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1 Introduction and summary

The study of four dimensional supersymmetric theories has taught us a lot about the
behavior of quantum field theory (QFT). Of particular interest in this study are theories
with N = 2 supersymmetry (henceforth we will often drop the reference to the spacetime
dimensionality, implicitly assuming that we consider four dimensional QFTs); on the one
side, this set of theories is more constrained than the more phenomenologically viable
N = 1 theories or theories with no supersymmetry altogether, and many exact results
can be extracted about them. On the other side, these are not as severely constrained as
the maximally supersymmetric, i.e. N = 4, theories and the recently discovered N = 3
theories, thus exhibiting much richer behavior.

An important part in the study of N = 2 theories is the study of their moduli space
of vacua. This can be split into two components or branches: the Coulomb and Higgs
branch. For N = 2 theories with conformal symmetry, i.e. N = 2 superconformal field
theories (SCFTs), which will be the focus of the present work, the SU(2)R × U(1)r R-
symmetry differentiates the two. Specifically, the Coulomb branch (CB) and the Higgs
branch (HB) can be identified as the part of the moduli space acted upon by the U(1)r
and SU(2)R part respectively. In other words CB and HB operators can be characterized
solely in terms of their properties in superconformal representation theory.

Representation theory is by itself very constraining but does not capture many prop-
erties which follow instead from a more geometric analysis. In the case of the CB, for
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example, the operators parametrizing it are in certain short representations of the N = 2
superconformal group1 for which the superconformal primary is an SU(2)R singlet, has its
angular momentum restricted, but not necessarily zero, and its dimension proportional to
its U(1)r charge, but not necessarily rational! Furthermore, there are no first principle
constraints on its flavor representation. However, the picture is more constrained in actual
physical theories; the primaries of CB operators must have trivial angular momentum [3],
trivial flavor symmetry charges [4] and their dimension is restricted to be a rational number
out of a list depending on the dimension of the CB [5, 6].

These extra geometric constraints have been exploited for instance in attempts to clas-
sify possible CB geometries at low rank, notably for rank one in [7–10] and generalizations
with an eye on higher rank cases in [11, 12]. The hope is to use these methods to classify
4d N = 2 SCFTs.

Similarly, the operators associated with the HB are also in short representations of the
N = 2 superconformal group.2 In this case superconformal symmetry restricts its super-
conformal primaries to be a U(1)r singlet, to have trivial angular momentum and to have
its dimension proportional to its SU(2)R representation - which also forces the conformal
dimension to be integer. HB operators are also known to carry global symmetry charges.

As it happens for the CB, there appear to exist extra geometric constraints restricting
HB operators as well. That is there are many (hyper-Kähler) spaces which appear to be
perfectly consistent with the aforementioned constraints, but are known to not correspond
to any physically realized theory. Consider the 1-instanton moduli space of a simple com-
pact Lie group G. This is a hyper-Kähler space for any G, and there are known examples
of N = 2 SCFTs whose HB is such a space for specific groups G.3 However, if one assumes
that on a generic point of such a HB the low-energy theory is only the collection (of an ap-
propriate number to account for the dimension of the HB) of free hypers, one can determine
the anomalies of the 4d SCFT from those of said free hypers. This only works if the group
G is one of a handful of cases [13]. Similar results have also been found using bootstrap
methods, see [14, 15]. Furthermore, the case of G = G2 or F4 are allowed by the previously
mentioned reasoning however no N = 2 SCFT with that moduli space has been found.

These issues motivate a more careful study of the question of what (hyper-Kähler)
spaces can be realized as the HBs of N = 2 SCFTs. A standard approach to characterize
N = 2 HBs is the well known hyper-Kähler quotient. But these techniques assume a
Lagrangian description which is not available in the majority of cases. Another, more
recent, method is to realize HBs using the CB of 3d N = 4 quiver theories, which are
referred to as magnetic quivers. This later approach appears to be particularly suited for
our purposes, as many of the so-called non-Lagrangian N = 2 SCFTs have Lagrangian
3d mirrors when reduced to 3d. We are then led to reformulate our initial question as
identifying what magnetic quiver can describe the HB of N = 2 SCFTs; can magnetic

1This type of multiplets is denoted as Er(j,0) by [1] and as LB1[j; 0](0;r) by [2].
2This type of multiplets is denoted as B̂R by [1] and as B1B1[0; 0](R;0) by [2].
3For instance the Lagrangian SCFT based on gauge group SU(2) with four doublet hypermultiplets for

G = SO(8).
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quivers describe the HBs of all N = 2 SCFTs? If so what are the necessary building blocks
of the magnetic quivers that are required to achieve this?

A first step towards answering these difficult general questions is to look at the HBs
of known N = 2 SCFTs and identifying the corresponding magnetic quivers. To do this
systematically, it is convenient to organize the N = 2 SCFTs based on their rank, i.e. the
complex dimension of their CBs. The study of the simplest case - rank 1 - was already
carried out in [16]. It was found that all Higgs branches of rank 1 theories can be described
by a magnetic quiver with unitary gauge nodes, possibly non simply laced, with shapes
following the patterns of figure 1.

Here we perform the study of the next simplest case, namely 4d rank-2 N = 2 SCFTs.
A list of 69 known rank 2 N = 2 SCFTs has been compiled in [17]. No claim is made that
this list is exhaustive, it is rather a survey of what has been constructed in the literature.
Incidentally, almost4 all of these theories can be explicitly constructed in string theory, and
more precisely as 4d compactifications from 6d or 5d SCFTs, a fact that is used extensively
in the present work. In the following, we attempt to provide magnetic quivers for every
theory in that list (we follow the numbering of these 69 theories as given in [17, tables
1-3]). The results are presented in tables 1 to 6. We summarize here the salient features
of our analysis:

• A majority of theories (about 88 %, i.e. 61 out of the 69 theories) admit a unitary
magnetic quiver, among which 82 % (50 out of 61) follow the patterns of figure 1.
The unitary quivers are simply laced (34 %) or non simply laced (66 %).

• For four theories, it appears necessary to resort to orthosymplectic quivers (simply
or non simply laced).

• For four theories, we are not able to provide a magnetic quiver. This is due, in some
cases, to the lack of brane systems describing these theories, and in others, when
the brane system does exist, to a lack of techniques allowing to extract a magnetic
quiver. This might be seen as an indication that one has to go beyond unitary-
orthosymplectic quivers with fundamental and rank-2 representations.

The quivers reflect the effects of RG flows triggered by mass deformations of the SCFTs [19,
20]. For the rank 2 theories, these flows have been charted in [21], and we depict them
with magnetic quivers in figures 3 to 7. When a theory admits a unitary magnetic quiver,
one can use quiver subtraction to compute the Hasse diagram of symplectic leaves of the
Higgs branch. The results of these computations are shown in figures 8 to 11. It should be
noted that the class of quivers considered here pushes the quiver subtraction algorithms
to the current limits of our understanding, and in some cases one has to resort to physical
intuition to disambiguate the Hasse diagram. It would be highly desirable to cross check
the results obtained here using other methods.

In the rest of this note we describe the methods used to derive the magnetic quivers,
and the Hasse diagrams, and we perform a variety of consistency checks, namely: (i)

4The only exception being theory # 41, which is Lagrangian and shows up in the bottom-up classification
of [18].
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Figure 1. Patterns that appear in some magnetic quivers of 4d N = 2 SCFTs, organized in
columns labeled by the folding degree k. In all cases, the gray dot represents the rest of the quiver.
When labeled (white cells), the white dots form the corresponding (twisted) affine Dynkin diagram.
The first column corresponds to the simply laced algebras in the Deligne-Cvitanović sequence. In
the gray cells, the Dynkin diagrams are not folded, but the whole diagram becomes long compared
to the rest of the quiver.

agreement with the essential N = 2 data, i.e. dimension of the HB and flavor symmetry
(ii) agreement with detailed HB stratification independently derived (iii) agreement, when
available, with HB Hilbert series calculation. We comment in particular on the cases where
no unitary magnetic quiver was found. Appendix A gives details on the 5d brane webs
which are the main tool used to derive the quivers, and appendix B contains the Hasse
diagrams derived from said quivers by quiver subtraction. Appendices C and D focus on
the interesting cases of the sp(4)7 × sp(8)8 theory and N = 3 theories, respectively.

Before delving into the details, let us finally mention that it is remarkable that many
quivers can be guessed, before any computation is made, based purely on data from the
SCFT. This can be seen as one more indication of the many restrictions that constrain 4d
N = 2 SCFTs, and of their geometric ‘simplicity’, which is apparent in the corresponding
‘simplicity’ of most of the magnetic quivers. It is however tempting to expect that this sim-
plicity is a consequence of the low rank of the SCFTs, and that at higher ranks a larger and
larger proportion of Higgs branch geometries will not admit such an elementary description.
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2 Magnetic quivers of rank-2

In this section, we give magnetic quivers for most of the rank-2 4d N = 2 SCFTs identified
in [17]. We recall that for a given theory T , a quiver Q is said to be amagnetic quiver for T if

H (T ) = C (Q) , (2.1)

where H (T ) is the HB of the 4d theory T and C (Q) denotes the 3d N = 4 CB of the
quiver Q.5 The definition (2.1) does not imply that a magnetic quiver for a given theory is
unique. To take a concrete example, the rank-1 E6 Minahan-Nemeschanski theory has the
closure of the minimal nilpotent orbit of E6 as its HB, for which many magnetic quivers are
known: the affine E6 diagram, a twisted affine version [16, table 12], two orthosymplectic
quivers [25, table 1] and [26, Eq (6.3)], and a folded orthosymplectic quiver [24, table 2].

It should be noted that the classical HB of a 4d N = 2 theory can be a non-reduced
scheme,6 i.e. there is an operator A 6= 0 in the classical HB chiral ring, s.t. An = 0, n ∈ N.
In this case the magnetic quiver only provides the reduced part. It is conjectured in [28,
Conjecture 1], that for an SCFT the HB is always reduced. If this is true, then the magnetic
quiver gives a good characterization of the HB. A further complication is that the HB of
a 4d N = 2 theory may consist of several cones which intersect non-trivially. In this case
several magnetic quivers are needed to describe the HB, one for each cone. However, in all
examples we know of in which the HB is not connected, the various cones in the classical
HB are separated along the (quantum) CB, and the Higgs directions at any point of the
CB form a single cone. The more singular the point in the CB the more Higgs directions
are available. Because of scale invariance, this behavior is not allowed for SCFTs and we
thus expect the HB to be a single cone. Indeed we know of no counterexample in 4d.7 Note
that the existence of several cones would imply the existence of two operators A,B 6= 0 in
the HB chiral ring satisfying AB = 0. When the HB of a 4d N = 2 SCFT is a single and
reduced cone, the HB chiral ring is, almost by definition, an integral domain.

Because of the non-unicity of a magnetic quiver, we make the following choices:

1. We provide a simply laced unitary quiver if we know one;

2. If not, we provide a non simply laced unitary quiver if we know one;

3. If not, we provide an orthosymplectic quiver (which may be simply laced or not) if
we know one;

4. If not, we do not give a magnetic quiver.

In most of this section, we focus on theories with precisely N = 2 supersymmetry, as when
N > 2 the definition of a HB is somewhat artificial, it being part of a larger moduli space
and we further comment on this issue in section 2.3. There are only four N = 2 theories

5The quiver Q may be non simply laced [22–24], in this case it does not define a gauge theory, however
the CB is well defined.

6This can happen e.g. for SQCD, discussed at length in [27].
7Note that HBs of 5d N = 1 SCFTs may be non-reduced and consist of several cones [29].
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in the list of [17] for which we do not give a magnetic quiver, and we comment on them
later in this section.

In order to compute the magnetic quivers, we can use a host of different methods. For
some theories, several methods are available; in those cases, every method gives the same
result. The results are presented in tables 1–6. The last column indicates which of the
following methods can be used to find the given magnetic quiver.

1. Compactification from 5d. By far the most powerful method is to use the realiza-
tion of the 4d theories as (possibly twisted) compactification of 5d theories [21]. These
5d theories can often be realized as the world-volume of type IIB 5-brane webs, from
which magnetic quivers can be deduced using web decomposition and intersection in
tropical geometry as first explained in [30] and later generalized in [19, appendix B]
for brane webs without orientifolds, and discussed in [25] and [31] with O5 planes.
Equivalently, one can use generalized toric polygons [32] to concisely encode these
brane webs and compute magnetic quivers [33, 34]. This is the format we use in the
present paper in appendix A, where all the details are provided.

2. Class S theories of type A and D. Several theories are realized as class S on a
sphere with punctures. For type A with regular untwisted punctures, the magnetic
quiver is star-shaped unitary [35]. For type A with twisted punctures [36] and for
type D, the magnetic quiver is (unitary-)orthosymplectic. We use this construction
for theory # 26 which uses twisted A3 punctures [37], and for theory # 41 which
uses Z2 twisted D4 punctures [38]. We return to those theories in section 2.2.

3. Instanton Moduli Spaces. Certain theories have HBs that can be identified with
2-instanton moduli spaces on C2 [13, 39], and magnetic quivers for these are given
in [22].

4. S-fold theories. S-folds were initially introduced as a way to construct N = 3
theories in 4d [40, 41] and later N = 2 theories [42–45]. Magnetic quivers for those
theories were constructed in [19].

5. Argyres-Douglas theories. Magnetic quivers for Argyres-Douglas theories (and
generalizations) have been investigated by many authors over the past few years using
dimensional reduction to 3d and 3d mirror symmetry [36, 46–50].

2.1 RG flows

Many of the rank-2 SCFTs are related by RG flows, as worked out in [21, figure 1]. These
RG flows correspond to deformations of the HBs, which are depicted using magnetic quivers
in figures 3–5.

It should be noted that the quivers in those figures are not related by any fully known
graph theoretic algorithm — in particular, they are not related by the quiver subtraction
algorithm used to determine the Hasse diagram of symplectic leaves in a given HB. However,
the 3d theories encoded by the magnetic quivers should be related in general by turning
on Fayet-Iliopoulos (FI) parameters, as the HBs along the flows are in general obtained by
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turning on masses for hypermultiplets in an effective Lagrangian description. This requires
understanding the precise mapping between the mass parameters of the 4d theory and the
FI parameters of the 3d quivers, which may be quite subtle at times due to the decoupling
of an overall U(1) factor in the 3d quivers, see [20] for a recent exploration of this issue.
Once the mapping is understood, graph theoretic methods involving subtraction of finite
Dynkin diagrams can be used to deduce magnetic quivers after RG flow, along the lines
of [19, 20]. For instance, starting from the quiver for theory #1 (top left of figure 3) and
turning on an FI parameter λ 6= 0 on the U(1) node and an FI parameter −2λ on the
U(2) leads to the subtraction of a finite D9 Dynkin diagram which results in the quiver for
theory # 3 (first quiver in the second line in figure 3), as shown in [20, section 2.2].

The systematic exploration of these FI deformations for all transitions will be the
object of a future work. As the flows in figures 3–5 have already been worked out in [21],
that upcoming work is not needed here, and can in fact be seen as a cross-checking of the
results presented here, which are the magnetic quivers.

Without entering into those details, certain striking patterns can be noted, for example
the tail of many MQs can be linked with the well-known Deligne-Cvitanović sequence,
which appears in studies of 4d N = 2 SCFTs [14, 51, 52]. The simply laced members of
the sequence are

E8 −→ E7 −→ E6 −→ D4 −→ A2 −→ A1 . (2.2)

The corresponding patterns in magnetic quivers are shown in figure 1, along with their non
simply laced counterparts. All rank 1 theories can be described with these patterns but
only about 70 % of the rank 2 theories listed in this paper.

2.2 Orthosymplectic quivers

In this subsection, we use the patterns identified above to argue for the absence of unitary
magnetic quivers for certain theories. Consider for instance the su(2)5 × sp(6)6 × u(1)
theory. The rank of the global symmetry being 5, the number of unitary nodes is 5 or 6,
depending on whether there is a long U(1) node or not. Using the above pattern and the
location of that theory in the RG-flow chart of figure 4, a hypothetical magnetic quiver
should then have structure8

or (2.3)

Note that we have indicated in white the nodes which are balanced, in order to reproduce
the expected flavor symmetry.9 The black nodes denote overbalanced nodes. The quater-
nionic dimension of the HB is 11, so the sum of the labels of these quivers has to be 12.

Consider the second quiver in (2.3). The balance conditions and the dimension condi-
tion give five equations for the five unknown ranks, thus giving a unique solution, which

8In principle there could be symmetry enhancement (see [53] for a recent survey) and the quiver could
have fewer balanced nodes. We assume here that this does not happen. (Note in particular that the
symmetry enhancement patterns found in [53] do not provide enhancement to sp(6).)

9A node with label n is called balanced [54] if the sum of the labels of adjacent nodes (counted with
multiplicity when the edge is non simply laced and the adjacent node is on the short side) is equal to 2n.
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has non-integer ranks, as shown in the red quiver below:

1 2 4 4 2

4
3

8
3

4 8
3

4
3

1 2 3 4 2 1

(2.4)

Above and below that quiver, we reproduce the adjacent quivers in figure 4 which, recall,
represents the quivers of the theories immediately adjacent to the theory we are analyzing,
along RG-flow trajectories. This shows that the ranks of the putative magnetic quiver for
the su(2)5×sp(6)6×u(1) indeed interpolate between the ranks of neighbors in the RG-flow
chart, but this interpolation would require a non-sensical quiver with fractional ranks.

Investigation of the second candidate in (2.3) is not more fruitful. Calling the ranks
of the nodes n1, . . . , n6, the four balance conditions plus the dimension condition give five
equations, allowing to express all the ranks in terms of n1 as

n2 = 5n1
9 + 4

3 n3 = n1
9 + 8

3 n4 = 4− n1
3 n5 = 8

3−
8n1
9 n6 = 4

3−
4n1
9 . (2.5)

In order for these quantities to be integers, one needs n1 = 3 modulo 9, and there is no such
value that makes all the ni > 0. In view of these negative results, it is therefore natural
to turn to a broader class of quivers, namely orthosymplectic quivers. Using the class S
construction of the theory, a natural candidate is

D1 C1 D2 C2 U2 U1

D2
(2.6)

In this quiver, the overbalanced nodes are denoted in black as usual, and an underbalanced
node appears, denoted in red. Despite that node, it is possible to evaluate the CB Hilbert
series for the 3d N = 4 theory using Hall-Littlewood techniques,10 yielding

1 + 3t+ 23t2 + 92t3 + 410t4 + 1422t5 + 4828t6+
14244t7 + 39757t8 + 100449t9 + 238641t10 + 523542t11+

1081541t12 + 2086065t13 + 3799657t14 + 6507468t15+
10555585t16 + 16175503t17 + 23533981t18 + 32452262t19+
42567355t20 + 53036689t21 + 62940537t22 + 71046632t23+

76444660t24 + 78287994t25 + palindrome + t50


(1− t)−3(1− t2)8(1− t4)8(1− t3)9 = 1 + 25t2 + . . . (2.7)

As a check, the t2 coefficient 25 matches with the expected dimension of the global sym-
metry, and the order of the pole at t = 1 is 22, matching with the complex dimension of
the HB.

10We thank Rudolph Kalveks for the computation of the exact result.
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A similar analysis can be made for the sp(4)7× sp(8)8 theory, showing that no unitary
quiver following the pattern of figure 1 can be found. We then also turn to orthosymplectic
quivers, as shown in table 3, but in this case, we actually need a folded orthosymplectic
quiver [24]. The argument goes as follows. We begin with the 5d realization of this theory
proposed in [21]: the compactification of a certain 5d SCFT with a twist in a Z2 global
symmetry. The specific 5d SCFT can be conveniently described as the UV completion of
a 5d SU(4) gauge theory with an antisymmetric hypermultiplet, 8 fundamental hypermul-
tiplets and no Chern-Simons term. Here the Z2 symmetry we twist by acts on the gauge
theory by charge conjugation. This 5d SCFT has a standard brane web description, see
for instance [55], so we would naively expect a unitary though non simply laced quiver.
However, as noted in [21], this Z2 symmetry is not manifest in the brane construction,
preventing the derivation of a magnetic quiver using this brane description.

Nevertheless, we can still exploit the 5d description to argue for a magnetic quiver
thanks to the group theory coincidence that SU(4) = Spin(6). This implies that we can
describe the 5d SCFT by an alternative brane realization as a Spin(6) gauge theory with a
vector hypermultiplet and 8 spinor hypermultiplets, using the techniques in [56]. Said brane
realization then contains an O5− plane, and is of the form such that it reduces in 4d to a
D type class S theory associated with a three punctured sphere, see [57]. The web is given
in the form of a generalized toric diagram, see (A.21). Interestingly, this 5d realization
manifests the Z2 discrete symmetry, given by a reflection in the brane picture and the
exchange of two identical punctures in the 4d class S picture. The latter gives a mirror
orthosymplectic star-shaped quiver when reduced to 3d, with two identical legs. Similarly
to the unitary case, we expect that folding the two identical legs will give a magnetic quiver
describing the Higgs branch of the 4d theory we get by the Z2 twisted compactification of
the associated 5d SCFT. This gives the non simply laced orthosymplectic shown in table 3.
There are several indications that this magnetic quiver indeed describes the Higgs branch
of the 4d sp(4)7 × sp(8)8 SCFT. First, the dimension of the Coulomb branch of the quiver
matches the expected dimension of the Higgs branch of the 4d SCFT. Furthermore, one
can exploit the 5d construction to motivate an expression for the Hall-Littlewood index
of the 4d theory, which can then be compared against results obtained using the class
S description. Finally, the Higgs branch dimension of the unfolded quiver turns out to
be 3, in agreement with the expected dimension for that family. We refer the reader to
appendix C for the details.

2.3 A comment on N ≥ 3 theories

Two theories, in green in table 6, have exactly N = 3 supersymmetry. They correspond to
theories whose Coulomb branches are orbifolds defined via the complex reflection groups
G(3, 1, 2) and G(4, 1, 2) — such theories were classified in [58]. As reviewed in that article,
one can use a Molien sum to compute the Higgs branch Hilbert series, since the Higgs branch
can be realized as C4/(Γ ⊕ Γ), where Γ is an appropriate two dimensional representation
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of the complex reflection group. The resulting Hilbert series are:

G(3, 1, 2) : 1− t+ t3 + t5 − t7 + t8

(1− t) (1− t2) (1− t3) (1− t6) (2.8)

G(4, 1, 2) : 1− t2 + 2t4 + 2t8 − t10 + t12

(1− t2)2 (1− t4) (1− t8)
. (2.9)

One can compare these results with the Hilbert series obtained from the monopole formula
applied to the quivers presented in table 6, finding perfect agreement. This constitutes a
strong consistency check of the validity of the methods used throughout this paper.

The same can be done for the four rank-2 N = 4 theories, outlined in blue in the
tables. The gauge algebras are A2, B2 = C2, D2 = A1 ⊕ A1 and G2. In those cases the
reflection group is simply the corresponding Weyl group, and the Higgs branch Hilbert
series evaluate to

A2 : 1 + t2 + 2t3 + t4 + t6

(1− t2)2 (1− t3)2 (2.10)

B2 : 1 + t2 + 4t4 + t8 + t8

(1− t2)2 (1− t4)2 (2.11)

D2 :
(

1 + t2

(1− t2)2

)2

(2.12)

G2 : 1 + t2 + t4 + 6t6 + t8 + t10 + t12

(1− t2)2 (1− t6)2 . (2.13)

One can compute the Coulomb branch Hilbert series for the magnetic quivers given in
tables 3, 5, 6 and find agreement with the above results. Note that these quivers and their
Hilbert series correspond to the kn slices defined in [19, C.6] as the 3d N = 4 Coulomb
branch of the quivers

1 2

n

(2.14)

with the correspondence

N = 4 theory gauge algebra D2 A2 B2 G2
Corresponding n n = 2 n = 3 n = 4 n = 6

(2.15)

2.4 Hasse diagrams

The quiver subtraction algorithm explained in [19, 59–62] can be used to compute a Hasse
diagram from the magnetic quivers presented in tables 1–6. This gives information about
the symplectic leaf structure and elementary slices of the HB, and therefore about the phase
structure of the corresponding 4d SCFT. This can then be compared with the diagrams
computed in [17, 21]. The Hasse diagrams obtained from quiver subtraction are shown
in figures 8–11. In most cases, the computation is straightforward, and there is direct
agreement with the results of [17, 21]. In this subsection we comment on some of the most
interesting cases.
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1 2 3 4 3 1

1 1 1

1 2 2 2 1

1

1

1

1 1 1

1

1 1

1

−e6

−A1

−d4

−c3

−c4

−a1

e6

A1

a1

d4

c3

c4

Figure 2. Left: quiver subtraction for the magnetic quiver of theory # 34. The quiver after the
e6 subtraction contains two non-simply laced edges connecting the right node to the middle node,
allowing for an A1 subtraction. Right: Hasse diagram resulting from quiver subtraction.

Our convention for slices are the following:

• an, . . . , g2 are the minimal nilpotent orbit closures of the respective algebras.

• hn,k denotes the orbifolds Hn/Zk with charges ±1 acting on the two Cs in each H
factor.

• hn,k is an elementary slice introduced in [62, section 3.3]. Notable examples are
acn = hn,2 and ag2 = h2,3, which appear in the affine Grassmannian of non simply
laced groups [63].

• kn denote the slices defined in [19, C.6].

Example: theory 34. The quiver subtraction for the magnetic quiver of theory # 34
goes as shown in figure 2. The only slice visible at the bottom of the Hasse diagram is a1
implying a non-abelian flavor symmetry of A1. The full non-abelian flavor symmetry of
theory 34, however, is A1A3. We comment on this behavior in the next paragraph.
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Global symmetry. For several of our magnetic quivers quiver subtraction produces

1

1
· · ·

1

1
· · ·

1

1
k k

n

m

(2.16)

The CB of this quiver had global symmetry AmAnU1 with highest weight generating func-
tion

PE[(1 + µ1µm + ν1νn)t2 + (q1µ1ν
k
n + q−1µmν

k
1 )tk+1 − µ1µmν

k
1ν

k
nt

2k+2] . (2.17)

In this equation, we use highest weight fugacities (HWG, see [64]) (µi)i=1,...,m and (νi)i=1,...,n
for the Am and An factors in the global symmetry, and q for the U1 factor.

For k = 1 the global symmetry enhances to Am+n+1, the CB is am+n+1, and the
HWG (2.17) is still correct, even though it could be rewritten more concisely using Am+n+1
highest weight fugacities. For k = 0 the global symmetry enhances to Cm+n+1, the CB is
freely generated, the HWG needs to be modified. From the quiver (2.16) we compute the
following Hasse diagram using quiver subtraction:

k = 0

Hm+n+1

k = 1

am+n+1

k > 1 m = 0 m 6= 0

n = 0 h1,k = Ak

am

h1,k = Ak−1

n 6= 0 hn+1,k

am

hn+1,k

We notice, that for m 6= 0 and n 6= 0 we cannot read the full non-abelian part of the global
symmetry from the bottom of the Hasse diagram produced from quiver subtraction. It is
unclear, whether the Hasse diagram is nevertheless correct, and new methods are needed
to check this. Several Hasse diagrams which share this property are known, as for example
the Hasse diagram of instantons described below and the rank-1 C3A1 theory [16].
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Two-instanton moduli spaces. The Hasse diagram of the moduli space of instantons
is challenging to compute. Here we will present their diagram for 2 instantons, and give
an explanation of it, deferring a more detailed discussion to an upcoming work [65]. We
will use brane physics to derive the diagram, since it is an intuitive route. SCFTs whose
HBs are moduli spaces of instantons live on parallel D3 branes probing a (coincident) stack
of [p, q]7-branes. Let the gauge group on the 7-branes be G with Lie algebra g. The D3
branes have moduli: 1) transverse to the 7-branes, these are Coulomb directions; 2) inside
the 7-branes, these are Higgs directions. To analyze the HB all D3s must be inside the
7-branes. A D3 inside the 7-branes has 1 quaternionic position modulus, also it may bind
together with the 7-branes leading to (h∨G − 1) quaternionic moduli, containing the size
modulus of the instanton. Abusing notation we refer to all these moduli simply as a size.
Consider the case of two D3 branes, i.e. a rank-2 SCFT (provided a suitable set of [p, q]
7-branes was chosen). On a general point of the HB both D3s are far apart and have a
size. We can now move to a lower leave by shrinking one D3 brane, this corresponds to a g

(minimal nilpotent orbit) transition. Since the D3 branes are identical, it does not matter
which one we shrink, there is only one such transition. Now we can shrink the second D3,
again leading to a g transition. After the two D3 branes are shrunk, we can bring them
together. Since the two branes are identical, this leads to a C2/Z2 transition. We are now
left with a center of mass modulus in H which is smooth. The Hasse diagram obtained is:

A1

g

g

(2.18)

Which can also be obtained from an extended quiver subtraction algorithm, which will be
presented in [65]. It is worth mentioning that the two-instanton moduli space, which, as
mentioned above, realizes the HB of certain specific rank-two theories, was also indirectly
analyzed in [39] via the explicit construction of the VOA for said theories. This analysis
reproduces the HB relations from the strong generators of the VOA which are compatible
with the Hilbert series of the two-instanton moduli space, computed for example in [22, 66–
68]. Since the Hasse diagram above is obtained from a MQ which correctly reproduces these
Hilbert series, we do not see any contradictions with our claim.

Just like in the case discussed before, the full (non-abelian) global symmetry of the
HB cannot be read from the bottom of the Hasse diagram. The g factor must be inferred
from higher up the Hasse diagram. Another example of such an effect is the rank-1 C3A1
theory whose HB Hasse diagram was discussed in [16].

N = 3 theories. The magnetic quivers for the G(3, 1, 2) and G(4, 1, 2) N = 3 theories
are

1 2

n
for G(n, 1, 2).

. (2.19)

– 13 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
8

Note that the integer n on this quiver denotes the number of hypers, and there is no arrow
(the quiver is simply laced).

The Hasse diagrams can be computed explicitly using the orbifold nature of the Higgs
branch, as done in appendix D. This yields the diagram

An−1 An−1

A1 An−1

. (2.20)
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# dHB f Quiver UR Method

1 59 + 1 [e8]24 × su(2)13

1 2 4 6 8 10 12 8 4

6
2 1, 3

2 46 so(20)16

1 2 3 4 5 6 7 8 5 2

4
2 1

3 46 [e8]20

2 4 6 8 10 7 4 1

5
2 1

4 35 + 1 [e7]16 × su(2)9

1 2 4 6 8 6 4 2

4
2 1, 3

5 30 su(2)8 × so(16)12

1 2 3 4 5 6 4 2 1

3
2 1

6 26 su(10)10

1 2 3 4 5 4 3 2 1

2
2 1 , 2

7 23 + 1 [e6]12 × su(2)7

1 2 4 6 4 2

4 2
2 1, 3

8 22 so(14)10 × u(1)

1 2 3 4 5 3 1

3 1
2 1, 2

9 18 su(2)6 × su(8)8

1 2 3 4 3 2 1

2 1
2 1, 2

10 14 so(12)8

1 2 3 4 2

21
2 1

Table 1. List of magnetic quivers (white nodes are balanced, black nodes are overbalanced). dHB

is the quaternionic dimension of the Higgs branch, and f is the flavor symmetry algebra. UR
denotes the Unfolded Rank, by which we mean the quaternionic dimension of the Higgs branch of
the unfolded magnetic quiver. The last column points to the method used to derive the quiver.

– 15 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
8

# dHB f Quiver UR Method

11 12 so(8)8 × su(2)5

1 2 4 2

22
2 1, 3

12 10 u(6)6

1 2 3 2 1

11
2 1, 5

13 6 su(2)5
4

1 2 1

1 1 1
2 1

14 6 su(3)6 × su(2)4

1 2 2

2
2 1, 3

15 6 su(5)5

1 2 2 1

1
2 5

16 4 su(2)16/3 × su(2)11/3
1 2 2

2 3

17 2 su(2)10/3 × u(1)
1

1 1

2 5

18 2 su(2)17/5
1 2

2 3

19 1 su(2)16/5
1 1

1 5

20 1 u(1)
1 1

2 5

21 0 ∅
1

2 5

Table 2. List of magnetic quivers (continued).
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# dHB f Quiver UR Method

22 22 sp(12)8
1 2 3 4 5 6 2

3 1

23 20 sp(4)7 × sp(8)8
D1 C1 D2 C2 D3 C4 D5 C2

3 1

24 24 su(2)2
7 × [f4]12

1 2 4 6 8 4
3 1 , 4

25 12 su(2)8 × sp(8)6
1 2 3 4 2 1

3 1

26 11 su(2)5 × sp(6)6 × u(1)

D1 C1 D2 C2 U2 U1

D2
3 2

27 12 su(2)2
5 × so(7)8

1 2 4 4 2
3 1 , 4

28 16 [f4]10 × u(1)
1 4 6 4 2

3 1

29 7 sp(6)5 × u(1)

1 2 3 1

1
3 1

30 6 su(3)6 × su(2)2
4

1 2 2

2
3 1 , 4

31 3 sp(4)4
1 2 1

2 1

32 2 su(2)3 × su(2)3
1 2

1

Table 3. List of magnetic quivers (continued). Lines shaded in blue correspond to 4d N = 4
theories.
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# dHB f Quiver UR Method

33 23 su(6)16 × su(2)9
1 2 3 4 5 6 3

4 1

34 13 su(4)12 × su(2)7 × u(1)
1 2 3 4 3 1

4 1

35 11 su(3)10 × su(3)10 × u(1)
1 2 3 3 2 1

4 1

36 8 su(3)10 × su(2)6 × u(1)

1 2 3 2

1
4 1

37 6 su(2)8 × su(2)8 × u(1)2

1 2 2 1

1
4 1

38 2 u(1)2

1 1

1
3 1

39 29 sp(14)9
1 2 3 4 5 6 7 2

4 1

40 17 su(2)8 × sp(10)7
1 2 3 4 5 2 1

4 1

41 15 su(2)5 × sp(8)7

B1 C1 B2 C2 B3 C3 D2 C1

C1

B1

B0 ? 2

42 11 sp(8)6 × u(1)

1 2 3 4 1

1
4 1

43 6 sp(6)5
1 2 3 1

3 1

Table 4. List of magnetic quivers (continued).
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# dHB f Quiver UR Method

44 19 su(5)16
1 2 3 4 5

6 1

45 6 su(3)12 × u(1)
1 2 3 1

6 1

46 3 su(2)10 × u(1)
1 2 1

5 1

47 32 sp(12)11 See table 7 ?
48 8 sp(4)5 × so(4)8 ? ?
49 14 sp(8)7 See table 7 ?
50 4 sp(4)13/3 ? ?

51 28 sp(8)13 × su(2)26
1 3 5 7 9 4

4 1 , 4

52 14 sp(4)9 × su(2)16 × su(2)18
1 3 5 4 2

4 1 , 4

53 7 su(2)7 × su(2)14 × u(1)
1 3 2

2
4 1 , 4

54 6 su(2)6 × su(2)8
1 2 4

5 1 , 4

55 2 su(2)5
1 2

5 1

56 2 su(2)10
1 2

? 1

Table 5. List of magnetic quivers (continued). Lines shaded in blue correspond to 4d N = 4
theories.
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# dHB f Quiver UR Method

57 12 [g2]8 × su(2)14
1 2 4 6

4 1 , 4

58 4 su(2)16/3 × su(2)10
1 2 2

4 1 , 4

59 6 [g2]30/3
2 4 1

4 1

60 2 su(2)8
1 2

? 1

61 15 su(3)26 × u(1)
1 3 5 7

6 1 , 4

62 5 u(1)× u(1)
1 3 2

6 1 , 4

63 2 u(1)
1 2

? 1

64 8 su(2)16 × u(1)
1 3 5

8 1 , 4

65 2 u(1)
1 2

? 1

66 10 sp(4)14 × su(2)8 ?
67 2 su(2)14

1 2
1

68 2 su(2)14
1 2

1

69 0 ∅

Table 6. List of magnetic quivers (continued). Lines shaded in blue correspond to 4d N = 4
theories. Lines shaded in green correspond to 4d N = 3 theories.
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# f Quiver # free hypers

47 sp(12)11
D1 C1 D2 C2 D4 C4 D6 C5 D4 C3 D2 C1

C2

D2 C2 D4 C4 D6 C5 D4 C3 D2 C1 D1

C2

5

4

49 sp(8)7

D1 C1 D2 C2 D4 C3 D2 C1

C1 C1

D1 C1 D2 C3 D4 C2 D2

C1 C1

C1 D2 C3 D4 C2 D2

C1
C1 D1

4

4

3

Table 7. Magnetic quivers for theories 47 and 49. The 3d Coulomb branch of the quivers corre-
sponds to the Higgs branch of the theories, plus a number of free hypermultiplets, given in the last
column. Red nodes are underbalanced, white nodes are balanced and black nodes are overbalanced.
The quivers can be derived from their 5d brane realization (see details in appendix A) or from the
associated class S description, which are related through the results of [57]. There are actually sev-
eral different webs, and as such class S theories, that realize these SCFTs, differing by the number
of free hypers. This leads to multiple magnetic quivers for these theories. As there is no preferred
choice between them, we have instead opted to list several of them.
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1 2 4 6 8 10 12 8 4

6

1 2 3 4 5 6 7 8 5 2

4

2 4 6 8 10 7 4 1

5

1 2 4 6 8 6 4 2

4

1 2 3 4 5 6 4 2 1

3

1 2 3 4 5 4 3 2 1

2

1 2 4 6 4 2

4 2

1 2 3 4 5 3 1

3 1

1 2 3 4 3 2 1

2 1

1 2 3 4 2

21

1 2 4 2

22

1 2 3 2 1

11

1 2 1

1 1 1

1 2 2

2

1 2 2 1

1

1 2 2

1

1 1

1 2 1 1 1 1

1

Figure 3. The e8 − so(20) series.

– 22 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
8

1 2 3 4 5 6 2 D1 C1 D2 C2 D3 C4 D5 C2 1 2 4 6 8 4

1 2 3 4 2 1
D1 C1 D2 C2 U2 U1

D2

1 2 4 4 2 1 4 6 4 2

1 2 3 1

1

1 2 2

2

1 2 1 1 2

Figure 4. The sp(12)− sp(8)− f4 series.

1 2 3 4 5 6 3

1 2 3 4 3 1 1 2 3 3 2 1

1 2 3 2

1

1 2 2 1

1

1 1

1

Figure 5. The su(6) series.
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1 2 3 4 5 6 7 2

1 2 3 4 5 2 1

1 2 3 4 1

1

1 2 3 1

B1 C1 B2 C2 B3 C3 D2 C1

C1

B1

B0

Figure 6. The sp(14) series.
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1 2 3 4 5

1 2 3 1

1 2 1

1 3 5 7 9 4

1 3 5 4 2

1 3 2

2

1 2 4

1 21 2

1 2 4 6

1 2 2 2 4 1

1 2

1 3 5 7

1 3 2

1 2

1 3 5

1 2

Figure 7. The su(5) series (top left), the sp(8)− su(2)2 series (top right). The g2 series (left), the
su(3) series (middle) and the su(2) series (right).
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A 5d webs

We list below the generalized toric polygons (GTPs) that encode brane webs for the 5d
N = 1 theories listed in [21]. When needed, monodromies are realized on the GTPs, and
the corresponding magnetic quiver is reported in tables 1–6.

1. The theory is the 5d SCFT SU(3)2+8F . We use the standard polygon for SU(3) gauge
theory with 7 fundamental hypers and one antisymmetric hyper from [69] (see the
corresponding GTPs in [34, figure 2]). Here and below, the arrow denotes a sequence
of monodromies that are performed to make the polygon convex and describe the 5d
SCFT point.

→ (A.1)

2. The theory is the 5d SCFT SU(3)1/2 + 9F .

→ (A.2)

3. The theory is the 5d SCFT quiver

SU(2)0 SU(2) 5
(A.3)

and the polygons are

→ (A.4)
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Note that it is important to correctly realize the theta angle for the leftmost SU(2)
gauge group in the brane web. Changing this angle from 0 to π corresponds to taking
the polygon

→ (A.5)

instead. This corresponds to the next theory in this list (the [e7]16 × su(2)9 theory).

4. The theory is the 5d SCFT SU(3)5/2 + 7F . The polygon is

→ (A.6)

As noted above, it can also be realized as an SCFT quiver theory, with quiver identical
to (A.3) with the theta angle changed from 0 to π. One can check that the magnetic
quiver that one gets from that description is the same as the one obtained from (A.6).
From now on, we only pick one realization of a given SCFT to find the magnetic
quiver, even when several are available.

5. The theory is the 5d SCFT SU(3)1 + 8F . The polygon is

→ (A.7)

6. The theory is the 5d SCFT SU(3)0 + 8F . The polygon is

→ (A.8)
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7. The theory is the 5d SCFT SU(3)3 + 6F . The polygon is

→ (A.9)

8. The theory is the 5d SCFT SU(3)3/2 + 7F . The polygon is

→ (A.10)

9. The theory is the 5d SCFT SU(3)1/2 + 7F . The polygon is

→ (A.11)

10. The theory is the gauge theory USp(4)+6F . We use the construction from [55, figure
6]. The line inside the polygon indicates a resolution, and corresponds to the fact
that we consider the gauge theory phase, not the SCFT phase. The same comments
apply to the next few theories in this list. The polygon is

(A.12)

11. The theory is the gauge theory USp(4) + 1AS + 4F . We use the construction of [69,
figure 46]. The polygon is

(A.13)

12. The theory is the gauge theory SU(3) + 6F . The polygon is

(A.14)

13. The theory is the quiver gauge theory

2 SU(2) SU(2) 2
(A.15)

– 28 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
8

The polygon is (we apply a 90 degrees rotation):

(A.16)

22. The theory is the 5d SCFT SU(4)0 + 10F , with a Z2 twist. We indicate this twist
by the symbol /Z2 on the GTP obtained after monodromies. The magnetic quiver is
then computed using the rules spelled out in [19]. The same notation is adpoted in
the rest of this list. The polygon is

→ /Z2 (A.17)

23. The theory is the 5d SCFT SU(4)0 + 1AS + 8F , with a Z2 twist.

→ (A.18)

Here the resulting GTP is not Z2 symmetric. Of course, the sequence of monodromies
that lead from the left hand side GTP to a convex one is not unique, but we could
not find any such sequence that would yield a symmetric GTP. We conjecture that
such a sequence does not exist. The magnetic quiver for the rightmost GTP above is

1 2 3 4 5 6 4 3 2 1

3
(A.19)

and correspondingly it is not Z2 symmetric, preventing folding. For that reason we
turn to orthosymplectic quivers for that theory.
To construct a brane web for the theory Spin(6) with one vector and 8 spinors, one
uses the construction of [56, figure 26]. Because of the charges of the O5+ and O5−
planes, we indicate these orientifolds by coloring in red the five-branes that end on
them, with alternating slope +2 and −2 for charge conservation:

(A.20)

The triangles on the left and the right produce 4 spinors each, while the central pen-
tagon realizes the Spin(6) theory with one vector. The monodromies are constrained
not to affect the orientifold (below the red line), and can be performed as follows:

→ → → → (A.21)
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It is remarkable that in this description, the brane web does have a Z2 symmetry. On
the resulting configuration one can read a magnetic quiver following [25, 56]. This
gives

D1 C1 D2 C2 D3 C4 D5 C4 D3 C2 D2 C1 D1

C2
(A.22)

This quiver can be folded, giving finally the magnetic quiver shown in table 3.

24. The theory is the 5d SCFT SU(4)0 + 2AS + 6F , with a Z2 twist. Here the GTP is
immediately convex and Z2 symmetric:

/Z2 (A.23)

25. The theory is the 5d SCFT SU(4)0 + 8F , with a Z2 twist. The polygon is

/Z2 (A.24)

26. The theory is the 5d SCFT SU(4)0 + 1AS + 6F , with a Z2 twist.

→ (A.25)

This is not Z2 symmetric, and the same comments made for item # 23 in this list
apply. The magnetic quiver for the rightmost GTP is

1 2 3 4 2 1

31 1
(A.26)

and correspondingly it is not Z2 symmetric, preventing folding.

27. The theory is the 5d SCFT SU(4)0 + 2AS + 4F , with a Z2 twist. The polygon is

/Z2 (A.27)

28. The theory is the 5d SCFT quiver

2

SU(2)0 SU(2) SU(2)0

(A.28)
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with a Z2 twist. The polygon is

→ /Z2 (A.29)

29. The theory is the 5d SCFT SU(4)0 + 6F , with a Z2 twist. The polygon is

/Z2 (A.30)

30. The theory is the 5d SCFT SU(4)0 + 2AS + 2F , with a Z2 twist. The polygon is

/Z2 (A.31)

31. The theory is the gauge theory SU(4)0 + 4F , with a Z2 twist. The polygon is

/Z2 (A.32)

32. The theory is the gauge theory SU(4)0 + 2AS, with a Z2 twist. The polygon is

/Z2 (A.33)

33. The theory is the 5d SCFT quiver

4 SU(3)1/2 SU(3)−1/2 4 (A.34)

with a Z2 twist. The polygon is

→ /Z2 (A.35)

34. The theory is the 5d SCFT quiver

3 SU(3)1 SU(3)−1 3 (A.36)

with a Z2 twist. The polygon is

→ /Z2 (A.37)
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35. The theory is the 5d SCFT quiver

3 SU(3)0 SU(3)0 3 (A.38)

with a Z2 twist. The polygon is
/Z2 (A.39)

36. The theory is the 5d SCFT quiver

2 SU(3)3/2 SU(3)−3/2 2 (A.40)

with a Z2 twist. The polygon is

→ /Z2 (A.41)

37. The theory is the 5d SCFT quiver

2 SU(3)1/2 SU(3)−1/2 2 (A.42)

with a Z2 twist. The polygon is
/Z2 (A.43)

38. The theory is the quiver gauge theory

1 SU(3)k SU(3)−k 1 (A.44)

with a Z2 twist. The Chern-Simons level k can take any integer value, this does not
affect the Higgs branch. The polygon is

/Z2 (A.45)

39. The theory is the 5d SCFT SU(5)0 + 12F .

→ /Z2 (A.46)

40. The theory is the 5d SCFT SU(5)0 + 10F with a Z2 twist.

/Z2 (A.47)
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41. No 5d SCFT construction is known.

42. The theory is the 5d SCFT SU(5)0 + 8F with a Z2 twist.

/Z2 (A.48)

43. The theory is the gauge theory SU(5)0 + 6F with a Z2 twist.

/Z2 (A.49)

44. This is the T5 5d SCFT with a Z3 twist.

/Z3 (A.50)

45. The theory is the 5d quiver SCFT

3 SU(4)0 SU(3)0 SU(2) 1 (A.51)

with a Z3 twist.

/Z3 (A.52)

46. No known Lagrangian is known for this 5d SCFT. However the GTP can be obtain by
decoupling one more hyper on the right of quiver (A.51) and imposing Z3 symmetry.

/Z3 (A.53)

47. The theory is the 5d SCFT corresponding to G2 with five fundamentals. This can be
realized with the following brane web, where the red line corresponds to five-branes
which connect to Õ5± planes. See the explanations for theory # 49 below on how
this web is obtained.

→ (A.54)

The magnetic quiver that one gets from that construction is the second one in table 7.
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49. The theory is the gauge theory G2 with four fundamentals. We briefly review the
construction of brane webs for G2 theories from [70]. The starting point is the pure
Spin(7) theory, which is described by

(A.55)

where the red lines represent five-branes ending on an Õ5± plane (here an Õ5+

extends at infinity, while an Õ5− stretches between the two five-branes). We recall
that a half-monodromy is stuck on the Õ5±, which is responsible for the asymetry
of the diagram. One then adds matter as described in [56]; for instance two spinors
and three vectors give

→ (A.56)

Finally, one higgses one spinor to get G2 with four fundamentals (and three singlets,
coming from the three Spin(7) vectors), yielding

(A.57)

where the internal line has been restablished to indicate that the G2 gauge coupling
should have finite value.
Another method is to proceed as follows: it is known that the 5d SCFT corresponding
at low energies to G2 with four fundamentals is the same as the 5d SCFT correspond-
ing to the gauge theory USp(4) + 2AS+ 2F . Therefore, we start with a construction
of the latter (left polygon below), then perform the necessary monodromies to reach
the UV fixed point (middle polygon), and finally partially resolve to get the G2 gauge
theory (right).

→ → (A.58)

Of course we get the same result as with the other method. The magnetic quiver
that one gets from that construction is the last one in table 7.

51. The theory is the 5d SCFT SU(5)0 + 2AS + 6F with a Z2 twist.

→ /Z2 (A.59)
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52. The theory is the 5d SCFT SU(5)0 + 2AS + 4F with a Z2 twist.

/Z2 (A.60)

53. The theory is the 5d SCFT SU(5)0 + 2AS + 2F with a Z2 twist.

/Z2 (A.61)

54. The theory is the 5d SCFT quiver

1 SU(2) SU(4)0 SU(2) 1 (A.62)

with a Z4 twist.

→ /Z4 (A.63)

55. The theory is the 5d SCFT quiver

SU(3)0 SU(2)π SU(3)0
(A.64)

with a Z4 twist.

→ /Z4 (A.65)

Note that in the above polygon, the θ-angle for the middle SU(2) gauge group is
indeed π. This can be checked as follows: the configuration is symmetric, and one
can decouple the six hypers by giving a large positive mass to three hypers and a
large negative mass to three hypers, i.e. an odd number of negative masses.

56. The theory is the 5d quiver gauge theory

SU(2)0 SU(4)0 SU(2)0
(A.66)

with a Z4 twist.

/Z4 (A.67)

57. The theory is the 5d SCFT quiver

1 AS

4 SU(4)0 SU(2) 1
(A.68)
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with a Z3 twist. We construct separately the GTPs for the SU(4) part and for
the SU(2) part, and them assemble them before making the result convex using
monodromies:

+ = → /Z3 (A.69)

58. The theory is the 5d SCFT quiver

1 AS

2 SU(4)0 SU(2)0

(A.70)

with a Z3 twist. We proceed as before, and the last arrow below is an SL(2,Z)
transformation which makes the Z3 symmetry apparent.

+ = → /Z3 (A.71)

59. The theory is the 5d SCFT quiver

1

SU(3)0 SU(2) SU(2)0

(A.72)

with a Z3 twist. To construct the GTP, one can start from the theory

SU(3)0 SU(2)π SU(2)0
(A.73)

which is realized by

(A.74)

and add the flavor, giving

→ → /Z3 (A.75)

61. The theory is the 5d SCFT quiver

1 AS

3 F SU(5)0 USp(4) 2 F
(A.76)
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with a Z3 twist.

/Z3 (A.77)

62. The theory is the 5d SCFT quiver

1 AS

1 F SU(5)0 USp(4) 1 F
(A.78)

with a Z3 twist.

/Z3 (A.79)

64. The theory is the 5d SCFT quiver

1 AS 1 AS

2 F SU(5)0 SU(5)0 2 F
(A.80)

with a Z4 twist.

/Z4 (A.81)

65. The theory is the 5d SCFT

1 AS 1 AS

SU(5)0 SU(5)0

(A.82)

with a Z4 twist.

/Z4 (A.83)

B Hasse diagrams

The Hasse diagrams that are deduced from quiver subtraction — only for unitary quivers
— are shown in tables 8, 9, 10, 11. We use the following color code to state the cross-checks
that were performed on these diagrams:

• White: the Hasse diagram can be obtained with quiver subtraction, and with other
methods [17], and the results agree.
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1 2 3 4 5

e8

e8

a1

e8

d10

e7

e8

e7

e7

a1

e8 e7

a1 d8

6 7 8 9 10

e7

a9

e6

e6

a1

e6

d7

e6 e7

a7 a1

d4

d6

11 12 13 14 15

d4

d4

a1

d4

a5

d4

a1

a2

a2

a1

a2

a4

16 17 18 19 20

a1

a1

a1

a1

a1

a1 a1 A2

Table 8. Hasse diagrams deduced from unitary magnetic quivers by quiver subtraction. The color
code is explained in the text.

• Green: the Hasse diagram can only be obtained with quiver subtraction.

• Red: the Hasse diagram can not be obtained using quiver subtraction, but it is
computed in [17]. In those cases, we do not draw any diagram and refer to [17].
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21 22 23 24 25

e6

c5

c6

?

e6

c5

f4

e6

a1a1

a1a1

d4

c3

c4

e6

a1

26 27 28 29 30

?

d4

c3

b3

d4

a1a1

a1a1

d4

c3

f4

a2

c2

c3

a2

c2

a2

a2

a1a1

a1a1

31 32 33 34 35

a1

c2

N = 4

e6

c5

c6

a1

d4

c3

c4

e6

a1

a1

d4

c3 c3

h3,2h3,2

36 37 38 39 40

a2

c2

c3

a1

a2

c2 c2

h2,2h2,2

d4

A3

A1 A1

A2 A2

e6

c5

c6

c7

d4

c3

c4

e6

a1

c5

c5

a1

Table 9. Hasse diagrams deduced from unitary magnetic quivers by quiver subtraction (continued).
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41 42 43 44 45

?

a2

c2

c3

c4

a1

c2

c3

d4

h4,3

h5,3

a1

h2,3

h3,3

d4

A5

46 47 48 49 50

A2

h2,3

? ? ? ?

51 52 53 54 55

e6

c5

f4

e6

a1a1

a1a1
e6

a1 c4

d4

c3

b3

d4

a1a1

a1a1
d4

a1 c2

a2

c2

a2

a2

a1a1

a1a1
a2

a1 a1

a2

h3,4a2

a1 k4

?

Table 10. Hasse diagrams deduced from unitary magnetic quivers by quiver subtraction (contin-
ued).
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56 57 58 59 60

N = 4

d4

h4,3d4

g2 k3

a1

h2,3a1

a1 k3

a1

h2,3

g2

N = 4

61 62 63 64 65

d4

h4,3 d4

d4 g2 k3

a1 h3,3

a1

h2,3 a1

a1 a1 k3

a1 A2

A3 A1

A3 A3

a2

h3,4 a2

a2 a1 k4

a1 h2,4

A2 A1

A2 A2

66 67 68 69
? ? N = 4

Table 11. Hasse diagrams deduced from unitary magnetic quivers by quiver subtraction (contin-
ued).

C The Hall-Littlewood index of the USp(4)×USp(8) 4d SCFT

As we previously mentioned, there are indications that the USp(4)×USp(8) 4d SCFT can
be generated by the twisted compactification of the 5d SCFT UV completing the 5d gauge
theory SU(4)0 + 1AS + 8F , see [21] for the full discussion. The latter has a brane web
realization, using an O5− plane, from which we can generate an orthosymplectic magnetic
quiver. This quiver manifests a Z2 symmetry, which is tempting to identify with the
symmetry that we twist by. If so we can get a magnetic quiver for the USp(4) × USp(8)
4d SCFT by folding the quiver, which is one of those we proposed for this theory. Indeed
the dimension of the Coulomb branch of this quiver fits the dimension of the Higgs branch
of the USp(4) × USp(8) 4d SCFT. However, the resulting quiver has a bad node making
further checks difficult.

Nevertheless, there is an interesting check that we can make. In addition to the mag-
netic quiver, we can associate with the pre-folding magnetic quiver a class S theory, whose
3d reduction is the mirror of the magnetic quiver. We can then compute the Hilbert series
of this magnetic quiver from the Hall-Littlewood index of the associated class S theories.11

11These usually coincide for class S theories associated with three punctured spheres, as is the case we
are considering here. For theories associated with higher genus though, the two may deviate.
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This holds for the pre-folding quiver. However, in [71], twisted reductions of 5d SCFTs
were studied, which similarly to the case we are considering here, flow to class S theories,
or theories related to them, when reduced without a twist. It was observed there that
it is possible to formulate an expression for the Hall-Littlewood index associated with
the twisted theory from the expression for the Hall-Littlewood index associated with the
untwisted one. We shall generalize this idea to our case and use it to test the proposed
magnetic quiver.

Let us begin with some preliminaries. First we remind the reader of the definition of
the Hall-Littlewood index [72]:

IHL = TrHL(−1)F τ2E−2R∏
i

afii , (C.1)

where τ is the fugacity associated with the superconformal algebra, and ai are fugacities
associated with various flavor symmetries whose Cartan charges are given by fi. Here TrHL
denotes trace over all operators obeying: j1 = 0, E − 2R − r = 0, for E the dimension
of the operator, j1 one of its highest weights under the SO(4) rotation symmetry, R its
highest weight under the SU(2) R-symmetry and r its U(1) R-symmetry charge.

Next, consider a class S theory associated with the compactification of a 6d (2, 0)
theory of type G = AN−1 or DN on a Riemann sphere with punctures. Then the generic
form of the Hall-Littlewood index was worked out in [66, 72–74] to be:

IHL = A(τ)
∑
λ

∏
iK(Λ′(ai))ψGλ (Λ(ai))

ψGλ (Λtrivial)
, (C.2)

where:

• A(τ) is a flavor fugacity independent normalization factor given by:

A(τ) = (1− τ2)n
∏
j

(1− τ2j). (C.3)

Here j runs over all the dimensions of the invariant polynomials of G and n is some
number, which depends on G, see [38, 66, 74].

• The sum is over all the irreducible representations of the group G, which can be
described by partitions λ. For the G = AN−1 case we have λ = (λ1, λ2, . . . , λN−1, 0),
with the sum going over all λ1 ≥ λ2 ≥ . . . ≥ λN−1 ≥ 0. The case of G = DN is more
involved. We first have λ = (λ1, λ2, . . . , λN−1, λN ) for λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, which
gives the representations of SO(2N). This needs to be supplemented with partitions
λ where all λi are half-integer, with λN allowed to be negative. The product is over
all the punctures.

• K(Λ′(ai)) are fugacity dependent factors associated with each puncture. The exact
expression for them can be found in [66, 74].

– 42 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
8

• ψGλ (Λ(ai)) are the Hall-Littlewood polynomials for the group G. They are given by:

ψ
AN−1
λ (Λ(ai)) = Nλ(τ)

∑
σ⊂SN

xλ1
σ(1) . . . x

λN
σ(N)

∏
i<j

xσ(i) − τ2xσ(j)
xσ(i) − xσ(j)

(C.4)

for G = AN−1 and by:

ψDNλ (Λ(ai)) = Nλ(τ)
∑
σ⊂SN

∑
s1,...,sN=±1∏

si=+1

xs1λ1
σ(1) . . . x

λN
sNσ(N)

∏
i<j

xsiσ(i) − τ2x
±sj
σ(j)

xsiσ(i) − x
±sj
σ(j)

(C.5)

for G = DN .
Here Nλ(τ) is a normalization factor given by:

N−2
λ (τ) =

∑
w∈WG
wλ=λ

τ2l(w), (C.6)

where WG is the Weyl group of G and l(w) denotes the length of the Weyl group
element w.

• Λ(ai) is a list of N elements whose exact form depends on the type of puncture.
The procedure for determining it in the general case can be found in [66, 74].
Λtrivial describes the list for the trivial partition, which for our case of interest
is given by Λtrivial = (τ1−N , τ3−N , . . . , τN−1) for G = AN−1 and by Λtrivial =
(1, τ2, τ4, . . . , , τ 2N−2) for G = DN .

This gives the Hall-Littlewood index for the case of a punctured sphere. Now con-
sider the case where two or more of the punctures are identical. We then have a discrete
symmetry exchanging the identical punctures, and we can consider twisting by that sym-
metry when performing the reduction. Ref. [71] considered 5d SCFTs that reduce to A
type class S theories with identical punctures and further considered their reduction with
a twist that is related to the discrete symmetry that acts in 4d by exchanging the identical
punctures. One of the observations made there is that we can use the expression for the
Hall-Littlewood index of the 4d theory we get without the twist to formulate an expression
for the Hall-Littlewood index of the 4d theory resulting from the compactification with the
twist. In general, the Hall-Littlewood index of the twisted theory can be expressed as:

IHL = (1− τ2)qA(τ)
∑
λ

N p
λ

∏
iK(Λ′(ai))N−1

liλ
ψGliλ(Λ(ai))

(τ)ψGλ (Λtrivial)
, (C.7)

where p is the number of punctures in the pre-twisted theory and q is some number that
depends on the specific twist involved, see [71]. Here the sum runs over orbits of punctures
under the twist symmetry and li denotes the length of the i orbit. We also use liλ to mean
the partition given by (liλ1, liλ2, . . . , liλN−1, liλN ). We can understand this expression as
implying that we need to identify the l punctures related by the discrete symmetry and
replace them with one puncture of the same type, but associated with representations
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that is the l symmetric product of the representations of G we are summing over. One
subtlety is that the normalization factor Nλ, coming from each puncture should remain
unidentified.12

This expression was noted and tested for the case of G = A, but we can also apply it
to our purposes where G = D. Recall that we wish to consider the compactification of a
5d SCFT, whose direct 4d reduction gives a D type class S theory associated with a three
punctured sphere with two identical punctures, with a Z2 twist acting as the exchange of
the two identical punctures. The above observation then suggests that the expression for
the Hall-Littlewood index of the 4d theory resulting from the twisted compactification can
be expressed as:

IHL = A′(τ)
∑
λ

Nλ(τ)K(Λ′(a1))K(Λ′(a2))ψDNλ (Λ(a1))ψDN2λ (Λ(a2))
ψDNλ (1, τ2, τ4, . . . , τ 2N−2)

, (C.8)

where we label the puncture invariant under the exchange by 1. Here A′(τ) is equal to:

A′(τ) = (1− τ2N )
N−1∏
j=1

(1− τ4j). (C.9)

Before applying it to the case at hand, it is convenient to test this expression in a
known example. For this we take the case of the rank 1 MN E8 theory. This theory can be
realized by the compactification of the 5d SCFT UV completing the 5d gauge theory with
an SU(2) gauge group and seven doublet hypermultiplets. By considering SU(2) as USp(2),
we can engineer this 5d SCFT using a brane system involving an O5− plane, which when
compactified to 4d has a description as a D type class S theory [57]. The specific theory
one finds is the D4 (2, 0) theory on a sphere with two maximal punctures and a minimal
one, which indeed describes the rank 1 MN E8 theory [75]. In particular, this description
has two identical punctures so we can also consider the Z2 twisted compactification. This
should lead to the rank 1 MN E7 theory13 [24]. Next we can employ (C.8) to compute
the Hall-Littlewood index of the resulting theory, and we indeed find agreement with the
known Hall-Littlewood index of the rank 1 E7 theory, at least to the order we computed.

We can then apply this expression to the case at hand. We consider the 5d SCFT UV
completing the 5d gauge theory SU(4)0 + 1AS + 8F . By regarding it as an SO(6) gauge
theory with vector and spinor matter, we can engineer it using a brane system involving an
O5− plane. When reduced to 4d then, we expect to get a D type class S theory, which in our
case turns out to be D5 on a sphere with three punctures corresponding to the partitions:
(8, 2), (8, 2) and (25). This describes a rank 3 4d N = 2 SCFT with SU(4)× SU(8) global
symmetry which is the result of the direct reduction of this 5d SCFT. As advertized, it has
two identical punctures implying the presence of a Z2 symmetry exchanging them. The

12We note that Nλ = Nlλ.
13This can be understood as follows. The Z2 acts on the global symmetry by the exchange of the two

independent SO(8) subgroups of SO(16) ⊂ E8. This is an inner automorphism of E8 and so is just an
holonomy in E8 generating a mass deformation. By projecting the E8 currents to the ones invariant under
this exchange, one can see that this deformation preserves the E7 subgroup of E8, suggesting it should lead
to the rank 1 MN E7 theory.
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latter appears to act on the global symmetry as charge conjugation so it appears to have
the right properties to be the Z2 we are after. Additionally, we noted that the magnetic
quiver resulting from folding has the right dimension to be that of the 4d USp(4)×USp(8)
SCFT. As a final check, we can apply (C.8) to compute the Hall-Littlewood index. We find:

IHL = 1 + 46τ2 + 108τ3 + 1290τ4 + 4716τ5 +O(τ6), (C.10)

where here we have unrefined with respect to the flavor fugacities to simplify the computa-
tion. This can then be compared against the one of the USp(4)×USp(8) SCFT, evaluated
for instance using the class S description in [38, 75] finding perfect agreement.14

D Moduli space of N = 3 theories

In the case of N = 3 theories, it is possible to compute the stratification of the HB explicitly
as the HB of either theories can be written as an orbifold:

H
(
T N=3

)
= C4/(Γ⊕ Γ) (D.1)

where indicate complex conjugation and Γ should be identified with the irreducible
action of the rank-2 complex reflection groups G(3, 1, 2) and G(4, 1, 2). Below we compute
explicitly the fixed loci of this action which are naturally identified with the singular loci of
the HB. We carry out the calculation explicitly for G(3, 1, 2), the analysis in the G(4, 1, 2)
case is extremely similar and thus in this case we only report the results.

D.1 G(3, 1, 2)

Explicitly expanding the Hilbert series (2.8) we find that the HB chiral ring of the N = 3
G(3, 1, 2) theory is generated by eight elements:

U, h = 2 (D.2)
X,X, h = 3 (D.3)

Y, h = 4 (D.4)
W,W, h = 5 (D.5)
Z,Z, h = 6 (D.6)

where h indicates their scaling dimensions. These generators can be identified with the
following invariant of the orbifold action:

U = z1z1 + z2z2, X = z3
1 + z3

2 , X = z3
1 + z3

2,

Y = z1z2z1z2, W = z4
1z1 + z4

2z2, W = z4
1z1 + z4

2z2,

Z = z6
1 + z6

2 , Z = z6
1 + z6

2.

(D.7)

14We thank Behzat Ergun for sharing with us a preliminary version of his Mathematica package to
compute Schur and Hall-Littlewood indices of class-S theories.
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Here z = (z1, z2) are each a doublet of coordinates under the SU(2) R-symmetry group
that acts on the Higgs branch. This gives a total of four complex coordinates spanning C4.
We also use the explicit matrix representation of G(3, 1, 2) generated by:

M1 =
(

exp(2iπ/3) 0
0 1

)
, M2 =

(
0 1
1 0

)
(D.8)

As a check, the Hilbert series for the variety parametrized by the eight invariants (D.7)
can be computed and it indeed agrees with (2.8).

To identify the HB stratification we should analyze the fixed locus of the G(3, 1, 2)
action. Given that we know the explicit action, this can be done straightforwardly by
solving the following linear equation in the z:

Mz = z, M ∈ G(3, 1, 2) (D.9)

Solutions of (D.9) which lie on the same G(3, 1, 2) orbit need to be identified as they
provide equivalent characterization of the same connected locus. Alternatively, we could
evaluate the invariant polynomials on the solutions and report only those which are inequiv-
alent. We follow this latter approach which has the advantage of also directly providing
an explicit algebraic form for each singular locus.

The solutions of (D.9) are

• The point z = 0 is left invariant by all of G(3, 1, 2). This is the origin of the HB.

• The subspace z1 = z2, and those related to it by G(3, 1, 2) orbits. This corresponds
to the normal variety

H1 : C[U,X,X, Y,W,W,Z, Z]
〈U3 − 2XX, 4Y − U2, 2W − UX, 2W − UX, 2Z −X2, 2Z −X2〉

(D.10)

∼= C[U,X,X]
〈U3 − 2XX〉

• The subspace z2 = 0, and those related to it by G(3, 1, 2) orbits. This corresponds
to the normal variety

H2 : C[U,X,X, Y,W,W,Z, Z]
〈U3 −XX,Y,W − UX,W − UX,Z −X2, Z −X2〉

(D.11)

∼= C[U,X,X]
〈U3 −XX〉 .

• The generic point z, which is left invariant by the trivial subgroup of G(3, 1, 2),
corresponds to the highest dimensional leaf of the HB.

Given this analysis we conclude that the HB of the N = 3 G(3, 1, 2) theory has two
bottom elementary slices topologically A2 ∼= C2/Z3. To identify the subsequent elementary
slice we can perform an analysis along the lines of [17] to identify the theory supported on

– 46 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
8

each singular stratum on the CB, use N = 3 SUSY to then infer that the same theories
should be supported on singular strata of the HB and then identify the last two elementary
slices as the HBs of the latter. This analysis results in the following Hasse diagram:

A2

A1

A2

A2

H1 H2 . (D.12)

We can also compute directly the transverse slices as follows. Let’s begin with H2. In
order to compute the transverse slice, one picks a generic point on H2, say z1 = a. The
transverse slice is then parametrized by the value of z2. The invariants on this slice are
then given by

U = |a|2 + z2z2 X = a3 + z3
2 X = a3 + z3

2 Y = |a|2z2z2 (D.13)
W = |a|2a3 + z4

2z2 W = |a|2a3 + z4
2z2 Z = a6 + z6

2 Z = a6 + z6
2

We see that up to constant shifts depending on the H2 location, the transverse slice has
the equation U3 −XX = 0, which is of type A2.

For H1, we proceed similarly. We first define z1 = v + u, z2 = v − u. A generic point
on H1 is then given by v, while u parametrizes the transverse slice. The invariants on this
slice are then given by

U = 2|v|2 + 2|u|2 X = 2v3 + 6vu2 X = 2v3 + 6vu2 (D.14)

with the other invariants being polynomial in these, up to shifts. Again we see that up
to constant shifts depending on the H1 location, the equation of the transverse slice is
9|v|2U2 −XX = 0, which is of type A1 for v 6= 0. This identifies the two transverse slices
in (D.12).

It is interesting to compare this with the string theory construction of this SCFT given
in [40], as two D3-branes probing an S-fold singularity. The Higgs branch can be described
by the location of the two D3-branes on the transverse C2/G(3, 1, 2) subspace, which we can
identify with z1 and z2. The point z1 = z2 = 0 has both D3-branes sitting at the singularity,
which corresponds to the SCFT point. We can consider two interesting directions. One
is to pull out one of the D3-branes while leaving the other in the singular point. This
describes the subset z2 = 0. The second is to keep the two D3-branes coincident, but pull
both out of the singular point. This describes the subset z1 = z2.

We note that on the first subspace we get the rank 1 N = 3 SCFT with Higgs branch
C2/Z3, corresponding to the A2 slice. However, on the second subspace we get the SU(2)
N = 4 theory, whose Higgs branch is C2/Z2, corresponding to the A1 slice. Thus, we see
that our results are consistent with the brane realization of this 4d SCFT.

D.2 G(4, 1, 2)

Performing a similar analysis by expanding the Hilbert series (2.9) we find that the HB
chiral ring of the N = 3 G(4, 1, 2) theory is again generated by eight elements, but with
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slightly different scaling dimensions:

U, h = 2 (D.15)
X1, X1, X0, h = 4 (D.16)

Y, Y , h = 6 (D.17)
Z,Z, h = 8 (D.18)

with
U = z1z1 + z2z2,

X1 = z4
1 + z4

2 , X1 = z4
1 + z4

2, X0 = z1z1z2z2

Y = z5
1z1 + z5

2z2, Y = z5
1z1 + z5

2z2

Z = z8
1 + z8

2 , Z = z8
1 + z8

2

(D.19)

The analysis of the singular locus proceeds as before and we find two interesting subsets
again corresponding to the z1 = z2 and z2 = 0 cases, which we denote as H1 and H2
respectively. These are given by:

H1 : C[U,X0, X1, X1, Y, Y , Z, Z]
〈U4 − 4X1X1, 4X0 − U2, 2Y − UX1, 2Y − UX1, 2Z −X2

1 , 2Z −X
2
1〉

(D.20)

∼= C[U,X1, X1]
〈U4 − 4X1X1〉

H2 : C[U,X0, X1, X1, Y, Y , Z, Z]
〈U4 −X1X1, X0, Y − UX1, Y − UX1, Z −X2

1 , Z −X
2
1〉

(D.21)

∼= C[U,X1, X1]
〈U4 −X1X1〉

thus we conclude now that the HB of theN = 3G(4, 1, 2) theory has two bottom elementary
slices topologically A3 ∼= C2/Z4. The rest can be identified as described above with the
final Hasse diagram:

A3

A1

A3

A3

H1 H2

. (D.22)

We can again compare this with the string theory construction of this SCFT given
in [40], as two D3-branes probing an S-fold singularity. The only difference here is that the
S-fold now has Z4 quotient instead of Z3. We still have the same two subspaces, but now on
the z2 = 0 subspace we have the rank 1 N = 3 SCFT with Higgs branch C2/Z4. This gives
an A3 slice instead of the A2 slice, again in agreement with the Hasse diagram we observe.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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