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1 Introduction

Hawking’s calculation [1] of black hole evaporation by thermal radiation raises deep puzzles
about the consistency of black holes and quantum mechanics. In particular, if the black
hole starts in a pure quantum state, how can the apparently thermal radiation at the end
of evaporation actually be in a pure state, as quantum mechanics requires? A quantitative
form of this puzzle is encapsulated in the Page curve [2], a plot of the entanglement entropy
of the radiation as a function of time. It increases at short times because of the thermal
character of the radiation, but then must decrease to zero at the end of evaporation to be
consistent with unitary quantum mechanical evolution.

Holographic duality has supplied a powerful tool for computing entanglement entropy,
the Ryu-Takayanagi formula [3]. This formula has been generalized and refined in numerous
ways since its original formulation.1 In its most general formulation, the Engelhardt-Wall
(EW) prescription [11], it says that the entropy of a holographic boundary region B is given
by the generalized entropy of the minimal quantum extremal surface (QES).

Building on earlier ideas in [12, 13], the authors of [14, 15] considered a black hole
in anti-de Sitter space that was allowed to evaporate into an auxiliary system R using
absorbing boundary conditions. They showed that, at exactly the Page time, there was a
phase transition in the minimal QES. This caused the boundary entropy to begin decreasing,
in accordance with the Page curve. However, as emphasized in [15], a naive calculation
of the entropy of the Hawking radiation showed that it continued to increase, since the
semiclassical bulk physics had not changed.

As advocated in [14], and commented on in [15], the Page curve for the radiation would
result from a variant of the usual rules for computing entropy holographically.2 This idea
was given an elegant “doubly holographic” realization in [16], where it was called the “island
conjecture.” Explicitly, the prescription states that the actual entropy S(R) of the Hawking
radiation is given by

S(R) = min
{
ext
I

[Area(∂I)
4GN

+ Sbulk(I ∪R)
]}
, (1.1)

where I is some “island” region of the bulk.3 Here Sbulk(I ∪R) is the entropy of the island
plus the Hawking radiation, computed semiclassically in the original fixed geometry.4

1For example [4–9]; for a review see [10].
2This is a special case of a prescription introduced in [13] (near eq. 4.14) for the entropy of the combination

of a boundary region B and auxiliary system R. If B is empty, the prescription reduces to (1.1).
3In [13, 14], (1.1) was justified by imagining throwing the auxiliary, nonholographic system R into an

auxiliary holographic system. (1.1) then reduces to the usual EW prescription. In [16], (1.1) was justified by
considering holographic bulk matter and using the Ryu-Takayanagi formula in the “doubly holographic”
description of the theory.

4For other recent work on this topic, see [17–22].
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Since the Ryu-Takayanagi formula can be derived from gravitational path integrals
using replicas [7–9, 23], the prescription (1.1) should also be derivable directly from the
gravitational path integral. Deriving it is one of the main goals of this paper. We will show
explicitly how this prescription arises from a replica computation with Euclidean wormholes
connecting the different replicas. While we present our arguments in the context of simple
models, their structure is not model dependent and should apply in a general context.

Wormholes of a similar type have recently been used to analyze the late-time behavior
of the spectral form factor [24, 25] and correlation functions [26], inspired by the puzzle
posed in [27]. In both that setting and here, the basic point of the wormholes is to give
small but nonzero overlaps between naively orthogonal bulk states. This resonates with the
longstanding suspicion that some small corrections to the Hawking calculation (of order
e−SBH) could be responsible for making black hole evolution unitary.5

Understanding the Page curve is only part of the black hole information problem. One
also wants to understand how information that was thrown into the black hole ends up
escaping in the Hawking radiation. As argued in [14, 15], this can be addressed using
entanglement wedge reconstruction.6 In the case of the island conjecture, this idea implies
that R contains all of the information in the island I, which itself contains much of the
black hole interior. Existing derivations of entanglement wedge reconstruction have been
indirect,7 relying on throwing entropy calculations into the meat grinder of modern quantum
information theory. So, the second main goal of this paper is to show using a bulk argument
that operators in the radiation can manipulate the interior of the black hole. We show this
directly by using gravitational path integrals to evaluate matrix elements of an explicit
reconstruction operator defined using the Petz map [41, 42] (see [39, 43] for a description
and recent discussion of the Petz map). Again, Euclidean wormholes play a crucial role.
Here they are in some sense connecting the interior of the black hole to the quantum
computer acting on the Hawking radiation.

We now give a brief summary of this paper.
In section 2 we introduce a simple toy model of an evaporating black hole in Jackiw-

Teitelboim (JT) gravity [44–46], a two dimensional truncation of near extremal black hole
dynamics. We represent the Hawking radiation by an auxiliary reference system whose
states are entangled with interior partner modes represented by “end of the world branes”
(EOW branes) in the black hole interior. This model is simple enough that we can exactly
evaluate the full gravitational path integral for the Rényi entropies by summing over all
planar topologies with the correct boundary conditions. We find that, before the analog of
the Page time, the dominant topology consists of n disconnected copies, one for each replica,
of the single replica geometry. In contrast, after the Page time, the dominant topology is
connected, with an n-boundary Euclidean wormhole connecting all the different replicas.

5A challenge to this idea was provided by [28, 29]: if the early radiation, the next Hawking quantum, and
its interior partner are independent systems, the needed corrections would require a firewall at the horizon.
However, if the interior partner is secretly part of the early radiation, then the arguments of [28, 29] do
not apply [30–34]. The ER=EPR proposal [34] suggested that a geometric connection might play a role in
this identification.

6This was originally conjectured in [6, 35, 36], and established in [37–39] using the ideas of [8].
7A partial exception is [40], but it does not immediately apply to the case of an evaporating black hole.
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Our calculation uses a type of Feynman-diagram resummation method applied to spacetime
geometry. This is inspired by techniques from the theory of free probability, and it makes it
possible to continue the sum over topologies in n.

We also compute the overlap between the different black hole microstates |ψi〉. We
find that 〈ψi|ψj〉 = 0 for i 6= j, but that |〈ψi|ψj〉|2 ∼ e−S due to a wormhole contribution.
This can only be consistent if the gravitational path integral represents an ensemble of
quantum theories.8 The Rényi entropies are sums of large numbers of these overlaps. The
Page transition comes from the buildup of these small errors in orthogonality.

In section 3 we explicitly reconstruct the black hole interior from the radiation in this
simple model. Our tool is the Petz map which we introduce and explain. We then evaluate
matrix elements of Petz map reconstructions using gravitational path integrals. We employ
an analytic continuation similar to the replica trick and so consider geometries of different
topologies. After analytic calculation, the problem reduces to a bulk field theory calculation
in the original spacetime geometry.

After the Page time, when the connected topology dominates, the matrix elements of
the Petz map reconstruction and original interior operator agree. In contrast, before the
Page time, the disconnected topology dominates and the Petz map reconstruction fails to
learn anything about the interior. Again we are able to sum these topologies and thereby
follow this transition in detail. The error in the reconstruction increases linearly with the
dimension of the code subspace. As a result, even long after the Page time, reconstruction
is only possible for sufficiently small code subspaces, an example of state dependence. This
explains the state dependence required in the Hayden-Preskill decoding process [47] and
gives a direct derivation of the results about state dependence in entanglement wedge
reconstruction from [13].

The toy model calculations have some simplifying features that actual calculations for
evaporating black holes do not. We therefore extend our calculations to two less idealized
models.

In section 4 we calculate an analog of the Page curve using the replica trick in JT
gravity coupled to conformal matter, where the matter sector is allowed to flow freely across
the boundaries between two thermofield double black holes. Perturbative semiclassical
gravity would suggest that the entropy of each thermofield double black hole would grow
forever. In contrast, unitarity and more explicitly the island formula (1.1) implies that it
must saturate at twice the Bekenstein-Hawking entropy. We analyze this situation using
replicas as before. In this case, we cannot explicitly find the saddle point for integer n
Rényi entropies. But we are able to calculate the von Neumann entropy by showing that,
as n→ 1, the dominant saddle point after the Page time replicates about the minimal QES.
This reproduces the answer from (1.1). This argument essentially reproduces the general
arguments for the EW prescription from [23] in this specific context.

In section 5, we do essentially the same calculations in a UV-complete theory, the SYK
model. In this case, we can numerically find a replica-nondiagonal saddle point in the G,Σ

8For this particular model this is indeed the case. In appendix D, we construct an explicit ensemble of
theories dual to our bulk model.
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Figure 1. Euclidean and Lorentzian geometries for a black hole with an EOW brane behind
the horizon.

action that describes the saturation of the n = 2 Rényi entropy. According to the usual
intuition in this context for associating topologies to saddles for the G,Σ action [24], this
saddle point corresponds to a Euclidean wormhole that connects the two replicas, as in our
gravity calculations.

In section 6 we turn briefly to de Sitter space. We discuss a generalization of the
no-boundary proposal for replica computations, and use it to find a Page-like transition in
the entropy in a toy model using EOW branes in the JT gravity realization of de Sitter
space [48]. A notable feature is that the density matrix itself changes character at the
analog of the Page transition.

In section 7 we offer some preliminary remarks about the role of wormholes in theories
without ensemble averaging.

We end with several appendices: in appendix A we discuss details of the n-replica
gravitational partition function. In appendix B we present analogous calculations in more
general theories of two dimensional dilaton gravity, including flat space. In appendix C
we give a direct gravitational path integral derivation of general entanglement wedge
reconstruction using the Petz map. In appendix D we present an explicit Hilbert space
ensemble precisely dual to the sum over all topologies of the simple model. In appendix E we
discuss in some detail the connection between random tensor networks and fixed area states.
In appendix F we present a more refined analysis of the Page transition in the simple model.

Closely related work has been done independently by Ahmed Almheiri, Tom Hartman,
Juan Maldacena, Edgar Shaghoulian and Amirhossein Tajdini [49]. We have arranged with
these authors to coordinate submission of our papers.

2 A simple model

2.1 Setup of the model

In this section, we will introduce a simple 2d gravity model in which one can derive the
“island” prescription (and corrections to it) in a very explicit way using the replica trick.9

The starting point is to consider a black hole in JT gravity, with an “end of the world
brane” (EOW brane) behind the horizon, sketched in figure 1. This can be understood as
a Z2 quotient of an ordinary two-sided black hole, with a particle of mass µ behind the

9A similar model has recently been discussed independently in [19].
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horizon [50]. The Euclidean action for the system is

I = IJT + µ

∫
brane

ds, (2.1)

where the integral is along the worldine of the EOW brane, and the pure JT action is

IJT = −S0
2π

[1
2

∫
M

√
gR+

∫
∂M

√
hK

]
−
[1

2

∫
M

√
gφ(R+ 2) +

∫
∂M

√
hφK

]
. (2.2)

In our discussion of the model, two different types of boundary conditions will be relevant.
At the standard asymptotic boundary, we impose

ds2|∂M = 1
ε2

dτ2, φ = 1
ε
, ε→ 0. (2.3)

Here τ can be interpreted as the imaginary time coordinate of the holographic boundary dual
to the JT gravity system. At the EOW brane, we impose the “dual” boundary conditions

∂nφ = µ, K = 0, (2.4)

where ∂n means the derivative normal to the EOW brane boundary, and µ ≥ 0.
We will be interested in the case where the EOW brane has a very large number k

of possible internal states, each orthogonal to the others. To model an evaporating black
hole, we will think of these states as describing the interior partners of the early Hawking
radiation. We will entangle them with an auxiliary system R, which will model the early
radiation of an evaporating black hole. So, all together, the state of the whole system is

|Ψ〉 = 1√
k

k∑
i=1
|ψi〉B|i〉R. (2.5)

Here |ψi〉B is the state of the black hole B with the brane in state i, and |i〉R is a state of
the auxiliary “radiation” system R.

Let’s compute the entropy of the R system in the state (2.5), using the island conjec-
ture (1.1) of [14–16]. If we take the island to be the empty set, then the answer for the
entropy is just log(k), representing the entanglement between the R system and the bulk
state of the brane. However, we can also consider the case with a nontrivial island, as shown
in figure 2. This island contains the EOW brane, so the bulk entropy term Sbulk(R∪ I) in the
island formula (1.1) will give zero. The remaining area term is interpreted in JT gravity as

Area(∂I)
4GN

→ S0 + 2π φ(∂I). (2.6)

So the extremization in (1.1) amounts to putting the boundary of the island at an extremal
point of the dilaton φ. The geometry shown in figure 1 has an extremal point of the dilaton,
represented by the black dot at the bifurcation surface. The extremal value of S0 + 2πφ is
simply the coarse-grained entropy the black hole, SBH. So, all together, the island conjecture
predicts

S(R) = min
{

log(k), SBH
}
. (2.7)

The transition between these two answers, as a function of k, is analogous to the Page curve.
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island

k ≪ eS k ≫ eSBH BH

Figure 2. We show the expected entanglement wedges for our simple model based on the “island”
conjecture. In the k � eSBH phase, the entanglement wedge of the B system (boundary dual of
the gravity theory) is the whole spacetime, shown hatched. In the k � eSBH phase, an island
develops. The entanglement wedge of the B system retreats to the exterior of the horizon, and the
entanglement wedge of the auxiliary R system is the shaded blue island behind the horizon.

For the simple model described above, we will derive this answer using the replica trick,
along with corrections. We will start by deriving a qualitative first approximation to the
full answer, and then gradually progress to calculating the full non-perturbative answer in
section 2.5.

2.2 Computation of the purity

We would like to use the 2d gravity path integral to compute the entropy of system R, in
the state |Ψ〉 given in (2.5). We can start by discussing the density matrix ρR:

ρR = 1
k

k∑
i,j=1
|j〉〈i|R 〈ψi|ψj〉B. (2.8)

The matrix elements of ρR are gravity amplitudes 〈ψi|ψj〉. These are determined (up to
normalization of the states |ψi〉) by a gravity calculation with the following boundary
conditions

〈ψi|ψj〉 = 𝑗𝑖 (2.9)

Here, the black line is the asymptotic boundary of type (2.3), with renormalized length β.
We drew the line with a wiggle to emphasize that the boundary conditions do not constraint
its shape. The arrow represents the direction of time evolution, from the ket to the bra.10

At the locations where the dashed blue lines intersect the solid black line, we require that
an EOW brane of type i or j should intersect the asymptotic boundary. Here and below,
dashed lines carry the index of the EOW brane state.

The leading gravity configuration that satisfies these boundary conditions is the following
classical solution

〈ψi|ψj〉 ≈

𝑖 𝑗

(2.10)

10In a theory with time-reversal symmetry, we would not draw such an arrow.
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or

𝑖 𝑖

𝑗 𝑗

𝑖 𝑖

𝑗 𝑗

𝑖 𝑖

𝑗 𝑗

Figure 3. The boundary conditions for |〈ψi|ψj〉|2 are shown at left, and two ways of filling in the
geometry are shown at right. To compute the purity, we want to sum over i, j by connecting the
dashed lines together. For the disconnected geometry, this will lead to a single k index loop, and for
the connected geometry it will lead to two loops.

The black asymptotic boundary (with arrow) borders a portion of the hyperbolic disk, and
a solid blue EOW brane follows a geodesic between the i and j endpoints. An important
feature is that the same EOW brane connects to both the i index and the j index. Because
we assume that these correspond to orthogonal internal states of the EOW brane, the result
for 〈ψi|ψj〉 will be proportional to δij . So, based on this computation, it looks like ρR will
be maximally mixed, with entropy log(k):

ρR
?= 1
k

k∑
i=1
|i〉〈i|. (2.11)

However, we can also try to compute the entropy directly, using the replica trick. Let’s
start by considering the so-called “purity” Tr(ρ2

R), which is closely related to the Renyi
2-entropy. From (2.8), one can easily work out that

Tr(ρ2
R) = 1

k2

k∑
i,j=1
|〈ψi|ψj〉|2. (2.12)

The boundary conditions to compute |〈ψi|ψj〉|2 are shown in the left panel of figure 3. To
compute the purity, we will sum over i, j by connecting the dashed lines in the obvious way.

The crucial point is that there are two different ways of filling these boundary conditions
in with 2d geometry, as shown in the right panel of figure 3. We can either have a disconnected
geometry with the topology of two disks, or a connected “Euclidean wormhole” geometry
with the topology of a single disk.11 To study a two-sided version of this model where we
don’t take the Z2 quotient, we would glue two copies of the EOW brane geometries together
along the EOW branes. Then the topology would be two disks in the disconnected case,
and one cylinder in the connected case.

In both topological classes, there is a classical solution in JT gravity. This is somewhat
nontrivial for the connected (wormhole) case, for the following reason. There is a parameter

11Euclidean wormholes are sometimes also referred to as spacetime wormholes, to differentiate them from
the more commonly studied spatial wormholes such as Einstein-Rosen bridges.
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that characterizes the wormhole geometry, which we can take to be the regularized distance
from one of the asymptotic boundaries to the other, through the wormhole. By itself, the
action of JT gravity provides a pressure that would prefer this distance to be large. But the
tension provided by the mass µ of the particle or EOW brane prefers the length to be short,
and provides a counterbalancing force that leads to a stable minimum for the action.12

To describe the contributions of these geometries to Tr(ρ2
R), we will use the notation

Zn = Zn(β) to represent the gravity path integral on a disk topology with a boundary that
consists of alternating segments of n physical boundaries of renormalized lengths β, and
n EOW branes. Using this notation, we can evaluate the sum of the two contributions in
figure 3 as

Tr(ρ2
R) = kZ2

1 + k2Z2
(kZ1)2 = 1

k
+ Z2
Z2

1
. (2.13)

In the numerator, we have the contributions of the two geometries in figure 3: the discon-
nected geometry at left has one k-index loop, and two copies of the geometry that defines Z1.
The connected geometry at right has two k-index loops, and a single copy of the geometry
that defines Z2. In the denominator, we have divided by the gravity computation that
normalizes the density matrix.13

We will work out exact formulas for Zn in JT gravity below, but the basic point can be
seen already in a very crude approximation, where we retain only the dependence on the
topological S0 term in the JT gravity action (2.2). This term weights the contribution of a
given topology by eS0χ, where χ is the Euler characteristic. Since the topology relevant for
Zn is disk-like for any value of n, and since χ = 1 for the disk, we will have

Zn ∝ eS0 . (2.14)

Using this formula, we see that the second term on the r.h.s. of (2.13) is proportional to
e−S0 . So

Tr(ρ2
R) = k−1 + e−S0 (schematic). (2.15)

If k is reasonably small the disconnected geometry dominates, and we will find that
the purity is 1/k, which is consistent with (2.11). However, if k gets very big, then the
connected geometry dominates and we will find the purity is e−S0 , independent of k. This
interchange of dominance of the two saddlepoints is the basic mechanism that prevents
the entropy (here the Renyi entropy) of the radiation from growing indefinitely. Note that
because the state of the entire system is pure, this implies that the entropy of the excitations
in the black hole (EOW brane states) remains finite even when k is very large. The basic
mechanism for this is the small nonorthogonality of these states, as we discuss in the next
section. When k becomes of order eSBH , this nonorthogonality adds up to a large effect.

12Note, however, that having a classical solution isn’t necessary for the contribution to be meaningful.
13There is a subtlety here. If we normalize the state so that Tr(ρR) = 1, we will find that Tr(ρR)2 is not

exactly one. This can be interpreted as due to the small fluctuation in the normalization of the states. This
effect can be taken into account, but in the planar approximation that we will describe below, it is consistent
to ignore it.
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2.3 Factorization and averaging

The calculation in the previous section raises some important subtleties. For example, how
can this result for Tr(ρ2

R) be reconciled with the formula for ρR in (2.11)? To address this,
let’s first consider the amplitude 〈ψi|ψj〉. For this quantity, the gravity path integral gives
two seemingly-contradictory answers

〈ψi|ψj〉 = δij , |〈ψi|ψj〉|2 = δij + Z2
Z2

1
. (2.16)

The first of these equations follows from the gravitational calculation in (2.10): the answer
is proportional to δij because the same EOW brane connects to both the i index and the j
index. The two terms in the second equation correspond to the two terms in the r.h.s. of
figure 3. Note that in the second term i does not have to be equal to j.

Of course, the two equations in (2.16) are incompatible in a strict sense. However,
suppose that we imagine that the true quantum amplitude is

〈ψi|ψj〉 = δij + e−S0/2Rij (2.17)

where Rij is a random variable with mean zero. Then if we interpret the gravity path
integral as computing some type of average over the microscopic Rij quantities, then we
would interpret the gravity answers as telling us that

〈ψi|ψj〉 = δij , |〈ψi|ψj〉|2 = δij + Z2
Z2

1
. (2.18)

Here, the bar indicates an average over Rij . Now the equations are compatible, and the
extra term in the second equation tells us the variance of Rij . Note that the correction to
orthogonality in (2.17) is very small. But the large number of terms in (2.12) enables these
small corrections to dominate the final answer for k � eS0 , giving a qualitatively different
result than (2.11).

The conclusion seems to be that the gravity path integral is not literally computing
quantum amplitudes, but is instead computing some coarse-grained version, where we
average over some microscopic information Rij . The lack of factorization of the resulting
quantities is familiar from the connection between Euclidean wormholes and disorder.14

This connection goes back to the work of Coleman [54] and of Giddings and Strominger [55],
and has been recently discussed in JT gravity in [25]. It raises important questions in the
present context, which we will return to in section 7.

In appendix D we give a precise description of the random ensemble that is dual to the
JT gravity plus EOW branes model.

2.4 First look at the von Neumann entropy

The standard way to compute the von Neumann entropy using replicas is to use

SR = −Tr(ρR log ρR) = − lim
n→1

1
n− 1 logTr(ρnR). (2.19)

14A different type of factorization problem in JT gravity has been discussed in [51–53].
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or  . . .  or

Figure 4. The boundary conditions for Tr(ρn
R) with n = 6 are shown at left, along with two

extreme ways of filling in the geometry, corresponding to the completely connected and completely
disconnected options. Note that the geometry at right contains a fixed point of the Zn symmetry
that rotates the replicas.

For this to be useful, it is important to be able to compute Renyi entropies in a way that has
a good continuation in n. This is rather nontrivial, since as n grows large, there are many
different geometries that can fill in the boundary conditions for computing Tr(ρn) (shown
in the left panel of figure 4). We will show how to handle this problem in the next section.

First, though, we can do a simplified analysis that is appropriate in two extreme limits.
In the case where k � eSBH , completely disconnected geometries with the topology of n
disks dominate. They have a single k-index loop, and give the contribution

Tr(ρnR) ⊃ kZn1
knZn1

= 1
kn−1 . (2.20)

Using (2.20), we find SR = log(k), consistent with (2.7).
In the opposite limit where k � eSBH , the completely connected geometry with the

topology of a single disk dominates. There are n index loops (see figure 4), and the
contribution is

Tr(ρnR) ⊃ knZn
knZn1

= Zn
Zn1

. (2.21)

The k factors cancel out, so this answer is purely gravitational. In order to compute the von
Neumann entropy, we need to continue Zn to near n = 1. A trick for doing this (see section 3.2
of [7]) is to notice that the geometry associated to Zn has a Zn replica symmetry, and that
the Zn quotient of the geometry can be continued in n. In the limit n→ 1, this becomes the
original unreplicated geometry, and the computation of the von Neumann entropy reduces
to S0 + 2πφh, where φh is the value of the dilaton at the horizon, which is the fixed point
of the Zn symmetry in the n→ 1 limit. So we conclude that in this phase, the answer is
just the thermodynamic entropy of the black hole. Again, this is consistent with (2.7).

The main conceptual point that we want to emphasize is that the island extremal
surface descends from a Renyi entropy computation that involves replica wormholes.

2.5 Summation of planar geometries

So far, we have discussed the completely disconnected and completely connected replica
geometries. In the regimes where these dominate, we get the two different answers for the
von Neumann entropy, predicted by the island conjecture. In order to make this more
precise, and to understand the transition between the two regimes, we need to sum over
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Figure 5. The left figure is an example of planar geometry that we need to include in our analysis.
The middle figure has an extra handle and is down by e−2S0 . The right figure involves a crossing,
and is down by k−2 (it has two dashed index loops instead of four).

replica geometries that are intermediate between the completely disconnected and complete
connected cases shown in figure 4.

The starting point is the boundary condition for Tr(ρnR), shown in the left panel of
figure 4. In principle, we need to sum over all ways of filling this boundary condition in.
To simplify, we will assume that eS0 and k are both large. In this approximation, we only
need to sum over geometries that are planar, in the sense explained in figure 5. Non-planar
geometries are suppressed either by powers of e−2S0 (for adding handles), or by powers of
1/k2 (for introducing crossings).

Depending on the relative size of k or eS0 , either highly disconnected or highly connected
geometries will tend to dominate. We do not assume any particular relationship between k
and eS0 , so it will be necessary to sum over all planar geometries. In order to do this, it is
convenient to define the resolvent matrix Rij(λ) of ρR:

Rij(λ) =
( 1
λ1− ρR

)
ij

= 1
λ
δij +

∞∑
n=1

1
λn+1 (ρnR)ij . (2.22)

We will write down a Schwinger-Dyson equation for Rij using the planarity property and
then use its solution to find the entanglement spectrum of ρR.15

The boundary conditions for Rij correspond to an infinite sum over different numbers
of asymptotic AdS2 boundaries, connected by the k index lines associated to the R system:

R = + + +     . . .

(2.23)
The dashed index lines come with factors of 1/λ, and the solid lines with arrows come with
factors 1/(kZ1) that normalize the gravitational path integral. We fill these in with all
possible planar geometries:

R = + + +     . . .

+ (2.24)
15This analysis was inspired by the “free probability” results discussed in [56] and e.g. figure 1 of the

earlier [57].
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For the one-boundary terms in (2.23), there is only a single bulk geometry that can fill it
in. For the two-boundary term, there are two possible geometries, and we sum over them
in (2.24). For the three-boundary term (not shown), there would be five possible geometries.

We can write a Schwinger-Dyson equation that sums these geometries:

R = + +R R R

+ RR R +      .   .   .

(2.25)
On the r.h.s., the second term sums all planar geometries in which the first boundary is
disconnected from all other boundaries. The third term sums all planar geometries in which
the first boundary is connected to one other boundary, and so on.

To write this identity as an equation, it is convenient to define R as the trace of the
resolvent matrix,

R(λ) =
k∑
i=1

Rii(λ). (2.26)

Then (2.25) is equivalent to

Rij(λ) = 1
λ
δij + 1

λ

∞∑
n=1

Zn
(kZ1)nR(λ)n−1Rij(λ). (2.27)

We can think of the δij/λ as a “bare propagator”. It is the first term in (2.24). In the
remaining terms, n labels the number of boundaries of the geometry that contains the
leftmost boundary. The Zn factor is the gravitational path integral of an n boundary
geometry, which we will analyze below. For each of the n boundaries, we divided by kZ1 in
order to normalize the density matrix ρR. Taking the trace of (2.27), we find

λR(λ) = k +
∞∑
n=1

Zn
R(λ)n

knZn1
. (2.28)

In JT gravity, it is possible to make this equation very explicit.16 The exact formula
for Zn can be worked out using the boundary particle formalism [58, 59]. We decompose
the path integral for Zn in the following way

I2n x nZn = + φ (2.29)

16For general two dimensional dilaton gravity theories, one can do the summation at the classical level
and for large µ. See appendix B.
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Here, the object I2n(`1, . . . , `2n) is the JT gravity path integral with 2n geodesic boundaries
of fixed regularized lengths `. It has the following expression [58]

I2n(`1, . . . , `2n) = 22n
∫ ∞

0
ds ρ(s)K2is

(
4e−

`1
2

)
. . .K2is

(
4e−

`2n
2

)
; ρ(s) = s

2π2 sinh(2πs),
(2.30)

where K is the modified Bessel function. The object ϕ in (2.29) is the Hartle-Hawking state
in the geodesic basis [51]. It computes the path integral from the asymptotic boundary
(characterized by renormalized length β) to the geodesic of regularized length `. It has the
expression [58, 59]

ϕβ(`) = 4e−
`
2

∫ ∞
0

ds ρ(s)e
−βs2

2 K2is
(
4e−

`
2
)
. (2.31)

The boundary of I2n consists of n geodesics that correspond to EOW branes, and n
geodesics that need to be glued to Hartle-Hawking states. In both cases, the procedure is
similar: we integrate over the length of the geodesic, with a “wave function” that is either
the e−µ` weighting for the EOW brane, or the ϕβ(`) weighting for the Hartle-Hawking
states. Including the correct measure factor for the integral over geodesic lengths (see
appendix A), the formula for Zn is

Zn = eS0

∫ ∞
0

d`1 . . . d`2ne
`1+...+`2n

2 I2n(`1, . . . `2n)ϕβ(`1)e−µ`2 . . . ϕβ(`2n−1)e−µ`2n

= eS0

∫ ∞
0

ds ρ(s)y(s)n; y(s) = e−
βs2

2 21−2µ|Γ
(
µ− 1

2 + is

)
|2.

(2.32)

In going to the second line from the first one, we inserted the integral representations (2.30)
and (2.31), and then did the integrals using formulas discussed in appendix A. In y(s), the
Boltzmann factor exp(−βs2

2 ) and the Gamma function factor 21−2µ|Γ(µ− 1
2 + is)|2 come

from the integral with the Hartle-Hawking state and with the brane state, respectively.
Physically, the s parameter can be viewed as giving the energy s2/2 of a particular

asymptotic region. The main simplification in the above calculation is the fact that the
energy must be the same for all asymptotic boundaries in a single connected geometry.

Mathematically, (2.32) gives an integral representation for Zn, with the property that
the n dependence is very simple inside the integral. The sum needed for the Schwinger-
Dyson equation (2.25) becomes a geometric series. In order to unclutter the equations that
follow, we will define rescaled variables

ρ(s) = eS0ρ(s), w(s) = y(s)
Z1

. (2.33)

Then, after summing the geometric series, one finds that the equation for the resolvent is

λR = k +
∫ ∞

0
ds ρ(s) w(s)R

k − w(s)R. (2.34)

This equation contains all of the information about the entanglement sepctrum of ρR, and it
is exact in the planar approximation.17 By solving the equation for R(λ), and then taking

17A similar equation applies to arbitrary dilaton gravity theories, at least in the classical limit and with
large µ, see equation (B.5).
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the discontinuity across the real axis, one can find the density of eigenvalues of the matrix ρR:

D(λ) = 1
2πi [R(λ− iε)−R(λ+ iε)]. (2.35)

The von Neumann entropy can then be computed by evaluating

S(R) = −
∫

dλD(λ)λ log(λ). (2.36)

2.5.1 Microcanonical ensemble: Page’s result

Let’s first use this planar resummation to compute the entanglement spectrum for the
case where the black hole is in a microcanonical ensemble. This means that we fix the
energy in each asymptotic region, rather than fixing the renormalized length β. Let s be
the chosen value of s =

√
2E, and let ∆s be the width of a small interval that defines the

microcanonical ensemble. It is convenient to define the boldface quantities S, Zn and w:

eS = ρ(s)∆s, Zn = ρ(s)y(s)n∆s, w(s) = y(s)
Z1

= e−S. (2.37)

Here S is the entropy of our microcanonical ensemble, and Zn is the microcanonical version
of Zn.

The advantage of this microcanonical ensemble is that the resolvent equation (2.28)
simplifies to a quadratic equation for R. This equation, and the corresponding solution for
the density of eigenvalues (2.35), are given by

R(λ)2 +
(
eS − k
λ

− keS
)
R(λ) + k2eS

λ
= 0;

D(λ) = keS

2πλ

√[
λ−

(
k−

1
2 − e−

S
2
)2
][(

k−
1
2 + e−

S
2
)2
− λ

]
+ δ(λ)(k − eS) θ(k − eS).

(2.38)

These equations are precisely the same ones found by Page for the entanglement spectrum
of a subsystem of dimension k in a random state of total dimension keS, in the planar
approximation [2]. The fact that we get the random state answer can be understood from
the fact that for fixed energy, the random ensemble dual to our JT gravity + EOW branes
model (see appendix D) is the same random state ensemble discussed by Page.

1. When k � eS, the range of the spectrum is very narrow and the first term in D(λ)
is a very narrow semicircle, roughly a delta function. So the spectrum consists of k
eigenvalues of size 1/k. This describes a maximally mixed density matrix and the von
Neumann entropy is log k.

2. As k approaches eS (the Page time), the distribution develops a 1/
√
λ singularity at

the origin. After the Page time, the smooth part of the distribution contains only eS

eigenvalues. The remaining k − eS are exactly zero. The von Neumann entropy has a
rather sharp transition from log k to S during the Page transition: S = logm− m

2n ,
where m = min(k, eS), and n = max(k, eS) [2].

3. When k � eS, the smooth term can again be approximated as a delta function. The
distribution describes a density matrix that is maximally mixed on an eS dimensional
subspace, and unentangled in the rest. The von Neumann entropy stays equal to S.
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λ

D(λ)

before transition

near transition

after transition

Figure 6. Sketch (not to scale) of the entanglement spectrum in the canonical ensemble. Before
the Page transition, the density of states has a very narrow distribution. Near the Page transition,
it becomes a shifted thermal spectrum (2.51), with a cutoff at some energy. After the Page time, it
becomes an ordinary thermal spectrum, again with a cutoff at some energy.

2.5.2 Canonical ensemble: smoothing out the transition

In the canonical ensemble, we did not find a way to solve the resolvent equation (2.34)
exactly. However, we can get some intuition by solving the equation numerically. To do
this, one can first evaluate λ as a function of R, find the locus where λ is real, and then
compute the inverse. The results of this procedure are sketched in figure 6. Long before the
Page transition, the distribution of eigenvalues D(λ) is very narrow, localized near λ = 1/k
as in the microcanonical case. Long after the Page transition, the distribution resembles
the thermal spectrum of the black hole, with a rather sharp cutoff at s = sk chosen so that
the total number of eigenvalues is k:

k =
∫ sk

0
ds ρ(s), (definition of sk). (2.39)

In between the two regimes, the curve smoothly interpolates, with no singular feature during
the transition.

We will now try to analyze the resolvent equation approximately, with the goal of
computing the von Neumann entropy in the semiclassical, small GN regime. In our formulas
for JT gravity, we did not include a GN parameter explicitly, but it can be restored by
taking

β → GNβ, (2.40)

so the semiclassical small GN limit corresponds to small β. We give a much more detailed
analysis of the same problem in appendix F.

As a first step, we can determine the location of the bottom edge in the distribution
D(λ), i.e. the smallest eigenvalue λ0. This corresponds to a branch point in R(λ), which
means a location where dλ/dR = 0. To determine this point, we first write the resolvent
equation in the form

λ = k

R
+
∫ ∞

0
ds ρ(s) w(s)

k − w(s)R. (2.41)

In the region near the lower endpoint of the spectrum, R is real and negative, and the
above integral can be approximated by dividing the s integral into two intervals where the
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two different terms in the denominator dominate:

λ ≈ k

R
− 1
R

∫ sR

0
ds ρ(s) + 1

k

∫ ∞
sR

ds ρ(s)w(s). (2.42)

Here sR is defined by w(sR)R = −k. This approximation is justified in more detail in
appendix F.

Setting to zero the derivative of (2.42) with respect to R, we find that the first two terms
on the r.h.s. should be equal. Comparison with (2.39) then implies that sR ≈ sk. Plugging
this back into (2.42), we find that the smallest eigenvalue of ρR, and the corresponding
value of R are

λ0 ≈
1
k

∫ ∞
sk

ds ρ(s)w(s), R(λ0) ≈ − k

w(sk)
. (2.43)

The next step is to write the equation for the resolvent (2.34) and break up the s
integral into two parts:

λR ≈ k +
∫ sk

0
ds ρ(s) w(s)R

k − w(s)R + R

k

∫ ∞
sk

ds ρ(s)w(s) (2.44)

In the region from sk to infinity, we replaced the factor of k−w(s)R in the denominator by
k. This is justified on the following grounds. First, we are going to study the equation in
the region λ > λ0, and in this region |R| < |R(λ0)|. Second, w(s) is a decreasing function
of s, so for s > sk, we have |w(s)R| ≤ |w(sk)R(λ0)| = k. Intuitively, we have separated the
s integral into two terms in (2.44) corresponding to the “pre-Page” and “post-Page” parts
of the thermal ensemble. The high energy states with s > sk are effectively before the Page
transition, and the planar resummation (represented by the nontrivial denominator) is not
necessary for these states.

A nice feature of (2.44) is that the final term can be recognized as λ0R, so (2.44) can
be rewritten

(λ− λ0)R ≈ k +
∫ sk

0
ρ(s) w(s)R

k − w(s)R. (2.45)

We can solve this equation in an approximation where the second term is a small perturbation,
and the zero-th order solution is just k/(λ− λ0). Iterating the equation once, we find the
first-order solution

R(λ) ≈ k

λ− λ0
+ 1
λ− λ0

∫ sk

0
ds ρ(s) w(s)

λ− λ0 − w(s) . (2.46)

This approximation is good as long as
∫ sk

0 ds ρ(s) w(s)
λ−λ0−w(s) � k, which will be true as long as

λ > λ0 + w(sk − δ), (2.47)

with δ a control parameter. So we conclude that for eigenvalues λ satisfying (2.47), we can
compute the resolvent to good accuracy. Unfortunately, there is a gap between this value
and the actual bottom of the spectrum λ0, and we do not have control over the distribution
of eigenvalues in this region. Before and during the Page transition, we are saved by the
fact that λ0 � w(sk), so for the purposes of computing the von Neumann entropy, this is
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a narrow region where the density of eigenvalues can be approximated by a delta function
with unknown weight. After the Page transition, this is no longer true, but the eigenvalues
in the unknown region contribute a small amount to the entropy.

So, using (2.44) in the region (2.47) and parametrizing our ignorance in the remaining
eigenvalues with a delta function, we have

D(λ) ≈ #δ(λ− λ0) +
∫ sk−δ

0
ds ρ(s)δ(λ− λ0 − w(s)). (2.48)

In the region between sk − δ and sk, λ0 � w(s), so we can approximate λ0 + w(s) ≈ λ0.
This means that we can let the integral run all the way to sk, at the cost of changing the
coefficient of the delta function piece. The resulting combined coefficient can be shown
to vanish, by the following argument. The distribution of eigenvalues has to satisfy two
normalization conditions, ∫

dλD(λ) = k,

∫
dλD(λ)λ = 1. (2.49)

The first condition says that ρR has k total eigenvalues, and the second condition says that
ρR is normalized. The first of these equations implies that

D(λ) =
∫ sk

0
ds ρ(s)δ(λ− λ0 − w(s)) (2.50)

is correctly normalized without any further delta function piece. One can check that the
second condition follows from our result for λ0 in (2.43).

This is our final expression for the entanglement spectrum. It can be given a very
simple interpretation: we have the spectrum of the first k states of the thermal spectrum of
the black hole, shifted so that the total normalization is one. This shift can be understood
as the contribution of all of the remaining states in the spectrum of the black hole:

ρR ' PρBHP + 1
k
Tr
(
P̄ρBHP̄

)
. (2.51)

Here P is the projector into the post-Page subspace with s < sk, and P̄ is the projector into
the pre-Page subspace with s > sk. The operator ρBH is the density matrix of the thermal
ensemble (including the brane) for the black hole.

Using this result, one can evaluate the von Neumann entropy. Inserting (2.50) into (2.36)
and doing the λ integral using the delta function, we find

S ≈ −
∫ sk

0
ds ρ(s)(λ0 + w(s)) log(λ0 + w(s)). (2.52)

A careful analysis shows that the error in this approximation peaks around the Page
transition, when it is of order GN (see appendix F for details). As a function of k, this
expression exhibits a smoothed-out version of the Page transition. It differs from the
naive answer min(k, SBH) by an amount of order G−1/2

N near the Page transition, but one
can show that it agrees to within O(1) precision with the average of the micro-canonical
answer over the full thermal ensemble. In figure 7 we plot the exact formula for the

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
5

- 6 - 3 0 3 6

6

7

8

9

10

11

12

log(k) - SBH
S
 -

 S
0

Figure 7. We plot the exact entropy in the planar approximation (solid) and the approximation (2.52)
(dashed) for the case β = 3 and large µ. The answer in the microcanonical ensemble with the same
entropy is also shown (dotted). The difference between the curves is largest near the Page transition.
For small β, the transition in the canonical curves gets smoothed out over a large region of size
β−1/2 ∼ G

−1/2
N in log(k), while the transition in the microcanonical curve always looks the same.

The maximum error between the canonical curve and the simple approximation (2.52) will be of
order β ∼ GN .

entropy for β = 3, obtained by solving the resolvent equation numerically. We also plot the
approximation (2.52) and the exact microcanonical answer for comparison.

We would like to emphasize one point about the continuation in n. Because they are
sensitive to different parts of the thermal spectrum, the different Renyi entropies Tr(ρn)
experience Page transitions at different values of k. In fact, there are values of k for which
the Page transition for all of the integer Renyi entropies has already taken place, but the
von Neumann entropy is still very close to log(k). In this regime, a fully connected geometry
dominates the computation of the Renyi entropy for every integer n, but its continuation
to n = 1 would give the wrong answer in the von Neumann limit. Nevertheless, the full
resummation gives the right answer.

3 Reconstruction behind the horizon via the Petz map

In the previous section, we showed (in the simple model) that for large k, the entanglement
entropy saturates at the thermodynamic entropy of the black hole, and the RT surface is at
the horizon. This means that the entanglement wedge of the radiation R contains an island
behind the horizon.

The location of the entanglement wedge is significant because of the notion of “entan-
glement wedge reconstruction,”18 which implies that in the large k phase, the radiation
system R should describe the island. The arguments in favor of entanglement-wedge re-
construction [8, 37–39] are strong but non-constructive. In the next section we will show
directly from the gravitational path integral that operators acting in the R system can
control the region behind the horizon. We will see that the Euclidean wormholes described
above play an essential role, connecting the region behind the horizon to the R system.

18This was originally conjectured in [6, 35, 36], and established in [37–39] using the ideas of [8].

– 18 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
5

Although we will focus on the simple model in our discussion below, a similar argument
applies to the general case of operator reconstruction within the entanglement wedge,
e.g. the famous case of two intervals in the AdS3 vacuum. The argument is essentially the
same and we describe this generalization in appendix C.

3.1 Setup

We would like to slightly enrich the simple model discussed above, so that there is something
nontrivial to reconstruct. To do this, we will imagine coupling our JT gravity system to
a bulk field theory, containing some propagating degrees of freedom. For simplicity, we
will assume that these propagating degrees of freedom cannot feel the difference between
different states of the EOW brane.

We will consider a “code subspace” of states corresponding to small excitations of
the bulk fields propagating on the background described so far (i.e. by the background
corresponding to the state (2.5), and to the geometry in figure 1). A basis for the code
subspace is provided by the states

|Ψa〉 = k−1/2
k∑
j=1
|ψaj〉B|j〉R, a = 1, . . . , dcode. (3.1)

Here, |ψaj〉 is a state in which the EOW brane is in state j, and we also have a small
excitation of the propagating bulk fields, labeled by a.

Because of the variety of geometries that will be important below, we actually have to
be somewhat more precise at this point, and define |ψaj〉 by a boundary condition rather
than a bulk statement. What we really mean is that the a index corresponds to some
insertion in the boundary conditions for the Euclidean path integral that defines the bulk
state. So, for example, the boundary conditions for an inner product of two such states
would be

〈ψai|ψbj〉 = 𝑗𝑖 𝑎
𝑏x
x

(3.2)

where the labeled “x” marks represent the insertions associated to a and b. We assume that
e.g. the a insertion is arranged so that on the leading disk topology, it produces a particular
state of the bulk field theory |a〉FT,

𝑎
x

state of bulk fields = |𝑎⟩FT

(3.3)

Relative to the state with no insertions, |a〉FT could contain excitations behind the horizon,
outside the horizon, or both. To simplify the formulas below, we will assume that the bulk
states are indexed and normalized so that to a good approximation 〈a|b〉FT = δab. We will
specialize to a more concrete model in section 3.7.

We let OFT be some operator that acts within this subspace of bulk states. We will
denote its matrix elements in the bulk field theory states as Oab:

Oab ≡ 〈a|OFT|b〉FT. (3.4)
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We define O to be the representation of the bulk operator OFT in the full boundary system

O =
dcode∑
a,b=1

|Ψa〉〈Ψb| × Oab. (3.5)

Note that in general, this “global” representation of the operator acts nontrivially on both
R and B.

Now we can get to the point. Suppose that we are in the phase with k � eSBH , so
that the entanglement wedge of R includes the island behind the horizon. Then if OFT
acts within the “island” behind the horizon, the general arguments for entanglement-wedge
reconstruction suggest that we should be able to find an operator OR, acting only on R,
such that

〈Ψa|OR|Ψb〉 ≈ 〈Ψa|O|Ψb〉. (3.6)

What we would like to do is show by a direct bulk calculation that this is possible. The tool
we will use is the so-called “Petz map,” which essentially gives a guess for what operator
OR to choose. We will do a bulk calculation to show that it actually works, demonstrating
entanglement-wedge reconstruction explicitly.

3.2 Petz Lite

Before we discuss the Petz map itself, we will go through a simpler (“Petz Lite”) version,
which will be good enough for a certain limited class of states. The Petz Lite map works as
follows. Given an operator O on the combined system BR, we can define a operator on the
R system using the partial trace

OR = c0TrB(O). (3.7)

Here, the constant c0 should be chosen so that the identity operator maps to the identity
operator. This seems like a very naive guess for an operator mapping, and in fact this Petz
Lite version will not work for general states. But it does work in a special class of states,
analogous to the “fixed area” states of Akers, Rath, Dong, Harlow and Marolf [60, 61].

In JT gravity, fixed area is replaced by fixed dilaton φ, and we choose to fix the value
of φ at the horizon to be the value that it has in the classical solution. The advantage of
doing this is that when φ is fixed, we don’t impose the equation R+ 2 = 0 at that point,
and instead we allow any value of R, including a delta function singularity that corresponds
to a conical excess. This freedom makes replica geometries very easy to construct [60, 61]:
we just take n copies of the n = 1 geometry, and glue them together in such a way that the
horizon is a conical singularity with total angle 2πn.

To proceed, let’s define boldface states |ψai〉, |Ψa〉 to be fixed-dilaton versions of the
states |ψai〉, |Ψa〉 defined above. Making this modification in (3.5) and tracing over the B
system as in (3.7), we find the candidate operator

OR = c0
k

k∑
i,j=1
|i〉〈j|R

dcode∑
a,b=1
〈ψbj |ψai〉B Oab. (3.8)

How does this operator manage to affect the region behind the horizon? Note that although
OR acts only on R, its explicit form depends in detail on amplitudes 〈ψai|ψbj〉 in the black
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hole theory B. Let’s imagine that some quantum computer will apply OR to the R system.
Then in order to compute these amplitudes, the quantum computer will do computations
that are equivalent to simulating system B. This introduces a second copy of B into the game.

The basic point seems to be that the physical copy of the black hole B can connect via
a Euclidean wormhole to this second copy, providing a geometrical connection between the
black hole and R. This connection is equivalent to inserting an operator behind the horion
of the physical black hole.

Let’s see how this works in a very simple case, where the code subspace consists of
two states: the state |0〉FT with no bulk particles excited, and |1〉FT with a single particle
behind the horizon. We consider the operator

OFT = |1〉〈0|FT (3.9)

which creates a particle. For this case, Petz Lite gives

OR = c0
k

k∑
i,j=1
|i〉〈j|R 〈ψ0j |ψ1i〉. (3.10)

Here |ψ0j〉 is a state with no particle, and |ψ1i〉 is a state with the particle present. If we
were to evaluate the amplitudes 〈ψ0j |ψ1i〉 using a single replica, we would find zero because
the bulk field theory states with and without a particle are orthogonal. So the amplitude
would vanish, and we would conclude that OR = 0.

However, as discussed in section 2.3, the gravity path integral seems to require an
interpretation as a disorder average, where the amplitude 〈ψ0j |ψ1i〉 is only zero “on average”
in some ensemble implicit in the gravitational description. So we should postpone our
concern that the operator vanishes, and see what it does when we compute a matrix element:

〈Ψa|OR|Ψb〉 = c0
k2

k∑
i,j=1
〈ψai|ψbj〉〈ψ0j |ψ1i〉. (3.11)

On the r.h.s. we have a product of two gravitational amplitudes. The first factor corresponds
to the physical black hole, and the second factor corresponds to the simulated one in the quan-
tum computer acting on R. In the large k phase, the largest contribution to the expression
on the r.h.s. comes from a connected geometry, where the physical black hole is connected
to the simulated one by a wormhole. This wormhole is particularly easy to describe for the
fixed-dilaton states. We simply glue two copies of the one-replica geometry together along
a cut behind the horizon. This corresponds to a geometry with a 4π angle at the horizon,
as sketched in figure 8. From the perspective of the physical black hole, this wormhole
corresponds to an insertion of an operator behind the horizon. It is an operator with a par-
ticle present in the ket vector (top half of the cut) and no particle present in the bra vector
(bottom half of the cut). So the operator acts as a creation operator behind the horizon.

This is the basic mechanism that underlies entanglement-wedge reconstruction. However,
in order to go beyond fixed-dilaton states, we will have to use the full Petz map, rather
than the Petz Lite version discussed above.
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4𝜋
=

physical BH copy in quantum 
computer acting on R

cuts glued

Figure 8. The two-replica geometry that contributes to the expectation value (3.11) for a = 1, b = 0
of the Petz Lite operator. The wavy line represents the bulk particle. Note that gluing the right
geometry to the left geometry has the same effect (from the perspective of the physical left system)
as inserting a creation operator behind the horizon. Another sketch of the glued geometry is shown
at right. The marked point is the point of fixed dilaton, and it has conical angle 4π. The worldline
of the particle created in the quantum computer (wiggly orange line) travels through the wormhole
and into the physical black hole. The brane on the top half of each of the figures is a brane of type
j and the brane on the bottom half is of type i.

3.3 Quantum information discussion of the Petz map

We now introduce the full Petz map, in its natural environment of quantum channels. The
remarks below will not be necessary for our gravity discussion, but we include them for
background.

A reversible quantum channel N can be defined by the property that it has a type of
inverseR, such that (R◦N )(ρ) = ρ for all inputs to the channel N . The Petz map [41, 42, 62]
gives a universal formula for R in terms of N , in cases where exact recovery is possible. We
will not write the full formula, since we are only interested in a special case of it, but we refer
the reader to [39, 43] for details and previous discussions in the context of entanglement
wedge reconstruction.

As a representative example, let’s consider a quantum channel that embeds Hcode ⊆
HA ⊗HĀ, and then traces over HĀ. The channel is reversible if it is possible to recover
Hcode from HA. In this situation, for any operator Ocode acting on Hcode, the Petz map
gives an equivalent operator OA acting on A:

OA = σ
−1/2
A TrĀ(VOcodeV

†)σ−1/2
A . (3.12)

σA = TrĀ(Πcode). (3.13)

Here V is the encoding map from Hcode into HA ⊗HĀ, and Πcode is the projector onto the
image of Hcode in HA ⊗HĀ. By saying that OA is equivalent to Ocode, we mean that for
any state in Hcode, the following two operations produce the same state: (a) acting with
Ocode and then encoding with V and (b) encoding with V first and then acting with OA.

To see that (3.12) works, we note that reversiblity of the channel implies that there
is an isomorphism HA ∼= H1 ⊗H2 ⊕H3 where H1 ∼= Hcode such that any state |ψ〉 ∈ Hcode
is mapped by V to the state |ψ〉|χ〉 ∈ H1 ⊗H2 ⊗HĀ, and where |χ〉 ∈ H2 ⊗HĀ is some
fixed state.19

We can now evaluate (3.12). The encoding map acts as

VOcodeV
† = Ocode ⊗ |χ〉〈χ|. (3.14)

19H3 is just there to make sure the dimensions work out. It’s unimportant.
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Hence
TrĀ(VOcodeV

†) = Ocode ⊗ χ2, (3.15)

where χ2 = TrĀ|χ〉〈χ|. Finally

σA = TrĀ(11 ⊗ |χ〉〈χ|) = 11 ⊗ χ2. (3.16)

Combining (3.15) and (3.16), we find OA = Ocode ⊗ 12, as desired.
For channels that are not perfectly reversible, the Petz map will not work perfectly.

However, it still achieves very good performance, with an “average error” at most twice
the optimal average error (using any recovery channel) [63]. For large code spaces, the
performance may be suboptimal for particular“worst-case” input states, whereas recent
work has shown that a slightly more complicated “twirled Petz map” has good provable
worst-case performance [64]. However, for our application, the ordinary Petz map will work
well enough.20

For reversible channels, the Petz map reconstruction of a unitary code space operator is
itself always a unitary operator (at least when restricted to the image of the code space).21

However, the individual elements that make up the Petz map reconstruction, in particular
the factors of σ−1/2

A , are highly nonunitary.22 The Petz map reconstruction may therefore
have much higher complexity, as a unitary operator, than the simple description (3.12)
would suggest. In fact, for evaporating black holes, there is good reason to think that it is
exponentially complicated [65, 66].

3.4 Gravitational replica trick for the Petz map

The above discussion of the Petz map motivates us to amend the naive “Petz Lite” formula to

OR = σ
−1/2
R TrB(O)σ−1/2

R . (3.17)

Here σR is the trace over B of the projector onto the code subspace,

σR =
dcode∑
a=1

TrB|Ψa〉〈Ψa| =
k∑

i,j=1
|i〉〈j|R

dcode∑
a=1

〈ψaj |ψai〉B
k

. (3.18)

To check how well (3.17) works, we will compute the l.h.s. of (3.6) in gravity and compare it
with the r.h.s. The main complication in this calculation is the fact that it involves the −1/2
power of an operator. To deal with this, we will use a version of the replica trick, defining

O(n)
R = σnR TrB(O)σnR. (3.19)

For positive integer n, matrix elements of this operator can be evaluated using replicas. In
a first pass, we will take a naive approach and analytically continue the dominant term
in the bulk calculation from integer n to n = −1/2. Later, we will show how to do this
analytic continuation more precisely, using a summation of planar geometries.

20In fact, it works better on average than the twirled Petz map.
21For approximately reversible channels, it will be approximately unitary.
22For the Petz Lite reconstruction, the problematic nonunitary part is the large constant factor c0.
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We will now begin the calculation. After writing out the integer n expression and
evaluating the inner products in the R system explicitly, one gets an expression that depends
only on inner products of the |ψai〉 states in the B system:

〈Ψa|O(n)
R |Ψb〉 = 1

k2n+2 〈ψai0 |ψbj0〉B × 〈ψa1i1 |ψa1i0〉B . . . 〈ψanin |ψanin−1〉B × 〈ψb′jn |ψa′in〉B

× 〈ψbnjn−1 |ψbnjn〉B . . . 〈ψb1j0 |ψb1j1〉B ×Oa′b′ . (3.20)

In this expression, all indices except for a and b are summed over. The pattern of index
contractions is best understood by writing a diagram for the boundary conditions for the
corresponding bulk path integral. Using the translation of inner products to boundary
conditions shown in (3.2), and dropping the “x” symbols for clarity, we find

〈Ψa|O(n)
R |Ψb〉 = 1

(kZ1)2n+2 ×
𝑎

𝑏

𝑖0

𝑎1
𝑎1

𝑖1 𝑎n
𝑎n

𝑖n

𝑎'

𝑏'

𝑗n

𝑗1

𝑗0

𝑏n
𝑏n𝑏1

𝑏1

×Oa′b′ . (3.21)

In this diagram, and in similar ones below, we draw the case n = 2. In general there will be
2n+ 2 black segments corresponding to asymptotic boundaries.

In the phase k � eSBH where the connected geometries dominate, the boundary
conditions will be filled in by a completely connected geometry

𝑎

𝑏

𝑖0

𝑎1
𝑎1

𝑖1 𝑎n
𝑎n

𝑖n

𝑎'

𝑏'

𝑗n

𝑗1

𝑗0

𝑏n
𝑏n𝑏1

𝑏1

(3.22)

We now need to evaluate this bulk computation. There are 2n+ 2 index loops for the k
states of the EOW brane, which gives a factor of k2n+2 that cancels against the k2n+2 in
the denominator of (3.21). What remains is a purely gravitational calculation, involving a
path integral over gravity and over the propagating bulk fields.

As a first approximation (order G−1
N ), we can ignore the matter fields altogether and

just work out the answer from the gravity computation. In this approximation, the geometry
has a Z2n+2 symmetry and we can analytically continue the Z2n+2 quotient of the geometry
in n. In the limit n → −1/2, it becomes a disk with a single boundary, for which the
gravitational path integral gives Z1. This cancels against the Z2n+2

1 in the denominator, so
the gravitational answer is simply one.

3.5 Reducing to a bulk field theory calculation

Now that we have evaluated the leading-order gravitational contribution, we need to compute
the contribution from the propagating bulk fields. In the leading approximation, this means
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a field theory calculation on the fixed background, with the Z2n+2 symmetry. We can view
the geometry as built out of 2n+ 2 pieces, which we separate with dotted lines:

𝑎

𝑏

𝑎1
𝑎1 𝑎n

𝑎n

𝑎'

𝑏'

𝑏n
𝑏n𝑏1

𝑏1

(3.23)

The field theory path integral on each of these pieces gives an operator with bra and ket
corresponding to the dotted lines that border each piece. The particular operator we get in
each case depends on the angle θ between the dotted lines, and it also depends on the field
theory boundary conditions at the asymptotic boundaries, in particular, it depends on the
a and b indices in (3.23). We will refer to this operator as M , and a certain sum over such
operators as M̂ :

M(a, b; θ) =
𝑎

𝑏
𝜃 , M̂(θ) =

dcode∑
a=1

M(a, a; θ). (3.24)

In this notation, the field theory computation we are interested in is

〈Ψa|O(n)
R |Ψb〉 =

dcode∑
a′b′=1

Tr
[
M(a, b, θ)M̂(θ)nM(b′, a′, θ)M̂(θ)n

]
Oa′b′ +O(GN ). (3.25)

The trace in this expression is over the Hilbert space of the bulk fields on one of the dotted
lines. Since O(n)

R involves 2n+ 2 replicas, we should set θ = 2π/(2n+ 2).
There are two sources of n-dependence in (3.25): the number of powers of M̂ , and the

value of θ. We would like to continue to n = −1/2, and it is convenient to do this in stages.
In the first stage, we set θ = 2π, leaving the number of powers of M̂ general. When θ = 2π,
the M operator becomes a path integral on the standard unbackreacted geometry,

M(a, b, 2π) =

𝑎

𝑏

= Troutside|b〉〈a|FT. (3.26)

In deriving the second equality here, we used (3.3). The notation Troutside means a trace over
the region outside the horizon, in the Hilbert space of the bulk field theory. Substituting
this in, we find that with θ = 2π, the r.h.s. of (3.25) can be written as 〈a|O(n)

inside|b〉FT where

O(n)
inside = σninsideTroutside(OFT)σninside (3.27)

σinside = Troutside
∑
a

|a〉〈a|FT. (3.28)

As a second stage, we now take the remaining dependence on n to −1/2, and we note
that the answer takes the form of a Petz map, but now for a simpler problem defined entirely
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within the Hilbert space of the bulk field theory on the fixed background. Specifically, it is
the Petz map OFT → Oinside for reconstructing the bulk field theory operator OFT using
only the region inside the horizon. If OFT acts behind the horizon, then this reconstruction
is possible, so this auxiliary Petz map will succeed, meaning that

〈a|Oinside|b〉FT ≈ Oab. (3.29)

This follows from the properties of the Petz map discussed in section 3.3, but it can also
be shown directly as follows. Suppose that OFT = ΠcodeAinside ⊗ 1outsideΠcode, where Ainside
commutes with Πcode. Then one can check that Oinside = Ainside, and the reconstruction
works perfectly.

Let’s now summarize. We were originally interested in a reconstruction problem where
the goal is to reconstruct a bulk field theory operator OFT using an operator OR acting
only on the “radiation” system R. We started with a candidate for OR suggested by the
Petz map. Using a bulk argument, we showed that

〈Ψa|OR|Ψb〉 = 〈a|Oinside|b〉FT +O(GN ), (3.30)

where the matrix element in the r.h.s. is defined purely in the bulk field theory on a fixed
background. The operator Oinside can be interpreted as the result of an auxiliary Petz map
problem defined entirely in the field theory on the fixed background. This auxiliary Petz map
attempts to reconstruct OFT using only the region behind the horizon. Such reconstruction
will obviously be possible if OFT acts only behind the horizon, so (3.29) will hold and
therefore (3.6) will hold also. So we conclude that in the island phase, reconstruction of
operators behind the horizon is possible using only R.

3.6 The disconnected phase

To understand this result a little better, we can ask why reconstruction fails if we are in
the disconnected phase with k � eSBH . In this phase, the geometry that dominates (3.20)
is the completely disconnected one, similar to the geometry shown in the center of figure 4.
At leading order, the gravitational part of this computation reduces to Z2n+2

1 , with an
additional factor of k for the single k-index loop. These factors cancel the prefactors in (3.21)
in the limit n → −1/2. So the gravitational and k-index part of the computation gives
one, just as in the connected phase.23 The computation therefore reduces again to a purely
field-theory calculation on a fixed background.

Formally, this field theory calculation can be interpreted as an auxiliary Petz-map
calculation, but of a rather trivial kind. The analog of the geometries in (3.26) is the
one shown on the r.h.s. of (3.26), but with no cut at all. As a field theory operator, this
corresponds to

Trentire bulk|b〉〈a|FT. (3.31)
23One could ask the following question: if in the limit n → −1/2, the purely gravitational part of the

answer is one for both the connected and the disconnected geometries, then should we sum both? Briefly,
the answer is no. A full analysis including the transition is in section 3.7 below.
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So we replace Troutside by a trace over the entire bulk Hilbert space. The associated Petz map
is one that attempts to reconstruct the operator OFT from the trivial subsystem of the bulk
theory, after tracing out everything. This is obviously not possible, so reconstruction fails.

3.7 Planar resummation for the Petz map

In the above analysis of the Petz map, for the most part we assumed that the connected
geometry dominates. In this section, we will do the full sum over planar geometries, using
a method similar to the one we used to compute the entanglement spectrum of ρR.

In this section, we will remove the bulk fields from the theory, and go back to considering
the theory with only the EOW brane. In order to have a nontrivial code subspace of states

|Ψa〉 = k−1/2
k∑
j=1
|ψaj〉B|j〉R, a = 1, . . . , dcode, (3.32)

we will interpret both the a and j indices as describing the state of the EOW brane. The
j index is entangled with the radiation, and the a index labels the state within the code
subspace. To reiterate: in our previous discussion, this a index labeled some state of the
bulk fields, but to make the following analysis simple we will now take a to describe another
aspect of the EOW brane (e.g. the state of some qubit that propagates right alongside the
EOW brane).

The main challenge in the computation is the existence of the operators σ−1/2 in the
formula for the Petz map. It will be convenient to write a version of this formula for integer
powers of σ as

On1,n2
R = 1

dcode
σn1
R TrB(O)σn2

R , σR = 1
dcode

σR. (3.33)

In the rest of this section, we will use the rescaled σR defined here, which is normalized as
a density matrix. What we would like to do is make sense of the “analytic continuation to
n1 = n2 = −1/2” of this expression. To make this precise, it will be helpful to introduce a
generating function of these operators for all values of n1, n2 as OR(λ1, λ2):

OR(λ1, λ2) =
∞∑

n1,n2=0

On1,n2
R

λn1
1 λn2

2
, On1,n2

R =
∮
∞

dλ1
2πi

dλ2
2πi λ

n1−1
1 λn2−1

2 OR(λ1, λ2). (3.34)

Later we will see how to deform the integration contour to get an answer that can be
continued to n1 = n2 = −1

2 , which gives the actual Petz map.
We would like to compute the sum over planar bulk geometries of the matrix elements of

OR(λ1, λ2). The geometries can be divided into two classes. In the first class, the asymptotic
boundary corresponding to the physical black hole (with a, b indices in (3.21)) is connected
to the asymptotic boundary on the other side of the circle, where the operator Oa′b′ acts. In
the second class, these two asymptotic boundaries are not in the same connected component
of the geometry. The contribution of the first class of geometries to the matrix element is
proportional to Oab, since the index lines associated to the EOW branes require a = a′ and
b = b′. In the second class, the contribution is proportional to δabTrO. In other words, we
have the matrix elements:

〈Ψa|OR(λ1, λ2)|Ψb〉 = c1(λ1, λ2)Oab + c2(λ1, λ2)δabTrO. (3.35)
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Figure 9. Boundary conditions (left) and a planar contribution to 〈Ψa|OR(λ1, λ2)|Ψb〉. This
contribution is an element of the first class, since the leftmost boundary is in the same connected
geometry as the rightmost one.

Ideal reconstruction would mean that c1 = 1 and c2 = 0. Since the Petz map is normalized
so that the identity operator always reconstructs perfectly, we must have c1 + c2dcode = 1.
We can compute c1 by summing all geometries from the first class.

Geometries belonging to the first class can be further grouped as follows. We are
guaranteed that there is a geometry that connects the boundary of the physical black hole
to the “opposite side” boundary. In addition, this geometry is connected to some number
m1 of boundaries in the “top half” of the circle, and m2 boundaries in the “bottom half.”
This defines one connected component with 2 +m1 +m2 boundaries, but in between each of
these boundaries we can have a full summation of planar geometries. These can be summed
over using the resolvent for σR:

R̂(λ) = Tr 1
λ− σR

(
this equals R(λ) = Tr 1

λ− ρR
but with eS0 → dcodee

S0

)
. (3.36)

See figure 9 for a graphical description of this. The resulting expression for c1(λ1, λ2) in
the planar approximation is

c1(λ1, λ2) =
∞∑

m1,m2=0

dcodeZm1+m2+2
(dcodekZ1)m1+m2+2 R̂(λ1)m1+1R̂(λ2)m2+1λ1λ2. (3.37)

In this formula, dcode and eS0 only appear in the combination dcodee
S0 . This is clear

for the explicit factors of dcode, since they multiply either Z1 or Zm1+m2+2, both of which
are proportional to eS0 . But it is also true for the implicit factors in R̂, see (3.36). This
will have an important implication: in order for the connected geometries to dominate the
Petz map computation, we will need to have k & dcodee

SBH , rather than the Page time
condition k & eSBH . This is in keeping with expectations based on [13, 14, 47]. In analyzing
the equations below, we will simplify by setting dcode = 1, and remembering that it can be
restored by rescaling eS0 → dcodee

S0 .
Using the integral representation (2.32), and the notation (2.33), we can rewrite (3.37) as

c1(λ1, λ2) = λ1λ2

∫ ∞
0

ds ρ(s) w(s)R(λ1)
k − w(s)R(λ1)

w(s)R(λ2)
k − w(s)R(λ2) . (3.38)
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To compute the coefficient cn1,n2
1 , we can use the contour integral in (3.34) and interchange

the s and λ integrals to write

cn1,n2
1 =

∫ ∞
0

ds ρ(s)
∮
∞

dλ1
2πi

dλ2
2πi λ

n1
1 λn2

2
w(s)R(λ1)

k − w(s)R(λ1)
w(s)R(λ2)

k − w(s)R(λ2) . (3.39)

For non-integer n, the function λn has a branchpoint at infinity, so we can’t continue the
integral as written. However, we can first deform the contour for the λ1, λ2 integrals to a
new region where continuation will be possible. In particular, for each of the λ1, λ2 integrals,
we separately deform the integration contour to surround the cut in the resolvent along
the positive real axis.24 After doing this there is no problem in continuing in n, and for
n1 = n2 = −1/2, we find

c1 =
∫ ∞

0
ds ρ(s)

(∮
C

dλ
2πi

λ−
1
2w(s)R(λ)

k − w(s)R(λ)

)2

. (3.40)

3.7.1 Microcanonical ensemble

Let’s first analyze this equation in the microcanonical ensemble with fixed s. Then the
Schwinger-Dyson equation for the resolvent (2.34) implies

λR = k + eS w(s)R
k − w(s)R. (3.41)

Substituting this into the formula for c1 (3.40), one finds

c1 = e−S
(∮
C

dλ
2πiλ

1/2R(λ)
)2

= e−S
(∫
C

dλλ1/2D(λ)
)2
. (3.42)

We can do the integral using the result for the resolvent or the density of states in (2.38),
and one finds (restoring dcode by taking eS → eSdcode)

c1 =


k

dcodeeS + . . . k � dcodee
S

1− dcodee
S

4k + . . . k � dcodee
S
. (3.43)

So the reconstruction works well in the region k � dcodee
S where connected geometries

dominate. In this region, (3.43) gives the leading small correction due to disconnected
geometries.

3.7.2 Canonical ensemble

To analyze c1 in the canonical ensemble, we can go back to (3.40) and insert the leading
expression R(λ) ≈ k/(λ− λ0) from (2.46). The λ integral is

∮
C

dλ
2πi

λ−1/2w(s)R(λ)
k − w(s)R(λ) ≈

∮
C

dλ
2πi

λ−1/2w(s)
λ− λ0 − w(s) = − w(s)

(λ0 + w(s))1/2 , (3.44)

24The denominators k − w(s)R(λ) can be shown not to vanish on the principal sheet.
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Figure 10. For β = 3 and large µ, we plot the exact c1 in the planar approximation (solid) and the
simple approximation (3.45) (dashed). The answer in the microcanonical ensemble is also shown
(dotted). For smaller β, the transition in the canonical ensemble takes place over a longer interval in
log(k), of order ∼ β−1/2.

so we find the expression

c1 ≈
∫ ∞

0
ds ρ(s) w(s)2

λ0 + w(s) . (3.45)

Near the Page transition, the integral is dominated by the region s < sk, where the w(s)
term in the denominator is larger than λ0. So we can approximate the integral as

c1 ≈
∫ sk

0
ds ρ(s)w(s) = 1−

∫ ∞
sk

ds ρ(s)w(s). (3.46)

This has a simple interpretation: part of the thermal ensemble is “pre-Page,” and part of
the thermal ensemble is “post-Page.” The above integral gives the fraction of the ensemble
that is Post-page. Note that this notion of post- and pre-Page refers to the Page time with
eS0 replaced by dcodee

S0 .
After the Page transition, the correction to one in (3.46) becomes very small, and the

leading correction comes from a new place: the correction to the assumed form k/(λ− λ0)
of the resolvent. This correction is computed in the final term in (2.46), and working out
the first-order change in the l.h.s. of (3.44), one finds

c1 ≈ 1− 1
k

∫ ∞
0

ds1

∫ sk

0
ds2

ρ(s1)ρ(s2)w(s1)w(s2)
(w(s1)1/2 + w(s2)1/2)2 . (3.47)

In order to simplify this answer, we set λ0 = 0, which is a good approximation after the
Page transition. This integral is dominated by the region where s1 ≈ s2. Making this
approximation, it then evaluates to the weighted average of the error in the microcanonical
ensemble (3.43), with the weighted average taken over the Post-page portion of the thermal
ensemble. This is consistent with the lower bounds on the reconstruction error derived
in [13, 14].

In figure 10, we give a plot of the exact answer for c1 in the microcanonical ensemble,
and in the canonical ensemble with β = 3.
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4 Radiating black holes in equilibrium

In the simple model discussed above, the Page transition results from a competition between
the entropy of the black hole and the number of states k of an EOW brane. The interesting
regime is a rather artificial one, where k is extremely large, of order eSBH . However, for a
physical radiating black hole, we expect that a similar effect is accomplished by going to
late time, where the large number of states is provided automatically by the large amount
of Hawking radiation.

The analysis for a radiating black hole (even in a simple theory like JT gravity) is more
complicated than for the simple model: it involves intrinsically Lorentzian physics, and the
backreaction of the Hawking radiation is essential for finding the wormhole solutions. So we
will not be able to go as far as for the simple model. However, in this section we will make
some preliminary comments. First, we will explain the relationship between the wormhole
topologies and the island extremal surface. Second, we will analyze the continuation near
n = 1 of the replica-symmetric wormhole explicitly, and make contact with the quantum
extremal surface. Finally, we will explain qualitatively why we expect solutions to exist for
integer values of n > 1.

The setup we will discuss is the following. We consider two thermofield-double pairs of
thermodynamically stable black holes (e.g. large black holes in AdS). The two pairs will be
referred to as 1 and 2 — each pair consists of an L and R black hole, initially entangled in a
TFD state. One can add a small interaction that couples the two L black holes togther, and
likewise couples the two R black holes. A naive semiclassical computation will then show
that the entanglement between system 1 and system 2 grows linearly with time forever.
This eventually exceeds the coarse-grained entropy by an arbitrarily large amount. The
Page curve in this context would be an entanglement entropy that follows the linear growth
for a while, before saturating at a value that corresponds to the coarse-grained entropy of
one pair of black holes (i.e twice the entropy of a single black hole).

4.1 JT gravity setup

We now analyze this situation in JT gravity. (2d gravity is convenient for drawing pictures,
but the topological argument relating replica wormholes to the island extremal surface is
similar in any spacetime dimension: one just replaces each point in the discussion below by
a sphere.) We will consider two black holes in JT gravity, coupled together by a bulk matter
CFT in a way that will be described below. Before getting into replicas and wormholes,
let’s begin by discussing the computation that gives the ordinary thermal partition function
Z(β) for this combined system.

For a single black hole, the boundary conditions (2.3) for computing Z(β) would be
to specify that the boundary is a loop of length β/ε and to set the dilaton to 1/ε at this
boundary. Here, ε→ 0 is a holographic renormalization parameter. We would then look for
gravity configurations that can “fill in” these boundary conditions. Up to symmetries, the
unique classical solution is the hyperbolic disk

ds2 = dρ2 + sinh2(ρ)dθ2 = 4dr2 + r2dθ2

(1− r2)2 , (4.1)
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where we use the portion of the geometry inside the radius

r = 1− 2π
β
ε. (4.2)

This cutoff radius has been chosen so the length of the boundary is β/ε. The dilaton profile is

φ = φh cosh(ρ) = φh
1 + r2

1− r2 , φh = 2π
β
. (4.3)

The value of φh was chosen so that φ = 1/ε at the boundary.
Let’s now discuss the computation of Z(β) with two coupled black holes. Neglecting

the matter fields for the moment, the boundary conditions will be the same in the two
copies. We can fill these in with the same solution (4.1), but where we now take the two
boundaries to be at radii

r± = 1± 2π
β
ε. (4.4)

The region r < r− is the first black hole, and the region r > r+ is the second black hole.
(Note that this is another copy of the hyperbolic disk, as one can check by taking r → 1/r.)
A sketch of the full configuration is here:

boundary 
of BH 2

boundary 
of BH 1

BH 1
BH 2

(4.5)

Next we should discuss the bulk matter fields and their coupling between the two black
holes. A convenient choice is to include a matter CFT propagating in the bulk theory, and
then allow these matter fields to pass freely from one system to the other, with “transparent”
boundary conditions. So, for example, let’s consider the geometry described above. For
small ε, the geometry of the two black holes is conformal to the entire plane, and (up to
a Weyl transformation that affects some observables), the bulk matter fields are simply
propagating on this plane without seeing any unusual feature at r = 1 where we transition
from one black hole to the other.

So far, we have described a situation in Euclidean signature, appropriate for computing
Z(β). But we can also continue it into Lorentzian signature. The setup corresponds to
two copies of the thermofield double black hole. In other words, each of the two black
holes 1 and 2 have both a left asymptotic boundary L and a right asymptotic boundary R.
The boundary conditions for the matter fields allow particles to pass between the two L
asymptotic boundaries, and similarly for the two R boundaries. Up to a Weyl rescaling,
the bulk matter fields feel like they are propagating on a Lorentzian cylinder, where half of
the spatial S1 is in black hole 1, and the other half of the spatial S1 is in black hole 2.

In this situation, we would like to compute the entropy of the two-sided black hole 1,
namely the entropy of the subsystems 1L ∪ 1R. Let’s start by considering the boundary
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conditions to compute the Renyi n-entropy in the t = 0 state prepared by cutting the
Euclidean path integral in half. These boundary conditions correspond to n replicas of (4.5),
with boundary twist operators inserted, shown as zigzag cuts here:

𝛼

𝛼

𝛼+1

𝛼

replica 
labels

(4.6)

As we pass through these twist operators from below to above, we transition from replica α
of the inner circle to replica α+ 1. If the systems were not interacting with each other, this
would be a trivial relabeling. But with interactions it becomes nontrivial: below the twist
operators replica α of the system 2 (outer circle) interacts with replica α of system 1 (inner
circle), and above them replica α of system 2 interacts with replica α+ 1 of system 1.

The boundary conditions described above will compute the Renyi n-entropy at time
zero of the two-sided BH 1. By moving the location of the twist operators, we can compute
the entropy at other times. In principle, we can move the two twist operators independently.
From the rotational symmetry of (4.6), it is clear that if we rotate the twist operators
around the circle by the same angle, we will not change the answer. In Lorentzian signature,
this corresponds to invariance of the answer under forwards evolution on the R system, and
backwards evolution on the L system. However, if we move both forwards in Lorentzian
time, there is nontrivial time-dependence.

4.2 Renyi topologies for the empty set and for the island

Having specified the boundary conditions, we can now ask what bulk geometries can fill
them in. Our goal is to understand what topologies for the Renyi entropy computation lead
to the “island” and “empty set” extremal surfaces in the von Neumann limit.

Let’s first discuss the empty set. This arises from a Renyi entropy computation with
the topology of 2n disk geometries: n for system 1, and n for system 2. Each replica of the
boundary conditions is associated to a distinct replica in the bulk, and the different geome-
tries are only connected by their boundary interactions. The geometry can be represented
in a convenient way by filling in the interior and exterior of (4.6), and extending the cuts
corresponding to the twist operators into the bulk, from one side of system 1 to the other:

𝛼
𝛼

𝛼+1
(4.7)

The path integral of the bulk matter fields on this geometry computes the Renyi n-entropy
of the bulk matter fields on a particular bulk slice. This slice corresponds to the location of
the cut in (4.7), and it can be understood as passing across the full Einstein-Rosen bridge
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of system one.25 In other words, we are computing the total entropy of the matter fields in
system one. As we move the twist operators forwards in time, this entropy will grow, due
to the fact that the Hawking radiation of one black hole falls into the other and vice versa.
In general, the Renyi entropy computation will backreact on the gravity computation, so
the geometry of the disks will be modified. But in the von Neumann limit n → 1 where
the entropy computation does not backreact on the geometry, we find simply

SvN = (entropy on full slice across ERB of black hole 1). (4.8)

In writing this expression, we used the fact that the gravitational contribution to the path
integral gives one in non-backreacting limit n→ 1. As we move the twist operators forwards
in time, the r.h.s. of (4.8) will grow linearly in time forever.

Let’s now discuss the island. For the Renyi n-entropy, we leave the n disks of system 2
in place, but we replace the n disks of system 1 by a completely connected Zn-symmetric
geometry that we will refer to as a “pinwheel.” A sketch of the pinwheel for n = 6 (with its
Zn quotient shaded) looks like this:

𝛼+1

𝛼 (4.9)

For the moment, let’s not worry about whether the geometry in (4.9) is a solution or not (we
will come back to this). What we would like to do is understand what it looks like in the limit
n→ 1. Strictly speaking, this geometry does not have a continuation in n, but its Zn quotient
does. The quotient (shaded orange in the above sketch) is characterized by the requirement
that the conical angle around the two points marked by black dots should be 2π/n.

The shaded region intersects the asymptotic boundaries in two semicircles, shown with
heavy black curves. These two semicircles are the two inner semicircles of (4.6), so in
particular, they are joined by bulk field theory interactions to the same replica of system
2, which will be filled in by a disk geometry. For n ≈ 1, the quotient of the full geometry
including system 2 therefore looks like the following:

𝛼

𝛼

𝛼+1

(4.10)

25This is equal to the same entropy for system two since the global state of the bulk fields is pure.
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The inner region is the continuation to n near one of the shaded portion of (4.9). Note that
the conical angle around the black dots is equal to 2π/n, which is close to 2π.

One can evaluate the contribution of this topology to the gravity path integral, in a
very crude approximation where we keep only the topological S0 term in the JT action. In
order to compute the von Neumann entropy, we need to consider

SvN = lim
n→1

[ 1
n− 1 log Zn

Zn1

]
. (4.11)

Here Zn is the bulk computation with the boundary conditions for the Renyi n entropy,
and Z1 is the bulk computation of the partition function of the combined system. At the
level of the topological action, these partition functions are simply eχS0 , where χ is the
total Euler characteristic:

Zn ∼ Zpinwheel × Zndisk ∼ e(2−n)S0 × enS0 (4.12)
Zn1 ∼ Z2n

disk ∼ e2nS0 (4.13)

Here, the ∼ symbol means equivalence at the level of the topological part of the action.
Substituting these expressions in (4.11), we find that the topological part of the gravitational
path integral contributes SvN ∼ 2S0.

Finally, let’s discuss the contribution from the bulk field theory. It is helpful to compare
the island geometry in (4.10) to the empty-set one in (4.7). In the empty-set geometry (4.7),
the cut associated to the twist operators on the boundary extended all the way across the
bulk. In the limit n→ 1, the corresponding field theory computation was the entropy of
the bulk fields on that slice. In the island geometry (4.10), the cut ends on the two black
dots, which are the fixed points of the Zn symmetry. In the limit n→ 1, the corresponding
field theory computation is the entropy of bulk fields in the portion of system 1 outside the
black dots. Adding this together with the gravity contribution described above, we have
very roughly

SvN = 2S0 + (bulk entropy in BH 1 outside black dots). (4.14)

At the level of our topological analysis, this is consistent with the island conjecture (2.7).
In order to go beyond this crude analysis, we would like to find actual on-shell solutions

in JT gravity coupled to a bulk CFT, which will require going to late times. As in many
discussions of JT gravity, it is convenient to think about doing the path integral in two
stages. First, we integrate over the dilaton. This imposes a delta function constraint that
the metric should be hyperbolic, with R = −2. Next, we integrate over the moduli space of
hyperbolic metrics, and over the space of “boundary wiggles,” which represent the shape of
the cutoff within the parent hyperbolic manifold [48]. Finding true solutions appears to
involve two complications: first, in order to find on-shell solutions, we need to continue the
twist operators forwards in Lorentzian time a certain amount. Second, for integer Renyi
index n, the solution seems to involve an interesting but somewhat nontrivial configuration
of these boundary wiggles. This problem can be avoided by continuing the off-shell action
near n = 1, and observing that in this limit, only a finite dimensional space of wiggles can
get excited. We study this problem next.
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4.3 The pinwheel geometry for n ≈ 1

Let’s begin by analyzing the pinwheel geometry in more detail, and working out its off-shell
action near n = 1. The simple final answer could be derived quickly from the methods
in [7, 23], but we believe the following derivation may generalize better to integer n > 1.

We are interested in the special case of a pinwheel geometry with Zn symmetry, and
with a hyperbolic metric R = −2. Such geometries can be parametrized by the length b
of the geodesic that separates off any one of the asymptotic regions. Other geometrical
quantities can be computed in terms of this b parameter. For example, consider the two
fixed points of Zn symmetry, shown with black dots in (4.9). If we set 2ρ to be the geodesic
distance between the two points, then one can show using hyperbolic geometry that

cosh
(
b

4

)
= sin

(
π

n

)
cosh(ρ). (4.15)

An important special case of this formula is the limit n→ 1, where

b = 2πi− 4πi cosh(ρ) (n−1) +O
(
(n−1)2). (4.16)

The pinwheel has n of these geodesics of length b, separating off the n asymptotic regions
from the rest of the geometry. The asymptotic region outside each of these geodesics is a
“trumpet” geometry

ds2 = dσ2 + cosh2(σ) b2

(2π)2 dθ2 (4.17)

with σ ≥ 0. The locus σ = 0 is the geodesic of length b, and the asymptotic boundary is at
σ →∞.

In addition to the parameter b, the pinwheel geometry is characterized by more subtle
“boundary wiggles,” which represent the shape of the cutoff surface at large σ. These can
be parametrized by giving the angular coordinate θ in (4.17) as a function of the proper
length along the cutoff surface. It is convenient to use a rescaled proper-length coordinate τ ,
which runs from zero to β. The full off-shell action for the Zn-symmetric pinwheel geometry
reduces [48] to the Schwarzian action for the trumpet geometry [25]

nISch = −n
∫ β

0
dτ Sch(e−

θb
2π , τ) = n

2

∫ β

0
dτ
[
θ′′2

θ′2
+ b2

(2π)2 θ
′2
]
. (4.18)

Putting the boundary wiggles on shell means no wiggles at all, θ(τ) = 2π
β τ . However, the

result is still not on shell with respect to b, because one finds I ∝ b2.
So far, we have taken n to be general. But for n very close to one, the Zn quotient of

the pinwheel geometry becomes the hyperbolic disk, with two marked points corresponding
to the fixed points of the Zn symmetry, see (4.10). The hyperbolic disk has exact SL(2,R)
symmetry, and for n close to one, we expect an approximate SL(2,R) symmetry. This
leads to a separation of scales in the action: four special modes become parametrically soft.
Three of these are parametrized by an SL(2,R) transformation, and one is parametrized by
the distance 2ρ between the Zn fixed points. We would like to work out a “slightly off-shell”
action with arbitrary values of these modes, but with everything else on-shell.
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A finite SL(2,R) transformation that preserves the unit circle is

x→ zx+ y

ȳx+ z̄
. (4.19)

The corresponding configuration of the Schwarzian variable θ(τ) is determined by

eiθ = ze2πiτ/β + y

z̄ + ȳe2πiτ/β . (4.20)

The Schwarzian derivative Sch(e−
θb
2π , τ) for this function θ(τ) can be computed using the

composition rule Sch(f ◦ g, τ) = Sch(f, g)g′2 + Sch(g, τ), where f(x) = x
ib
2π and where

g(τ) = eiθ given in (4.20). The integral over τ can be converted to an integral over eiθ, and
can then be done by contour integration. The result for the action is

ISch = −2π2

β

[
1 +

(
1 + b2

(2π)2

)
yȳ + zz̄

yȳ − zz̄

]
. (4.21)

Now taking the limit n→ 1, we can use (4.16) to expand this off-shell action near n = 1 as

ISch = −2π2

β
− 8π2

β
cosh(ρ)yȳ + zz̄

yȳ − zz̄
(n− 1) +O

(
(n−1)2). (4.22)

It will be convenient to think about this action in a slightly different way. We can
act with an SL(2,R) transformation on the entire geometry (4.10) to “straighten out” the
boundary mode (4.20). This transformation will leave the metric invariant, since the
hyperbolic disk metric (4.1) is invariant under (4.19), but it will move the two marked
points. A straightforward calculation shows that

ISch = −2π2

β
− 2π

[
φ(ρ1) + φ(ρ2)

]
(n− 1) +O

(
(n−1)2), (4.23)

where ρ1, ρ2 are the ρ coordinates of the new marked points, and

φ = 2π
β

cosh(ρ) = 2π
β

1 + r2

1− r2 (4.24)

is the dilaton profile in the n = 1 geometry. This simple form of the final answer would
follow more directly from the general results in [7, 23].

Let’s briefly summarize. For n near one, the pinwheel geometry has four special modes
with action of order (n − 1). These can be parametrized by the locations of the two Zn
fixed points, considered as marked points in the hyperbolic disk. The off-shell action, as
a function of the locations of these points, is related to the value of the dilaton at these
points, (4.23).

4.4 The bulk field theory calculation

So far we have just studied the gravitational action of the pinwheel geometry. We also need
to analyze the contribution from the bulk matter CFT. As explained in [8], the matter
path integral can be understood as computing

Tr(ρ̂nn) (4.25)
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where ρ̂n is the un-normalized density matrix prepared by the path integral on the Zn
quotient geometry. For n ≈ 1, this approaches (4.10). In principle, we need to consider two
types of corrections to n = 1,

ρ̂nn = ρ̂1 + (n− 1)
[
∂nρ̂n|n=1 + ρ̂1 log(ρ̂1)

]
+O

(
(n− 1)2). (4.26)

The first O(n− 1) term can be shown to correspond to a small shift in the background value
of the dilaton at the fixed points, due to quantum fluctuations of the propagating matter
fields [8, 23]. This term will be subleading in the discussion below, and we will neglect it.
However, the second O(n− 1) term leads to an important contribution for n ≈ 1:

logZn ⊃ (n− 1)× (bulk entropy in cut region of BH 1). (4.27)

We need to evaluate this entropy. This sounds potentially difficult, because the cut region
in (4.10) consists of two intervals. But in the late-time limit of interest, it can be well-
approximated [18] using the formula for the entropy of a single interval, which is simple in
2d CFT.

Let’s review the CFT formula for the entropy of an interval. Suppose we are interested
in a metric of the form

ds2 = Ω(x)2dxidxi, i = 1, 2 (4.28)

We consider the state to be the vacuum in the x coordinates. For a conformal field theory,
one would naively expect the entropy to be Weyl-invariant. But this is not quite true
because of the need for a cutoff. If we assume that the appropriate cutoff is one in the
physical distance, then the regularized entropy of an interval is (see e.g. [67])

S = c

3 log
(
|x− x′|

√
Ω(x)Ω(x′)

)
+ (UV divergence ind. of x, x′). (4.29)

In the twist-operator formalism for the entropy, this Ω dependence comes from the Weyl-
transformation properties of the twist operators.

As a warm-up, we would like to apply this to work out the regularized entropy of the
interval between r = r1 and r = 1 (at fixed θ) in the metric

ds2 = 4dr2 + r2dθ2

(1− r2)2 , 0 ≤ r ≤ ∞. (4.30)

This metric is conformal to the plane, and we consider the state that is the ordinary vacuum
in the plane. From (4.29), the entropy of an interval [r1, r2] at fixed θ would be

Sbulk = c

3 log

 r2 − r1√
(1− r2

1)(1− r2
2)

+ (UV divergence ind. of r1, r2). (4.31)

In the present case we are interested in taking r2 = 1. As r2 approaches 1, the expression
diverges. This reflects the divergent entanglement between the two black holes due to the
coupling at the boundary. This is an IR divergence in the bulk and a UV divergence in
the boundary. In principle, this should be cut off by smearing out the coupling between
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𝑡 𝑡

𝜌1𝜌2

Figure 11. The black dots on the boundaries correspond to the boundary twist operators, and the
black dots in the center are the marked points corresponding to the Zn fixed points. For large t, the
entropy on the two intervals marked with wavy lines is approximately the same as the sum of the
entropies on the two intervals taken separately.

the two boundaries so that very high-energy modes are not coupled. Although we will not
discuss the details of this regularization, it will lead to an expression of the form

Sbulk = c

3 log 1− r1√
1− r2

1

+ const = − c6ρ1 + const (4.32)

where the constant depends on the regularization.
Now, the entropy that we actually need to compute is the one for two intervals,

where each interval stretches between one of the Zn fixed points in (4.10) and one of the
boundary twist operators. This problem simplifies in a late time Lorentzian configuration
like the one shown in figure 11. As we increase t, the two intervals become far apart
and uncorrelated with each other, and the entropy approaches the sum of two separate
single-interval computations,

Sbulk ≈
[
− c6ρ1 + const

]
+
[
− c6ρ2 + const

]
. (4.33)

In this formula, we assumed that the bulk and boundary twist operators were at the same
Killing times. We won’t work out the formula for different times, but we note that the
action is stationary under first-order changes of these Killing times.

4.5 Saddle point

We can now put the gravity computation together with the bulk CFT computation and
find a saddle point. For n near one, we have the off-shell contribution

Zn ≈
∫

d2x1d2x2 exp
{

(2− n)S0 − nISch + (n− 1)Sbulk
}

(4.34)

where the integral is over the locations of the two marked points in the disk geometry. In
the case where the boundary twist operators have been continued to late time, this integral
has a saddle point for a Lorentzian configuration of the two marked points, corresponding
to the one shown in figure 11. In principle, we should extremize the action over both
coordinates. But for late time, the extremum will be such that the points x1 and x2 are at
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the same Killing time as the corresponding boundary twist operators.26 We then have to
extremize over the radii. The action is

−nISch+(n−1)Sbulk =n
2π2

β
+(n−1)

[
4π2

β

(
cosh(ρ1)+cosh(ρ2)

)
− c6(ρ1+ρ2)

]
+O

(
(n−1)2).

(4.35)
This action has an extremum at sinh(ρ1) = sinh(ρ2) = βc/24π2. This is analogous to the
quantum extremal surface of [14–16, 18]. Here we have shown how it arises from a n→ 1
limit of a Euclidean wormhole calculation.27

4.6 Comments on integer n

Finding saddle points explicitly for integer n > 1 seems to be significantly more difficult
than in the n ≈ 1 limit. One reason is that it is no longer possible to restrict to the SL(2,R)
modes of the Schwarzian theory: a more general θ(τ) is necessary. Gluing the two black
holes together then involves a “conformal welding” problem. Without getting into the
details of this, we would like to explain qualitatively why the Renyi entropy should be finite
in the limit t→∞, using an argument similar to one in [24]. We caution the reader that
the discussion in this section and the next one 4.7 is preliminary.

As a first step, consider the auxiliary computation

Tr
(
e−(β+β′)H1+2

)
= Tr

(
e−βH1+2eiH1+2te−β

′H1+2e−iH1+2t
)

= .

(4.36)

Here H1+2 represents the Hamiltonian of the combined boundary dual of BH 1 and BH 2,
including the interaction. In the first equality, we inserted some cancelling factors of e±iHt,
and in the figure at right we sketched a path integral contour that would compute this
quantity. The solid and dashed lines represent the boundary duals of the two BH systems.
The “caps” at the left and right end represent the Euclidean evolution by β and β′, and the
long horizontal portions represent the forwards and backwards Lorentzian evolution.

This quantity is exactly independent of time, and it is helpful to imagine taking t to be
very large. Then the contour has a time-translation invariance that is broken only near the
endpoints. The gravity solution that fills this in will also have this property, and in order
for the answer to be independent of t, this time-translation-invariant gravity geometry must
have zero action per unit time. In fact, the relevant geometry is easy to identify; it is a
piece of a thermofield-double-like geometry, which is invariant under forwards evolution on
one side and backwards evolution on the other. The action is zero per unit time because of
a cancellation between the two sides.28

26This is because the calculation is invariant under time-reversal symmetry, once we ignore correlations
between the two intervals.

27In the setup described here, both entangled systems are gravitational, and we could consider another
saddle point where BH 1 remains disk-like and BH 2 forms a pinwheel. By making the S0 parameters of the
two theories different, we can make one of these configurations dominate over the other.

28We say TFD-like, because if β 6= β′, the two boundaries will not be on opposite sides, but at some
general angle. Also, this TFD-like geometry actually consists of two TFD-like geometries, one for each of
BH 1 and BH 2. However, because of the interactions between the quantum fields, it is not exactly the same
as two separate TFDs; in particular, the quantum state of the matter fields will be somewhat entangled.
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Figure 12. In (a) we sketch the boundary time contours for two copies of (4.36), where the long
horizontal part is the Lorentzian portion and the “caps” at the ends are Euclidean. In (b) we insert
boundary twist operators (wiggly lines) in order to compute the purity Tr(ρ2

1). In (c) we represent
these twist operators explicitly by changing the pattern of connection of the contours. We can make
a configuration with bounded action as t → ∞ by pasting the solution from the corresponding
region of (a) into the shaded regions of (c). The configuration is thermofield-double-like in these
two regions.

Now let’s use this auxiliary computation. The contour for the Renyi 2-entropy is shown
in figure 12(b) and 12(c). The long Lorentzian part of this contour is exactly the same as
for two copies of (4.36), shown in figure 12(a). The difference has to do with the way the
contours are connected together at the ends (and also the amount of Euclidean evolution at
the ends). To find a configuration whose action does not grow with time, we can paste the
solution from part (a) into the shaded region of (c), and then fill in the remainder in some
way that is consistent with the new boundary conditions. Since this modification happens
near the ends of the contours, it will cost an amount of action that does not depend on the
length of the time interval, at least in the limit of large t. In two dimensions, the topology
of the resulting gravity configuration will consist of a cylinder for BH 1 and two separate
disks for BH 2.

This explains why there are gravity configurations for the Renyi entropy that have
bounded action as t→∞, but it doesn’t show that there are classical solutions. A potential
subtlety is the following. In (4.36) there are two parameters β, β′. The action along the
Lorentzian part of the contours will be zero for any values of these parameters. We expect
that these are stabilized to saddle point values when we take into account the action penalty
from gluing in the caps at the ends. We have not shown this reliably in gravity, but we will ver-
ify it in a related context by finding numerical solutions in the SYK model in the next section.

4.7 A factorization problem

In the context of the simple model, we argued in section 2.3 that the answers from the
gravity path integral must be interpreted in terms of some implicit ensemble average. In
order to make this argument, we showed that the gravity path integral predicted 〈ψi|ψj〉 = 0
but |〈ψi|ψj〉|2 6= 0. Can one say something similar for a more physical black hole?

In the simple model, |ψi〉 was the state of the black hole after projecting the radiation
R onto a definite state |i〉. For a radiating black hole, an analog is as follows. We consider
a case with only one black hole system, which starts out in a microcanonical version of the
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TFD state, called |E〉,29

|E〉 ∝
∑

|Ei−E|≤∆
|Ei〉L|Ei〉R. (4.37)

To project onto a state in which the black hole radiates a particular sequence of Hawking
quanta, we could act on this initial state with a sequence of annihilation operators

aim(tm) . . . ai1(t1) (4.38)

where ij refer to a particular sequence of Hawking radiation modes, and tj are the times
at which these modes are extracted. Acting with a sequence of this type will lower the
energy of the black hole, and eventually lead to evaporation. However, in order to make
our arguments as sharp as possible, we would like the “evaporation” process to continue
forever, so we will intersperse creation operators between the annihilation operators in such
a way that the energy of the black hole remains constant.

Concretely, we will evolve forwards in time on the R boundary of the two-sided state
|E〉, applying a sequence of m creation and annihilation operators to various bulk field
theory modes, roughly once per unit time,

O(i1 . . . im; t1 . . . tm) = a†im(tk)aim−1(tm−1) . . . a†i2(t2)ai1(t1). (4.39)

Here, for simplicity, we are taking the bulk matter theory to be a product of free field
theories. It will be convenient to constrain O so that it has approximately zero conserved
charges in the boundary theory. So, in particular, we balance the number of creation and
annihilation operators so that when we act with O on a state, we do not change the energy
significantly.

Let’s choose two different operators of the type (4.39), and call them A and B. Then
we can consider states obtained by acting with these operators on the R system of the
two-sided state |E〉:

|ψA〉 = A(R)|E〉, |ψB〉 = B(R)|E〉. (4.40)

We expect that in JT gravity coupled to a bulk free theory, the inner product between
these states will either be zero or will approach zero as we increase the number of operator
insertions m,

〈ψA|ψB〉√
〈ψA|ψA〉〈ψB|ψB〉

→ 0. (4.41)

We can think of this inner product as the one-point function of A†B in the state |E〉. As
described in section 6.2 of [26], we can get a nonzero answer for the square of this one point
function, by considering a Euclidean wormhole with two boundaries. What we would like
to do now is argue that the gravity answer for

|〈ψA|ψB〉|2

〈ψA|ψA〉〈ψB|ψB〉
(4.42)

approaches a constant as the number of insertions m goes to infinity.
29For concreteness, we assume a width ∆ of order the thermal scale associated to energy E.
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Figure 13. In (a) we sketch the boundary time contours for computing 〈ψA|ψA〉〈ψB |ψB〉. In (b)
we sketch the contours for computing |〈ψA|ψB〉|2, and in (c) we rearrange them. In the shaded
regions, we glue the relevant part of the solution from (a).

The argument is very similar to the one we used in the last section to argue that Renyi
entropies approach a finite answer as t→∞. The basic point is that the long Lorentzian
portions of the contour (where the operators act) is the same for the numerator and
denominator of (4.42), see figure 13. By gluing the gravity saddle point for the computation
of the denominator into the long Lorentzian parts of the computation of the numerator, we
will find a finite answer, which is suppressed only by the action involved in gluing on the
different set of “caps” at the ends. The resulting topology is that of a cylinder connecting
the two asymptotic boundary circles, as described in [26].30

5 SYK computations with two replicas

JT gravity coupled to matter fields is not a UV complete theory, due to a divergence in
the moduli space integral for long thin tubes. There is no reason to suspect that this is
a problem for the current calculations, but to build confidence we undertake a related
calculation in the UV complete SYK model [68–71]. We will numerically find a solution
that gives a non-decaying contribution to the Renyi 2-entropy, which provides a check of
the argument given in section 4.6.

We study the same physical arrangement as described in section 4, but with the black
hole systems 1 and 2 replaced by SYK systems 1 and 2, interacting with each other in a
way that will be described below. The goal is to compute the purity Tr(ρ2), for system 1, as
a function of time. Using the replica-diagonal SYK saddle point, this purity will decrease
exponentially in time forever (in a microcanonical ensemble). But in the exact theory, it
must saturate at an exponentially small floor value. This is a good target for a nontrivial
“wormhole” saddle point, and the interchange of dominance is the Renyi 2-entropy version
of the Page transition.

This SYK setup, and the replica-diagonal saddle point, was considered previously by
Gu, Lucas, and Qi in [72]. In order to find the “wormhole” saddle point, we will essentially
import an appropriate modification of the “double cone” solution found in [24].

To start, define two separate SYK models, called 1 and 2, with N1 and N2 fermions,
respectively. In order to compute the Renyi 2-entropy, we will need to consider two replicas

30In the microcanonical setting described here, we expect to find a stabilized solution based on this
approach. In the canonical ensemble we do not expect one, based on arguments from [24, 26].
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of this system. So we will write a general fermion with three different indices, ψαi,a

ψαi,a : i ∈ {1, . . . , Na} = flavor, a ∈ {1, 2} = physical system, α ∈ {1, 2} = replica.
(5.1)

For each value of the replica and subsystem indices α and a, we can define an SYK
Hamiltonian31

Hα
a =

∑
1≤i1<···<iq≤Na

Ji1...iq ;a ψ
α
i1,a . . . ψ

α
iq ,a. (5.2)

Note that the number of fermions in the two physical systems a = 1, 2 are in general
different, and the couplings Ji1...iq ;1 and Ji1...iq ;2 are independently drawn. However, the
couplings do not depend on the replica index α.

So far, the two physical systems are independent. We would like to introduce a coupling
between them. In the computation of the Renyi entropy, different replicas will need to
interact with each other, so we define a general operator with two replica indices α and α′:

V αα′ =
∑

1≤i1<···<iq̂≤N1
1≤j1<···<jq̂≤N2

Ĵi1...iq̂ ,j1...jq̂ ψ
α
i1,1 . . . ψ

α
iq̂ ,1 ψ

α′
j1,2 . . . ψ

α′
jq̂ ,2. (5.3)

Regardless of the replica indices, this operator always couples the two physical systems 1
and 2 to each other, and never to themselves.32

Let’s now specify the physical setup more precisely. The system starts out in a
thermofield double state for the combined interacting 1 + 2 system, with four subsystems
1L, 1R, 2L, 2R. For weak interactions, this thermofield double is a state with relatively
little entanglement between the 1 system and the 2 system. (Most of the entanglement is
between e.g. 1L and 1R, the two sides of the TFD.) We then evolve the systems forward
in time, computing the entropy of system 1L ∪ 1R. The state of the combined system is
invariant under forwards evolution on the R systems and backwards evolution on the L
systems. We will evolve forwards on R only, leaving L alone.

After evolving for time t, we would like to compute the entropy of the 1L ∪ 1R system.
This measures the entanglement between the total 1 system and the total 2 system. We
expect this entropy to grow linearly in time, before saturating at a late time value determined
by a nontrivial saddle point. More precisely, at time t, we will study the purity Tr

(
ρ1(t)2)

of the combined 1L∪1R subsystem. This quantity can be computed by a path integral with
two replicas, and with insertions of a swap operator that swaps the replica index of the 1L
and 1R subsystems. We expect it to decay exponentially until saturating at a floor value.

Including the effect of the swap operators, the path integral for the purity can be
written as

Tr
(
ρ1(t)2

)
= 1
Z(β)2

∫
Dψαi,ae−I (5.4)

31We take q to be a multiple of four to avoid some factors below.
32We will take q̂ to be even, so that V preserves separate fermion parity symmetries on the two subsystems.
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where the action is [72]33

I =
∫
C

dτ
∑
a=1,2
α=1,2

[
Na∑
i=1

ψαi,a∂τψ
α
i,a +Hα

a

]
+
∫
C1

dτ
[
V 11 + V 22

]
+
∫
C2

dτ
[
V 12 + V 21

]
. (5.5)

Each system has two replicas, and we can either couple a particular replica of system 1 to
the same replica on system 2, or to the opposite one. These two possibilities are realized on
the two components of the contour C = C1 ∪ C2. Switching this coupling at the transition
between the two contours is equivalent to inserting swap operators at those transition points.
It will be helpful below to write the full action with a condensed notation∫

C
dτ
∑
αγ

V αγgαγ(τ) (5.6)

where g(τ) is the identity matrix for τ in C1, and g(τ) is the swap operator for τ in C2.
We can now compute the disorder average (over couplings J) of (5.4), by taking the

couplings to be Gaussian random variables with mean zero and with

〈Ji1...iq ;aJi′1...i′q ;a′〉 = J2δi1i′1 . . . δiqi′qδaa′
(q − 1)!
N q
a

(5.7)

〈Ĵi1...iq̂ ;j1...jq̂ Ĵi′1...iq̂′ ;j′1...j′q̂〉 = Ĵ2δi1i′1 . . . δiqi′qδj1j′1 . . . δjq̂j′q̂
(q̂!)2

q(N1N2)q̂ . (5.8)

As usual in SYK calculations, the result for the disorder average can be written in terms of
G,Σ collective fields34

〈Tr
(
ρ1(t)2

)
〉 = 1

Z(β)2

∫
DΣαα′

a DGαα
′

a e−I . (5.9)

Note that one only needs collective fields that are diagonal in the physical system index a,
although in general we need off-diagonal fields in the replica indices α, α′. The action is
explicitly

I =
∑
a

Na

− logPf
(
∂τδ

αα′−Σαα′
a

)
+ 1

2

∫
C

dτ1dτ2
∑
α,α′

[
Σαα′
a (τ1, τ2)Gαα′a (τ1, τ2)−J

2

q
Gαα

′
a (τ1, τ2)q

]
−
√
N1N2

Ĵ2

2q

∫
C

dτ1dτ2
∑

αα′γγ′

Gαα
′

1 (τ1, τ2)q̂ gαγ(τ1)gα′γ′(τ2) Gγγ
′

2 (τ1, τ2)q̂. (5.10)

The saddle point equations that stationarize this action are

Ga = (∂τ − Σa)−1 (5.11)

Σαα′
a (τ1, τ2) = J2Gαα

′
a (τ1, τ2)q−1 +

√
Nâ

Na
Ĵ2Gαα

′
a (τ1, τ2)q̂−1∑

γγ′

gαγ(τ1)gα′γ′(τ2)Gγγ
′

â (τ1, τ2)q̂.

33In reading this equation, remember that the interaction terms V always couple system 1 to system 2:
the superscripts refer to the replica indices.

34Here we are intentionally making a small mistake and neglecting the fluctuations in Z(β) in the ensemble
of couplings. Such fluctuations are small ∼ N−q/2 and not significant for our analysis.
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Figure 14. The time contour C, divided into C1 and C2. Note that τ = β is identified with τ = 0,
so C is closed. One swap operator is inserted at τ = 0 and another is inserted at τ = β/2 + it.

In the second line, we are using the notation â to mean the opposite physical system, so if
a = 1 then â = 2. As usual in SYK equations, the first equation is more complicated than
it seems: for fixed a, the quantities Ga and Σa are viewed as matrices, acting on the vector
space parametrized by τ, α. The ∂τ operator is also viewed in these terms, but is taken to
be diagonal.

These equations can be discretized on the contour 14, and solved numerically, using the
standard iterative approach that is common in the SYK literature. There are two different
types of solutions that will be important for us, and we will discuss them in turn.

5.1 The replica-diagonal solution

We start with the replica-diagonal solution shown in the top row of figure 15. This is the
solution that was considered in [72]. As shown there, it has an action that initially grows
linearly with time, implying an exponential decrease of the purity.

The growth in the action can be understood as follows. First consider the case with no
interaction between system 1 and system 2, so Ĵ = 0. In this case, the twist operators have
no effect, and action evaluated on the saddle point G,Σ configuration is exactly independent
of time. This saddle point is simply the standard thermal solution G(τ) of the SYK model
for each of the four copies (two noninteracting physical systems, with two replicas each),
analytically continued along the contour C:

Gα,α
′

1 (τ, τ ′) = Gα,α
′

2 (τ, τ ′) = δα,α
′
G(τ − τ ′). (5.12)

On this solution, if we evaluate the action with Ĵ = 0, the answer must be exactly
independent of t.

Now, let’s start with this solution and treat the Ĵ2 term on the second line of (5.10) as
a perturbation. Evaluating the action by plugging in the unperturbed solution (5.12), the
second line of (5.10) works out to

I ⊃ −
√
N1N2

Ĵ2

q

[∫
C1

dτ1dτ2 G(τ1 − τ2)2q̂ +
∫
C2

dτ1dτ2 G(τ1 − τ2)2q̂
]

(5.13)

=
[√

N1N2
2Ĵ2

q

∫ ∞
−∞

dt′G(it′)2q̂
]
× t+O(1). (5.14)

Here, the O(1) term represents a non-growing contribution as t becomes large. So the
action will grow linearly in time, at least for while. This corresponds to an exponential
decrease in the purity.
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Figure 15. Numerical solutions to (5.11). The heatmaps at left represent G1(t, t′) and G2(t, t′)
for two different types of solution discussed in the main text. We plot at infinite temperature so
the solutions are real. The stripe along the main diagonal is somewhat trivial, representing large
correlation between adjacent points along the contour. The other features in the heatmap represent
nontrivial correlations. Contours of system 1 are interacting with the contours of system 2 with
the same color due to the swap operator. The contours are drawn so that nearby points have large
correlation in the solution. For this plot, Jt = 20, βJ = 0, Ĵ = J/2, q = 4, q̂ = 2.

This derivation is only valid for early times Ĵ2t/J � 1, so that the interaction can be
treated perturbatively. A subtle detail [72] is that in the canonical ensemble, this linear
growth does not continue forever; instead, the action saturates at some finite value (see
the left panel of figure 16). One might be tempted to interpret this saturation as the Page
transition. However, what this saturation actually represents is the contribution of very low
energies in the tail of the canonical ensemble, where the dynamics are slow enough that the
two physical systems essentially do not evolve and entangle.35

This is a real effect in the Renyi 2-entropy, but such “tail” effects cannot significantly
effect the von Neumann entropy (which isn’t affected by tail effects the way Renyi entropies
are), so we view it as a distraction. In order to avoid this subtlety altogether, we can work in
the microcanonical ensemble. Then one finds that the action continues to increase linearly,
as shown in the right panel of 16. So we conclude that in the microcanonical ensemble, the
replica-diagonal saddle point gives an answer for the purity that exponentially decays forever.

5.2 The wormhole solution

The other class of solutions can be motivated by the discussion in section 4.6, which suggests
that there should be a solution with an approximately time-translation invariant portion

35At the quantum mechanical level, the contribution of such states will still decrease with time (a power-law
decrease in the purity), but we do not see this at the level of the classical action.
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Figure 16. The action of the replica-diagonal solution (dashed) and the wormhole solution (solid)
as a function of t. The left plot is in the canonical ensemble at βJ = 2.4. The right plot is in the
microcanonical ensemble at the corresponding energy, E/(NJ) = −0.03 per system. The black dots
are data, and the curves are to guide the eye. The parameters were J = 1, Ĵ = J/2, q = 4 and q̂ = 2.

corresponding to a TFD-like correlation between different replicas, glued in some way to a
configuration with the correct boundary conditions at the ends of the contour. We refer to
this as a wormhole solution because its pattern of correlation is the same as that of the
wormhole geometry from section 4.6.

In order to find such a solution numerically, the procedure we followed was as follows.
For the first few iterations of the Schwinger-Dyson equations, we included an explicit source
in the SYK equations that encourages replica-off-diagonal correlations like the ones expected
based on section 4.6. After a few iterations, we then set the source to zero and continued
iterating until convergence. If the time t is larger than a critical value (discussed below), we
found that the iterations converged to a nontrivial solution like the one shown in figure 15.
The pattern of correlations in this solution is precisely the one expected based on the
argument in section 4.6.

The numerical value of the action is independent of time to a good approximation, see
figure 16.36 To reiterate the discussion from section 4.6, this can be understood as follows:
as we make the time larger, the only aspect of the solution that changes is the TFD-like
portion in the middle of the time contours gets extended. Since this TFD-like configuration
has exactly zero action, the action does not change.37

Since the action of the replica-diagonal solution increases linearly (in the microcanonical
ensemble), there will eventually be a transition between the two solutions. For the setup
that we have described here, the transition is at a time that is independent of N , but
proportional to 1/Ĵ2.

It would be desirable to understand this solution better, since it seems to involve several
interesting aspects of thermalization and chaos. One example of this has to do with the
critical time at which the solution first starts to exist. Empirically, this is based on the

36To compute the action accurately, we used extrapolation in the size of the matrices that represent the
discretized G,Σ variables. The maximum size we used was 1600× 1600 each for system 1 and system 2. To
speed up convergence, one can start with a refinement of the converged solution for smaller grid size.

37Note that the SYK action is not local in time, but for solutions that decay exponentially in time like
these, it is local enough for this argument to apply.
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following: near the endpoints of the contour, the solution needs to have a “normal” pattern
of correlation, in which contours C1 and C2 of each replica are highly correlated with each
other. However, as we move away from the endpoints, this pattern of correlation is replaced
by correlation between C1 and C2 of opposite replicas. The decay of the first type of
correlation appears to be due to a scrambling effect, sourced by the perturbation due to
the coupling between the systems, Ĵ . Based on this, one would predict that the critical
time at which the “wormhole” solutions start to exist is logarithmic in the coupling Ĵ

tfirst exist ∝ log(J/Ĵ). (5.15)

This appears to be consistent with numerics (not shown).

6 Entropy and replica wormholes in de Sitter

In this section, we will tentatively discuss some entropy computations using replica wormholes
in de Sitter space.38 Our starting point is the no-boundary proposal [73] for the wave
function of de Sitter space, or more precisely its generalization in [48, 74–76] to a no-
boundary proposal for the density matrix. In this version, we compute a density matrix for
the universe by summing over all geometries that end on the boundary conditions for the
bra and ket vectors of the density matrix. In this sum, one can have separate disconnected
geometries attached to the bra and ket (these terms would also be included in the original
no-boundary proposal) but also connected geometries in which the bra and ket are distinct
boundaries of a single connected spacetime.

One can also generalize this further to a no-boundary proposal for the tensor product
of n copies of the density matrix ρ. In this case, we have n bra-type boundaries and n

ket-type boundaries, and we sum over all spacetimes (connected or otherwise) that end on
these 2n boundary conditions.

This immediately leads to a somewhat surprising conclusion. Naively, it would appear
that connected geometries will lead to a mixed density matrix. However, to check this,
let’s compare Tr(ρn) and Tr(ρ)n. In both cases, the boundary conditions consist of 2n
boundary components: n ket-type boundaries and n bra-type boundaries. To compute
either quantity, we identify these boundaries in bra-ket pairs, and integrate over the mutual
boundary conditions for each pair. Tr(ρn) and Tr(ρ)n correspond to two different ways of
pairing up the 2n boundaries. However, the no-boundary rules described above are invariant
under arbitrary permutations of the ket-type boundaries and the bra-type boundaries. So
Tr(ρn) = Tr(ρ)n and the state is pure.

This seems at odds with the fact that the no-boundary answer for a single copy of the
density matrix will be mixed. As in the discussion of black holes in section 2.3, a possible
interpretation is that the gravity path integral is describing an ensemble of theories in
which the state of the universe is pure. The average of the density matrix is the mixed
no-boundary density matrix. But the average of the entropy is zero. (Another possible

38We thank Jorrit Kruthoff, Juan Maldacena, Mehrdad Mirbabayi and Eva Silverstein for discussions
about de Sitter space.
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interpretation is that our no-boundary prescription for ρ⊗n is too aggressive. But we will
keep it for the moment and see where else it leads.)

So far, we have only discussed the entropy of the whole universe. The entropy of
subsystems is more interesting, but more difficult to compute. So we will study a simple
model inspired by the end-of-the-world brane model for near-extremal black holes in section 2.
This model is a two dimensional nearly de Sitter space described by Jackiw-Teitelboim
gravity with positive cosmological constant [48, 77]. We take the asymptotic time slice to be a
segment that starts and ends on two EOW branes with a large number of orthogonal internal
states. The boundary conditions for an unnormalized ket vector look like the following

〈ij|Φ〉 = 𝑗𝑖 (6.1)

Here, we are imagining that we measure the length of the spatial interval to be some
renormalized value `, which is held fixed in the rest of the discussion. The density matrix
ρ consists of two copies of this boundary condition, which can be filled in as follows:

〈ij|ρ|i′j′〉 =
𝑗𝑖

𝑗'𝑖'

𝑗𝑖

𝑗'𝑖'

+ = δijδi′j′ |Z̃1|2 + δii′δjj′Z̃2.

(6.2)

The fact that there are multiple topologies already for the density matrix makes the story
in de Sitter space richer than for the black hole. Note that due to the second term, this
is a mixed state. Here, in nearly de-Sitter gravity, the path integrals are given by analytic
continuation of JT gravity path integrals, see [48, 77] (or more generally [78, 79]) for details
of this analytic continuation. For the simple case where the brane is massless, we have

Z̃1 = 2eS0

∫
dsρ(s)ei`s2/2|Γ(−1

2 + is)|2, Z̃2 = 4eS0

∫
dsρ(s)|Γ(−1

2 + is)|4. (6.3)

In order to compute e.g. Tr(ρ), the primed and unprimed indices will be contracted. The
first diagram will contribute e2S0k, and the second will contribute eS0k2. So if we take a
very large value of k, there can be an interchange of dominance between the two.

We can now compute the entropy of the left brane degree of freedom, corresponding
to the i-type index. We will refer to its density matrix as σ. For small k, a completely
disconnected topology dominates, and one finds

Tr(σn)
Tr(σ)n = k|Z̃1|2n

kn|Z̃1|2n
= 1
kn−1 . (6.4)

The von Neumann entropy will be log(k). In the opposite limit k � eS0 , the fully connected
geometry dominates, both for the computation of Tr(σn) and for Tr(σ)n. We find

Tr(σn)
Tr(σ)n = k2nZ̃2n

k2n|Z̃2|n
= Z̃2n

|Z̃2|n
; Z̃2n = eS0

∫
dsρ(s)(2|Γ(−1

2 + is)|2)2n. (6.5)
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The s integral just gives an order one coefficient, so the answer is roughly e(1−n)S0 and the
von Neumann entropy is approximately S0.

So there is a “Page-like” transition in our simple de Sitter model. As we increase
the number of EOW brane states, the von Neumann entropy of one of the branes has
a transition from the naive result log k to the de Sitter entropy S0. Although the EOW
brane setup is rather artificial, this does give a hint at a microscopic role for the de Sitter
entropy [80] (see also [81–84]).

It would be interesting if a similar effect could be seen in more physical setup in which
the large number of states k emerges naturally from some bulk computation, rather than
being put in by hand as we did here. A starting point could be the “centaur” geometry [85]
or possibly the large number of states produced by quantum field theory evolution over
many e-folds, which was previously considered in the context of the de Sitter entropy
in [86, 87].39

7 Wormholes in non-averaged systems

The arguments in this paper use spacetime wormhole geometries in an essential way. But
the results in section 2.3 for the overlap of individual black hole microstates |ψi〉 computed
using such wormholes seem only to be consistent if they are interpreted as ensemble
averages. In this case it seems natural to interpret the wormholes as part of an effective
description, not a microscopic one. They do not know about the exponentially large amount
of microscopic data contained in the fluctuating phases Rij in the non-averaged matrix
elements 〈ψi|ψj〉 = δij + e−S0/2Rij . We should stress that the inconsistency in overlaps that
is resolved by an averaged description is not limited to the simple model discussed in section 2.
As discussed in section 4.7, we expect a similar situation for the radiating black hole.

The question we want to address here is what role wormholes play in systems without
averaging.

We would like to describe a somewhat analogous situation in semiclassical quantum
chaos, which may provide some guidance [25]. Consider a few body quantum chaotic system,
like a quantum billiard. Semiclassically, matrix elements in the position basis can be written
as sums over classical trajectories connecting the bra point to the ket point. This should
allow an analysis of the overlap puzzle. A simpler situation that illustrates many of the
same ideas is to consider the Minkowski signature partition function Tre−iHt which can be
written semiclassically as a sum over periodic orbits a. The product of two such partition
functions, the spectral form factor, can be rewritten as a double sum over periodic orbits,
which we can express schematically as follows:

K(t) = Tre−iHt TreiHt =
∑
ab

ei(Sa−Sb). (7.1)

Here Sa is the classical action of orbit a.

39We than Juan Maldacena for pointing this out to us.
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The spectral form factor obviously factorizes into the product of partition functions
— this requires a double sum over orbits. On averaging,40 only the “diagonal” terms
corresponding to the same orbit in each sum (up to a time shift) survive. This gives the
ramp.41 After the pairing connection is made factorization is lost, as expected for an
averaged system. In this picture the diagonal pairing pattern is an effective, coarse-grained
description of the exponentially large number of long, diagonally paired orbits, multiplied
by their exponentially small one-loop determinant.

Let’s now try to make an analogy to quantum gravity. We view the quantum Hamil-
tonian of the billiard, H as the “boundary” description. The sum over orbits would
be the microscopic “dual bulk” description. The diagonal pairing pattern in the coarse-
grained sum over long orbits we take to be the analog of the wormhole geometry in the
gravitational context.42

It is well-known that wormholes conflict with the factorization of e.g. partition functions
of decoupled systems [90]. In a non-averaged situation where factorization must hold, what is
one supposed to do with the wormholes? The solution the periodic orbit analogy suggests is
related to one already offered in [90]. To restore factorization in the non-averaged theory, one
doesn’t eliminate the paired diagonal terms corresponding to the wormhole. Instead one adds
back in all the other unpaired off-diagonal terms. So to have a gravitational bulk understand-
ing of non-averaged theories we need a gravitational bulk understanding of these off-diagonal
terms. These might well not have a simple geometrical description, even an effective one.

The periodic orbits are defined in the microscopic phase space that semiclassically
determines all the microstates of the quantum system. So a variant of the issue at hand is
to have a gravitational bulk understanding, geometrical or not, of all the microstates of the
system. This is related to the fuzzball program.43

On occasion another idea has been suggested: wormholes in non-averaged decoupled sys-
tems could be ruled out because they are not actual saddle points. However, in JT gravity, the
wormhole describing the ramp is a saddle point in the microcanonical ensemble [24, 26]. We
see no obstruction to the existence of such microcanonically stable wormholes in more compli-
cated higher dimensional gravitational theories dual to non-averaged systems [24]. But they
would give the wrong answer in a non-averaged theory.44 They do not describe the erratic
fluctuations due to the fine-grained structure of energy levels that we expect, as illustrated
for example in figure 10 of [94]. These erratic fluctuations are not a small effect — their mag-
nitude is of the order of the signal itself. So the existence of a saddle point is not a sharp crite-
rion for including wormholes.45 Again, we stress that the periodic orbit analogy tells us that

40One could average over a small time intervals, for example, or over the shape of the billiard table. In
the following discussion we imagine the times are long, but well before the plateau time, of order eS .

41This “diagonal” approximation is due to Berry [88].
42Random tensor networks [89] give another example of the formation of such effective wormhole connections

after averaging. The Ising domain walls discussed in [89] describe the structure of these effective connections.
A closer analogy to the microstate overlaps discussed in section 2.3 would be to compute the averages of
individual density matrix elements, not purities.

43For reviews see [91, 92]. For a critique of this program see [93].
44We thank Phil Saad for discussions on this point.
45It would be interesting to find some internal signature of this failure within the geometric bulk theory.

In the presence of bulk matter there is a UV “Hagedorn” type divergence at small wormhole diameter [25]
that may have some bearing on this issue.
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the off-diagonal contributions are responsible for the erratic behavior. Any complete gravita-
tional bulk description must contain a description of the analog of these off-diagonal terms.

In the periodic orbit example we proposed that the wormhole geometry is analogous
to the diagonal pairing pattern, an effective, coarse-grained description of which orbits
contribute. This raises the question of whether bulk geometry in general is only an effective
description of some different, more fundamental degrees of freedom — the analog of the peri-
odic orbits. Another possibility is that the fundamental bulk description contains “geometric”
degrees of freedom, like perturbative strings, in addition to other non-geometric ones — com-
plicated configurations of large numbers of branes, for example. It is even conceivable that
geometry could actually describe everything, in some subtle way as yet not understood.46

The current situation, though, is that there is no known bulk description of a gravita-
tional theory that is rich enough to include the microscopic information necessary to explain,
for example, the erratic behavior in the spectral form factor. The nature, or perhaps even the
existence, of such a bulk description remains one of the deepest mysteries in quantum gravity.

We now turn to a more pragmatic question: if spacetime wormholes are only an effective
description, are such configurations useful in non-averaged bulk theories? We believe the
answer is clearly “yes”. For example, the entropies computed in section 2 are “self-averaging”.
This means that they have small variance in an averaged theory, basically because they are
sums of large numbers of fluctuating terms. This variance can be computed from the bulk
by considering additional wormholes linking the two copies used to compute the variance.
Roughly speaking, self-averaging quantities are those where the “off-diagonal” terms make a
small contribution compared to the diagonal ones.47 We expect that a wormhole calculation
of these self-averaging quantities will be quite accurate even in a single realization taken
from the ensemble of theories, and hence in a non-averaged system. But we emphasize that
wormholes will not give the exact answer. Worse, without understanding the bulk origin of
the off-diagonal microscopic effects, there is no clear procedure to systematically improve
the calculation into an arbitrarily accurate one.

Systems with a direct coupling between subsystems like those discussed in [96] are
another example where self-averaging behavior occurs. Here again a wormhole calculation
will be useful, even in a non-averaged theory. But again, a precise calculation would require
the microscopic information.

In the absence of a complete microscopic description how is one to decide whether
to trust a wormhole calculation in a non-averaged theory? An empirical test might be
the following. Pretend the theory is part of an ensemble and compute the variance of the
quantity of interest, again using wormholes. If it is small, the wormhole calculation should
be trustworthy. If it is of order of the signal, beware!

46An impressive example of microstate information being completely described by geometry is the elegant
calculation of [95] of the exact entropy of certain supersymmetric black holes. The exact integer degeneracies
are recovered from a sum over an infinite number of instanton corrections computed using supersymmetric
localization. What would be required in the present context is an analogous result that would explain the
much more complicated pattern of energy levels present in these non BPS chaotic systems as a sum over
gravitational configurations.

47In the periodic orbit situation, the spectral form factor averaged over a long time interval is an example
of a self-averaged quantity in a non-disordered situation. Clearly the off-diagonal terms are suppressed here.
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A Details on the computation of Zn

In this appendix, we will discuss details about the calculation of In and Zn. Two important
formulas will be:

8
∫ ∞
−∞

d`K2is
(
4e−

`
2
)
K2is′

(
4e−

`
2
)

= δ(s−s′)
ρ(s) ,

∫ ∞
−∞

d`e( 1
2−µ)`K2is

(
4e−

`
2
)

=
|Γ(µ− 1

2 +is)|2

22µ .

(A.1)
Using the boundary particle formalism [58, 59], the integral measure in general is the
following (xi, zi is the location of the insertion of brane):

1
2

∫
x1<x2...xn

dx1dx2 . . . dxndz1dz2 . . . dzn
z2

1z
2
2 . . . z

2
nV(SL(2,R))

(A.2)

where z is rescaled such that the boundary is located near z = 1. The measure of the
geodesic lengths can be determined from the above measure by first gauge fixing the SL(2,R)
symmetry [58] and then a change of variable. For computation of Z1, we need to consider
n = 2. By gauge fixing z1 = z2 = 1, x1 = 0, we get (x2 = e

`
2 ):

Z1 =
∫ ∞

0
dx2x

1−2µ
2 ϕβ(2 log x2) = 2eS0

∫ ∞
0

dsρ(s)e−
βs2

2

∫ ∞
−∞

d`e( 1
2−µ)`K2is

(
4e
−`
2
)

= eS0

∫ ∞
0

dsρ(s)e−β
s2
2 21−2µ|Γ

(
µ− 1

2 + is

)
|2.

(A.3)

For computation of Zn>1, we can first gauge fix x1 = 0, x2 = 1, x3 = 2, the Faddeev-Popov
determinant gives: ∫

2<x4<...xn

dz1dz2dz3dx4dz4 . . . dxndzn
z2

1z
2
2z

2
3z

2
4 . . . z

2
n

(A.4)

By defining the regularized length `ij = 2 log(|xi − xj |)− log zi − log zj , we can introduce a
new basis {`12, `13, `23 . . . `1n, `n−1,n}, which forms a triangulation of a hyperbolic polygon:

1

2
3

n-1

n

ℓ12

ℓ23

ℓn-1 n

ℓ1n-1

ℓ13

ℓ1n

. (A.5)
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Its Jacobian matrix can be shown to be a lower triangular matrix:

J =
[
A 0
# S

]
; A =

−
1
z1
− 1
z2

0
− 1
z1

0 − 1
z3

0 − 1
z2
− 1
z3

; S =



2
x41
− 1
z4

0 0 . . .
2
x43
− 1
z4

0 0 . . .

0 0 2
x51
− 1
z5
. . .

0 0 2
x54
− 1
z5
. . .

0 0 0 0 . . .

, (A.6)

whose determinant is:

| det J| = | detA detS| = | 2
z1z2z3

2x31
z4x43x41

. . .
2xn−1,1

znxn,n−1xn1
|. (A.7)

This gives the measure:

1
2n−1

∫ ∞
−∞

d`12d`13d`23 . . . e
`12/2+`23/2+`34/2+...+`n1/2 (A.8)

Notice that only the exterior boundaries of the hyperbolic polygon has nontrivial measure.
To get the expression of In, we can glue multiple copies of I3 along the inner boundaries.
Using the formula of I3 in [58], we get the expression of In:

In = (`12, `23, . . . `n1) = 2n
∫ ∞

0
dsρ(s)K2is

(
4e
−`12

2

)
. . .K2is

(
4e
−`n1

2

)
, (A.9)

with integral measure (2.32):∫ ∞
−∞

d`12d`23 . . . d`n1e
`12/2+`23/2+`34/2+...+`n1/2. (A.10)

B General two dimensional dilaton gravity

Near-extremal black holes are universally described by Jackiw-Teitelboim gravity with
negative cosmological constant, and therefore they also have replica wormhole configurations
where the area of the transverse direction is the dilaton field (together with S0). It is
interesting to ask whether replica wormholes exist for more general classes of black holes,
especially those far from extremality.

Assuming spherical symmetry, general gravitational systems can be reduced to two
dimensional dilaton gravity [97], so we are led to consider JT gravity with a more general
dilaton potential in our simple model:

I = −S0
2π

[1
2

∫
M

√
gR+

∫
∂M

√
hK

]
−
[1

2

∫
M
φR− U(φ) +

∫
∂M

√
hφK

]
+µ

∫
brane

ds′ (B.1)

Again we assume the brane follows a geodesic. And again we entangle the brane states with
the radiation, and consider the behavior of the entropy of the radiation when we vary k.
Note that flat space black holes (Rindler space) can be described in this framework using
the special case of a constant dilaton potential.

While in general understanding euclidean wormholes requires a good understanding
of off-shell geometries, in the planar limit only knowledge of the path integral on the disk
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topology Zn is required. The derivation of the Schwinger-Dyson equation still applies since
it only depends on the topological action and k. Moreover in the heavy brane case, the
branes become local near the boundary and Zn becomes proportional to the disk partition
function of boundary length nβ.48 Since the effects of the heavy branes are local, they
cancel out in the ratio of Zn

Zn1
and the result reduces to just the ratio of the disk partition

functions
Zn
Zn1

= Z(nβ)
Z(β)n . (B.2)

Writing the partition function in terms of the energy density Z(β) =
∫
dEρ̃(E)e−βE ,

we can again sum over n in the Schwinger-Dyson equation (2.28) and get the resolvent
equation:

λR = k +
∫
dEρ̃(E) ω(E)R

k − ω(E)R ; ω(E) = e−βE

Z(β) . (B.3)

In general the exact form of ρ̃(E) is not known and one can only solve the equation in
the classical limit. Using the classical thermodynamic relation for general dilaton gravity
(appendix E.3 in [48]):

E = −W (φh); S = S0 + 4πφh (B.4)

where W (φ) =
∫ φ dφ′U(φ) is called the prepotential, we can write down the general

semiclassical resolvent equation:

λR = k +
∫
dφhe

S0+4πφh eβW (φh)R

kZ(β)− eβW (φh)R
; Z(β) =

∫
dφhe

S0+4πφh+βW (φh). (B.5)

In the microcanonical case, we will still get Page’s result. In the canonical ensemble case,
one needs to analyze the equation based on W (φh) and we expect that most of our analysis
will still apply.

C General entanglement-wedge reconstruction using Petz

In this appendix, we will indicate how the argument in sections 3.4 and 3.5 extends to the
case of general entanglement-wedge reconstruction. We start with a code space of bulk
field theory excitations |a〉FT around some particular background, and an operator OFT
acting in this space. |Ψa〉 is the boundary CFT state corresponding to |a〉, and O is the
CFT operator corresponding to OFT.

If A is a subregion of the boundary theory, then the Petz map gives a guess for the
reconstruction of O on region A:

OA = σ
−1/2
A TrA(O)σ−1/2

A , σA =
dcode∑
a=1

TrA|Ψa〉〈Ψa|. (C.1)

Defining a replica version as in (3.19), we have

〈Ψa|O(n)
A |Ψb〉 =

dcode∑
a′b′=1

TrA
[
M(a, b)M̂nM(b′, a′)M̂n

]
Oa′b′ (C.2)

48We consider the case where there exists an asymptotic boundary.

– 56 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
5

where

M(a, b) = TrA|Ψa〉〈Ψb|, M̂ =
dcode∑
a=1

M(a, a). (C.3)

In the bulk dual, the r.h.s. of (C.2) is a gravitational path integral with operator insertions
to prepare the different state |Ψa〉 in the code subspace. At order G−1

N , the answer doesn’t
depend on these operator insertions, and it reduces to the gravitational path integral for
the Renyi (2n+ 2)-entropy, which we will refer to as Zgrav

2n+2.
At order G0

N , we have a field theory computation on this fixed background, which we
can write

〈Ψa|O(n)
A |Ψb〉 =

Zgrav
2n+2

(Zgrav
1 )2n+2

dcode∑
a′b′=1

TrAn
[
M(a, b; θ)M̂(θ)nM(b′, a′; θ)M̂(θ)n

]
Oa′b′ +O(GN ).

(C.4)

This formula requires some explanation. The replica-symmetric geometry M2n+2 that
dominates Zgrav

2n+2 has a codimension-two surface Σ that is fixed by the cyclic replica symmetry.
We divideM2n+2 into 2n+ 2 equal pieces by cutting along codimension-one surfaces An
that connect the 2n+ 2 copies of region A on the boundary to Σ. Each surface An can be
understood as a backreacted Renyi version of the Cauchy slice of the entanglement wedge
of A. They intersect Σ with equally spaced angles θ = 2π/(2n+ 2). The operator M(a, b; θ)
is defined as the path integral on the geometry between two of these cuts, with boundary
conditions that include the operator insertions for the states |Ψa〉 and |Ψb〉. In the limit
where we take the total number of replicas to one, we find the simple formula

M(a, b; 2π) = TrA|a〉〈b|FT. (C.5)

As in section 3.5, one can now take the n→ −1/2 limit, and find

〈Ψa|OA|Ψb〉 = 〈a|OA|b〉FT +O(GN ) (C.6)

where the r.h.s. is an auxiliary Petz map computation, defined purely in the bulk field
theory. A is the Cauchy slice of the entanglement wedge of A, and

OA = σ
−1/2
A TrA(OFT)σ−1/2

A , σA =
dcode∑
a=1

TrA|a〉〈a|FT, (C.7)

is the Petz map for the channel corresponding to erasure of the complement of the entan-
glement wedge. In particular, for the case where OFT acts within the entanglement wedge
A to a good approximation, then OA = OFT, and reconstruction succeeds.

We also note that there is a more general version of the Petz reconstruction map,
defined using a fixed, but arbitrary, state ρ that is not necessarily maximally mixed. In this
case, we define

O(ρ)
A = ρ

−1/2
A TrA(ρ1/2Oρ1/2)ρ−1/2

A . (C.8)

– 57 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
5

It is easy to see, by analogous arguments to those above, that this reconstruction reduces
in the bulk to the field theory Petz reconstruction

O(ρ)
A = ρ

−1/2
A TrA(ρ1/2OFTρ

1/2)ρ−1/2
A . (C.9)

An advantage of this more general construction is that it can be made well-defined even
for infinite-dimensional code spaces, where the maximally mixed state does not exist.
However, one has to be somewhat careful here: if the code space includes degrees of freedom
outside the entanglement wedge (i.e. we have a subsystem rather than a subspace code),
the field theory Petz map, constructed using an arbitrary, non-maximally mixed state ρ,
will not necessarily recover the original operator. Even if we use the twirled Petz map, the
reconstruction is only guaranteed to work if the code space state ρ has no entanglement
between the inside and outside of the entanglement wedge [39].

In an infinite-dimensional code space (such as the entire field theory Hilbert space),
such product states do not necessarily exist. However, by using a thermal state at very high
temperature, we can make the entanglement arbitrarily short range. We should then expect
that the field theory Petz map will recover the original operator with high accuracy so long
as the inverse temperature β is much smaller than the distance from the original operator to
the edge of the entanglement wedge. This can be verified in simple cases where the action
of the field theory modular flow (and hence the field theory Petz map) is known explicitly.

Finally, we emphasize that the definition of the Petz map reconstructions relies on
being able to create arbitrary states in the code space using gravitational path integrals.
For most situations of interest, this is not a problem. For example, if our code space is the
state of a diary that was thrown into a black hole, we can easily construct arbitrary states
in the code space simply by changing the state of the diary, before it was thrown into the
black hole.

If we want to reconstruct the interior partners of Hawking quanta — to understand,
for example, whether there is a firewall [29] — the situation is somewhat more complicated.
We cannot directly manipulate the interior modes because they become trans-Planckian
when evolved back in time. Instead, they are always produced, together with the Hawking
quanta themselves, in a fixed, entangled state |ψ0〉. However, we can use the gravitational
path integral to manipulate the state of the Hawking quanta. Because the state |ψ0〉 has
maximal rank, using these manipulations, we can produce an overcomplete basis of states
for the Hawking quanta and interior partners.

By taking linear superpositions of such path integrals, we can therefore construct
arbitrary states in code spaces that include interior partner modes. We can use these path
integrals to construct Petz map reconstructions of interior modes, after the Page time, that
act only on the Hawking radiation.

This construction assumes that the interior modes were initially in the state |ψ0〉,
i.e. that there wasn’t a firewall. Indeed, it has always been the case that gravitational
calculations implied the absense of a firewall. The new result that one can see using the
Petz map is that gravitational calculations also imply that the interior modes can be
reconstructed on the Hawking radiation, i.e. ER=EPR [30–34].
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D A ensemble boundary dual of the simple model

In this appendix, we show that the simple model, with pure JT gravity plus EOW branes,
is dual to a boundary ensemble of theories, just like pure JT gravity [25]. This ensemble
of theories is defined by a randomly chosen Hamiltonian H, and a set of randomly chosen
special states |i〉 (the brane states). The dual bulk theory is valid to all order in e−S0 . It
includes nontrivial bulk topologies, including topologies with handles (suppressed by powers
of e−S0). However it doesn’t include any contributions of EOW brane loops. All brane
world lines have to begin and end on the boundary. This provides some justification for the
fact that we ignored the possibility of end-of-the-world brane loops in all our bulk gravity
calculations in this paper.

We now give a precise definition of the ensemble of boundary theories. First, the
Hamiltonian H is chosen from the usual JT gravity ensemble of Hamiltonians, as in [25].
Let the eigenstates of this Hamiltonian be labelled |Ea〉. Then the brane states are chosen
to be

|ψi(β)〉 =
∑
a

21/2−µΓ
(
µ− 1

2 + i
√

2Ea
)
e−βEa/2Ci,a|Ea〉 (D.1)

where the coefficients Ci,a are i.i.d. complex Gaussian random variables.
Let us see why this works. Our aim is to show that expressions of the form

EH,{C}

( p∏
m=1
〈ψim(βm)|ψjm(βm)〉

q∏
n=1

Tr(e−β̃nH)
)
, (D.2)

where the expectation is over the ensemble of Hamiltonians and states (D.1), matches a bulk
computation in JT gravity with the following boundary conditions. We have p asymptotic
boundaries that are intervals of renormalized lengths {βm} bounded by EOW branes, and
we have q standard S1 boundaries with renormalized lengths {β̃n}.

We now simply integrate out the Gaussian random variables Ci,a. We find that (D.2)
equals

∑
π

 p∏
m=1

δiπ(m),jmEH

 ∏
γ∈c(π)

Tr

∏
m∈γ

[
e−βmH

∑
a

|Γ(µ− 1
2 +i
√

2Ea)|2

22µ−1 |Ea〉〈Ea|
] q∏

n=1
Tr(e−β̃nH)


(D.3)

Here, we are summing over permutations π on p elements that take m to π(m) and the
subsets γ ⊆ {1, 2, . . . , p} are elements of the set c(π) of cycles of the permutation π. This
formula no longer involves the brane states |i〉. We can therefore hope to make contact with
the arguments from [25] for evaluating products of partition functions, in this ensemble of
Hamiltonians, using bulk JT gravity path integrals.

Of course, (D.3) isn’t quite in the right form that would allow us to do this, since it
includes insertions of |Γ(µ− 1

2 + i
√

2Ea)|2|Ea〉〈Ea|. We therefore use the inverse Laplace
transform f(β′) = IL[21−2µ|Γ(µ− 1

2 + i
√

2Ea)|2](β′) to write∑
a

21−2µ|Γ
(
µ− 1

2 + i
√

2Ea
)
|2|Ea〉〈Ea| =

∫
dβ′ f(β′)

∑
a

e−β
′Ea |Ea〉〈Ea|. (D.4)
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This turns the evaluation of (D.3) into an integral over products of partition functions,
with ‘inverse temperatures’ that depend on the auxiliary variables β′. Explicitly, we have

∑
π

∫ ∏
m

dβ′m
∏
m

[f(β′m)δiπ(m),jm ]EH

 ∏
γ∈c(π)

Tr
(
e
−
∑

m∈γ(βm+β′m)H
) q∏
n=1

Tr
(
e−β̃nH

).
(D.5)

The expectation values in this formula can be evaluated using bulk JT gravity by considering
all topologies (including topologies with handles) of JT gravity with asymptotic boundaries
of renormalised length

∑
m∈γ(βm + β′m) for each cycle γ in the permutation π, as well as

additional asymptotic boundaries of renormalised length β̃n for each n.
Once we include the sum over permutations π, this is exactly the set of topologies that

appear in the simple model. The different permutations correspond to the different ways
of pairing up brane start and end points. The factors of δiπ(m),jm ensure that we only get
nonzero contributions when the state of each brane is the same at both ends; it tells us
that the branes have no dynamics, as desired.

We are still not quite done however. In this formula, we consider geometry of fixed
asymptotic length, and integrate over different lengths. In contrast, in JT gravity with
branes, the topologies are partially bounded by geodesics, which contribute the EOW brane
action µl. Fortunately, as argued in [26, 58], any boundary segment of length β′m can be
replaced in the JT gravity calculations by the insertion of the Wheeler-de Witt wavefunction
at the homologous, non-selfintersecting bulk geodesic χ. In the l basis, this Wheeler-de
Witt wavefunction is given by

ψβ′m(l) = 4e−l/2
∫ ∞

0
dsρ(s)e−β′s2/2K2is(4e−l/2), (D.6)

as in (2.31). When we rewrite the JT gravity calculation in this way, the only dependence
of the expectation value in (D.5) on the auxiliary variables β′m comes in the choice of
wavefunction that we insert at the geodesic.

We can now do the integrals over β′m explicitly by simply taking a superposition over
these Wheeler-de Witt wavefunctions. After doing this superposition, we find that the full
wavefunction on each geodesic is given by

ψ(l) = 23−2µe−l/2
∫ ∞

0
dsρ(s)|Γ

(
µ− 1

2 + is

)
|2K2is

(
4e−l/2

)
. (D.7)

Using (A.1) and eq. 25 of [98],

8
∫ ∞

0
dsρ(s)K2is

(
4e−l/2

)
K2is

(
4e−l′/2

)
= δ(l − l′), (D.8)

which is the orthogonality condition for the l-basis of wavefunctions, we find

ψ(l) = e−µl. (D.9)

This is just the insertion of a brane wavefunction on the geodesic χ. We have therefore
recovered the bulk theory of JT gravity with EOW branes.
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We can now use the random state formula (D.1) to write a random matrix formula for
the density matrix ρR in the state (2.5):

ρR = CF (H)C†, F (x) = |Γ
(
µ− 1

2 + i
√

2x
)
|2e−βx. (D.10)

The matrix H is drawn from the double-scaled matrix integral dual to ordinary JT gravity.
The matrix C is a rectangular k×∞ complex matrix with Gaussian random entries, rescaled
so that the density matrix is correctly normalized.

E Fixed area states and random tensor networks

In this appendix, we show that the non-perturbative corrections to the Ryu-Takayanagi for-
mula from additional extremal surfaces are identical in a) “fixed-area” states in AdS/CFT [60,
61] and b) random tensor networks [89]. This is consistent with the intuition from [60, 61]
that fixed-area states are analogous to tensor network states, since both have flat entan-
glement spectra at leading order. However, our calculations suggest that the connection
to random tensor networks specifically (as opposed, for example, to perfect tensor net-
works [99]) goes much deeper than might previously suspected, with non-perturbative
instanton corrections that are the same in both models. Note: this appendix was added
in v2; similar results were derived independently in upcoming work by Akers, Faulkner, Lin
and Rath [100].

We first calculate the von Neumann entropy, including non-perturbative corrections, for
the simplest possible random tensor network: a bipartite pure state with subsystem Hilbert
space dimensions dB and dB̄. (We assume for notational convenience that dB < dB̄.) This
is, of course, just the famous Page calculation [2]. Let us review how the answer can be
found using the replica trick.

We first evaluate 〈Tr(ρnB)〉, where the expectation is over the Haar measure for the
random state. Using the standard result〈

|ψ〉〈ψ|⊗n
〉
∝
∑
π

πBπB̄, (E.1)

where the sum is over permutations π on the n copies of the system and πB and πB̄ are
operators that permute the n copies of their respective subsystem, we find

〈Tr(ρnB)〉 =
〈Tr(ρnB)
〈ψ|ψ〉n

〉
=
∑
π Tr(τB πB)Tr(πB̄)∑
π Tr(πB)Tr(πB̄) =

∑
π d

C(τ◦π)
B d

C(π)
B̄∑

π d
C(π)
B d

C(π)
B̄

, (E.2)

where τ is any fixed cyclic permutation and C(Π) is the number of cycles in the permutation
Π. Here we focus on the limit where dB and dB̄ are both large but their ratio is arbitrary.
In this limit (E.2) simplifies to

〈Tr(ρnB)〉 =
∑
π∈G

d
C(τ◦π)−n
B d

C(π)−n
B̄

, (E.3)

where the sum is now over permutations in the set G of permutations such that C(π)+C(τ◦π)
takes its maximal value, which is n+ 1. These are the permutations that lie on a geodesic
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(shortest paths in permutation space, where each step is a transposition) between the
identity permutation and the cyclic permutation τ . Such permutations are in one-to-one
correspondence with the set of non-crossing partitions. We note that, in the limit of large
dB, dB̄, fluctuations are suppressed and so the expectation over states is unnecessary.

The number of non-crossing permutations such that C(τ ◦ π) = k is equal to the
Narayana number, N(n, k). Substituting in the explicit expression for N(n, k), we have

〈Tr(ρnB)〉 = 1
dn−1
B

n∑
k=1

N(n, k)
(
dB
dB̄

)k−1

= 1
dn−1
B

n∑
k=1

1
n

(
n

k

)(
n

k − 1

)(
dB
dB̄

)k−1

. (E.4)

To find the von Neumann entropy, we would like to analytically continue this expression
in n and then expand the answer near n = 1. This looks awkward, because the range of
the sum itself depends on n. However, we can use the fact that the binomial coefficients
vanish for all k > n to extend the sum from k = 1 to infinity. The expression is then easy
to continue in n, and we find

Tr(ρnB) = 1
dn−1
B

[
1 + n(n− 1)

2
dB
dB̄

+O

(
(n− 1)2d

2
B

d2
B̄

)]
. (E.5)

The first term comes from the identity permutation (k = 1) and the second comes from the
permutations consisting of a single transposition (k = 2), which give the leading correction
in the limit dB̄ � dB. We therefore find

S = −Tr(ρB log ρB) = −∂nTr(ρnB)|n=1 = log dB −
dB
2dB̄

. (E.6)

Naively, one would expect additional subleading corrections from permutations that are
suppressed by higher powers of dB/dB̄, as there were for Tr(ρnB). However, one can check
that for k > 2, the continuation of the Narayana number N(n, k) near n = 1 is proportional
(n− 1)2, which does not contribute to the von Neumann entropy. Morally speaking, the
von Neumann entropy is “one-instanton exact”.

We note that much of the above discussion extends to more complicated random tensor
networks. For example, when evaluating Tr(ρ2

B), one ends up with the partition function
of a classical Ising model. However, this will not be necessary for our present purposes.
See [89] for more details.

Instead, we shall move on to discussing fixed-area states in quantum gravity. For
concreteness, we shall mostly focus on the example of two disjoint boundary regions (which
we collectively denote by B) in AdS3, although the story is completely general. In this case,
there are two extremal surfaces, one homotopic to the region B (with area A1) and the
other homotopic to the complementary region B̄ (with area A2).

We consider states where the area of both surfaces has been measured, and so saddle
points of the gravitational path integral can have conical singularities at the extremal
surfaces, so long as the deficit angle is constant everywhere on the surface. As discussed
in [60, 61] and section 3.2, this means that the replicated geometries used to calculate
Tr(ρnA) are very simple: they are just n copies of the original unbackreacted geometry, with
different sheets glued together around the extremal surfaces.
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A A

Figure 17. An example of a replicated geometry for two intervals in AdS, cut open.

More specifically, as shown in figure 17, the boundary conditions used to compute
Tr(ρnB) mean that the bottom half (the ‘ket’) of the bulk geometry near region B needs to
be glued to the top half of the bulk geometry on the neighbouring sheet. Passing upwards
through this region applies a cyclic permutation τ to the different sheets. In contrast, when
upwards through the bulk geometry near region B̄, one must remain on the same sheet.
What about the central region, between the two extremal surfaces? This is not fixed by the
boundary conditions, and so there should be saddles associated to each possible permutation
π of the sheets.

What is the action of each of these saddle points? We first note that, when the state is
correctly normalised (dividing through by Tr(ρB)n) the contribution to the gravitational
action from everything except the conical singularities cancels between numerator and
dominator because the geometry is unbackreacted. The conical singularites themselves give
a contribution to the action of (φ̂− 2π)A/8πGN , where φ̂ is the angle around the conical
singularity. If the extremal surfaces had conical singularities with angles φ1 and φ2 in the
unreplicated geometry, the contribution to the action in the replicated geometry is

[nφ1 − 2πC(τ ◦ π)] A1
8πGN

+ [nφ2 − 2πC(π)] A2
8πGN

.

After normalisation, the dependence on φ1 and φ2 vanishes and we are left with the
final result

Tr(ρnA) =
∑
π

exp
(

[C(τ ◦ π)− n] A1
4GN

+ [C(π)− n] A2
4GN

)
. (E.7)

Note that, since A1 and A2 are individually divergent, all permutations π that do not
minimise (C(τ ◦ π) + C(π) are infinitely suppressed, even at finite GN .

This is exactly the result that we found for the bipartite random pure state, except with
dB and dB̄ replaced by exp(A1/4GN ) and exp(A2/4GN ) respectively. It therefore follows
that the non-perturbative corrections to the von Neumann entropy for the fixed-area state
are identical to the corrections that we found above for the bipartite random pure state.

Finally, we comment briefly on what happens when bulk degrees of freedom are added
in each case. For a much more careful analysis of perturbative correction in fixed-area
states see [101]. If we treat the gravitational path integral semiclassically, the Euclidean
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B B

b b' b

dB dB
T

U U

Figure 18. A simple random tensor network, with a single random tensor |T 〉 and three bulk legs.
One bulk leg flows into |T 〉, while the other two are mapped directly into the boundary Hilbert
spaces B and B̄.

field theory path integral in the bottom-half of the geometry prepares a particular state
|ψ〉bb′b̄ of the bulk quantum fields. Here b is the bulk region near B, b̄ is the bulk region
near B̄ and b′ is the central region between the extremal surfaces. The field theory partition
function on the full replicated geometry then evaluates to

〈ψ|⊗n τb πb′ |ψ〉⊗n, (E.8)

where the operators τb and πb′ permute the subsystems in regions b and b′ respectively.
What about if we add bulk legs to the random tensor network, as shown in figure 18?

The answer is exactly the same thing. If we input some bulk state |ψ〉bb′b̄ and then evaluate
Tr(ρnB) by replacing the random tripartite states |T 〉 by a sum over permutations π, as
in (E.3), we find that the term associated to each permutation has an additional factor
that is exactly (E.8). The analogy between fixed-area states and random tensor networks
continues to hold.

F The Page transition in the simple model

The aim of this appendix is to comprehensively analyse the full Page transition in the
simple model. Despite the simplicity of this model, the structure of the transition turns out
to be somewhat complicated. Different features have transitions at different times, creating
a number of distinct “sub-phases”.

As a simple example, the transition happens earlier for larger n Rényi entropies, creating
an infinite number of different Page transitions. We will ignore the Rényi entropies, and
instead focus only on changes in either

(a) qualitative features of the shape of the entanglement spectrum, or

(b) in the von Neumann entropy.

Nevertheless, we still find seven distinct phases within the transition, as the entanglement
spectrum slowly switches from a flat spectrum, with all eigenvalues equal to 1/k, to a
thermal spectrum, with entropy given by the Bekenstein-Hawking entropy of the black
hole. Because the details of the calculations in this appendix are fairly technical, we first
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summarise the main conclusions about each phase, and then proceed to analysing each
phase in detail.

Assumptions and notation. In this appendix, we shall always assume that we are in
the semiclassical limit β � 1.49 At certain points, we shall also assume, for convenience,
that the brane mass µ� 1/β.

We first formalise some notation. Recall that

Zn = eS0

∫
dsρ(s)y(s)n. (F.1)

We use notation where the saddle point value of s for Zn is denoted by s(n). In the limit
µ� 1/β, we have

ρ(s) y(s)n ∼ s

2π2 y(0)n e2πs−nβs2/2. (F.2)

Hence

s(n) = 2π
nβ

+O(1). (F.3)

There is one more saddle point that will be relevant for our calculations. This is the saddle
point for

eS0

∫
dsρ(s)2y(s), (F.4)

which we denote by s′. For µ� 1/β, s′ = 4π/β. Note that we have s′ > s(1) and s(n) > s(m)

for n < m.
For a particular choice k, there are two other values of s which will be important. The

first, denoted by sk, is the value of s corresponding to the kth largest thermal eigenstate,
as defined in (2.39). In the semiclassical limit, this is defined by

eS0ρ(sk)
2π = k. (F.5)

The second, which we denote by s̃k labels the thermal eigenstates with eigenvalue 1/k. This
is defined by

y(s̃k)
Z1

= 1
k
. (F.6)

Note that the normalisation of the thermal state ensures that we always have s̃k < sk.
Finally, an important value of k, which we shall denote by k3→4, is defined to be the

smallest value of k for which

eS0ρ(s̃k3→4) = k3
3→4 y(sk3→4)2

Z2
1

. (F.7)

For µ� 1/β, we have s̃k =
√

2π(2sk/β − 2π/β2)+o(1/β) and hence sk3→4 = (4−2
√

2)π/β+
o(1/β). More generally, we expect that s(2) < sk3→4 < s(1). Note that for k � k3→4, the
left hand side of (F.7) is much smaller than the right hand side.

49Recall that, in our units, this corresponds to the limit GN → 0.
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Summary of the phase structure. At small k, specifically k � Z2/y(0)2 (phase I), the
shape of the entanglement spectrum is a narrow semicircle distribution, of width 4

√
Z2/kZ2

1 ,
centred on 1/k. The von Neumann entropy is approximately equal to log k, with a small
correction

δS = −kZ2/2Z2
1 (F.8)

that comes from the finite width of the semicircle. This is exponentially small with respect
to (SBH − log k).

For Z2/y
2(0)� k � eS0ρ(s(2)) (phase II), the entanglement spectrum is dominated by

the same narrow semicircle distribution. The width of this semicircle continues to give the
leading correction to the von Neumann entropy. However, there is now a small tail of much
larger eigenvalues, that emerge out of the semicircle as k increases. This tail looks like the
thermal spectrum, except all the eigenvalues are increase by a constant shift of δλ = 1/k.

When eS0ρ(s(2)) � k � k3→4 (phase III), the original semicircle disappears. The
spectrum looks like a thermal spectrum, shifted by δλ = 1/k, which is then cutoff after O(k)
eigenvalues. We do not have good analytic control over the cutoff region itself. The von
Neumann entropy is dominated by eigenvalues near the cutoff, and is still approximately
equal to log k. The largest correction to the entropy comes from the width of the cutoff
region and has magnitude O(k2y(sk)2/Z2

1 ).
When k3→4 � k . eS0ρ(s(1))e−O(1/β) (phase IV), the leading correction instead comes

from the eigenvalues in the shifted thermal spectrum, and has size O(eS0ρ(s̃k)/k). Unlike in
phase III, this correction is well controlled analytic; its exact size is given by a simple integral.

The actual Page transition (phase V) for the von Neumann entropy happens at
k ∼ eS0ρ(s(1)). At this point, the shift in the thermal tail of eigenvalues starts decreasing
in order to preserve the normalisation of the state. The shift is now (1− pk)/k, where pk is
the probability of the thermal ensemble being in one of its k largest eigenvalues. The von
Neumann entropy is well approximated, up to a correction that peaks at O(β) size near the
transition, by the entropy of a shifted thermal spectrum, with a hard cutoff after exactly k
eigenvalues. This gives a large O(1/

√
β) correction compared to the naive Page curve

S = min(log k, SBH), (F.9)

where SBH is the black hole entropy in the canonical ensemble. This is parametrically
larger than the correction for the microcanonical ensemble, because of the fluctuations in
the energy.

As k continues to grow, the shift in the thermal part of the spectrum decays, until
it becomes neglible for all eigenvalues where the spectrum actually looks thermal. The
entanglement spectrum is now the ordinary unshifted thermal spectrum, except that it is
smoothly cutoff after k eigenvalues. The von Neumann entropy is approximately equal to
the black hole entropy SBH.

Initially, the largest correction to that entropy still comes from the existence of the
cutoff (phase VI) and has size

O(1− pk) = O

(
ρ(sk)y(sk)

Z1

)
. (F.10)
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Figure 19. A plot of β log |δS| against β sk in the limit where µ � 1/β and β → 0. Near the
transition, the entropy correction decays as δS = −O(exp(−β(sk − s(1))2/2)) because the largest
correction comes from energy fluctuations causing the transition to happen earlier or later than
expected. Far from the transition, the entropy decays as δS = − exp(−O(|sk − s(1)|)), as for the
microcanonical ensemble. Note that some important features of the correction, such as the maximal
size δS = −O(

√
1/β), are not visible in this plot.

However, when k � eS0ρ(s′) (phase VII), this correction is smaller than the effect of small
corrections to the thermal spectrum at s ∼ s′. These corrections give a correction to the
entropy of size

δS = −O
(
e2S0ρ(s′)2y(s′)

kZ1

)
. (F.11)

In the limit k →∞, we also regain some analytic control over the shape of the spectral cutoff.
Throughout the transition, the von Neumann entropy is well approximated by assuming

that the density of states is a thermal spectrum, with a hard cutoff after k eigenvalues, and
with the eigenvalues increased by a uniform shift to ensure the correct normalisation. This
approximation is worst at the Page transition, when it gives an O(β) error.

It is important to note, however, that this shifted thermal spectrum only accurately
computes the leading correction to the naive Page curve in phases IV and V. Outside this
range, the shifted thermal spectrum entropy is no more accurate than the naive Page curve.
Nonetheless, the shifted thermal spectrum is still very accurate everywhere else, since the
naive Page curve is itself a very good approximation away from the transition.

In figure 19, we plot the correction δS to the naive Page curve entropy over the course
of the Page transition.

Phase I: k� Z2/y(0)2. When k is sufficiently small, we can solve the resolvent equation

λR(λ) = k + eS0

∫ ∞
0

dsρ(s) y(s)R
kZ1 − y(s)R, (F.12)
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by assuming that the resolvent R satsifies |y(s)R(λ)| � kZ1 for all λ and s. We justify this
assumption by checking that the resulting solution for R is self-consistent. We then have

λR(λ) = k +
∫ ∞

0
dsρ(s)

[
y(s)R
kZ1

+ y(s)2R2

k2Z2
1

+O

(
y(s3)R3

k3Z3
1

)]
, (F.13)

= k + R

k
+ R2Z2
k2Z2

1
. (F.14)

This is a quadratic equation in R with solution

R(λ) =
−(1/k − λ) +

√
(λ− 1/k)2 − 4Z2/kZ2

1

2Z2/k2Z2
1

, (F.15)

where we chose the correct solution by demanding that R→ 0 as λ→∞. The density of
states D(λ) has support for 1/k−

√
4Z2/kZ2

1 ≤ λ ≤ 1/k+
√

4Z2/kZ2
1 , where it has the form

D(λ) = k2Z2
1

2πZ2

√
4 Z2
kZ2

1
− (λ− 1/k)2. (F.16)

This is a semicircle distribution that is sharply peaked around 1/k.
We now need to check that our assumptions were self-consistent. We have

|R(λ)| . k3/2Z1Z
−1/2
2 . Hence

|R(λ)y(s)| . k3/2Z1Z
−1/2
2 y(0), (F.17)

for all s and λ. Our assumption that |R(λ)y(s)| � kZ1 is therefore valid so long as
k � Z2/y(0)2, as claimed.

What about the von Neumann entropy in this phase? At leading order, it is clearly
given by log k. To calculate the leading correction to this, we expand λ about 1/k to second
order. We find

S =
∫
dλD(λ)(1/k + (λ− 1/k))

(
log k − k(λ− 1/k) + k2(λ− 1/k)2

2 +O((λ− 1/k)3)
)
.

(F.18)

Using ∫
dλD(λ) = k, (F.19)∫

dλD(λ)(λ− 1/k) = 0, (F.20)

and ∫
dλD(λ)(λ− 1/k)2 = Z2

Z2
1
, (F.21)

we therefore obtain

δS = −kZ2
2Z2

1
. (F.22)
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This is very similar to the Page result, except that the correction is enhanced by a factor
of Z2/(Z1y(s(1))), because the largest correction comes from values of s near s(2) rather
than s(1).

It is also worth noting that (F.19) and (F.20) must also be true in the exact solution for
D(λ), since we know Tr(ρ0) = k and Tr(ρ) = 1. This ensures that higher-order perturbative
corrections to D(λ) give corrections to the von Neumann entropy S that are suppressed
compared to (F.22).

A simpler way to reach the same result, without going through the full density of
states calculation, is to look at the leading correction to the disconnected geometry in
the calculation of the purities Tr(ρn) when k is small. This leading correction comes
from geometries where two replicas are connected, with the rest disconnected. There are
n(n− 1)/2 such geometries (from all the ways of pairing replicas), and each geometry is
suppressed compared to the disconnected geometry by a factor of Z2k/Z

2
1 . This gives a

correction to the Rényi entropy

Sn = − 1
n− 1 log Tr(ρn) (F.23)

of size δSn = −nZ2k/2Z2
1 . Taking the limit n→ 1, reproduces (F.22).

Phase II: Z2/y(0)2 � k � eS0ρ(s(2)). In this regime, the approximation from the
previous subsection breaks down at sufficiently small values of s. We need a new approach.
Our strategy is to split the integral over s into two pieces: s < stran and s > stran as

λR(λ) = k + eS0

∫ stran

0
dsρ(s) y(s)R

kZ1 − y(s)R + eS0

∫ ∞
stran

dsρ(s) y(s)R
kZ1 − y(s)R. (F.24)

We treat the integral for s > stran in the same way as before. This assumes that

|y(stran)R(λ)| � kZ1 (F.25)

for all λ. We then treat the integral for s < stran as a small perturbation that can be
ignored to leading order. For this second approximation to be justified, we require∣∣∣∣eS0

∫ stran

0
dsρ(s) y(s)R

kZ1 − y(s)R

∣∣∣∣ . eS0

∫ stran

0
dsρ(s) . eS0ρ(stran)� k. (F.26)

In the first approximate inequality we used the fact that |y(s)R| . |kZ1 − y(s)R|, except
for a small neighbourhood near the pole at kZ1 = y(s)R. This neighbourhood only gives a
small contribution to the integral.

Can we choose stran to simultaneously satisfy the required conditions on both parts of
the integral? The answer is yes. To satisfy our assumption (F.26), we require sk− stran � 1.
In this phase, we have sk � s(2) � s(1) and so

eS0

∫ ∞
stran

dsρ(s)y(s)2 ≈ Z2, eS0

∫ ∞
stran

dsρ(s)y(s) ≈ Z1. (F.27)

Treating the second term on the r.h.s. of (F.24) as a small perturbation, we find that the
unperturbed solution for the resolvent R is again given by (F.15), as in phase I.
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Is this result consistent with our assumption (F.25)? We have

|y(sk)R(λ)| . k3/2Z1Z
−1/2
2 y(sk) = kZ1

eS0/2ρ(sk)1/2y(sk)
Z

1/2
2

� kZ1, (F.28)

since ρ(sk)y(sk)2 � ρ(s(2))y(s(2))2. We can therefore consistently choose stran = sk − κ for
some large, but O(1), constant κ, and simultaneously satisfy (F.25) and (F.26).

Having justified our assumptions, we now treat the integral

eS0

∫ stran

0
dsρ(s) y(s)R

kZ1 − y(s)R (F.29)

as a small perturbation. In the limit λ− 1/k �
√
Z2/kZ2

1 , the unperturbed solution (F.15)
reduces to

R0(λ) = k

λ− 1/k . (F.30)

Including the perturbation (F.29), we find the first order correction

R1(λ) = eS0

λ− 1/k

∫ stran

0
dsρ(s) y(s)R0

kZ1 − y(s)R0
= eS0

λ− 1/k

∫ stran

0
dsρ(s) y(s)/Z1

λ− 1/k − y(s)/Z1
.

(F.31)

Since we now have y(0)/Z1 �
√
Z2/kZ2

1 , the pole at λ − 1/k = y(s)/Z1, for sufficiently
small s, is in the regime where our approximations are valid. This gives a nonzero density
of states, at far larger eigenvalues than anywhere in the semicircle.

Specifically, for λ− 1/k �
√
Z2/kZ2

1 , we have

D(λ) = eS0

∫ stran

0
dsρ(s)δ(λ− 1/k − y(s)/Z1). (F.32)

This looks like a thermal spectrum, with all the eigenvalues shifted upwards by 1/k. At
λ− 1/k ≈ 2

√
Z2/kZ2

1 , this shifted thermal spectrum merges into the main semicircle.

The full spectrum is therefore a semicircle, centred on 1/k and with width 4
√
Z2/kZ2

1 ,
plus a very small tail of larger eigenvalues that look like the largest eigenvalues of the thermal
spectrum, shifted upwards by δλ = 1/k. Note that there is no tail of small eigenvalues,
outside of the semicircle, because in this regime the unperturbed solution is negative, and
the perturbed solution does not include any poles.

To understand the exact transition between the shifted thermal tail and the semicircle,
we would need to consider the first order perturbation of the full unperturbed solution (F.15).
However, we will not do so here, since it is unimportant for our purposes.

We note that the exact solution must satisfy

∫ 1/k−
√

4Z2/kZ2
1

1/k−
√

4Z2/kZ2
1

dλD(λ) = k −
∫ 1

1/k+
√

4Z2/kZ2
1

dλD(λ), (F.33)
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and ∫ 1/k−
√

4Z2/kZ2
1

1/k−
√

4Z2/kZ2
1

dλD(λ)(λ− 1/k) = −
∫ 1

1/k+
√

4Z2/kZ2
1

dλD(λ)(λ− 1/k), (F.34)

because of the constraints Tr(ρ0) = k and Tr(ρ) = 1. These results will be crucially to
controlling the size of the correction to the von Neumann entropy.

What is the von Neumann entropy? Again, to leading order, it is given by log k. There
are two possible sources for the dominant correction. The first is the nonzero width of the
semicircle, which gives the same correction that was found in (F.22). The second comes
from the existence of the small tail of large eigenvalues. The existence of this tail gives a
correction to the entropy of size

δS2 =
∫ 1

1/k+
√

4Z2/kZ2
1

dλD(λ)
[
−λ log(λ)− log k

k
− (log k − 1)(λ− 1/k)

]
. (F.35)

The first term here is the direct contribution to the entropy from eigenvalues in the small
tail, while the second and third terms come from corrections to the contribution from
eigenvalues in the semicircle (calculated by the formula in (F.18)) given (F.33) and (F.34)
respectively. We therefore find

δS2 = eS0

∫ 1

1/k+
√

4Z2/kZ2
1

dλ

∫ stran

0
dsρ(s)δ(λ−1/k−y(s)/Z1)(−λ logλ−1/k−λ(logk−1))

(F.36)

= eS0

∫ s∗

0
dsρ(s)

[(1
k

+ y(s)
Z1

)(
− log

(
1+ ky(s)

Z1

)
+1
)
− 1
k

]
, (F.37)

= eS0

k

∫ s∗

0
dsρ(s)

[
ky(s)
Z1
−
(

1+ ky(s)
Z1

)
log
(

1+ ky(s)
Z1

)]
, (F.38)

where y(s∗) = 2
√
Z2/k (and hence s∗ � stran). Since 0 ≥ x− (1 + x) log(1 + x) ≥ −x2 for

x > 0, we have

|δS2| .
eS0kρ(s∗)y(s∗)2

kZ2
1

� kZ2
Z2

1
. (F.39)

We conclude that (F.22) is still the leading correction to the von Neumann entropy.
We note that the largest contribution to (F.36) comes from values of λ ∼ 1/k +

O(
√
Z2/kZ2

1 ). In this regime, the approximation R0(λ) = k/(λ− 1/k) is not very accurate.
Hence the precise size of the correction (F.36) should not be trusted.

This is fine: since (F.19) and (F.20) are fixed by the constraints, the leading effect on
the von Neumann entropy of any small correction to D(λ), with λ− 1/k = O(

√
Z2/kZ2

1 ),
will be subleading compared to (F.21). It will therefore be small compared to the correction
in (F.22). The point of the calculation in (F.36) is to bound the correction from the small
density of states with λ − 1/k �

√
Z2/kZ2

1 , where a small correction to D(λ) could, in
principle, have given a larger correction to the von Neumann entropy than (F.22).
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Phase III: eS0ρ(s(2))� k� k3→4. In this phase, we will have somewhat less control
over the shape of the peak of the density of states D(λ). We will focus on understanding
the density of states away from this peak. Fortunately this approach will still give us good
control over the von Neumann entropy. Our strategy will be similar to our strategy for
phase II. However we will find that our approximation for the resolvent R(λ) will now only
be valid outside of a small range of λ (which includes the peak of the spectrum).

Explicitly, we choose some stran as for Z2/y(0)2 � k � eS0ρ(s(2)), and approximate
the resolvent equation by

λR(λ) = k + eS0

∫ stran

0
dsρ(s) y(s)R

kZ1 − y(s)R + eS0

∫ ∞
stran

dsρ(s)y(s)R
kZ1

, (F.40)

where the second term on the right hand side is treated as a small perturbation. As before,
for this approximation to be valid, we require sk−stran � 1. as well as |y(stran)R(λ)| � kZ1,
for the values of λ where we want to be able to trust our approximation.

Unlike for phase II, we do not include a term

eS0

∫ ∞
stran

dsρ(s)y(s)2R2

k2Z2
1
, (F.41)

in our approximation for the integral over s > stran. In this phase we will have stran � s(2),
causing (F.41) to be dominated by s ∼ stran. It will therefore be much smaller than k, and
can be safely ignored, whenever our approximations are themselves valid.

Ignoring the small perturbation, we obtain the initial unperturbed solution

R0(λ) = k

λ− 1 . (F.42)

Here, we have used the fact that stran < sk � s(1), to see that

eS0

∫ ∞
stran

dsρ(s)y(s) ≈ Z1. (F.43)

Our unperturbed solution R0(λ) has a pole at λ = 1/k, so it is clearly not consistent with
our assumption that |y(stran)R(λ)| � kZ1 for all values of λ.

What values of λ allow us to choose stran so that our solution is self-consistent? We
have |y(sk)R(λ)| � kZ1 so long as

|λ− 1/k| � y(sk)/Z1. (F.44)

Since sk = O(1/β) in the semiclassical limit, we have y(s) ∝ eO(s) for s ≈ sk. Both
assumptions are therefore valid so long as (F.44) holds and we choose stran = sk − κ, for
some large, but O(1), constant κ. As for phase II, the first order correction to (F.42) is
given by (F.31).

We find that the density of states D(λ) = 0 for sufficiently small λ, satisfying
1/k − λ� y(sk)/Z1. For large values of λ, with λ− 1/k � y(sk)/Z1, we have

D(λ) = eS0

∫
dsρ(s)δ(λ− 1/k − y(s)/Z1), (F.45)
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as in (F.32). This region only contains a small fraction of the k total eigenvalues in the
entanglement spectrum — by definition, the kth largest eigenvalue in the shifted thermal
spectrum is given by λ = 1/k + y(sk)/Z1. The remaining eigenvalues must lie in the range
1/k − O(y(sk)/Z1) . λ . 1/k + O(y(sk)/Z1). Since we know that R0(λ) is not a good
approximate solution for any values of λ within this range, we conclude that the density of
states D(λ) is large throughout this region, rather than being concentrated parametrically
closer to 1/k.

In summary, we conclude the following. The density of states looks like a thermal
spectrum, shifted by δλ = 1/k, cutoff by some unknown function of width O(y(sk)/Z1)
at λ = 1/k. We do not know any compelling way to get analytic traction on this cutoff
function, although it can of course be calculated numerically, by solving either the entire
resolvent equation numerically or an appropriate approximation to it.

We note that when k ∼ eS0ρ(s(2)), the width of the semicircle that we found in phase II
is equal to the width of this new uncontrolled cutoff function. There is a smooth transition
between the two.

We now move on to calculating the von Neumann entropy. To leading order we still
have S = log k. As for phase II, there are two potential sources for the leading correction.
The first is a correction from the width of the cutoff, as in (F.18). This is equal to

δS1 = −k2

∫ 1/k+O(y(sk)/Z1)

1/k−O(y(sk)/Z1)
dλD(λ)(λ− 1

k
)2 = O

(
k2 y(sk)2

Z2
1

)
. (F.46)

To calculate the exact size of this correction, we would need to use a numerical approximation
for the density of states in the cutoff region. The second possible correction comes from the
existence of the thermal tail of large eigenvalues. As in (F.36), this is given by

δS2 = eS0

k

∫ sk−O(1)

0
dsρ(s)

[
ky(s)
Z1

−
(

1 + ky(s)
Z1

)
log
(

1 + ky(s)
Z1

)]
. (F.47)

Since we have s(2) � sk � s(1), this integral is dominated by values of s with ky(s) ∼ Z1.
Unlike for k � eS0ρ(s(2)), this means that the dominant contribution comes from eigenvalues
where the approximation can be trusted. Its size is therefore O(eS0ρ(s̃k)/k), where s̃k is
defined in (F.6).

Comparing the sizes of the two corrections, we have

δS2
δS1

= O

(
eS0ρ(s̃k)Z2

1
k3y(sk)2

)
� 1, (F.48)

since we are assuming that k � k3→4, for k3→4 defined in (F.7).
We therefore conclude that the dominant correction in this phase comes from the width

of the cutoff rather than the thermal tail.

Phase IV: k3→4 � k . eS0ρ(s(1))e−O(1/β). This phase can be dealt with using exactly
the same strategy as phase III. The only change is that we now find that the source of
the leading correction to the von Neumann entropy (which is still given by log k at leading
order) has changed. Specifically, the leading correction δS2 = O(eS0ρ(s̃k)/k) now comes
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from the existence of the thermal tail, rather than the width of the cutoff region. Its exact
size is given (F.47), with high accuracy in the semiclassical limit.

One might worry about whether we can still assume that

eS0

∫ ∞
stran

dsρ(s)y(s) ≈ Z1. (F.49)

As we shall see in the next section, a more accurate treatment of this integral would
decrease the shift in the thermal tail by pk/k, where pk is the probability that the thermal
ensemble is in one of its k largest eigenvalues. When k/eS0ρ(s(1)) = e−O(1/β), we have
pk/k = O(y(sk)/Z1), so this shift can be ignored everywhere that the shifted thermal
spectrum can be trusted.

The leading uncontrolled correction to the von Neumann entropy still comes from the
width of the cutoff region, and has size δS1 = O(k2y(sk)2/Z2

1 ), as in (F.46).

Phase V: eS0ρ(s(1))e−O(1/β)) � k� eS0ρ(s(1))eO(1/β). We have now finally reached
the actual Page transition for the von Neumann entropy! In this phase, we can still use the
same approximations that we used in phases III and IV to find the shape of the density of
states away from its peak. Again, we want to choose stran = sk − κ, for a large, but O(1),
constant κ. However, we can no longer assume that

eS0

∫ ∞
stran

dsρ(s)y(s) = Z1. (F.50)

Instead we have

eS0

∫ ∞
stran

dsρ(s)y(s) ≈ eS0

∫ ∞
sk

dsρ(s)y(s) = (1− pk)Z1, (F.51)

where pk is the probability of the thermal density matrix being in one of its k largest
eigenvalues. We therefore find that the density of states D(λ) is given by

D(λ) =


eS0

∫
dsρ(s)δ

(
λ− 1−pk

k − y(s)
Z1

)
λ− 1−pk

k � y(sk)
Z1

,

large and uncontrolled λ− 1−pk
k = O

(
y(sk)
Z1

)
,

0 1−pk
k − λ� y(sk)

Z1
,

(F.52)

The region λ− (1− pk)/k = O(y(sk)/Z1), which we do not have good analytic control over,
contains most of the eigenvalues.

We see that the shift in the thermal part of the spectrum decreases as we move through
the Page transition. This can be easily understood as the eigenvalues adjusting to match
the twin constraints that Tr(ρ) = 1 and Tr(ρ0) = k; if we had O(k) thermal eigenvalues, all
shifted by δλ = 1/k, we would have Tr(ρ) > 1.

Near s(1), the function ρ(s)y(s) is well approximated by a Gaussian of width O(
√

1/β).
More precisely, in the limit where the brane mass µ is large, we have

ρ(s)y(s) ∝ e−
β
2 (s−s(1))2

. (F.53)
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We therefore have Z1 = O(
√

1/β ρ(s(1))y(s(1))). Also, for sk − s(1) �
√

1/β, we have

1− pk = O

(
ρ(sk)y(sk)√

β(sk − s(1))ρ(s(1))y(s(1))

)
. (F.54)

It follows that

y(sk)/Z1
(1− pk)/k

= O

( √
βρ(sk)y(sk)

(1− pk)ρ(s(1))y(s(1))

)
� 1, (F.55)

since in this phase we have sk−s(1) � 1/β. The width of the uncontrolled region is therefore
always small compared to the size of a typical eigenvalue in the uncontrolled region.

Let us try to calculate the von Neumann entropy. As a first approximation, we can
consider the von Neumann entropy of a thermal spectrum, with a hard cutoff after k
eigenvalues, and with each eigenvalue increased by (1− pk)/k. This agrees with the actual
spectrum everywhere that we have control, and obeys the constraints Trρ0 = k and Trρ = 1.
The von Neumann entropy of such a state would be given by

S = −eS0

∫ sk

0
dsρ(s)

(
y(s)
Z1

+ 1− pk
k

)
log
(
y(s)
Z1

+ 1− pk
k

)
. (F.56)

What is the error from this approximation? We have significantly changed the spectrum in
the small region where λ− 1−pk

k = O(y(sk)
Z1

). To leading order, this part of the spectrum
gives a contribution to the von Neumann entropy of (1 − pk) log((1 − pk)/k). Since the
zeroth and first moments are fixed by the rest of the spectrum and the constraints Tr(ρ) = 1
and Tr(ρ0) = k, the leading difference between the shifted thermal spectrum and the actual
spectrum will be controlled by

k

(1−pk)

∫ (1−pk)/k+O(y(sk)/Z1)

(1−pk)/k−O(y(sk)/Z1)
dλ∆D(λ)

(
λ− (1−pk)

k

)2
=O

(
k2

(1−pk)
y(sk)2

Z2
1

)
, (F.57)

where ∆D(λ) is the diference between the two spectral densities. To find this formula, we
expanded λ to second order about (1− pk)/k. In estimating its size, we used the fact that
most of the k eigenvalues are in this region of the spectrum.

How large can this error get? It is largest when sk ∼ s(1) +O(
√

1/β). In this case, we
have (1− pk) = O(1), so the size of the correction is O(β).

A cruder approximation is to replace log(y(s)/Z1 + (1− pk)/k) in (F.56) by
log max(y(s)/Z1, (1−pk)/k). The largest error from this simplification comes from values of
s where y(s)/Z1 ∼ (1−pk)/k. From such eigenvalues, we have an O(1) error in our estimate
of the logarithm. When sk ∼ s(1), this gives a total error of O(ρ(s)y(s)/Z1) = O(

√
β),

which is parametrically worse than the shifted thermal spectrum approximation.
How large is the difference between the shifted thermal entropy (F.56) and a naive

Page curve given by S = min(log k, SBH)? Assuming µ� 1/β,

SBH = eS0

Z1

∫
dsρ(s)y(s) log(Z1/y(s)) = S0 + 4π2

β
+ 1

2 log
(2π
β

)
+O(1). (F.58)
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Let k = Z1/y(s(1)), i.e s̃k = s(1). The naive Page curve entropy would be log k. Instead,
using the crude approximation discussed above, we find

S = eS0

Z1

∫ s(1)

0
dsρ(s)y(s)

[1
2βs

2 + log Z1
y(0)

]
+ 1

2 log k +O(1)

= log k −
√

2πβ
∫ s(1)

0
ds e−

β
2 (s−s(1))2(s(1) − s) +O(1)

= log k −
√

2π
β

+O(1).

(F.59)

In the first line, we used the fact that pk = 1/2 + o(1). In the second line, we used the fact
that log(Z1/y(s(1)) = log k and assumed µ� 1/β.

The leading correction is therefore O(1/
√
β); it becomes very large in the semiclassical

limit. This is in sharp contrast to the Page curve for Haar random states, or the micro-
canonical ensemble, where the correction is never larger than O(1). The energy fluctuations
in a thermal state parametrically increase the size of the corrections to the naive Page curve.

Phase VI: eS0ρ(s(1))eO(1/β) . k � eS0ρ(s′). In this phase, we have (1 − pk)/k =
O(y(sk)/Z1). Hence the approximations made in phase V no longer give us good control over
the bottom of the spectrum. Instead, we treat the regimes λ� y(sk)/Z1 and λ� y(sk)/Z1
separately.

For the former case, we can treat the entire second term in

R(λ) = k

λ
+ eS0

λ

∫ ∞
0

dsρ(s) y(s)R
kZ1 − y(s)R (F.60)

as a small perturbation. Our initial solution is R0(λ) = k/λ. Hence we have R0 y(sk)� kZ1
and our treatment of the second term (F.60) as a small perturbation is self-consistent. We
therefore have the first order perturbative correction

R1(λ) = eS0

λ

∫ ∞
0

dsρ(s) y(s)/Z1
λ− y(s)/Z1

, (F.61)

which gives

D(λ) = eS0

∫
dsρ(s)δ(λ− y(s)/Z1). (F.62)

The thermal spectrum is essentially unshifted, everywhere that it is under good analytic
control.

For λ� y(sk)/Z1, it is easiest to consider λ as a function of negative, real R. Rewrit-
ing (F.60), we find

λ = k

R
− eS0

R

∫ ∞
0

dsρ(s) y(s)
y(s)− kZ1/R

. (F.63)

For small negative R, the first term dominates, and so λ is negative. For very large negative
R, the second term dominates, and so λ is positive, although it approaches zero as R→ −∞.
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Note that for negative R, the contribution from the integral is positive for all values of s.
At some intermediate value of R, λ should have a maximum. This value will be the bottom
of the eigenvalue spectrum.

Suppose we have R = −κkZ1/y(sk) for some large, but O(1), constant κ as usual. In
this case, the second term dominates and we have

λ� − k
R

= y(sk)
κZ1

. (F.64)

We can therefore be confident that D(λ) = 0 for λ � y(sk)/Z1. As for phases III-V,
we do not have good control over the shape of the spectrum in the cutoff region, when
λ = O(y(sk)/Z1).

The largest correction to the von Neumann entropy comes from the cutoff region. For
eigenvalues in this region, there is an O(1) multiplicative uncertainty in the eigenvalue,
which corresponds to an O(1) uncertainty in log λ. The total probability of an eigenvalue
being in this region is O(1− pk). Hence we have

S = SBH −O(1− pk) = SBH −O
(
eS0ρ(sk)y(sk)

Z1

)
, (F.65)

where SBH is the entropy of the canonical ensemble. Note that this correction is the same
order of magnitude as the difference between SBH and the entropy of the shifted thermal
spectrum (F.56). However, we have no good reason to think that the two corrections are
the same. The size will be affected by the details of the cutoff, over which we have very
little control.

Phase VII: k � eS0ρ(s′). In the limit k →∞, the correction to the thermal entropy
from the cutoff region, discussed above, decays as

O

(
ρ(sk)y(sk)

Z1

)
= O

(
e−

β
2 (sk−s(1))2)

. (F.66)

This decays much faster than the largest corrections to the Renyi entropies, which come
from planar diagrams that consist of two discs and are suppressed by a factor of O(1/k)
compared to the leading connected topology. One can also make general arguments that it
is inconsistent with entanglement wedge reconstruction for the correction to decay faster
than O(1/k) in this limit [13].

It follows that there should exist some other correction, which cannot come from the
cutoff region, that becomes dominant at sufficiently large k. The source of that correction is
the second-order perturbative correction to the resolven. As for phase VI, the unperturbed
solution is given by R0(λ) = k/λ and the first order perturbative correction R1(λ) is given
by (F.61). The second order correction is

R2(λ) = e2S0Z1
k

∫
ds1ds2

ρ(s1)ρ(s2)y(s1)y(s2)
(Z1λ− y(s1))2(Z1λ− y(s2)) . (F.67)

The second order perturbative correction to the density of states is therefore

D2(λ) = e2S0

kZ1

∫
ds1ds2

ρ(s1)ρ(s2)y(s1)y(s2)
y(s2)− y(s1) δ′(λ− y(s1)/Z1). (F.68)
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The pole at s1 = s2 is dealt with by taking the principal value. The contributions
proportional to δ(λ− y(s1)/Z1) and δ(λ− y(s2)/Z1), which would otherwise exist, cancel
under the relabelling s1 ↔ s2. We therefore get a correction to the von Neumann entropy of

δS = −
∫ 1

O(y(sk)/Z1
dλD2(λ)λ log(λ), (F.69)

= e2S0

kZ1

∫ sk−O(1)

0
ds1

∫ ∞
0

ds2
ρ(s1)ρ(s2)y(s1)y(s2)

y(s2)− y(s1) [log(y(s1)/Z1) + 1], (F.70)

= − e2S0

2kZ1

∫ sk−O(1)

0
ds1

∫ sk−O(1)

0
ds2

ρ(s1)ρ(s2)y(s1)y(s2)
y(s1)− y(s2) log y(s1)

y(s2) . (F.71)

In the last step, we dropped the integral over s2 > sk −O(1), which is highly suppressed,
and then symmetrised the integrand with respect to the relabelling s1 ↔ s2. This integral
is dominated by values where s1 − s2 = O(1). Its magnitude is therefore

δS = −O
(
e2S0

kZ1

∫ sk−O(1)

0
dsρ(s)2y(s)

)
= −O

(
e2S0ρ(s′)2y(s′)

kZ1

)
, (F.72)

where s′ is the saddle point for ρ(s)2y(s). This is proportional to 1/k, as expected. We
emphasize that this final result depends crucially on the fact that k � eS0ρ(s′). If we still had
k � eS0ρ(s′), the integral would be dominated by values of s close to sk and we would have

δS = −O
(
eS0ρ(sk)y(sk)

Z1

)
. (F.73)

This is the same order of magnitude as the correction we found in phase VI. We emphasize
that the exact size of the correction still cannot be computed, since the perturbative
approximation is poor for s = sk −O(1).

As with the correction to the entropy in phases I and II, there is a much simpler way to
find this entropy correction, by analytically continuing the leading correction to the Renyi
entropies. The leading correction to the purities Tr(ρn) in the limit k → ∞ comes from
planar diagrams consisting of two connected components. These give a contribution to the
purity of

δTr(ρn) = n

2kZn1

n−1∑
p=1

ZpZn−p = ne2S0

2kZn1

∫
ds1ds2ρ(s1)ρ(s2)y(s1)ny(s2)− y(s1)y(s2)n

y(s1)− y(s2) .

(F.74)

They therefore give a correction to the Rényi entropies Sn = 1/(1− n) log(Tr(ρn)) of

δSn = − ne2S0

(n− 1)2kZn

∫
ds1ds2ρ(s1)ρ(s2)y(s1)ny(s2)− y(s1)y(s2)n

y(s1)− y(s2) . (F.75)

In the limit n→ 1, this gives the correction to the von Neumann entropy

δS = − e2S0

2kZ1

∫
ds1ds2ρ(s1)ρ(s2) y(s1)y(s2)

y(s1)− y(s2) log y(s1)
y(s2) , (F.76)

which is exactly what we found before.
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The disadvantage of this approach is that it does not know when this calculation breaks
down. If we only looked at the two connected component topologies, we would expect
that the corrections to the Page curve would become large when k = O(e2S0ρ(s′)2y(s′)/Z1),
which is much larger than the value of k at the Page transition. In contrast, our more
careful approach using the resolvent can see that this large correction doesn’t exist when
k � eS0ρ(s′), because the integral in (F.71) is cutoff at sk.

Finally, in the limit of very large k, we actually regain some increased analytic control
over the cutoff region. Specifically, we need sk � 1/β. We assume for this section that the
brane mass µ� 1/β and so we have y(s) = y(0)e−βs2/2. Suppose we rewrite (F.60) as

λR = k − eS0

∫
ds

ρ(s)
− kZ1
y(s)R + 1

. (F.77)

For s � O(1/β), y(s) is changing much faster than ρ(s). Hence, for sufficiently large,
negative, real R, we have

eS0

∫
ds

ρ(s)
− kZ1
y(s)R + 1

≈ eS0

∫ sR

0
dsρ(s), (F.78)

where y(sR) = −kZ1/R or equivalently

sR =
√

(2/β) log(−Ry(0)/kZ1). (F.79)

For self-consistency of our assumptions, we will need log(−Ry(0)/kZ1)� 1. We know that
in the cutoff region we have |R| = O(kZ1/y(sk)), which implies sR ≈ sk. Our approximation
is therefore well controlled so long as sk � O(1/β), as claimed.

So far, we have only considered negative, real R. For imaginary or positive R, the
integral is seemingly not so simple. However, we can simply deform the integration contour
in the complex plane, without passing through any poles, to absorb the phase of R into a
phase of y(sR). Hence (F.79) is valid when R has arbitrary phase so long as we use complex
logarithms. Writing R = −kZ1e

r+iθ/y(0), we obtain

sR =
√

2r/β + iθ√
2βr

, (F.80)

where we used the fact that r � 1/β. We can also do the integral in (F.77) explicitly to get

−Z1λe
r+iθ = 1− eS0

k

sR
4π3 e

2πsR . (F.81)

Comparing the imaginary parts of the left and right hand sides, we find

Z1λe
r sin θ = eS0

4π3k

√
2r
β
e2π
√

2r/β sin θ√
2βr

(F.82)

Hence, for any fixed 0 < θ < 2π, we have

Z1λe
r � eS0

k

√
2r
β
e2π
√

2r/β . (F.83)
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Comparing the real parts of (F.81), we have

−Z1λ e
r cos θ = 1− eS0

4π3k

√
2r
β
e2π
√

2r/β , (F.84)

which, combined with (F.83) tells us that, for fixed 0 < θ < 2π,

1− eS0

4π3k

√
2r
β
e2π
√

2r/β � 1. (F.85)

Hence r−βs2
k/2 = ∆r � βsk. Substituting this back into (F.82), and using the small angle

approximation for sin(θ/
√
βr), we find

Z1λ e
∆r

y(sk)
sin θ = 2π θ

βsk
. (F.86)

Hence

θ = sinc−1
( 2π y(sk)
Z1 λβ sk e∆r

)
, (F.87)

where the inverse-sinc function sinc−1 : [0, 1] → [0, π] is single-valued on its domain. We
now need to solve for ∆r. We now turn to (F.84). Given (F.85), we can rewrite (F.84) as

Z1λe
∆r

y(sk)
cos θ = 2π∆r

βsk
. (F.88)

Solutions for this exist with θ = 0 for λ < 2π y(sk)/(eZ1βsk) = λmin, so there are no
eigenvalues below this cutoff. At λ = λmin, we have ∆r = 1.

For λ > λmin, we have
λ e∆r−1

λmin
cos sinc−1

(
λmin
λe∆r−1

)
= ∆r. (F.89)

In principle, this equation can be solved to find the fixed function ∆r(λ/λmin), which does
not depend on any parameters. For λ� λmin, we have cos(sinc−1

(
λmine

−∆r+1/λ
)
≈ 1 and

so ∆r = −W0(λ/λmin) where W0 is the Lambert W function. The resolvent R decays at
large λ, as expected, and we reenter the regime where our perturbative approximations are
well controlled.

Finally, we obtain the density of states

D(λ) = Z1ke
r sin θ
π

= kZ1e
∆r(λ/λmin)

πy(sk)
sin sinc−1

( 2π y(sk)
e∆r(λ/λmin)Z1λβsk

)
. (F.90)

For λ� y(sk)/(Z1βsk), we can use the small x approximation sin sinc−1(x) = πx. This
gives

D(λ) = 2π k
λβsk

. (F.91)

For the thermal spectrum near the cutoff, we also have

D(λ) = eS0

∫ sk

0
dsρ(s)δ(λ− y(s)/Z1) ≈ 2πk

∫ sk

0
ds δ(λ− y(s)/Z1) ≈ 2π k

λβsk
, (F.92)

in the first step, we used ρ(s) ≈ ρ(sk), while the second step used y′(s) = β s y(s). The
cutoff spectrum connects smoothly to the thermal spectrum.

This completes our analysis of the entanglement spectrum of the simple model.
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