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1 Introduction

Studying supersymmetric quantum field theories (SQFTs) on curved manifolds led to a vast
range of exact results. The work of Pestun [1] for N = 2 supersymmetric Yang-Mills (SYM)
on S4 allowed to explore SQFTs in different dimensions and background geometries (see [2]
for a review). In an attempt to collect a class of results into a unique framework, in [3, 4]
it has been proposed a systematic way of constructing N = 2 SYM theories on compact
four manifolds with a Killing vector with isolated fixed points. The theories differ by their
distribution of either instantons or anti-instantons at the fixed points. As an example
Pestun’s theory on S4 is obtained placing anti-instantons at one pole and instantons at
the other. Considering anti-instantons at both poles gives rise to an equivariant version of
Donaldson-Witten (DW) theory [5]. In our work we consider N = 2 SYM on CP2 and our
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first goal is to show how both equivariant DW and a supersymmetric theory, closely related
to Pestun’s,1 arise from dimensional reducing N = 1 SYM on S5. Also for CP2, DW is
obtained placing anti-instantons at all three fixed points, while flipping one of them into
an instanton gives a Pestun-like theory. Moreover for both four dimensional theories we
are able to compute the perturbative partition functions showing their explicit behaviour
at each flux sector. We also study a similar reduction from S3 to CP1 which we use to test
our results.

Our starting point in the construction are odd-dimensional spheres. After the work
of [6] great progress has been done in recent years in understanding how to compute the
partition function of SYM theories on S2r−1. For r = 2, results for an N = 2 vector
multiplet have been presented for both round and squashed spheres [7–10]. Similar results
have been obtained for r = 3 and an N = 1 vector multiplet in [11–16]. The works
of [17, 18] showed how the partition function for a squashed S3 can be decomposed in
two elementary blocks, one for each fixed point of S3. Each factor is given by a copy of
the partition function on C × S1. The same approach has been conjectured on squashed
S5 [19, 20] with each factor now written as a partition function on C2 × S1. See [21] for
a review of factorization of more generic manifolds in three and five dimensions. Some
results are known also for r = 4 [22–24].

Spheres in odd dimensions can be seen as an Hopf fibration S1 ↪→ S2r−1 → CPr−1.
In this paper we study the dimensional reduction along the Hopf fiber of SYM theories,
focusing on r = 2, 3. The first class of theories we consider on CPr−1 are topological twists
of N = (2, 2) SYM for r = 2 and N = 2 SYM for r = 3. In d = 4 the partition function
and other observables compute Donaldson-Witten invariants [5]. Moreover the d = 2r − 2
manifold admits a U(1)r−1 torus action which can be used to define the equivariant version
of topological twist. For r = 2, 3 see [25–27]. We also consider Pestun-like theories on
CPr−1. For r = 2 it has been studied in [28] and for r = 3 in [3, 4]. Similarly as for the
spheres, the partition functions on CPr−1 factorize into elementary blocks defined on Cr−1,
with each factor coming from one of the r fixed points of the isometry group U(1)r−1.

Having introduced the main objects of interest, in our work we present a systematic
way of relating the two, via dimensional reduction along the Hopf fiber:

(i) We take a round S2r−1 with SO(2r) isometry group. We fix an arbitrary Killing vector
v by choosing a pair of supercharges Q, Q̃. The vector v selects a particular U(1)
rotation inside the U(1)r Cartan of the isometry group. The perturbative partition
function is a product over r positive integers n1, . . . , nr eigenvalues under each of the
U(1)r along v.

(ii) We consider two different choices for the direction of the Hopf fiber: either the
U(1) selected by the Killing vector v or a different combination Ũ(1) ⊂ U(1)r. We
rewrite the product over n1, . . . , nr as a product over t, n2, . . . , nr, with t being the
quantum number for either U(1) or Ũ(1) rotations. We assume these to correspond

1We will refer to this supersymmetric theory in the rest of the paper as Pestun-like theory. By analogy
we will also refer with the same term name to a related theory on CP1.

– 2 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
4

to t = ±n1 + · · ·+nr. At fixed t, the product over n2, . . . , nr represents two different
(r − 1)-dimensional slices of the same cone in Rr spanned by positive (n1, . . . , nr).

(iii) We introduce a quotient of S2r−1 by a free Zp-action, squashed on its CPr−1 base,
such that the quotient acts on either of the two Hopf fibers. The resulting mani-
folds L2r−1(p,±1) are (squashed) higher dimensional analogues of lens spaces. For
L3(p,−1) see [29]2 while the difference between L3(p,+1) and L3(p,−1) has been
studied in [30, 31]. Due to the squashing along the base the Killing vector v generates
a rotation which deviates, along the CPr−1 base, from the U(1) of the Hopf fiber. At
finite p the SYM partition functions on L2r−1(p,±1) are given by a sum over inequiv-
alent flat connections α(m). Moreover the quotient by the Zp-action along the Hopf
fibers introduces a projection condition ±n1 + n2 + n3 = t = α(m) mod p. At large
p the fiber shrinks to a point and the projection condition sets t = α(m). Because
of this, at given α(m), the perturbative partition functions count a single (r − 1)-
dimensional slice of n2, . . . , nr. Due to the different definitions of t in L2r−1(p,±1),
we will show how the slices are different in the two reductions. Comparing with the
perturbative partition function on CPr−1 we see how, in the limit, the sum over flat
connections in L2r−1(p,±1) corresponds to a sum over fluxes in one dimension less.
Reducing along the Hopf fiber associated to v we obtain the equivariant version of
topologically twisted theories on CPr−1. Instead reducing along Ũ(1) we find exotic
theories on squashed CPr−1, which we match with Pestun-like theories.

We focus on r = 2, 3 where only one3 choice of Ũ(1) is possible. At each step in the
reduction we show how the perturbative partition functions factorize into r pieces.4 In
particular we find factorized results on a non simply connected manifold as L2r−1(p,±1)
and, at all flux sectors, on CPr−1.

For r = 2, we reproduce an example of such dimensional reductions which appeared
in [28], where it was shown that the large p limit of the N = 1 (round) L3(p,−1) partition
function [29, 32] matches the Pestun-like N = (2, 2) on CP1. We test the more general
procedure reducing using L3(p,+1) and show how the resulting perturbative partition
function matches with the result for N = (2, 2) topologically twisted on CP1 [25]. Next5 we
consider S5 squashed along its CP2 base and the large p limit of L5(p,±1). The two limits
give us results for the perturbative partition functions, at all flux orders, for both N = 2
topological twist and an N = 2 exotic theory. In both cases the sum over flat connections
on L5(p,±1) gives rise to a sum over topological sectors corresponding to fluxes α(m) = t

in the partition function on CP2. This is different than what was found in [3, 27], where
each flux sector corresponds to several contributions labelled by equivariant fluxes ki, with
i = 1, 2, 3. Moreover we observe how our results only depend on the Killing vector v on
S2r−1 and its reduction down to CPr−1.

2Notice that in [29] they use a slightly different notation for the Zp-action and thus the lens space they
consider turns out to be L3(p,+1). This corresponds to L3(p,−1) in our notations.

3For r ≥ 4 more inequivalent choices are allowed.
4However we do not study the precise choice of integration contour in the cases we consider.
5For r = 3 a dimensional reduction for a class of toric Sasaki-Einstein manifolds appeared in [33] but

missed the contribution of fluxes on the d = 4 base manifold.
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The outline is as follows: in section 2 we introduce the geometry of odd-dimensional
squashed spheres. In particular we focus on the two choices of fiber that we will use to
reduce with respect to a Killing vector v. We also present L2r−1(p,±1) manifolds. We
leave to section 3 the relation between v and a choice of supercharges. There we also
briefly present the field content of the vector multiplets we consider, and their perturbative
partition function on S2r−1. These will serve as starting point for sections 4 and 5 where
study, separately, the reductions for r = 2, 3.

2 Geometry of odd-dimensional spheres

We consider odd-dimensional round spheres S2r−1. Most of the results are presented for r =
2 and r = 3, however many of the concepts can be extended to generic r ≥ 2. Considering
S2r−1 as an Hopf fibration S1 ↪→ S2r−1 → CPr−1 we study two different choices of fiber
with respect to a direction determined by a Killing vector v, which is itself determined
by a choice of supersymmetry. While the relation between v and supersymmetry will be
explained in section 3 here we introduce two sets of coordinates, each adapted to one of the
two fibers. Treating the two cases separately, we then introduce a generic squashing which
can be set to act either on the CPr−1 base only or on the fiber only. We end the section
introducing manifolds obtained as quotients of S2r−1 by a free Zp-action along either of
the two fibers. The resulting manifold S2r−1/Zp ≡ L2r−1(p,±1) is not simply connected
and is a higher dimensional generalization of the r = 2 lens space. Taking the large p limit
of L2r−1(p,±1) we can dimensionally reduce along the two fibers down to CPr−1.

2.1 Round spheres

Odd-dimensional spheres S2r−1 can be embedded in Cr. Choosing complex coordinates
(z1, . . . , zr), the SO(2r)-invariant metric can be written as:

ds2
S2r−1 =

r∑
i=1
|dzi|2,

r∑
i=1
|zi|2 = R2. (2.1)

Introducing real coordinates (ρi, θi) such that zi = ρie
iθi , the metric can be rewritten as:

ds2
S2r−1 =

r∑
i=1

(dρ2
i + ρ2

i dθ
2
i ),

r∑
i=1

ρ2
i = R2. (2.2)

From now on we set R = 1. Spheres in odd dimensions can be seen as a fibration over CPr−1:
S1 ↪→ S2r−1 → CPr−1. For r = 2 it corresponds to the Hopf fibration: S1 ↪→ S3 → S2.
Hence, with a further change of coordinates, their metric can be written as:

ds2
S2r−1 = ds2

CPr−1 + (dα+ V )2, (2.3)

where ds2
CPr−1 is the induced Fubini-Study metric, α is the coordinate along the fiber and

V is a connection one-form. At this point every choice of fiber is equivalent as they are all
related by an SO(2r)-rotation. However, as we will explain in detail in the next section, a
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choice of supersymmetry generators6 determines a fixed direction on S2r−1. This because
the square of the chosen supercharges gives a Killing vector v generating a U(1). To describe
this choice we introduce the action of the U(1)r ⊂ SO(2r) Cartan of the isometry group on
zi → eiαizi for i = 1, . . . , r. Denoting ei the corresponding vector field, the chosen Killing
vector field for a round S2r−1 is given by:

v = +e1 + · · ·+ er. (2.4)

With respect to the direction determined by the Killing vector not all choices of fiber are
equivalent. In particular we will consider two fibers differing by the action of the first factor
of U(1) in the Cartan:7

top: xtop = +e1 + · · ·+ er, (2.5)
ex: xex = −e1 + · · ·+ er. (2.6)

We introduced the notation “top” and “ex” which stands for topologically twisted and
exotic, labeling the two different cases associated to the two choices of fiber xtop and xex. As
we will be interested in dimensionally reducing along a fiber, we will see how topologically
twisted theories in d = 2r − 2 are obtained reducing along a direction determined by the
Killing vector (2.4) differently than exotic theories. This will turn out to be a key point in
understanding the two different theories on CPr−1.

We now show the explicit changes of coordinates on S3 and S5 adapted to the two
fibers (2.5) and (2.6).

Three sphere: first we consider r = 2 and we would like to find different changes of
coordinates between (2.2) and (2.3). For this we utilize the choice of basis functions on S3:

ρ1 = sin φ2 , ρ2 = cos φ2 , (2.7)

along with a choice of angles:

top: θ1 = 1
2 (α− β) , θ2 = 1

2 (β + α) , (2.8)

ex: θ1 = 1
2 (β − α) , θ2 = 1

2 (β + α) . (2.9)

Inserting the previous relations into (2.2) produces the following metric:

ds2
S3 = 1

4
(
dφ2 + sin2 φdβ2 + (dα− cosφdβ)2

)
= 1

4ds
2
CP1 + 1

4(dα+ V )2. (2.10)

The vector ∂
∂α generates a rotation along the fiber while we identify the metric of the CP1

base, along with the one form V :

V = − cosφdβ. (2.11)
6Equivalently, as S2r−1 are contact manifolds, the choice of supercharges corresponds to a choice of

contact structure which uniquely determines a Reeb vector field, which is also Killing.
7For r = 2 and r = 3 all other combinations are related to these two choices, as they can be obtained

by shuffling the zi coordinates and/or flipping all signs. This is not true for r ≥ 4.
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The two choices of coordinates given in (2.8) and (2.9) both reproduce the same met-
ric (2.10). When solving for the α and β angles:

top: β = −θ1 + θ2, α = +θ1 + θ2, (2.12)
ex: β = +θ1 + θ2, α = −θ1 + θ2. (2.13)

we find these two possible inequivalent choices of fiber α, differing by a reflection around
θ1, as expected from the two fibers xtop (2.5) and xex (2.6).

Five sphere: again, considering r = 3, we need to find two inequivalent changes of
coordinates from (2.2) to (2.3). We need to set:

ρ1 = cosσ, ρ2 = sin σ cos φ2 , ρ3 = sin σ sin φ2 , (2.14)

and:

top: θ1 = +α, θ2 = α− 1
2(β + γ), θ3 = α− 1

2(β − γ), (2.15)

ex: θ1 = −α, θ2 = α− 1
2(β + γ), θ3 = α− 1

2(β − γ). (2.16)

Explicitly substituting into (2.2) gives:

ds2
S5 = dσ2 + 1

4 sin2 σ(dφ2 + sin2 φdγ2) + 1
4 cos2 σ sin2 σ(dβ + cosφdγ)2 + (dα+ V ) =

= ds2
CP2 + (dα+ V )2.

(2.17)

Again ∂
∂α generates rotation along the fiber. We have defined the one form V as:

V = −1
2 sin2 σ(dβ + cosφdγ). (2.18)

As for S3 we have found two changes of coordinates which differ by a reflection around θ1,
again in agreement respectively with xtop (2.5) and xex (2.6).

2.2 Squashing

We are interested in squashed spheres which, in general, break the SO(2r) isometry group
of S2r−1 to its Cartan U(1)r. The squashed metric in coordinates (2.2) is:

ds2
S2r−1 =

r∑
i=1

(dρ2
i + ρ2

i dθ
2
i ) + 1

1−∑r
i=1 a

2
i ρ

2
i

(
r∑
i=1

aiρ
2
i dθi

)2

,
r∑
i=1

ρ2
i = 1. (2.19)

We define the squashing parameters:

ω ≡ (ω1, . . . , ωr), ωi = 1 + ai ∈ R. (2.20)

Setting all ai = 0 gives the round sphere.
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Considering a Hopf fibration, the parameters ai can be set to make the squashing act
only on the base CPr−1, on the fiber, or on a combination of the two. From the definitions
of the two chosen fibers xtop (2.5) and xex (2.6) we know that a squashing acting only on
the base is achieved setting:

top: + a1 + a2 + · · ·+ ar = 0, (2.21)
ex: − a1 + a2 + · · ·+ ar = 0. (2.22)

To consider a squashing of the fiber instead we require:

top: (+a1 − a2, . . . ,+a1 − ar) = (0, . . . , 0), (2.23)
ex: (+a1 + a2, . . . ,+a1 + ar) = (0, . . . , 0). (2.24)

We see how a squashing acting only on the fiber imposes strict conditions, relating all
squashing parameters ai. In the case of a squashing only on the fiber it is possible to
preserve a bigger isometry subgroup, SU(r)× U(1), where SU(r) is the isometry group of
CPr−1 while U(1) parametrizes rotations along either of the two fibers. This case is also
particularly interesting as it can be used to dimensionally reduce the manifold along the
fiber onto CPr−1, considering the large squashing limit of the fiber. However, as we will
dimensionally reduce quotienting by a Zp-action along a fiber at large p, we assume from
now on that the squashing parameters are set as in (2.21) and (2.22) to act only on the
CPr−1 base.

As we will see in section 3 the perturbative partition function of a vector multiplet8

on S2r−1 factorizes into r factors. Each of these corresponds to a submanifold where the
U(1)r isometry degenerates to a single U(1):

S3 : (ρ1, ρ2) = (1, 0), (0, 1),
S5 : (ρ1, ρ2, ρ3) = (1, 0, 0), (0, 1, 0), (0, 0, 1).

(2.25)

These S1 fibers are special as they are fixed fibers of a subset U(1)r−1 of the full isometry
group U(1)r. In a neighbourhood of the fixed fibers the manifold can be identified with
a twisted solid torus Cr−1 × S1. We associate inhomogeneous coordinates for the planes
Cr−1 at each fixed fiber:

S3 : (1, 0), (0, 1)→
[
1, z2
z1

]
,

[
z1
z2
, 1
]
,

S5 : (1, 0, 0), (0, 1, 0), (0, 0, 1)→
[
1, z2
z1
,
z3
z1

]
,

[
z1
z2
, 1, z3

z2

]
,

[
z1
z3
,
z2
z3
, 1
]
.

(2.26)

Focusing on the fixed fiber (ρ1, ρ2, ρ3) = (1, 0, 0), the twisted identification of the solid
torus C2 × S1 is: [

1, z2
z1
,
z3
z1

]
∼
[
1, z2
z1
e

2πiω2
ω1 ,

z3
z1
e

2πiω3
ω1

]
, α ∼ α+ 2π

ω1
. (2.27)

The description of the other fixed fibers, both on S3 and S5, follows in a similar way.
8We will consider N = 2 vector multiplets on S3 and N = 1 on S5, these will be introduced in section 3.
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Going to squashed S2r−1, the Killing vector field v (2.4) determined by the choice of
supercharges depends on the squashing parameters:

v = ω1e1 + · · ·+ ωrer. (2.28)

In order to write v in terms of inhomogeneous coordinates, at each fixed fibers, we introduce
the vector field et corresponding to rotations along the fibers xtop and xex:

top: etop
t = +e1 + e2 + · · ·+ er,

ex: eex
t = −e1 + e2 + · · ·+ er.

(2.29)

Considering the fixed fiber (ρ1, . . . , ρr) = (1, . . . , 0) and substituting for e1, we find:

top: vtop = +etω1 + e2(ω2 − ω1) + · · ·+ er(ωr − ω1),
ex: vex = −etω1 + e2(ω2 + ω1) + · · ·+ er(ωr + ω1).

(2.30)

The Killing vectors corresponding to the other fixed fibers follow similarly.

2.3 Quotients

Besides squashing, another action which can be considered on S2r−1, squashed on its CPr−1

base, is that of taking the quotient by a freely-acting Zp along the fiber:

(z1, z2, . . . , zr)→ (z1e
±2πi/p, z2e

+2πi/p, . . . , zre
+2πi/p). (2.31)

The choice of sign in the first factor corresponds to a quotient acting respectively on the
fibers xtop and xex. In the case r = 2 the quotient of S3 by Zp is known as (squashed)
lens space L3(p,±1). As we are considering the generalization of such manifolds to higher
dimensions we introduce the notation L2r−1(p,±1) ≡ S2r−1/Zp, where the Zp-action is
that shown in (2.31) and the CPr−1 base is squashed. Notably these manifolds are not
simply connected and thus performing such quotient results into a non-trivial change in
the topology of the manifold. In particular on L2r−1(p,±1) the first homotopy group is:

π1(L2r−1(p,±1)) ∼= Zp. (2.32)

The free Zp-action introduces over L2r−1(p,±1) p topologically inequivalent complex line
bundles, labeled by flat connections:

A = diag(Am1
p , . . . , Amkp ). (2.33)

Here 0 ≤ mi < p and the index i = 1, . . . , k counts the Cartan elements of the gauge group
G. For r = 2 these have been studied in detail in [34], considering the Heegaard splitting
of L3(p,±1) as two solid tori L3(p,±1) = HL ∪f HR identified along their T 2 boundary
by a homeomorphism f : ∂HL → ∂HR. The flat connections AL and AR are related by a
gauge transformation U on ∂HR:

f ? AL = U−1ARU − iU−1dU. (2.34)
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Then the flat connection well defined on the entire L2r−1(p,±1) is given by:

A =

AL in HL

U−1ARU − iU−1dU in HR .
(2.35)

We will show in section 4, following [34], how this affects the evaluation of a Chern-Simons
term on L3(p,±1). Moreover, both for r = 2 and r = 3, when we will study the partition
function for a vector multiplet on L3(p,±1) and L5(p,±1), we will have to sum over flat
connections differing by their wrapping along the Hopf fiber. To dimensionally reduce onto
CPr−1 we can take the large p limit of either L2r−1(p,+1) or L2r−1(p,−1).

3 Supersymmetry on S2r−1

In the previous section we have presented the geometry of odd-dimensional squashed
spheres. We have also shown that on S2r−1 for r = 2, 3, a Hopf fibration over CPr−1

can be written choosing two fibers xtop (2.5) and xex (2.6), with respect to a direction fixed
by a choice of Killing vector v (2.4). In this section we motivate how the reductions along
either xtop or xex give rise to topologically twisted theories and exotic theories on CPr−1.
Hence we show, first, how a specific choice of supersymmetry generators fixes a direction on
S2r−1 through the Killing vector v given by the square of two supercharges Q, Q̃. Second,
we explain how the two choices of fiber, in the reduction, affect supersymmetry also on
the base manifolds CPr−1. The discussion generalizes to the case of a squashing acting
only on the base. We then present the field content of topologically twisted and exotic
theories, that is we introduce both d = 3 N = 2 and d = 5 N = 1 vector multiplets using
cohomological variables. We conclude this section presenting briefly some known results
for the vector multiplets perturbative partition functions Zpert

S2r−1 . These results have been
obtained performing a localization computation on S3 [8–10] and on S5 [12–16], which
showed how, generically, Zpert

S2r−1 can be expressed as multiple sine function Sr(iα(σ0)|ω).
Moreover such functions enjoy a factorization property related directly to the contributions
entering the localization computation, with each factor coming from a fixed fiber (2.25),
around which the manifold is locally a twisted solid torus Cr−1 × S1. This brief recap will
serve as starting point for the next two sections where we will treat separately S3 and S5.

3.1 Choice of supercharges

We will consider N = 2 superalgebras on S3 [7–10] and N = 1 superalgebras on S5 [11–15].
On the round cases these, and the corresponding bosonic subalgebras, can be determined
to be:

S3 : SU(2)l × SU(2|1) ⊃ SU(2)l × SU(2)r ×U(1)R,
S5 : SU(4|1) ⊃ SU(4)×U(1)R.

(3.1)

The group SU(2)l × SU(2)r and SU(4) are respectively the isometry groups of round S3

and S5, while the subscript R indicates the R-symmetry. At the level of Lie algebras we
have the isomorphisms:

so(4) ∼= su(2)l × su(2)r, so(6) ∼= su(4) . (3.2)
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At this point there is no preferred direction on S2r−1 and every choice of U(1) fiber is
equivalent. The arbitrary choice we have to do is to select two nilpotent supercharges Q
and Q. If we combine them as:

Q = Q+Q, Q̃ = Q−Q, (3.3)

the squares Q2 and Q̃2 give rise to bosonic transformations which include a U(1) rotation.
The Killing vector field generating this transformation is chosen to be v defined in (2.4):

v = e1 + · · ·+ er. (3.4)

The subset of the SO(2r) isometry group commuting with the selected U(1) is9 SU(r).
This is also the isometry group of a CPr−1 base which, however, is not necessarily the base
we are reducing onto.10 The two different reductions originate from this observation: we
can reduce along a fiber which is either the one specified by v or along a Ũ(1) contained in
the commutant SU(r), as long as the supercharges Q and Q̃ are preserved in the reduction.
These two situations correspond respectively to the choices of fiber xtop (2.5) and xex (2.6).

We now explain the cases of S3 and S5 separately.

Three sphere:

• Topologically twisted theories: in the round case xtop = v and the reduction is along
the Killing vector v. Notice that Q and Q are doublets under SU(2)r and have ±1

2
charge under the U(1) generated by the Killing vector, as in [9]. Thus, when reducing,
we need to turn on an appropriate R-symmetry background field along the fiber. Its
reduction has flux in CP1 such that it cancels the contribution of the spin connection.
Before turning on any squashing on the base, the chosen supercharges Q and Q̃ do
not generate any isometry on the base manifold CP1.

• Exotic theories: reducing along the commutant Ũ(1) ⊂ SU(2)l corresponds to the
choice of fiber xex. In this case the supercharges Q and Q do not transform under
SU(2)l and there is no R-symmetry background field. With respect to this choice
of fiber, Q and Q̃ generate transformations on the base CP1. This is the situation
considered in [10] which reduces in d = 2 to a Pestun-like theory [28].

Five sphere:

• Topologically twisted theories: again this corresponds to reduce along xtop which is
equivalent to reduce along the Killing vector v. As Q and Q have charge ±3

2 we need
to turn on a background R-symmetry connection. Similarly as for CP1, the reduced
R-symmetry field has flux on CP2 which cancels the spin connection on the base, as
in [27].

9For S3 our choice corresponds to SU(2)l.
10We have been assuming that the reduction is performed introducing a quotient by Zp and taking the

large p limit. However the following discussion holds also reducing by performing a large squashing acting
only on the fiber.
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• Exotic theories: the situation is slightly different for S5 as the full isometry group
SO(6) is part of the superalgebra. As before we reduce along the fiber xex which fixes
a Ũ(1) part of the commutant SU(3). However in this case the supercharges have
charge ±1

2 and we need a smaller R-symmetry background field. Again, we match
this case with Pestun-like theories on CP2 [3].

So far we have only considered, for simplicity, the reduction from round S2r−1. In
sections 4 and 5 we will be interested in a squashing acting only on the base CPr−1 which
breaks the isometry group to its Cartan U(1)r. The condition for the squashing parameters
is ±a1 + · · ·+ar = 0 respectively for topologically twisted (2.21) and exotic theories (2.22).
Notice that while the Killing vector (2.28) is now:

v = ω1e1 + · · ·+ ωrer, (3.5)

we can still perform the reduction along the fibers xtop and xex. This is possible as the
squashing acts only on the base and the fibers xtop and xex are left invariant. Differently
than in the round case, v in the reduction along xtop generates a U(1)r−1 isometry on the
base manifolds. This correctly vanishes sending the squashing parameters to zero.

3.2 Field content

Up to now the discussion has been entirely generic with respect to the field content of the
theories. We only demanded the existence of two supercharges Q and Q̃ squaring to a
particular U(1) direction on S2r−1. In order to write down explicitly partition functions in
the next sections, we consider N = 2 vector multiplet on S3 and an N = 1 vector multiplet
on S5. The superalgebras are those in (3.1). Both multiplets consist of a gauge boson Aµ,
a real scalar σ, gauginos λ, λ and an auxiliary scalar D. On S5 λi is a doublet of SU(2)R
while Dij is a triplet. All fields transform in the adjoint of a gauge group G. As we want to
dimensionally reduce from S2r−1 onto the CPr−1 base we would need to consider also the
reduction of the vector multiplet fields. However CP2 is not a spin manifold, due to the non
vanishing of the second Stiefel-Whitney class. Hence it is not obvious how to define the
reduction of fermions λ, λ. Therefore we find it more convenient to introduce cohomological
variables which turn all fields into differential forms. The rewriting of fermions gives on
S3 [35] a zero-form α and a one-form Ψ. On S5 instead together with the one-form Ψ we
need to include a two-form χ [36]. All the forms are uncharged under the R-symmetry. For
the supersymmetry transformations and actions we refer to [35, 36] and references therein.

3.3 Vector multiplet partition function

The full partition function for a vector multiplet on squashed S2r−1 with gauge group G
can be written compactly as:

ZS2r−1 =
∫
h
dσ0e

−SclZpert
S2r−1Z

non-pert
S2r−1 . (3.6)

Here σ0 is the Coulomb branch parameter integrated over the Cartan subalgebra h of the
gauge group G. Also Znon-pert

S3 = 1. Using a localization approach exact results have been
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computed both for r = 2, 3 for round and squashed S2r−1. We consider first the classical
part of (3.6). On S3 we turn on a Chern-Simons interaction term [29] while on S5 we
use the non Q-exact (nor Q̃-exact) SYM action [36]. After evaluating on the BPS locus,11

we find:

S3 : e−Scl = eiπk%3Tr(σ2
0), (3.7)

S5 : e−Scl = e
− 8π3%5

g2
YM

Tr(σ2
0)
. (3.8)

We have defined

%r ≡
VolS2r−1

squashed

VolS2r−1
= 1

(ω1ω2 . . . ωr)
. (3.9)

In this paper we will mainly focus on the perturbative part which can be expressed as
multiple sine functions in the following way:

Zpert
S2r−1 =

∏
α∈roots

Sr(iα(σ0)|ω) . (3.10)

A possible representation of these multiple sine functions is in terms of multiple gamma
functions, turning them into infinite products over the integers n = (n1, . . . , nr):

Sr(iα(σ0)|ω) =
∞∏

n1,...,nr=0

(
n · ω + iα(σ0)

) ∞∏
n1,...,nr=1

(
n · ω − iα(σ0)

)(−1)r+1

. (3.11)

We see how (3.10) is expressed as an infinite product over r positive integers n1, . . . , nr.
These represent quantum numbers under the U(1)r rotations of the modes entering the
perturbative partition functions. In particular the ni count modes of a Fourier expansion
in the C-planes into which the background S2r−1 can be embedded. For more details on
the partition function and multiple sine functions we refer to appendix A.

A different but equivalent way to express this same partition function is to consider
the fixed fibers we introduced in section 2. In the case of S2r−1 the manifold is an S1

bundle over CPr−1 which has r fixed points. We can use this fact and express our partition
function on S2r−1 in terms of r factors, each corresponding to a fixed fiber, giving the
following factorized form:

Zpert
S2r−1 =

∏
α∈roots

e−Feff [α(σ0),ω]
r∏
i=1

Zpert
Cr−1×S1

(
2πα(σ)
ωi

; 2πω1
ωi

, . . . ,∨i, . . . ,
2πωr
ωi

)
. (3.12)

Here we have introduced the perturbative partition function defined on Cr−1 × S1 and
we have associated one to each of the fixed fibers. Additionally we have also introduced
an effective action Feff which is not relevant for our work. This factorized fixed point
perspective on the partition function of S5, introduced in [14] and further examined in [15,
16, 37], relies on factorization properties of the multiple sine functions shown in [38].

11As we will study mainly the perturbative partition functions, on S5 we restrict ourselves to the trivial
instanton sector.

– 12 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
4

4 Reduction to CPCPCP1

In this section we will attempt to lay the groundwork for our approach to lens space re-
ductions on spheres by considering the already well documented example of theories on
S3 [7–10] and its lens space S3/Zp = L3(p,+1) [28, 29, 32]. We will give a slightly more
general approach to what is already given in the literature, as we will consider also the
possibility of reducing using L3(p,−1) [30, 31] to get a topologically twisted theory. In
section 5 we will use this approach to study the case of S5 and two possible lens spaces
S5/Zp = L5(p,±1). To obtain our results we consider S3, squashed along its CP1 base, and
two different fibers xtop and xex with respect to the Killing vector v given by the square
of the chosen supercharges Q, Q̃. In the unfactorized case, two different expressions for
topologically twisted and exotic theories arise when we introduce a rewriting of the per-
turbative partition function (3.11) which counts modes with respect to the U(1) rotations
along either xtop or xex. The same is true for the factorized case, where, however, we will
consider contributions coming from all fixed fibers. Finally we introduce a Zp quotient
along either of the two fibers. We then need to sum over topological sectors labeled by
inequivalent flat connections. In the large p limit these match flux sectors on CP1.

4.1 Perturbative partition function on S3

We consider an N = 2 vector multiplet with gauge group G and we start from the per-
turbative partition function as in (3.11). We are interested in performing some type of
dimensional reduction hence it is important to identify the fiber over which we would like
to reduce. In the context of the fibers given in 2 and our understanding of the geometry
we need to identify what combination of positive integers ni “lay” along a given S1 fiber.12

In the case of S3 we have two possible choices:

ttop = +n1 + n2, (4.1)
tex = −n1 + n2, (4.2)

corresponding to xtop and xex. Since we distinguish the S1 fiber and the S2 base we are
also free to include a squashing on the base without interfering with the fiber itself. To do
so we identify the squashing along the fiber in (2.21) and (2.22) and set it to vanish. In
addition we will define the following related equivariant parameters:

εtop = ω2 − ω1,

εex = ω2 + ω1.
(4.3)

As a small comment on the unsquashed limit ωi → 1 as it returns to the round S3, with our
interpretation of ε as equivariant parameter we can see that this limit should correspond
to the non-equivariant theory. This in turn gives us the non-equivaraiant limit for ε as
εtop → 0 and εex → 2.

12The corresponding U(1) charge of the fiber as generated by the U(1)s of the C-planes.
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4.1.1 Unfactorized result

As a starting point we take the result for the total perturbative partition function on S3

from (3.11):

Zpert
S3 =

∏
α∈roots

∏
n1,n2≥0

(
n1ω1 + n2ω2 + iα(σ0)

) ∏
n1,n2≥1

(
n1ω1 + n2ω2 + iα(σ0)

)−1
. (4.4)

Notice that this expression is expressed as a product over quantum numbers along the
Killing vector v (2.28). The only difference between the two cases we will consider, is that
the conditions for the squashing to be only on the base are different: (2.21) and (2.22). To
more easily express our partition functions we utilize the following notation:

∏
i

k∏
i

l [f(i)] =

∏
i

f(i)

k∏
i

f(i)

l . (4.5)

We can then take this perturbative determinant and subsitute for t and ε defined in (4.1),
(4.2) and (4.3):

Zpert,top
S3 =

∏
α∈roots

∏
t≥n2≥0

×

 ∏
t>n2≥1

−1 [
ω1t+ (ω2 − ω1)n2 + iα(σ0)

]

=
∏

α∈roots

∏
t≥n2≥0

×

 ∏
t>n2≥1

−1 [
εtopn2 + iα(σ0) +

(
1− εtop

2

)
t

]

=
∏

α∈roots
iα(σ0)

∞∏
ttop=1

[(
1− εtop

2

)
ttop + iα(σ0)

] [(
1 + εtop

2

)
ttop + iα(σ0)

]
.

(4.6)

Zpert,ex
S3 =

∏
α∈roots

∏
n2≥|t|

×

 ∏
n2+1≥|t|

∏
n2≥1


−1 [
−ω1t+ (ω2 + ω1)n2 + iα(σ0)

]

=
∏

α∈roots

∏
n2≥|t|

×

 ∏
n2+1≥|t|

∏
n2≥1


−1 [

εexn2 + iα(σ0)− εex
2 t

]

=
∏

α∈roots

∞∏
tex=−∞

[
εex
2 tex + iα(σ0)

]
.

(4.7)

The first line of both (4.6) and (4.6) shows how this rewriting only depends on the Killing
vector v expressed at the fixed fiber (ρ1, ρ2) = (1, 0) as in (2.30). Another relevant comment
is that the quantum number n2, in the two cases, needs to satisfy two different bounds
depending on t. This will become central when considering each flux sector separately
on CP1.
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4.1.2 Factorized result

An alternative way to express the S3 partition function is to consider the fixed points of
the base S2 manifold and the fiber S1 above each of them. In this way we can find the
factorized version of the pertubative partition function:

Zpert
S3 = e−Feff

2∏
l=1

Zpert
C×S1

(
2πα(σ0)

ωl
,

2πiωk
ωl

)
, k = 1, 2, k 6= l . (4.8)

Since we know the total perturbative partition function to be a multiple sine function we
may utilize its factorization as q-Pochhammer symbols:

S2(iα(σ0)|ω) = e
πi
2! B2,2(iα(σ0)|ω)

(
e
−2π α(σ0)

ω1 ; e2π ω2
ω1

)(
e
−2π α(σ0)

ω2 ; e2π ω1
ω2

)
= e−

πi
2! B2,2(iα(σ0)|ω)

(
e

2π α(σ0)
ω1 ; e−2π ω2

ω1

)(
e

2π α(σ0)
ω2 ; e−2π ω1

ω2

)

=
[(
e
−2π α(σ0)

ω1 ; e2π ω2
ω1

)(
e
−2π α(σ0)

ω2 ; e2π ω1
ω2

)(
e

2π α(σ0)
ω1 ; e−2π ω2

ω1

)(
e

2π α(σ0)
ω2 ; e−2π ω1

ω2

)] 1
2

.

(4.9)
Hence we find three equivalent ways of expressing the factorized partition function. Two
of which include B2,2 as the effective potential Feff , and a third that consists of square
roots of twice as many q-Pochhammer symbols. We use the following definitions for the
q-Pochhammer symbols:

(
e

2πi z
ωi ; e2πiωl

ωi

)
=


∏∞
j=0

(
1− e2πi z

ωi e
2πiωl

ωi
j
)

if Im
(
ωl
ωi

)
> 0,

∏∞
j=0

(
1− e2πi z

ωi e
2πiωl

ωi
(−j−1)

)−1
if Im

(
ωl
ωi

)
< 0.

(4.10)

The condition on the ratio of the squashing parameters ensures the expression does not
diverge. There is an issue for purely real squashing parameters ωi. If we attempt to address
the round S3 for which the squashings ωi are real and equal to 1, we encounter this very
problem. This can be remedied by formally giving small imaginary parts to the squashing
parameters ωi and then taking the limit as they vanish Im(ωi)→ 0 after having performed
the expansion using the definition.

To present a consistent regularization we start by making an initial assumption, with-
out loss of generality:

Im
(
ω2
ω1

)
> 0 . (4.11)

If we then assume Re (ω1) = Re (ω2) = 1, which is the case for the round S3, we can
determine the regularization of both q-Pochhammer expressions:

Im
(
ω2
ω1

)
> 0 =⇒ Im

(
ω1
ω2

)
< 0 . (4.12)

Indeed with these assumptions we can also formulate the regularization as:

Im(ω2) > Im(ω1) . (4.13)
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If we interpret these conditions using the equivariant parameters defined in (4.3) we can
formulate our regularization as:

Im(εtop) > 0 . (4.14)

The choice of regularization (4.11) tells us to regularize using εtop for both the topologically
twisted and exotic fibers.13

We wish to deal with the topologically twisted and exotic fibers individually so it is
advantageous to express our partition function using their respective epsilons. To do so we
can equivalently rewrite the arguments in the q-Pochhammer symbols [39] as:

top: e
2πiω2

ω1 → e
2πiω2−ω1

ω1 = e
2πi εtop

ω1

ex: e
2πiω2

ω1 → e
2πiω2+ω1

ω1 = e
2πi εex

ω1 ,

(4.15)

Using the new arguments in (4.9) we can produce the following factorized expansions for
the topologically twisted and exotic fibers:

Zpert,top
S3 =

∏
α∈roots

∞∏
t=−∞

∞∏
j=0


(
ω1t+ εtopj + iα(σ0)

)(
ω2t+ εtopj + iα(σ0)

)
(
ω1t+ εtop(j + 1) + iα(σ0)

)(
ω2t+ εtop(j + 1) + iα(σ0)

)


1
2

=
∏

α∈roots
iα(σ0)

∞∏
ttop=1

[(
1− εtop

2

)
ttop + iα(σ0)

] [(
1 + εtop

2

)
ttop + iα(σ0)

]
(4.16)

Zpert,ex
S3 =

∏
α∈roots

∞∏
t=−∞

∞∏
j=0


(
− ω1t+ εexj + iα(σ0)

)(
ω2t− εexj + iα(σ0)

)
(
− ω1t+ εex(j + 1) + iα(σ0)

)(
ω2t− εex(j + 1) + iα(σ0)

)


1
2

=
∏

α∈roots

∞∏
tex=−∞

[
εex
2 tex + iα(σ0)

]
.

(4.17)

One can obtain similar expressions before the shifts (4.15) by substituting for t = ±n1 +n2
and identifying j with either n1 or n2. Considering the first line in both (4.16) and (4.17)
we see how in this case the result depends on the Killing vector v computed at both fixed
fibers (2.25). This difference with respect to the unfactorized results will also be true for
the r = 3 case. Of course factorized and unfactorized results match and, after cancellations,
we find that this expansion of the perturbative partition function is exactly equivalent to
that found in (4.6) and (4.7). With our expressions reduced to products over the integer t
representing Fourier modes along our chosen fibers we are ready to consider the quotient
acting on the fibers.

4.2 Perturbative partition function on CPCPCP1

With the geometry of lens spaces discussed in section 2 we will use our knowledge to modify
the partition function of S3 in order to accommodate the global (topological) effects of a

13Assuming Im(ω1/ω2) > 0 instead would give Im(εtop) < 0 for the regularization.
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Zp quotient. Shown in (4.4), the partition function on S3 is a product over two positive
integers. From the geometry of the lens space we understand that the quotient introduces
an identification of segments along a free S1 submanifold. This results in a restriction on
the integers that make up the partition function. If we take the quotient to act along the
S1 fibers we defined in (4.1) and (4.2) we find that it produces the following projection
condition for L3(p,±1):

ttop = +n1 + n2 = α(m) mod p,
tex = −n1 + n2 = α(m) mod p.

(4.18)

Where integers α(m) that are equivalent modulo p are grouped together as a product,
and the equivalence classes [m], corresponding to flat connections as in [29], are then
summed over:

ZL3(p,±1) =
∑
[m]

∫
dσ0e

−SclZpert
L3(p,±1)(σ0,m) . (4.19)

Starting from the classical piece on L3(p,±1) we need to evaluate the Chern-Simons term
on the Abelian flat connections (2.35). Following [34] one finds:

Scl[A] = i
k

4π2

∫
L3(p,±1)

Tr(A∧ dA) =

= i
k

4π2

∫
HL

Tr(AL ∧ dAL) + i
k

4π2

∫
HR

Tr(AR ∧ dAR) + i
k

4π2

∫
∂HR

Tr(AR ∧ f ?AL) =

= ∓ iπk%3
p

Tr(m2) .
(4.20)

As usual ∓ is respectively for two choices of fiber xtop and xex and the Heegaard splitting
of L3(p,±1) = HL ∪f HR has been introduced in section 2.3. In the last step we have
used the fact that flat connections are such that dA0

L = dA0
R = 0. The non vanishing

of the Chern-Simons action is due to its failure to be gauge invariant on a manifold with
boundaries as HR. To compute the classical contribution for round L3(p,±1) round, we
combine (4.20) with (3.7):

e−Scl = e
iπk
p
Tr(σ2

0±m
2)
. (4.21)

In the limit p → ∞ we also send k → ∞ such that the ratio k/p is fixed and reproduce
the classical piece for Pestun-like S2 [28]. We will comment on the reduction along xtop

of (4.21) after the study of the one-loop determinant.
Considering now the perturbative part, we notice how, for large p, the modulo oper-

ation in (4.18) becomes irrelevant and the statement becomes n1 + n2 = ttop = α(m) and
−n1 + n2 = tex = α(m). To visualize this projection we can plot a finite part of the points
in the (n1, n2)-plane over which the integers are taken as a product. We show this for
different values of t in figure 1. We stress that these need to be considered for the large
modding limit p→∞, where we will find the result for CP1. The diagonal lines in figure 1
represent the “slices” of values of n1, n2 such that ±n1 + n2 = t = α(m). The effect of this
on the unfactorized expression on S3 (4.6) and (4.7) is to restrict n2, at each t = α(m),
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(0,0)
n1

n2

(a) Topologically twisted plot for t = 5.

(0,0)
n1

n2

(b) Exotic plot for t = 2,−2.

Figure 1. We plot slices at different values of t = α(m) of the quadrant of R2 spanned by positive
(n1, n2) such that n1 = ∓(n2 − t). The orientation of the line is related to the choice of fiber used
to reduce.

to belong to the corresponding slice. However, after simplifications, the results on S3 only
depend on t,14 and the reduced perturbative partition functions for the two theories on
CP1 are:

Zpert,top
CP1 (σ0,m)=


∏
α∈roots

[(
1− εtop

2

)
α(m)+iα(σ0)

][(
1+ εtop

2

)
α(m)+iα(σ0)

]
m>0∏

α∈roots iα(σ0) m=0
(4.22)

Zpert,ex
CP1 (σ0,m)=

∏
α∈roots

[
εex
2 α(m)+iα(σ0)

]
, m∈Zk .

(4.23)

Our result for the topologically twisted theory matches with [25] up to a constant shift
which can be reabsorbed redefining σ0 → σ0 + im. Taking into account this redefinition in
the classical piece (4.21) we find:

e−Scl = e
iπk
p
Tr(σ2

0+2iσ0m)
. (4.24)

As before we take the limit p → ∞ keeping the ratio k/p fixed. The resulting classical
piece in d = 2 differs from the one in [25] by a quadratic twisted superpotential [40].
Regarding Zpert,ex

CP1 (σ0,m), we can match the result already found in [28], up to an overall
sign factor dependent on α(m). As remarked in [28] this sign dependent factor can possibly
be determined by careful examination of the regularization and cancellations of factors
in (4.16) and (4.17).

14This will not be the case when considering r = 3 in the next section. One way to understand this
difference is in the appearance of the two products in Sr(iα(σ0)|ω) (3.11) for r = 2, 3.
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Although we have presented both the factorized and unfactorized expressions together
there is some extra information when considering the factorized versions. The factorized
expressions can be examined factor by factor to find the offset associated to a fixed point.

l = 1 top:
(

1− εtop
2

)
α(m) + iα(σ0) ex: − εex

2 α(m) + iα(σ0),

l = 2 top:
(

1 + εtop
2

)
α(m) + iα(σ0) ex: + εex

2 α(m) + iα(σ0).
(4.25)

5 Reduction to CPCPCP2

In this final section we repeat the computations from the previous section, now for the
perturbative partition function of an N = 1 vector multiplet on a squashed S5. So,
assuming as before that the squashing acts only on the base, we derive both unfactorized
and factorized expressions. We then study the same theory on the five-dimensional lens
space L5(p,±1) whose partition function is expressed as a sum over inequivalent topological
sectors corresponding to flat connections. Taking the large p limit we find the reduction
onto CP2, where effectively flat connections correspond to fluxes. Both for topologically
twisted and exotic theories, we are able to derive the full perturbative partition function on
CP2, including all flux sectors. Also in this case we provide a factorized and unfactorized
expression. It is particularly interesting that our results are presented a sum over a single
flux, unlike the approach in [3, 27].

5.1 Perturbative partition function on S5

In the previous section we performed the dimensional reduction of S3 by taking the large
p limit of L3(p,±1). In this section we consider the similar procedure on S5 and reduce
onto CP2 by taking a large Zp quotient along the fibers corresponding to the topologically
twisted (2.5) and exotic (2.6) cases. On top of the quotient we introduce a squashing acting
only on the CP2 base. The three squashing parameters ai need to satisfy ±a1 +a2 +a3 = 0
where the ± is, as usual, respectively for the topologically twisted or exotic fibers. We can
also relate these to equivariant parameters ε1, ε2. The definitions differ for the two cases:

top: εtop
1 = ω2 − ω1, εtop

2 = ω3 − ω1,

ex: εex
1 = ω2 + ω1, εex

2 = ω3 + ω1.
(5.1)

We notice that the unsquashed limit corresponds to εtop
1 = εtop

2 = 0 and εex
1 = εex

2 = 2. In
the following we will call in both cases the equivariant parameters simply ε1, ε2, however
they need to be intended as defined above.

5.1.1 Unfactorized result
We have reviewed how to write the full perturbative one-loop determinant on S5 for an
N = 1 vector multiplet with gauge group G as a triple sine function:

Zpert
S5 =

∏
α∈roots

∏
n1,n2,n3≥0

(
n1ω1 +n2ω2 +n3ω3 + iα(σ0)

) ∏
n1,n2,n3≥1

(
n1ω1 +n2ω2 +n3ω3 + iα(σ0)

)
.

(5.2)
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This expression is valid both for topologically twisted and exotic reductions. We also notice
that the product is taken over quantum numbers which are eigenvalues along the Killing
vector v (2.28). A first rewriting15 can be obtained by introducing, similarly as for S3, the
quantum number for rotations respectively along the fiber xtop and xex:

ttop = +n1 + n2 + n3, (5.3)
tex = −n1 + n2 + n3. (5.4)

In the rest we will denote both ttop and tex as t. Then, in both cases, we can choose to
rewrite Zpert

S5 in terms of t and two out of the three quantum numbers (n1, n2, n3). Choosing
to substitute for n1, we find for the topologically twisted and exotic cases:

Zpert,top
S5 =

∏
t≥n2+n3

∏
n2,n3≥0

×
∏

t≥n2+n3+1

∏
n2,n3≥1

(
ω1t+(ω2−ω1)n2 +(ω3−ω1)n3 +iα(σ0)

)

=
∏

t≥n2+n3

∏
n2,n3≥0

×
∏

t≥n2+n3+1

∏
n2,n3≥1

(
ε1n2 +ε2n3 +iα(σ0)+

(
1− ε1 +ε2

3

)
t

)
.

(5.5)

Zpert,ex
S5 =

∏
t≤n2+n3

∏
n2,n3≥0

×
∏

t≤n2+n3+1

∏
n2,n3≥1

(
−ω1t+(ω2 +ω1)n2 +(ω3 +ω1)n3 +iα(σ0)

)

=
∏

t≤n2+n3

∏
n2,n3≥0

×
∏

t≤n2+n3+1

∏
n2,n3≥1

(
ε1n2 +ε2n3 +iα(σ0)+

(
1− ε1 +ε2

3

)
t

)
.

(5.6)

Similar re-writings can be obtained substituting for n2 and n3. What is entering the
expressions above is the Killing vector written in inhomogenous coordinates at the fixed
fiber (ρ1, ρ2, ρ3) = (1, 0, 0), as in (2.30). We call such expressions unfactorized as they
capture “globally” all the modes counted by the one-loop determinant on the squashed S5.
Also, as for S3, we find that the quantum numbers n2, n3 need to satisfy, in the two cases,
two different bounds depending on t. These bounds will be those determining which modes
are counted at each flux sector on CP2.

5.1.2 Factorized result

Another approach is to compute the one-loop determinant by summing local contributions
around each fixed fiber (2.25) of S5 where, locally, the manifold is equivalent to a twisted
solid torus C2 × S1. At each fixed fiber the U(1)3 isometry group of the squashed S5

degenerates to a single U(1) whose action is determined by the choice of inhomogenous
coordinates (2.26). Thus the full perturbative part schematically is given by:

Zpert
S5 = e−Feff

3∏
l=1

Zpert,l
C2×S1

(
2πα(σ0)

ωl
,
2πiωk
ωl

,
2πiωm
ωl

)
, k,m = 1, 2, 3, k,m 6= l m 6= k.

(5.7)
15For notational purposes, in the following expression for the perturbative partition function, we will keep

the product over roots implicit.
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Here Feff is an effective prepotential. The factorization property [38] of the multiple sine
functions Sr is well known (A.5) and for r = 3 we find an expression in terms of q-
Pochhammer symbols (A.7):

S3(iα(σ0)|ω) = e−
πi
6 B3,3(iα(σ0)|ω)

(e−2π α(σ0)
ω1 ; e2πiω2

ω1 , e
2πiω3

ω1

)
× (2 cyclic permutations on ωi)


= e+πi

6 B3,3(iα(σ0)|ω)

(e+2π α(σ0)
ω1 ; e−2πiω2

ω1 , e
−2πiω3

ω1

)
× (2 cyclic permutations on ωi)


=
(
e
−2π α(σ0)

ω1 ; e2πiω2
ω1 , e

2πiω3
ω1

) 1
2
(
e
−2π α(σ0)

ω1 ; e−2πiω2
ω1 , e

−2πiω3
ω1

) 1
2

× (2 cyclic permutations on ωi) .

(5.8)
Naively such expressions would seem to depend only on local data however things are more
subtle. These infinite products need to be regularized, as explained in (A.7), and that is
when one is required to patch the local information consistently. For r = 3 we define four
different regularizations:

(
e

2πi z
ωi ; e2πiωl

ωi , e
2πiωm

ωi

)
=



∏∞
j,k=0

(
1− e2πi z

ωi e
2πiωl

ωi
j
e

2πiωm
ωi
k
)

if Im
(
ωl
ωi

)
, Im

(
ωm
ωi

)
> 0,

∏∞
j,k=0

(
1− e2πi z

ωi e
2πiωl

ωi
(−j−1)

e
2πiωm

ωi
k
)−1

if Im
(
ωm
ωi

)
> 0 > Im

(
ωl
ωi

)
,

∏∞
j,k=0

(
1− e2πi z

ωi e
2πiωl

ωi
j
e

2πiωm
ωi

(−k−1)
)−1

if Im
(
ωl
ωi

)
> 0 > Im

(
ωm
ωi

)
,

∏∞
j,k=0

(
1− e2πi z

ωi e
2πiωl

ωi
(−j−1)

e
2πiωm

ωi
(−k−1)

)
if 0 > Im

(
ωl
ωi

)
, Im

(
ωm
ωi

)
.

(5.9)
Following [41] we can assume without loss of generality:

Im
(
ω2
ω1

)
, Im

(
ω3
ω1

)
, Im

(
ω2
ω3

)
> 0 . (5.10)

Focusing on the round S5 we can simplify the above expressions setting Re(ω1) = Re(ω2) =
Re(ω3) = 1 and considering a small imaginary part:

Im(ωi) = ai. (5.11)

Then in this case the regularization in (5.10) reduces to:

l = 1 : Im(ω2/ω1) = a2 − a1 > 0, Im(ω3/ω1) = a3 − a1 > 0,
l = 2 : Im(ω1/ω2) = a1 − a2 < 0, Im(ω3/ω2) = a3 − a2 < 0,
l = 3 : Im(ω2/ω3) = a2 − a3 > 0, Im(ω1/ω3) = a1 − a3 < 0.

(5.12)

On round S5 the equivariant parameters defined for the topologically twisted case εtop
1 =

ω2 − ω1 = a2 − a1 and εtop
2 = ω3 − ω1 = a3 − a1, are purely imaginary and can be used to

determine completely the regularizations. The choice in (5.10) corresponds to set:16

Im(εtop
1 ) > Im(εtop

2 ) > 0 . (5.13)
16Notice that the relation in terms of εex

1,2 would be different using (5.10). Instead one can use (z1, z2, z3)
coordinates, assuming Im(ω2/ω1), Im(ω3/ω1), Im(ω2/ω3) > 0. Then the regularization would depend
on Im(εex

1,2).
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Then in terms of the signs of the imaginary parts of εtop
1,2 the choice of regularization (5.10)

becomes:
l = 1 : Im(εtop

1 ) > 0, Im(εtop
2 ) > 0 −→ + +,

l = 2 : Im(−εtop
1 ) < 0, Im(εtop

2 − εtop
1 ) < 0 −→ −−,

l = 3 : Im(εtop
1 − εtop

2 ) > 0, Im(−εtop
2 ) < 0 −→ +−,

(5.14)

where the definition of +/− regularization is simply a shortening for the four expressions
in (5.9). A small squashing does not affect the regularization and so the chosen distribution
of +/− regularizations is a valid assumption also for a squashed sphere, picking either xtop

as fiber or xex. This assumption is consistent with what is done in d = 5 for the topologically
twisted case in [16] and, as we will show below, with the reduction to d = 4 of the exotic
theory [3]. We notice that the parameters determining the regularization correspond to
the imaginary part of the Killing vector field vtop written in terms of inohomogenous
coordinates17 at each fixed fiber (2.30).

Having in mind the reduction to CP2 we find it convenient to express the arguments
of the q-Pochhammer symbols in (5.8) in terms of εi. For l = 1 we can equivalently rewrite
the arguments of the q-Pochhammer [39] for the two choices of fiber as:

top:
(
e

2πiω2
ω1 , e

2πiω3
ω1

)
→
(
e

2πiω2−ω1
ω1 , e

2πiω3−ω1
ω1

)
=
(
e

2πi ε1
ω1 , e

2πi ε2
ω1

)

ex:
(
e

2πiω2
ω1 , e

2πiω3
ω1

)
→
(
e

2πiω2+ω1
ω1 , e

2πiω3+ω1
ω1

)
=
(
e

2πi ε1
ω1 , e

2πi ε2
ω1

)
,

(5.15)

recalling that εi are defined differently in the two cases (5.1). Similar rewritings can be
found for l = 2, 3. Introducing local equivariant deformations parameters ε′i we find for the
numerators on the right hand sides of (5.15):

top l = 1 l = 2 l = 3

ε′1 ε1 −ε1 ε1 − ε2

ε′2 ε2 ε2 − ε1 −ε2

ex l = 1 l = 2 l = 3

ε′1 ε1 ε1 ε1 − ε2

ε′2 ε2 ε2 − ε1 ε2

Using in both cases the same regularization, as for the round S5, we can rewrite (5.8) as:

Zpert,top
S5 =

∞∏
t=−∞

∞∏
i,j=0

(
ω1t+ ε1i+ ε2j+ iα(σ0)

) 1
2
(
ω1t+ ε1(i+ 1) + ε2(j+ 1) + iα(σ0)

) 1
2

(
ω2t− ε1(−i− 1) + (ε2− ε1)(−j− 1) + iα(σ0)

) 1
2
(
ω2t− ε1(−i) + (ε2− ε1)(−j) + iα(σ0)

) 1
2(

ω3t+ (ε1− ε2)i− ε2(−j− 1) + iα(σ0)
)− 1

2
(
ω3t+ (ε1− ε2)(i+ 1)− ε2(−j) + iα(σ0)

)− 1
2 .

(5.16)
17Again, using (z1, z2, z3) coordinates makes vex the relevant Killing vector for the regularization.
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Zpert,ex
S5 =

∞∏
t=−∞

∞∏
i,j=0

(
−ω1t+ ε1i+ ε2j+ iα(σ0)

) 1
2
(
−ω1t+ ε1(i+ 1) + ε2(j+ 1) + iα(σ0)

) 1
2

(
ω2t+ ε1(−i− 1) + (ε2− ε1)(−j− 1) + iα(σ0)

) 1
2
(
ω2t+ ε1(−i) + (ε2− ε1)(−j) + iα(σ0)

) 1
2(

ω3t+ (ε1− ε2)i+ ε2(−j− 1) + iα(σ0)
)− 1

2
(
ω3t+ (ε1− ε2)(i+ 1) + ε2(−j) + iα(σ0)

)− 1
2 .

(5.17)

As for S3 similar expressions before the shifts (5.15) can be found substituting for t and
identifying i, j with two of n1, n2, n3. The result in the topologically twisted case matches
with [16]. We point out that each pair of factors depends on the Killing vectors vtop and vex

written in inhomogenous coordinates at each fiber. Below we will show how dimensionally
reducing these expressions we find the factorized perturbative partition function on CP2.

5.2 Perturbative partition function on CPCPCP2

As we anticipated previously, to dimensionally reduce onto CP2, we can perform a Zp quo-
tient acting freely on the fiber and take the large p limit. At finite p the partition function
computed on the manifold L5(p,±1) localizes to a set of inequivalent flat connections (2.33),
specified by holonomies:

A = diag(Am1
p , . . . , Amkp ), (5.18)

Where 0 ≤ mi < p with i = 1, . . . , k and k is the rank of the gauge group G. At
each topological sector we need to integrate over the covariantly constant scalar σ0. The
partition function is then a sum over m = diag(m1, . . . ,mk):

ZL5(p,±1) =
∑
[m]

∫
dσ0e

−SclZpert
L5(p,±1)(σ0,m)Znon-pert

L5(p,±1)(σ0,m) . (5.19)

The projection condition for modes on L5(p,±1) is:

top: ttop = +n1 + n2 + n3 = α(m) mod p,
ex: tex = −n1 + n2 + n3 = α(m) mod p.

(5.20)

At finite p > 1 and given flux sector m the unfactorized perturbative partition function
is obtained from (5.5) and (5.6) simply by changing the range of t as in (5.20). Similar
expressions can be obtained for the factorized form. With this result we are able to show
how, on a non-simply connected manifold as L5(p,±1), the perturbative partition function
factorizes for each flat connection. This improves the result about factorization in d = 5
of [19, 21]. The classical part (3.8) on round L5(p,±1) at the trivial instanton sector
becomes:

e−Scl = e
− 8π3
pg2

YM
Tr(σ2

0+f(σ,m))
. (5.21)

The function f(σ,m) can be determined generalizing the approach of [34] to higher dimen-
sional lens spaces and we leave it for a future study. In the large p limit, keeping pg2

YM
constant,18 the classical piece reduces to that computed on CP2.

18Notice that, in five dimensions, the Yang-Mills coupling g2
YM has the dimension of a length and it can

be related to the radius of the S1 which can be added to S5 to give a six dimensional theory on S5×S1 [12].
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(a) Topologically twisted plot for t = 5. (b) Exotic plot for t = 2,−2.

Figure 2. We plot slices at different values of t = α(m) of the octant of R3 spanned by positive
(n1, n2, n3) such that n1 = ∓(n2 + n3 − t). The orientation of the plane is related to the choice of
fiber used to reduce. Each slice determines the eigenvalues contributing at the corresponding flux
sector of the perturbative partition function on CP2.

Considering the perturbative part at large p, we notice as before that the term mod p
in (5.20) becomes irrelevant. We are then free to set ttop = α(m) and tex = α(m). Equiva-
lently we can impose:

top: n1 = −n2 − n3 + α(m),
ex: n1 = +n2 + n3 − α(m).

(5.22)

As in the previous section for CP1, the plots in figure 2 show the modes entering the
perturbative partition function, at given t, on CP2. These correspond to slices of cones
which are finite for the topologically twisted theory. Instead for the exotic theory one has
to extended these slices to all positive (n1, n2, n3).

We can write the partition function on CP2 as:

ZCP2 =
∑
[m]

∫
dσ0e

−SclZpert
CP2 (σ0,m)Znon-pert

CP2 (σ0,m) . (5.23)

Focusing on the perturbative partition function on CP2, we reduce the unfactorized ex-
pressions (5.5) along xtop and (5.6) along xex:

Zpert,top
CP2 (σ0,m) =

∏
α(m)≥n2+n3

∏
n2,n3≥0

(
ε1n2 + ε2n3 + iα(σ0) +

(
1− ε1 + ε2

3

)
α(m)

)

×
∏

α(m)≥n2+n3+1

∏
n2,n3≥1

(
ε1n2 + ε2n3 + iα(σ0) +

(
1− ε1 + ε2

3

)
α(m)

)
.

(5.24)
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Zpert,ex
CP2 (σ0,m) =

∏
α(m)≤n2+n3

∏
n2,n3≥0

(
ε1n2 + ε2n3 + iα(σ0) +

(
1
3 −

ε1 + ε2
3

)
α(m)

)

×
∏

α(m)≤n2+n3+1

∏
n2,n3≥1

(
ε1n2 + ε2n3 + iα(σ0) +

(
1
3 −

ε1 + ε2
3

)
α(m)

)
.

(5.25)

At the zero flux sector α(m) = 0 the result for Zpert,ex
CP2 (σ0,m) agrees with equation (108)

in [3]. Moreover, in both cases, we find for generic α(m) a slice of cone, together with its
interior, whose shape depends on the flux sector. These slices are exactly those pictured
in figure 2 at different values of t = α(m). We see how the modes contributing to each
flux sector are finite for topologically twisted theories while infinite for exotic ones. This
is consistent with the two cases being associated, respectively, to elliptic and transversely
elliptic problems [3, 4].

Similarly we can reduce the factorized expression (5.16) and (5.17) to:

Zpert,top
CP2 (σ0,m)=

∞∏
i,j=0

(
ω1α(m)+ε1i+ε2j+iα(σ0)

) 1
2
(
ω1α(m)+ε1(i+1)+ε2(j+1)+iα(σ0)

) 1
2

(
ω2α(m)−ε1(−i−1)+(ε2−ε1)(−j−1)+iα(σ0)

) 1
2
(
ω2α(m)−ε1(−i)+(ε2−ε1)(−j)+iα(σ0)

) 1
2

(
ω3α(m)+(ε1−ε2)i−ε2(−j−1)+iα(σ0)

)− 1
2
(
ω3α(m)+(ε1−ε2)(i+1)−ε2(−j)+iα(σ0)

)− 1
2 .

(5.26)

Zpert,ex
CP2 (σ0,m)=

∞∏
i,j=0

(
−ω1α(m)+ε1i+ε2j+iα(σ0)

) 1
2
(
−ω1α(m)+ε1(i+1)+ε2(j+1)+iα(σ0)

) 1
2

(
ω2α(m)+ε1(−i−1)+(ε2−ε1)(−j−1)+iα(σ0)

) 1
2
(
ω2α(m)+ε1(−i)+(ε2−ε1)(−j)+iα(σ0)

) 1
2

(
ω3α(m)+(ε1−ε2)i+ε2(−j−1)+iα(σ0)

)− 1
2
(
ω3α(m)+(ε1−ε2)(i+1)+ε2(−j)+iα(σ0)

)− 1
2 .

(5.27)

Our factorized results show that fluxes enter in the perturbative partition function simply
as a shift in the Coulomb branch parameter. For topologically twisted and exotic theories
we find the following shifts at each fixed point:

l = 1 top: iα(σ0) + α(m)
(

1− ε1 + ε2
3

)
ex: iα(σ0) + α(m)

(1
3 −

ε1 + ε2
3

)
,

l = 2 top: iα(σ0) + α(m)
(

1 + 2ε1 − ε2
3

)
ex: iα(σ0) + α(m)

(1
3 + 2ε1 − ε2

3

)
,

l = 3 top: iα(σ0) + α(m)
(

1 + 2ε2 − ε1
3

)
ex: iα(σ0) + α(m)

(1
3 + 2ε2 − ε1

3

)
.

(5.28)
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Equations (5.26) and (5.27) are the main results of this paper as we are able to derive
the factorized perturbative partition function on CP2 at all flux sectors for both N = 2
topologically twisted SYM and Pestun-like theories. This confirms the conjecture of [3]
regarding the m-dependence at non trivial flux sectors. A more careful analysis would
require also the study of instantons, which we hope to address in future work.

So far we have expressed the perturbative partition function as a super-determinant
originating from the Gaussian integral around the localization locus:

det =
∏
i

w−bii , (5.29)

where i captures all the eigenvalues under the transformations generated by the square of
the fermionic generator. The corresponding eigenvalue is wi and the integers bi count the
degeneracies in the modes at fixed eigenvalue. To connect with the results in [3] we take the
equivalent approach of computing the equivariant indices associated to the topologically
twisted and exotic complexes.19 In general the index takes the form:

ind =
∑
i

bie
−wi . (5.30)

Hence, with some computations, we can use the relation between (5.29) and (5.30) to
rewrite (5.26) and (5.27) as

ind = −eiα(m) I
+
α(m) + I−α(m)

2 χadj(eiα(σ)), (5.31)

where:

top: I+
α(m) = e

iα(m)
(
− ε1+ε2

3

)
(1− eiε1)(1− eiε2) + e

iα(m)
(

2ε1−ε2
3

)
(1− e−iε1)(1− ei(ε2−ε1))

+ e
iα(m)

(
2ε2−ε1

3

)
(1− ei(ε1−ε2))(1− e−iε2)

,

ex: I+
α(m) = e

iα(m)
(
− ε1+ε2

3

)
(1− eiε1)(1− eiε2) + e

iα(m)
(

2ε1−ε2
3

)
(1− eiε1)(1− ei(ε2−ε1))

+ e
iα(m)

(
2ε2−ε1

3

)
(1− ei(ε1−ε2))(1− eiε2)

,

(5.32)

top: I−α(m) = e
i(α(m)−3)

(
− ε1+ε2

3

)
(1− eiε1)(1− eiε2) + e

i(α(m)−3)
(

2ε1−ε2
3

)
(1− e−iε1)(1− ei(ε2−ε1))

+ e
i(α(m)−3)

(
2ε2−ε1

3

)
(1− ei(ε1−ε2))(1− e−iε2)

,

= I+
−α(m)(−ε1,−ε2),

ex: I−α(m) = e
i(α(m)−3)

(
− ε1+ε2

3

)
(1− eiε1)(1− eiε2) + e

iα(m)
(

2ε1−ε2
3

)
eiε2

(1− eiε1)(1− ei(ε2−ε1))
+ e

iα(m)
(

2ε2−ε1
3

)
eiε1

(1− ei(ε1−ε2))(1− eiε2)
,

= I+
−α(m)(−ε1,−ε2).

(5.33)
19We refer to [3, 4] for details on the topic.
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An important step in the previous computation is the regularization of I+
α(m) for topologi-

cally twisted theories and exotic theories (respectively ∓):[ 1
1− eiε1

]+ [ 1
1− eiε2

]+
= 1

(1− eiε1)(1− eiε2) =
∞∑

j,k=0
ei(jε1+kε2),

[ 1
1− e∓iε1

]− [ 1
1− ei(ε2−ε1)

]−
= 1

(1− e∓iε1)(1− ei(ε2−ε1))
=

∞∑
j,k=0

e−i((j+1)(∓ε1)+(k+1)(ε2−ε1)),

[ 1
1− ei(ε1−ε2)

]+ [ 1
1− e∓iε2

]−
= 1

(1− ei(ε1−ε2))(1− e∓iε2)
= −

∞∑
j,k=0

ei(j(ε1−ε2)−(k+1)(∓ε2)).

(5.34)
We recall that the regularization for the topologically twisted and exotic theories is the
same even if some local equivariant parameters do not come with the same sign. For both
cases I−α(m)(ε1, ε2) = I+

−α(m)(−ε1,−ε2) and it is enough to switch regularization and ε1,2-
dependence in (5.34). Then as final result we find, at trivial flux sector, for topologically
twisted and exotic theories:

top:
[ 1

1− eiε1

]+ [ 1
1− eiε2

]+
+
[ 1

1− e−iε1

]− [ 1
1− ei(ε2−ε1)

]−
+
[ 1

1− ei(ε1−ε2)

]+ [ 1
1− e−iε2

]−
+ c.c.

ex:
[ 1

1− eiε1

]+ [ 1
1− eiε2

]+
+
[ 1

1− eiε1

]− [ 1
1− ei(ε2−ε1)

]−
+
[ 1

1− ei(ε1−ε2)

]+ [ 1
1− eiε2

]−
+ c.c.

(5.35)
These equations match with the results in [3] for topologically twisted and flip theories20

after identifying eiε1 = s and eiε2 = t. Notice that the for the topologically twisted theory
we are computing the index for an elliptic operator and consistently we find that all terms
cancel except 2e(0ε1+0ε2) = 2.
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A Properties of multiple sine functions

We define:
ω = (ω1, . . . , ωr) = (1 + a1, . . . , 1 + ar), ω1, . . . , ωr ∈ R. (A.1)

We define the multiple zeta function as:

ζr(s, z|ω) =
∞∑

n1,...,nr=0

1
(n1ω1 + · · ·+ nrωr + z)s , (A.2)

20In [3] flip and flip’ theories are related by ε1,2 → −ε1,2.
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where z ∈ C and Re s > r. The series can be analytically continued to the complex plane,
due to holomorphicity in the domain. Thus we can introduce the multiple gamma function:

Γr(z|ω) = exp
(
∂

∂s
ζr(s, z|ω)

∣∣∣
s=0

)
, (A.3)

as a building block of the multiple sine function:

Sr(z|ω) = Γr(z|ω)−1Γr(ωtot − z|ω)(−1)r . (A.4)

The multiple sine function can alternatively be expressed in the following ways:

Sr(z|ω) = e(−1)r πi
r! Br,r(z|ω)

r∏
i=1

(
e

2πi z
ωi ; e2πiω1

ωi , . . . ∨i . . . , e
2πiωr

ωi

)

= e(−1)r−1 πi
r! Br,r(z|ω)

r∏
i=1

(
e
−2πi z

ωi ; e−2πiω1
ωi , . . . ∨i . . . , e

−2πiωr
ωi

)
.

(A.5)

Where the Brr is the Bernoulli polynomial, defined by the following generating function:

trezt∏r
j=1(eωj − 1) =

∞∑
n=0

Br,n(z|ω) t
n

n! . (A.6)

We also carry the following definitions of the q-Pochhammer symbols:

(z; q1, . . . , qk, qk+1, . . . , qr) =

 ∞∏
j1,...,jr=0

(
1− zq−j1−1

1 . . . q−jk−1
k q

jk+1
k+1 . . . q

jr
r

)(−1)k

,
|qi| > 1 1 ≤ i ≤ k
|qi| < 1 k < i ≤ r .

(A.7)
For proofs of above mentioned identities and conventions used we refer to [38].

Let us consider the perturbative part of the partition function of a vector multiplet
coupled to matter in a representation R of the gauge group G. For both S3 and S5 the one-
loop determinant can be written in terms of multiple sine functions modulo σ-independent
factors:

Z2r−1
1-loop =

∏
α∈roots Sr(iα(σ)|ω)∏

ρ∈R Sr
(
iρ(σ) + ωtot

2 |ω
) . (A.8)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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