions for the first couple of even D’s:

Σlow
D = 2

(D − 2)!

(
r0
∆

)D−1


5
2 (γE + ln ν1) , D = 2 ,
−3

8 (γE + ln ν1) , D = 4 ,
1
10 (γE − ζ(3) + ln ν1) , D = 6 ,

(E.51)

and

Σ
∫
D = 2

(D − 2)!

(
r0
∆

)D−1


π

2
√

3 −
11
4 −

5
2 ln 2y1 , D = 2 ,

− π
8
√

3 + 3
32 + 3

8 ln 2y1 , D = 4 ,
3
√

3π
160 −

211
4800 −

1
10 ln 2y1 , D = 6 .

(E.52)

Together with the result in generic odd Ds, these finite sums provide us with the finite
log of the determinant in any dimension. To complete the calculation of the decay rate one
has to perform the renormalization procedure, as described in section 6 for even Ds. This
might be a useful exercise if there is enough physical motivation, but is beyond the scope
of this paper. We point out that what enters in this calculation will be integrals with a
certain number of insertions of V (2) and the accompanying powers of ρ to compensate for
the dimensions. These types of integrals, as shown in (C.1), are considered and evaluated
in closed form in the appendix C.
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