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1 Introduction

In [1], we studied aspects of entanglement and quantum extremal surfaces (QES) in various
families of holographic spacetimes exhibiting cosmological singularities. This is inspired
by the exciting discoveries made recently on the black hole information paradox [2–6],
unravelled via the study of entanglement, quantum extremal surfaces and islands: by now
there is a large body of literature on various aspects of these issues, reviewed in e.g. [7–10].
Quantum extremal surfaces are extrema of the generalized entropy [11, 12] obtained by
incorporating the bulk entanglement entropy of matter alongwith the classical area of
the entangling RT/HRT surface [13–16]. These lead to various new insights on black
holes. Explicit calculation is possible in effective 2-dimensional models where the bulk
entanglement entropy can be studied through 2-dim CFT techniques.

It is interesting to ask if quantum extremal surfaces might be used to probe cosmological,
Big-Crunch or -Bang, singularities. While the vicinity of the singularity is expected to be
rife with severe stringy/quantum gravity effects, one might hope to gain some insight into
how these extremal surfaces probe such singularities. Some interesting recent work on QES
and cosmologies appears in [17, 18] and also e.g. [19–30].

The investigations in [1] pertained to various Big-Crunch singularities, in particular
the isotropic AdS Kasner spacetime. These spacetimes have no horizons and no significant
entropy, so they are somewhat unlike black hole horizons. Further, we are considering closed
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universes with no entanglement with “elsewhere” (e.g. other universes). Part of the goal
here is to gain some understanding of how quantum extremal surfaces probe such spacetime
singularities in closed universes with no horizons and no entanglement with regions external
to these universes. The time-dependence implies that the classical extremal RT/HRT
surface dips into the bulk radial and as well as time directions. Explicitly analysing the
extremization equations in the semiclassical region far from the singularity can be carried out
in detail: we find the surface bends in the direction away from the singularity. In the 2-dim
cosmologies [31] obtained by dimensional reduction of these and other singularities, quantum
extremal surfaces can be studied by extremizing the generalized entropy, with the bulk
matter taken to be in the ground state (which is reasonable in the semiclassical region far
from the singularity). The resulting extremization shows the quantum extremal surfaces to
always be driven to the semiclassical region far from the singularity. In section 2, we review
the analysis in [1]. The 2-dim dilaton gravity theories in these cases are somewhat more
complicated than Jackiw-Teitelboim gravity and are not “near JT” in essential ways. The
cosmological solutions here are sourced by an extra scalar which descends from the scalar
in the higher dimensional theory. These theories capture a subset of the observables of the
higher dimensional theory and so are best regarded as models of “effective holography” [32],
UV-incomplete in totality but adequate for capturing various aspects including entanglement.
Since the quantum extremal surfaces are driven to the semiclassical region far from the
singularity, the approximation of using the 2-dimensional theory is consistent and the other
higher dimensional modes do not make any significant contribution.

In this paper, we continue our investigations there and develop them further: wherever
possible we look for quantum extremal surfaces spacelike-separated from the observer loca-
tion. We first do a careful study of QES focussing on AdS Kasner singularities (section 3),
by introducing a spatial regulator. This enables relating the locations in time of the observer
on the holographic boundary and the QES with the bulk matter central charge and the regu-
lator. In the semiclassical region, this shows that the quantum extremal surface lags behind
the observer location (in the direction away from the singularity). A potential island-like
region, upon analysing in detail near the island boundary, turns out to be inconsistent. We
then extend this to more general singularities admitting a holographic interpretation, which
exhibit similar behaviour. In section 4, we study certain families of null Kasner Big-Crunch
singularities: these exhibit a certain “holomorphy” due to special properties of null back-
grounds. Further they are also distinct in the behaviour of the QES, which now can reach the
singularity (although the generalized entropy continues to be singular). We then discuss as-
pects of 2-dimensional effective theories involving dimensional reduction of other cosmologies
in section 5, including de Sitter space (Poincare slicing) and FRW cosmologies under certain
conditions. Section 6 contains some conclusions. Some details appear in two appendices.

2 Review: Big-Crunches & quantum extremal surfaces

There is a long history of studying cosmological singularities in string theory and holography:
see [31] for a partial list of references in this regard, and e.g. [43, 44] for reviews of
cosmological singularities in string theory. In [1], various families of cosmological spacetimes
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with spacelike Big-Crunch singularities were considered: the higher dimensional space and
its reduction ansatz are of the form

ds2
D = g(2)

µν dx
µdxν + φ

2
di dσ2

di ; gµν = φ
di−1
di g(2)

µν , D = di + 2 . (2.1)

di is the dimension of the transverse space. The Weyl transformation from g
(2)
µν to the 2-dim

metric gµν ensures that the dilaton kinetic energy vanishes and the action is

S = 1
16πG2

∫
d2x
√
−g

(
φR− U(φ,Ψ)− 1

2φ(∂Ψ)2
)
. (2.2)

The dilaton potential U(φ,Ψ) potentially couples the dilaton φ to Ψ. Certain aspects of
generic dilaton gravity theories of this kind (and these 2-dim cosmological backgrounds),
dimensional reduction and holography were discussed in [32] (see also [33]): these theories
are more complicated than JT gravity and are not “near JT”. they capture a subset of the
observables of the higher dimensional theory and so are best regarded as UV-incomplete
models of “effective holography”. There is nontrivial dynamics in the theory (2.2) driven
by the extra scalar Ψ which descends from the scalar in the higher dimensional theory. In
particular there are nontrivial cosmological singularity solutions here, which were analysed
in [31]. See appendix A for some details. The power-law scaling ansatze for the 2-dim fields
and the corresponding higher dimensional spacetimes are

φ = tkrm, ef = tarb, eΨ = tαrβ → ds2
D = ef

φ(di−1)/di

(
−dt2+dr2)+φ2/didx2

i . (2.3)

The universality (A.3) implies that k = 1. Note that r = 0 is the asymptotic (holographic)
boundary. The equations of motion (A.2) then lead to algebraic relations between the
various exponents above, which can then be solved for, leading to nontrivial families of
cosmological solutions [31]. A prototypical example is AdS Kasner and its reduction to
2-dimensions,

U = 2Λφ1/di , Λ = −1
2 di(di + 1) , p = 1

di
, α =

√
2(di − 1)

di
,

ds2 = R2

r2 (−dt2 + dr2) + t2pR2

r2 dx2
i , eΨ = tα , dip

2 = 1− 1
2α

2 ,

→ φ = tRdi

rdi
, ds2 = t(di−1)/di Rdi+1

rdi+1 (−dt2 + dr2) , eΨ = t
√

2(di−1)/di . (2.4)

R is the AdS length scale. We are suppressing an implicit Kasner scale tK : e.g. t2p→ (t/tK)2p.
We will reinstate this as required.

The higher dimensional spacetimes and their dual field theories were in fact studied
long back in [34–37] as certain kinds of time-dependent deformations of AdS/CFT with
the hope of gaining insights via gauge/gravity duality into cosmological (Big-Bang or
-Crunch) singularities: some aspects of these were reviewed in [31]. See also [39–42] for
further investigations on some of these. While the bulk spacetime develops a cosmological
Big-Crunch (or -Bang) singularity and breaks down, the holographic dual field theory (in
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Figure 1. Cartoon of extremal surfaces in AdS Kasner spacetime, anchored on a boundary time
slice t0 (extended as the grey horizontal plane in the bulk). The extremal surface (red) bends away
from the singularity at t = 0 (dotted line), i.e. t∗ > t0, with (t∗, r∗) the turning point.

the AdS5 case), living on a space that itself crunches, is subject to a severe time-dependent
gauge coupling g2

YM = eΨ and may be hoped to provide insight into the dual dynamics.
In this case the scalar Ψ controls the gauge/string coupling. Generically it was found
by analysing at weak coupling that the gauge theory response also ends up appearing
singular [37]: however null singularities appear better-behaved admitting weakly coupled
CFT descriptions in certain variables [35] (a string worldsheet analysis in related null
Kasner singularities appears in [38]). There is a large family of such backgrounds exhibiting
cosmological singularities found long back: in these the deformations of the metric and
string dilaton Ψ are constrained, suggesting that the dual CFT state is likely nontrivial,
with nontrivial non-generic initial conditions required to create Big-Crunch singularities
which are perhaps qualitatively different from black holes (note that generic severe time-
dependent deformations on the vacuum state are expected to thermalize on long timescales,
dual to black hole formation in the bulk). Some of these backgrounds have the technical
feature of spatial isotropy which allows studying these backgrounds from a possibly simpler
perspective, by carrying out a dimensional reduction on the spatial directions with the
ansatz (2.1). This enables the 2-dim dilaton gravity perspective (2.2) formulated in [31],
and also helps uncover new cosmologies of the form (2.3) including ones with nonrelativistic
(hyperscaling violating Lifshitz) asymptotics, reviewed briefly in appendix A.

Extremal surfaces can be studied as codim-2 surface probes of these cosmological
spacetimes. This is reliable if the surface is anchored on a boundary subregion in the
semiclassical region far from the singularity where stringy or quantum gravity effects are
not large. This can be analysed in great detail as in [1]. The time-dependence of the
cosmology implies that the RT/HRT surface dips into the time direction also, besides the
radial (holographic) direction. The resulting picture (focussing on strip-shaped subregions
consistent with the symmetries here) is as in figure 1. The surface is parametrized as
(t(r), x(r)) stretching in all xi directions except x ∈ {xi} which represents the width (size)
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direction of the strip with ∆x = l. The anchoring time slice is t(0) = t0: some details
appear in appendix A. The extremization of the time function t(r) is more complicated due
to the time-dependence and gives a second order nonlinear differential equation for t(r).
In the semiclassical region, we expect the time-dependence to be mild so that dt

dr ≡ t
′ � 1.

This leads to a slightly simpler, but still nonlinear, equation, which however can be shown
to admit power-series solutions,

t(r) = t0 +
∑
n

cnr
n , cn ∼

1
t#0

⇒ t∗ > t0 , (2.5)

which can then be shown to satisfy t∗ ≡ t(r∗) > t0, in other words, the surface bends in
the direction away from the singularity. This is straightforward to see (although involved)
in the regime of small subregion width (where A = t∗

r2
∗
& 1

t20
). The analysis is a little more

delicate in the IR limit where the subregion becomes the whole space (and A→ 0): here
we find

r∗ →∞ , t0 →∞ ,
t0
r∗

. 1; t∗ & t0 . (2.6)

Thus the RT/HRT surface is driven to the region far from the singularity (see also [45] for
similar observations in a different context): in the IR limit this effectively means infinitely
far from the singularity since t∗ & t0 →∞.

Another notable example with similar behaviour is [46], where the Hartman-Maldacena
surfaces exhibit a limiting surface in the black hole interior.

Quantum extremal surfaces. Now we briefly review the discussion of quantum extremal
surfaces in [1]. Quantum extremal surfaces are extrema of the generalized entropy Sgen =
Scl + Sbulk, the leading classical term being the area of the extremal surface while the
second term is the entropy of the bulk matter in the region enclosed by the extremal surface
and the boundary. In 2-dim theories, the bulk entropy can be calculated by using 2-dim
CFT techniques. For instance, if the bulk matter is approximated by a CFT in a curved
space and is taken to be in the ground state, then the bulk entropy can be obtained by a
generalization of the Calabrese-Cardy replica formulation [47, 48] for a single spacetime
interval ∆2, giving (see appendix B)

Sgen = φ

4G + c

12 log
(
∆2ef |(t,r)ef |(t0,r0)

)
; 1� c� 1

G
. (2.7)

The last condition arises from requiring that the bulk matter entropy is non-negligible
but not so large as to destabilize the leading classical area contribution. The 2-dim space
is of the form ds2 = efηµνdx

µdxν and the Weyl factors above arise from the conformal
transformation of the twist operator 2-point function in the replica formulation, the twist
operators located at the endpoints of the interval in question (between the boundary and
the extremal surface).

As a simple time-independent example consider the 2-dim dilaton-gravity background
obtained from the dimensional reduction (2.1) of AdSdi+2 with metric in the Poincare slicing
ds2

AdSdi+2
= R2

r2 (−dt2 + dr2) + R2

r2 dx
2
i (R is the AdS scale). Some aspects of such generic
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2-dim dilaton gravity theories have been discussed in [32]. This 2-dim background, the
corresponding generalized entropy (2.7) and its extremization give

φ = Rdi

rdi
, ds2 = Rdi+1

rdi+1 (−dt2 + dr2) , (2.8)

Sgen = φr
4G

Rdi

rdi
+ c

12 log
(

r2/ε2UV
(r/R)di+1

)
⇒ ∂rSgen = − diφrR

di

4Grdi+1 −
c

6

(
di − 1

2

) 1
r

= 0 .

(We have written Sbulk using the rules of boundary CFT since the effective space is the
half-line with one end of the interval at the boundary r = 0: see appendix B. A useful
resource for QES calculations in time-independent cases is [49].) We see that both terms are
of the same sign since c > 0 and di > 1. Thus the solution is r ≡ r∗ →∞ for the location
of the QES: this leads to the entire Poincare wedge which is the expected answer (also in
the higher dimensional point AdSD when the subsystem becomes the whole space). Thus
in this case, there are no islands, i.e. regions disconnected from the boundary defined e.g.
by a finite location of the quantum extremal surface.1

One way to understand this is in terms of the violation of the Bekenstein bound, as
discussed in [18]: if the classical dilatonic term is overpowered by the subleading bulk
entropy contribution, we may expect islands. To see this, note that (2.8) can be recast as

Sgen = φ

4G + c

12
di − 1
di

log φ , (2.9)

with a relative plus sign in the two contributions, retaining only terms relevant for extrem-
ization. As long as φ is not too small, the bulk entropy term scaling as log φ is subdominant
to the classical area term scaling as φ. If we entangle the bulk matter with “elsewhere”
then Sbulk could increase possibly leading to nontrivial competition with the classical area
term and thereby islands, as is the case in [50] and in various cases in [18].

Now we will study quantum extremal surfaces in the 2-dim cosmological backgrounds
reviewed earlier. We focus first on the 2-dim cosmology obtained by reduction of the AdSD
Kasner spacetime (2.4), restricting attention to the observer at the holographic boundary
at r = 0. We carry out the extremization in the reliable semiclassical region far from the
singularity at t = 0: the observer is at (t0, 0). Assuming for simplicity that the QES lies
on the same time slice as the observer i.e. t = t0, equivalently that the QES is maximally
spacelike separated from the observer, it turns out that (2.7) can be recast as

t= t0 : Sgen = φ

4G+ c

6
di−1
di

logφ, φ= t

rdi
,

∂rSgen∼−
(
φr
4G

di t

rdi+1 + c

12
di−1
r

)
= 0, ∂tSgen∼

φr
4G

1
rdi

+ c

12
di−1
di t

= 0 . (2.10)

1In e.g. [50], a flat non-gravitating (bath) region was appended beyond the boundary r = 0 of an AdS2

region, giving the generalized entropy Sgen ∼ φr
4G

1
r

+ c
6 log((r+r′)2 1

r
). The interval in question has endpoints

r ∈ AdS2 and r′ in the flat space region beyond the boundary: the warp factor at the r′ end does not
contribute since it is trivial in that flat region. Both r, r′ > 0 in this parametrization: the space is not a
half-line now. Setting r′ ∼ 0 for simplicity and extremizing gives − φr

4G
1
r2 + c

6
1
r

= 0: the competition between
the two terms leads to a finite value r∗ ∼ φr

Gc
for the QES location, i.e. an island.
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Since c > 0 and di > 1, both contributions in both derivative expressions appear with the
same sign. Note also that in this entire discussion, we are on one side (the past) of the
singularity at t = 0, so the range of the time variable is t ≡ |t| ≥ 0. Then it is clear that
the only QES solution (t∗, r∗) to extremization is [1]

t ∼ t0 , r ≡ r∗ →∞ , t ≡ t∗ →∞ ; t∗ . r∗ , (2.11)

i.e. the quantum extremal surface is driven to the semiclassical region, infinitely far from the
singularity at t = 0. A more general analysis vindicates this. Further, in this semiclassical
region the dilaton is not too small so there are no islands here since the Bekenstein bound
is not violated, as in (2.9).

3 AdS Kasner, quantum extremal surfaces, regulated

In what follows we will study various 2-dim backgrounds given by the dilaton φ and the
2-dim metric ef and analyse quantum extremal surfaces obtained from the extremization of
the generalized entropy (2.7): in general these are of the form

Sgen = φ

4G + c

12 log
(
∆2 ef |(t,r)

)
, ∆2 = r2 − (t− t0)2 ,

∂rφ

4G + c

6
r

∆2 + c

12∂rf = 0 , ∂tφ

4G −
c

6
t− t0

∆2 + c

12∂tf = 0 , (3.1)

where we have retained only terms relevant for extremization. These are all spaces with
a holographic boundary so we are using the corresponding expression for the generalized
entropy in appendix B.

We would like to understand the dependence of the quantum extremal surface (t∗, r∗)
on the observer location (t0, r0) ≡ (t0, 0): we will focus on the observer at the holographic
boundary r = 0. Here we study the AdS Kasner case: we will put back the AdS scale R
and the Kasner scale tK in (2.4) so the lengthscales are manifest. Then the dilaton and
2-dim metric become

φ = t/tK
(r/R)di , ds2 = (t/tK)(di−1)/di

(r/R)di+1 (−dt2 + dr2) . (3.2)

Towards understanding quantum extremal surfaces, let us study (3.1) with the scales put in
explicitly as in (3.2). If we assume t = t0, we obtain (2.10), (2.11), which are structurally
similar to the AdS case (2.8). We will instead attempt solving for t as a function of t0.
Then the extremization equations are (introducing φr as bookkeeping for now)

c

6
r

∆2 = φr
4G

di t/tK
rdi+1/Rdi

+ c

12
di + 1
r

,
c

6
t− t0

∆2 = φr
4G

1/tK
rdi/Rdi

+ c

12
di − 1
di t

. (3.3)

Note that each term now has dimensions of inverse length manifestly. In the parametrization
of these cosmologies (2.4), the singularity is at t = 0: regarding this as a Big-Crunch, we
take the time coordinate t to represent |t| so that t > 0 in our entire discussion.
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We require that the QES is spacelike-separated from the observer, consistent with the
interpretation of these extremal surfaces as holographic entanglement. This implies

∆2 > 0 ⇒ t∗ > t0 , [∆2 = r2 − (∆t)2] (3.4)

from the t-equation in (3.3). This means that the QES always lags behind the observer, in
the direction away from the singularity (t = 0).

Let us now look in more detail at QES solutions near the semiclassical solution (2.11),
where ∆t ∼ 0 and r, t→∞. Let us first rewrite the r-extremization equation in (3.3) as

3φr
Gc

di t/tK
rdi+1/Rdi

+
(
di+1
r
− 2r

∆2

)
= 3φr
Gc

di t/tK
rdi+1/Rdi

+ di+1
r

( di−1
di+1r

2−(∆t)2

r2−(∆t)2

)
= 0 (3.5)

As long as ∆t is small, i.e. ∆2 ∼ r2, the second term is positive: thus both terms are positive,
the only solution to this being r ≡ r∗ →∞. This is very similar to the time-independent
AdS case in (2.8), giving the entire Poincare wedge as the entanglement wedge: there are
no islands.

Analysing the t-extremization equation is rendered tricky with r∗ →∞ strictly. Towards
obtaining insight into the t0 dependence of t∗, let us regulate as r∗ = Rc ∼ ∞ with some
large but finite spatial cutoff Rc that represents the boundary of the entanglement wedge.
Then the t-equation in (3.3) becomes

∆t
R2
c − (∆t)2 = 1

2Kc
+ di − 1

2di t
,

1
Kc

= 3φr
Gc

1/tK
Rdic /Rdi

. (3.6)

This expression is manifestly satisfied semiclassically as in (2.11). Taking these regulated
equations as containing finite terms we can solve for t∗: with ∆t � Rc, we obtain the
approximate regulated expression

∆t
R2
c

∼ 1
2Kc

+ di − 1
2di t0

, ∆t = t∗ − t0 , (3.7)

where we have approximated ∆2 ∼ R2
c and set t ∼ t0 in the last expression (with t0 large,

as in (2.11)) (there is some similarity with the semiclassical expansion (2.5)). We see that
the QES (3.7) lags behind the observer, in the direction away from the singularity. We now
see that as t0 decreases, ∆t increases, i.e. the lag of the QES is increasing: see the top part
of figure 2 for a heuristic depiction (the lag is exaggerated!).

The on-shell generalized entropy (3.1) in the semiclassical regime where ∆2 ∼ R2
c

becomes
So.s.

gen ∼
φr
4G

t∗/tK
(Rc/R)di + c

12 log
(
R2
c

ε2UV

(t∗/tK)(di−1)/di

(Rc/R)di+1

)
, (3.8)

with t∗ in (3.7). Since t∗& t0 and Rc is large, So.s.
gen is not dramatically different structurally

from the AdS value (2.8), without the t∗/tK factors. In more detail, we see that the on-shell

AdS expression (2.8) with r∗=Rc and φ|r∗ =φ∗ becomes So.s. = φ∗
4G+ c

12 log
(
R2

ε2UV
(φ∗φr )(di−1)/di

)
so the log vanishes when its argument becomes O(1), i.e. when φ∗ is sufficiently small. At
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AdS Kasner

*

QES (t  ,0)0

r=0
boundary

observer

t=t K

singularity t=0

far region
time independent

region

*
(t  ,r )

Figure 2. Cartoon of the 2-dim AdS Kasner geometry (singularity at t = 0), the holographic
boundary at r = 0 and the QES at (t∗, r∗), with a time-independent AdS space appended for t > tK .
The boundary observer (t0, 0) moves in time from the time-independent region to the AdS Kasner
region. The QES lags behind in time, i.e. t∗ > t0, when t0 is in the Kasner region.

this point, So.s.∼ φ∗
4G ∼ 0, in accord with the physical expectation that the AdS ground

state has zero entropy. In this sense the spatial regulator Rc has physical meaning as the
effective physical boundary of the entanglement wedge, where φ∗ becomes small enough
to be comparable with ( εUV

R )# . Note that we can recast So.s. as (2.9) exactly setting
1

φ
(di−1)/di
r

R2

ε2UV
∼ 1 thus fixing φr, which can possibly be regarded as renormalizing φr

G ≡
1
Gr

(and rendering Sgen finite). The above expression (3.8) is similar when the t∗/tK factors
are O(1) so the above arguments apply, and the overall entropy is not appreciable.

As a further check, note that this QES solution vindicates the maximin property.2

Naively it appears that ∆t
R2
c
∼ 1

t0
shows a growth as t0 decreases. Rewriting (3.6) and

solving as a quadratic, taking ∆t > 0, gives

∆t
Rc

= 1
Rc

√√√√ 1
( 1
Kc

+ di−1
di t

)2
+R2

c −
1

1
Kc

+ di−1
di t

 , (3.9)

showing a slow growth in ∆t as t decreases, for fixed regulator Rc. Extrapolating and
setting t0 = 0 shows that t = 0 is not a solution (this can also be seen in (3.3)).

Our analysis is best regarded as valid in the semiclassical regime, far from the singularity,
approximating bulk matter to be in the ground state. However perhaps the qualitative
feature of the quantum extremal surfaces and the associated entanglement wedge excluding
the near singularity region (depicted schematically in the top, AdS Kasner, part of figure 2)
will remain as a reliable result even with better near singularity bulk entropy models.

2In the semiclassical regime, the second derivatives ∂2
t Sgen|∗ ∼ − c

12
di−1
di t

2
∗
− c

6
1

∆2
∗
− c

3
(t∗−t0)2

∆4
∗

< 0

and ∂2
rSgen|∗ ∼ φr

4G
di (di+1) t∗ Rd

i

tk R
di+2
c

+ c
12

di+1
R2

c
+ c

6
1

∆2
∗

(
1− 2R2

c

∆2
∗

)
> 0 confirm time-maximization and spatial

minimization, with the regulator Rc finite.
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We note that the So.s.
gen (3.8) decreases with time evolution towards the singularity (this

is reminiscent of e.g. [51, 52] revealing low complexity in such singularities). Recasting this
semiclassical value in the form (2.9), we note that as long as φ is not too small, the bulk
entropy term is subleading to the area term. Thus the Bekenstein bound is not violated
and there are no spatially disconnected islands of the kind noted in black holes. In some
qualitative sense, it is tempting to regard the excluded near singularity region as a timelike
separated island-like region: it would be interesting to understand this better.

3.1 Searching for islands

Looking now at (3.5), we see that for

di − 1
di + 1r

2 < (∆t)2 < r2 , (3.10)

a spacelike-separated island appears to emerge. Unlike the semiclassical region with ∆t� r

(where both terms are the same sign), the numerator in the term in brackets in (3.5) now
changes sign indicating a large but finite r ∼ ( φrGc)

# solution leading to a disconnected
region: there is some structural similarity to the discussion in [50] (see Footnote 1). Towards
exploring this in detail, first, note that the ∂r-equation in (3.3) can be rewritten as

∆2 = 2r2

di + 1
1

1 + di
di+1

t
K

,
1
K

= 3φr
Gc

1/tK
rdi/Rdi

, (3.11)

so

∆2 = r2 − (∆t)2 ⇒ ∆t
r

=

√√√√ di−1
di+1 + di

di+1
t
K

1 + di
di+1

t
K

. (3.12)

The potential island arises at large finite r in (3.5) when

(∆t)2 &
di − 1
di + 1r

2 (3.13)

so that ∆t is not small but in fact scales as r which is large. Expanding (3.12) in the
vicinity of (3.13) gives

∆t
r2 ∼

√
di − 1
di + 1

1
r

(
1 + di

d2
i − 1

t

K
+ . . .

)
. (3.14)

Now the ∂t-equation (3.3) as an exact quadratic can be solved to obtain (choosing ∆t > 0)

∆t
r

=

√√√√√ d2
i

(di−1)2
t2

r2

( di
di−1

t
K + 1)2

+ 1−
di
di−1

t
r

di
di−1

t
K + 1

, (3.15)

with K defined in (3.11). For a nontrivial island-like solution, this expression for ∆t
r must

match that in (3.12) in the vicinity of the island boundary (3.13). With t
K ∼ ε being small,

we expand and obtain at leading order

√
1 + x2 − x =

√
di − 1
di + 1

solving−−−−→ x ≡ di
di − 1

t

r
= 1√

d2
i − 1

(3.16)
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This gives

∆t &
√
di − 1
di + 1 r ∼ di t . (3.17)

The last condition ∆t & di t is clearly impossible with ∆t = t− t0 for any di > 1.
In addition, using the leading term matching condition (3.17) and expanding (3.15)

about the potential island boundary (3.13) shows that the first subleading term in t
K is

1
di

√
di+1
di−1

t
K which does not match the first subleading term in (3.14).

We have been looking for an island-like solution in the vicinity of the potential island
boundary (3.13) emerging continuously from the semiclassical region where r∗ → ∞
as discussed after (3.5). So we require a simultaneous solution to the extremization
equations (3.3) recast as (3.12) and (3.15), just inside the island region. Then at the very
least the leading and first subleading terms in the expansions of (3.12) and (3.15) near (3.13)
must agree, which is not the case. Thus this potential island solution is inconsistent.

One could ask if there are nontrivial islands further away, towards the singularity
(although they may not be physically reliable). In this regard, we can write ∆t = t − t0
and expand out the r- and t-extremization equations (3.5), (3.6) : this leads to two cubic
equations in t. However, taking them as simultaneously true (and e.g. eliminating the t3

term), it appears that there are no consistent finite r, t solutions to these, i.e. no islands.

3.2 Appending a time-independent far region

Let us now consider appending the AdS Kasner space with a time-independent AdS region
far from the singularity, joined at the Kasner scale t = tK . See figure 2. So we have AdS
Kasner for t < tK and the time-independent AdS space for t > tK , i.e.

φ = t/tK
(r/R)di , ds2 = (t/tK)(di−1)/di

(r/R)di+1 (−dt2 + dr2) [t < tK ] ,

φ = 1
(r/R)di , ds2 = 1

(r/R)di+1 (−dt2 + dr2) [t > tK ] . (3.18)

The spaces are joined continuously at t = tK but the joining is not smooth. Now the
extremization equations must be analysed separately as the observer at t0 moves through
each region. The generalized entropy and its extremization (3.1) applied to the background
profiles (3.18) in both regions give

t0 > tK : c

6
r

∆2 = φr
4G

di
rdi+1/Rdi

+ c

12
di + 1
r

,
c

6
t− t0

∆2 = 0 ; (3.19)

t0 < tK : c

6
r

∆2 = φr
4G

di t/tK
rdi+1/Rdi

+ c

12
di + 1
r

,
c

6
t− t0

∆2 = φr
4G

1/tK
rdi/Rdi

+ c

12
di − 1
di t

.

In the time-independent region t > tK we see it is physically reasonable to set t∗ = t0, i.e.
the QES lies on the same time slice as the observer. This follows from time-translation
invariance in that region at least for t0 � tK (far from the junction at tK). Since the joining
slice tK is in the semiclassical region far from the singularity, it is adequate to use (3.7) with
the regulator to study the time evolution of the QES in the Kasner region. The lagging (or
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repulsive) feature of the QES thus begins once the observer transits into the Kasner region
(the sharp joining at tk implies that the lag does not evolve smoothly).

To see this in more detail, consider the time t0 = tK − δt0 when the observer is just
entering the Kasner region: then we expect that the quantum extremal surface is just a
little away from the observer time slice t0. To quantify this, let us compare δt∗ in (3.7) with
δt0 (and Kc defined in (3.6)): we have

δt0 = tK − t0 > 0 ; δt∗
R2
c

= t∗ − t0
R2
c

∼ 1
2Kc

+ di − 1
2di tK

(
1 + δt0

tK

)
, (3.20)

so that for small δt0 i.e. t0 ∼ tK , the quantum extremal surface ends up being pushed to
the time-independent region (t∗ > tK). Of course as the observer moves in time further, the
QES enters the Kasner region as well. To see this further, let us compare the QES location
with the Kasner scale: with t0 . tK , we have

t∗ . tK ⇒ tK − t0
R2
c

&
1

2Kc
+ di − 1

2di t0
(3.21)

In other words, the quantum extremal surface is within the Kasner region if the observer is
sufficiently further within. The cross-over of the QES to the Kasner region occurs when
t∗ ∼ tK , i.e. when the above inequality is saturated (giving t0−tK

R2
c
∼ − 1

2Kc −
di−1
2ditK ).

The model (3.18) is just meant as a simple toy model for gaining some insight into
the evolution of the quantum extremal surface as the observer transits from the time-
independent far region into the time-dependent AdS Kasner region towards the singularity.
The existence of the time-independent far region suggests that one can prepare the initial
state as the ground state via a Euclidean continuation. Putting this on firmer footing
is however more tricky. There is a discontinuity at the t = tK slice perhaps reflecting
the fact that the Kasner time-dependence does not switch off at tK : this might imply
additional concerns in smooth time evolution into the Kasner region (without any external
energy-momentum inflow). More detailed analysis of this requires detailed understanding
of the junction conditions for joining up the spacetimes at tK . Perhaps rather than a sharp
time slice at tK , it would be more physical to find a thickened spacetime region interpolating
smoothly between the time-independent far region and the Kasner region: then the QES
lag is likely to evolve smoothly. We will leave these questions for the future.

3.3 More general 2-dim cosmologies, QES, regulated

In the previous subsections, we studied AdS-Kasner cosmologies and their 2-dim reflections
obtained by dimensional reduction (2.4), and quantum extremal surfaces. Now we will
extend this to more general 2-dim cosmologies (2.3). We have the 2-dim dilaton and metric
fields of the form

φ = trm , ef = tarb , a > 0, m < 0, b < 0 . (3.22)

Note that we have taken the time exponent of the dilaton in accord with the universality (A.3)
of the near singularity region found in [31]. We take a > 0 to simulate a Big-Crunch
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singularity at t = 0. Further we assume m, b < 0 in accord with the intuition that the
dilaton and the 2-dim metric grow towards the holographic boundary at r = 0.

The generalized entropy (3.1) and its extremization with r, t, give

c

6
r

∆2 = φr
4G
|m|t
r|m|+1 + c

12
|b|
r
,

c

6
t− t0

∆2 = φr
4G

1
r|m|

+ c

12
a

t
, (3.23)

analogous to (3.3), except that we have suppressed length scales analogous to R, tK here.
Firstly, requiring the spacelike condition ∆2 > 0 implies t∗ > t0, analogous to (3.4): this
means the QES lags behind the observer, in the direction away from the singularity at t = 0.

As noted already in [1], it is clear that the QES solution to these extremization equations
is again of the form (2.11), i.e. r∗ →∞, t∗ ∼ t0 →∞ with t∗ . r∗. In the vicinity of the
semiclassical region, analogous to the AdS Kasner case (3.5) we can recast the r-equation as

3φr
Gc

|m|t
r|m|+1 +

( |b|
r
− 2r

∆2

)
= 3φr

Gc

|m|t
r|m|+1 + |b|

r

 |b|−2
|b| r

2 − (∆t)2

r2 − (∆t)2

 = 0 . (3.24)

As in that case, with ∆t small, i.e. ∆2 ∼ r2, both terms are positive and the only solution
to this is r∗ →∞, giving the entire Poincare wedge as the entanglement wedge: there are
no islands. Now, the t-equation becomes

∆t
R2
c − (∆t)2 = 3φr

2Gc
1/tK
Rdic /Rdi

+ di − 1
2di t

, (3.25)

analogous to (3.6). As before, we are regulating the QES solution as r∗ = Rc ∼ ∞ with
some large but finite spatial cutoff Rc representing the boundary of the entanglement wedge.
Taking these regulated equations as containing finite terms we can solve for t∗, obtaining
an approximate regulated expression analogous to (3.7) after setting ∆2 ∼ R2

c and t ∼ t0.
The resulting semiclassical picture is similar to the discussion in the AdS Kasner case, with
the QES lag increasing as t0 decreases.

Now let us look for island-like solutions in these more general holographic cosmologies,
analogous to section 3.1. The corresponding island boundary here, analogous to (3.13), is

(∆t)2 &
|b| − 2
|b|

r2 . (3.26)

Analogous to (3.12) and (3.15) in the AdS Kasner case, we obtain, respectively,

∆2 = r2 − (∆t)2 ⇒ ∆t
r

=

√√√√√ |b|−2
|b| + |m|

|b|
t
K

1 + |m|
|b|

t
K

,
1
K

= 3φr
Gc

1
r|m|

, (3.27)

rearranging (3.24), and

∆t
r

=

√√√√ 1
a2

t2

r2

( 1
a
t
K + 1)2 + 1−

1
a
t
r

1
a
t
K + 1

, (3.28)

from the ∂t-equation in (3.23) regarded as a quadratic, choosing ∆t > 0.

– 13 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
1

For a nontrivial island-like solution emerging in the vicinity of (3.26), these two
expressions for ∆t

r must match: expanding, the leading order terms give

x ≡ 1
a

t

r
:

√
1 + x2 − x =

√
|b| − 2
|b|

solving−−−−→ t

r
= a√

|b|(|b| − 2)
, (3.29)

while matching the first subleading terms requires

1
a
√
|b|(|b| − 2)

(
1− 1√

|b|(|b| − 2) + 1

)
t

K
= |m|/|b|√

|b|(|b| − 2)
t

K
(3.30)

i.e.
a|m|
|b|

= 1− 1√
|b|(|b| − 2) + 1

(3.31)

For the AdS Kasner values a = di−1
di

, m = −di , b = −(di + 1), these agree with the
conditions obtained in section 3.1, which were not consistent as we saw. The condition (3.29)
gives ∆t = |b|−2

a t: this is impossible in the AdS Kasner case (3.17) as we saw. For the
hyperscaling violating cosmologies (A.5), this condition can again be shown to be impossible
to satisfy (a takes its maximum value for γ = 0). The hyperscaling violating Lifshitz
cosmologies in [31] require a = |b| − 2 , m = −1 (reviewed very briefly after (A.5)). This
gives ∆t = |b|−2

a t = t, which is satisfied for t0 = 0, but this is the location of the singularity

which is unreliable (the condition (3.31) becomes 2
b = 1√

|b|(|b|−2)+1
giving b = −2, a = 0).

Thus overall, these more general holographic cosmologies appear qualitatively similar to
the AdS Kasner case.

The conditions (3.22) on the exponents are motivated by the more general investigations
on 2-dimensional cosmologies in [31]. These investigations employ fairly general and minimal
assumptions on the effective action governing such cosmological spacetimes: the resulting
space of cosmologies is quite rich, including ones with nonrelativistic (e.g. hyperscaling
violating Lifshitz) asymptotics and boundary conditions, and they all satisfy the condi-
tions (3.22). However it would be interesting to explore the space of such cosmologies,
possibly enlarging them (including those that do not admit reduction to 2-dimensions),
towards understanding the behaviour of quantum extremal surfaces with regard to the
Big-Crunch (-Bang) singularities they may exhibit.

4 Null cosmologies and quantum extremal surfaces

We consider cosmological spacetimes with null time-dependence in this section: there are
parallels with the discussions in [34, 35, 38], as well as e.g. [53–57]. If we further require
that the higher dimensional spacetime admits dimensional reduction (2.1) to 2-dimensions,
this reduces to a restricted family of 2-dimensional backgrounds of the form

ds2 = −dx+dx− , φ = φ(x+) , Ψ = Ψ(x+) , x± = t± r . (4.1)

The 2-dim metric can always be coordinate-transformed to be flat if we only have x+-
dependence in φ, ef in the reduction ansatz (2.1), leading to the above. The upstairs
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spacetime (2.3) then is

ds2 = −φ−(di−1)/didx+dx− + φ2/didy2
i , xi = {r, yi} . (4.2)

This comprises various higher dimensional backgrounds with null singularities e.g.

ds2 = (x+)a(−dx+dx−) + (x+)bdy2
i (4.3)

which however are somewhat special, given the restriction to the 2-dimensional reduction
ansatz (2.1): thus it also does not include the null holographic AdS cosmologies in [34, 35,
55, 56] which are of the form ds2 = R2

r2 [ef(x+)(−dx+dx−+dx2
i ) +dr2]. There are qualitative

parallels however. The exponents a, b in (4.3) are related by the Einstein equations. These
are a bit similar to the null Kasner backgrounds considered in [38], except that the 2-dim
restriction implies that ef ≡ (x+)a can be absorbed by redefining the null time variable
x+ → X+ =

∫
efdx+. In writing the 2-dim backgrounds (4.1) we have effectively redefined

the lightcone variables x± in this manner. These backgrounds are likely supersymmetric.
Now the equations of motion (A.1) simplify tremendously since there is only null-time

dependence in the background ansatze (4.1): for instance all nontrivial contractions of the
form gµν∂µΨ∂νΨ ∼ g+−∂+Ψ∂−Ψ vanish since there is no x−-dependence. We also have
R = 0 since the 2-dim space is flat. Thus the equations of motion give

(++) : − ∂2
+φ−

φ

2 (∂+Ψ)2 = 0 ; (4.4)

(φ) : ∂U

∂φ
= R− 1

2(∂Ψ)2 = 0 ; (Ψ) : ∂U

∂Ψ = ∂µ(φgµν∂νΨ) = 0 .

These imply that the dilaton potential is trivial and give a single nontrivial condition from
the (++) equation relating φ,Ψ. We want to consider a Big-Crunch singularity arising at
x+ = 0 as a future null singularity, so we take x+ < 0 in our entire discussion below. Then

φ = (−x+)k , Ψ = Ψ(x+) ⇒ (∂+Ψ)2 = −2
∂2

+φ

φ
= −2k(k − 1)

(x+)2 ,

⇒ 0 < k ≤ 1 , φ = (−x+)k , eΨ = (−x+)±
√

2k(1−k) . (4.5)

While k > 0 gives vanishing dilaton as x+ → 0, the exponent of eΨ could have either sign.
The single φ,Ψ-relation allows extrapolating φ,Ψ above to asymptotically constant functions
i.e. flat space. This 2-dim background implies the upstairs background (4.2) with φ as above:
this is of the form (4.3) with a = −k(di−1)

di
and b = 2k

di
. These have Ri+i+ = k(1−k)

di (x+)2 so tidal
forces diverge (all curvature invariants vanish due to the null nature of the backgrounds).
To see this in more detail, consider a null geodesic congruence propagating along x+ with
cross-section along some yi-direction: the geodesic equation then gives

dx+

dλ2 + Γ+
++

(
dx+

dλ

)2

= 0 → λ = (x+)a+1

a+ 1 , (4.6)

where Γ+
++ = a

x+ is the only nonvanishing Γ+
ij component. Solving this leads to the affine

parameter above and the tangent vector becomes ξ = ∂λ = (dx+

dλ )∂+ so ξ+ = (x+)a.
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The relative acceleration of neighbouring geodesics then is aM = RMCDBξ
CξDnB with

n = nB∂B the unit normalized cross-sectional separation vector. Then it can be seen
that ai = Ri+i+(ξ+)2ni so |ai|2 diverges for all 0 < k < 1 leading to diverging tidal forces,
somewhat similar to the corresponding discussion in [38]. For k = 1 the spacetimes (4.2) have
all Riemann components vanishing: these can be recast as ds2 = −dX+dx− + (X+)2dy2

i

which can be shown to be flat space in null Milne coordinates (redefining Yi = X+yi,
y− = x− + y2

iX
+).

Now we analyze quantum extremal surfaces. These cosmologies have no holographic
boundary: introducing a bookkeeping φr, the generalized entropy (appendix B) is

Sgen = φr
4G(−x+)k + c

6 log(−∆x+∆x−) , (4.7)

where ∆x± = x± − x±0 characterizes the spacetime interval between the observer O and
the QES (see figure 3). Strictly speaking, there is a null Kasner scale tN here appearing as
φ = (−x+

tN
)k so φ is dimensionless: however since the 2-dim metric is flat in these variables,

tN can be absorbed into the definition of φr above: so we will suppress this (unlike the
spacelike cases in section 3 earlier). The extremization with respect to x− and x+ gives

∂−Sgen = c

6
−∆x+

−∆x+∆x− = 0 , ∂+Sgen = − φr4G
k

(−x+)1−k + c

6
∂+∆2

∆2 = 0 . (4.8)

With 0 < k < 1, the classical extremization (c = 0) gives x+ →∞: in full, we have

∆2 = −∆x+∆x− > 0 , ∆x− = x− − x−0 → −∞ , − 1
(−x+)1−k + 2Gc

3φrk
1

x+ − x+
0

= 0 ,

(4.9)
so

∆x+ > 0, x+
∗ = x+

0 + 2Gc
3kφr

(−x+
∗ )1−k > x+

0 ; ∆x− < 0, x−∗ → X−c ∼ −∞ . (4.10)

This is best visualized as in figure 3: we describe this further below. From (2.7), we have
Gc� 1 so that x+ ∼ x+

0 upto small corrections (with k 6= 0). Thus employing perturbation
theory in Gc, we obtain

x+
∗ ∼ x+

0 + 2Gc
3kφr

(−x+
0 )1−k , (4.11)

i.e. the QES is almost on the same null-time (x+) slice as the observer, but just a little
towards the null singularity (using absolute values gives |x+| − |x+

0 | ∼ − 2Gc
3kφr |x

+
0 |1−k). The

location of the QES as being towards the singularity rather than away as in the spacelike
cases may look surprising at first sight. However from figure 3, drawing constant x+ and
x− slices, it is clear that the location of the QES with ∆x+ > 0 and ∆x− → −∞ is
geometrically reasonable and expected if the QES and the observer are to be spacelike
separated (∆x+ < 0 gives timelike separation between the QES and the observer). In terms
of the (t, r)-coordinates (4.1), figure 3 can be taken to depict the region with x+ = t+ r < 0
in the (t, r)-plane, with the singularity locus being t + r = 0 and the timelike observer
worldline having some fixed r0 with t0 < 0. The description in figure 3 continues to hold
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0

+ −
*

singularity

x  =0
+

QES

(x  ,x  )
*

x+x−

observer
O

(x   ,x   )+ −
0

entanglement
wedge

Figure 3. Cartoon of the 2-dim geometry with the null singularity at x+ = 0, the worldline (x+
0 , x

−
0 )

of a timelike observer (vertical trajectory, representing for simplicity a fixed spatial location), and
the quantum extremal surface at (x+

∗ , x
−
∗ ). As can be seen, the QES is spacelike separated from

the observer (∆2 > 0) if ∆x+ > 0 and ∆x− ∼ −∞, and lies towards the singularity in terms of
x+-slices. The entanglement wedge defined by the QES is shown as the blue wedge.

as long as the observer remains timelike: it also holds if the observer is moving along a
null trajectory along x+ with fixed x−. As a further check, we see that this extremization
exhibits time-maximization with null time (x+): we have, using (4.10),

∂2
+Sgen = −k(1− k) φr4G(−x+)k−2 − c

6
1

(x+ − x+
0 )2 → ∂2

+Sgen|∗ < 0 . (4.12)

Note however that ∂2
−Sgen = − c

6
1

(∆x−)2 → 0− from (4.8). This should not be surprising:
the 2-dim space here is flat and the absence of the bulk gravitational field makes it quite
different from AdS-like spaces (e.g. an expression like S ∼ log r gives ∂2

rS ∼ − 1
r2 → 0−).

As examples of (4.7), we see that for a nearly smooth space e.g. with k = ε� 1, (4.10)
gives x+

∗ ∼ (1− 2Gc
3εφr )x+

0 . The case k = 2
3 gives the cubic

x+
∗ = −t3 : t3 + Gc

φr
t− |x+

0 | = 0 , (4.13)

which can be shown to have one real root which satisfies ∆x+ > 0 and agrees with (4.11)
in perturbation theory in Gc. For generic k values, recasting using x+ = −y

1
1−k , it can

be seen numerically that there is one real root satisfying ∆x+ > 0. Along these lines, for
values such as k = 1

2 we choose the positive root of the resulting quadratic in continuity
with neighbouring k values, which then again gives ∆x+ > 0.

Note that these null cosmological singularities are somewhat different from the spacelike
ones: for instance the extremization (4.10) shows that the singularity locus x+ = 0 is in fact
an allowed QES solution when x+

0 = 0. The behaviour near x+ = 0 can be seen explicitly
in examples including (4.13), e.g. numerically. Thus these null singularities appear to not
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be excluded from the entanglement wedge of the observer. However the on-shell generalized
entropy (4.7) continues to be singular generically in the vicinity of the singularity: (4.10) gives

So.s.
gen = φr

4G(−x+
∗ )k + c

6 log
(

2Gc
3kφr

(−x+
∗ )1−k |X−c |
ε2UV

)
. (4.14)

Thus although formal extrapolation to the singularity appears possible, the above implies
that the QES (4.10) is only reliable in the semiclassical regime with large x+

∗ and Gc� 1
(where the Bekenstein bound does not appear violated). Also since So.s.

gen appears singular,
further subleading contributions beyond the bulk entropy term presumably also must be
considered. It was observed in [38] that strings become highly excited in the vicinity of
a null Kasner Big-Crunch singularity (see also [53, 57]). It is likely that this will be true
for (4.3) as well. In this regard, note that the backgrounds (4.1) necessarily require the extra
scalar eΨ to be nontrivial: interpreting this as the string coupling gs = eΨ and choosing the
negative sign exponent for eΨ in (4.5) suggests large string interactions in the vicinity of the
singularity x+ = 0. It is conceivable however that in some appropriate double-scaling limit
x+
∗ → 0, X−c → −∞, with 2Gc

3kφr
(−x+

∗ )1−k |X−c |
εUV

held fixed, the generalized entropy can be
rendered nonsingular. It would be nice to explore this more carefully, perhaps dovetailing
with the positive sign exponent for eΨ in (4.5) and suppressed string interactions.

It is interesting to note that there is an entire function-worth of nontrivial null back-
grounds in (4.1), as (4.4) shows. This is a special feature of 2-dim spacetimes that have
a “holomorphic” structure, as is the case here with solely x+-dependence: for instance
the backgrounds (4.3) can be recast by redefining the null-time variable to give (4.1), so
that the 2-dim metric is flat in these x±-coordinates.3 Spacelike cosmological singularities
generically do not exhibit any such “holomorphy” and cannot generically be recast in flat
coordinates and the metric factor ef lingers. This holomorphy shows up in the extremization
equations (4.8), (4.10), where the x± sectors decouple (in contrast with e.g. (3.3) in the AdS
Kasner case, and more generally (3.1)). In fact, considering generic 2-dim backgrounds (4.1),
extremizing the generalized entropy gives

∂+Sgen = 0 → ∂+φ+ 2Gc
3φr

1
x+ − x+

0
= 0 → x+ − x+

0 = −2Gc
3φr

1
∂+φ

, (4.15)

again exhibiting this holomorphicity. From the logic in figure 3 with ∆2 > 0 and ∆x+ > 0,
∆x− → −∞, this implies that the quantum extremal surface must lie in the direction of
decreasing dilaton, i.e. ∂+φ < 0. This is consistent with our earlier discussion since the
dilaton Crunches towards decreasing x+.

3Instead of these “flat” variables, had we taken the background to be

ef = (X+)α , φ = (X+)K , → (∂+Ψ)2 = 2K(α−K + 1)
(X+)2 → 0 < K ≤ α+ 1 .

In other words, the exponent k earlier is related as k = K
α+1 . Now the generalized entropy contains the

metric factor ef/2|∗, thus appearing singular.
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5 Other cosmologies and QES

In this section, we will study other cosmological backgrounds, in particular de Sitter space
in the Poincare slicing and FRW universes under certain conditions. One might take these
to have natural asymptotics at future or past timelike infinity, and are thus quite different
from the previous discussions on AdS-like or null cosmologies where the asymptotics are at
spatial or null infinity. As we will see (and has been noted previously), the extremal surface
structure is rather different in these cases below: in some sense we are simply extending
our previous investigations in some formal way to the cosmologies below, with the hope
that better understanding will emerge over time.

5.1 de Sitter, Poincare

de Sitter space dSdi+1 in the Poincare slicing and its 2-dim reduction are

ds2 = R2

τ2 (−dτ2+dx2+dy2
i ) → φ= Rdi

(−τ)di , ds2 = Rdi+1

(−τ)di+1 (−dτ2+dx2) . (5.1)

We are parametrizing the upper Poincare patch with the future boundary I+ at τ = 0 and
the past horizon at τ → −∞, and −∞ < τ < 0 generically so the minus signs are explicitly
retained. As τ increases to the future, the dilaton grows. There is a singularity at τ → −∞
in the effective 2-dim space: the space is conformally dS2 (there are some parallels with the
discussions of AdSD reductions in [32]).

In this inflationary patch, we take the observer to be in the ground state, so the bulk
entropy is given by the ground state expression. Then the generalized entropy for a bulk
observer on a static worldline at say (x0, τ0) is (see appendix B)

Sgen = φr
4G

Rdi

(−τ)di + c

6 log
(

∆2 R(di+1)/2

(−τ)(di+1)/2

)
, (5.2)

retaining only terms relevant for extremization. Then extremization gives

c

3
∆x
∆2 = 0 , −

(
−diφr4G

Rdi

(−τ)di+1 −
c

12
di + 1
(−τ)

)
− c

3
τ − τ0

∆2 = 0 . (5.3)

One solution to this is

∆x = 0 , ∆2 = −(τ − τ0)2 ; diφr
4G

Rdi

(−τ)di+1 + c

12
di + 1
(−τ) + c

3
1

τ − τ0
= 0 . (5.4)

For a late time observer with τ0 ∼ 0, we have

∆x = 0 , diφr
4G

Rdi

(−τ)di+1 + c

12
3− di
τ

= 0 → τ∗ = −R
(

di
3− di

3φr
Gc

)1/di
(5.5)

Note that we are looking for a solution with τ < 0 as per our parametrization: so for di ≥ 3
(i.e. dS5 and higher) the only real QES solution is τ → −∞. For di = 1 this matches the
result in [17] ((5.2) matches eq. 6.7 there).
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Most notably, the above QES solution is timelike-separated from the observer: so
∆2 < 0 (unlike e.g. (3.4), (4.9)) and the generalized entropy (5.2) has an imaginary part
from log(−1). In the spirit of our earlier discussions, it is interesting to look for quantum
extremal surfaces that are spacelike-separated from the observer: towards this, note that
there is a distinct family of solutions which by construction are spacelike-separated, along
the lines of the discussions in the cosmologies earlier with a regulator. Then (5.3) gives

∆2 ∼ R2
c ,

diφr
4G

Rdi

(−τ)di+1 + c

12
di + 1
(−τ) ∼

c

3
τ − τ0
R2
c

, (5.6)

regulating the QES as before with a spatial cutoff Rc. First, note that if we remove the
regulator so Rc →∞, then we obtain (with t ≡ −τ > 0)

diφr
4G

Rdi

tdi+1 + c

12
di + 1
t

= 0 . (5.7)

Both terms have the same sign so the only real QES is at τ → −∞. This is spacelike
separated only if the observer is also localized at sufficiently early times.

With a finite spatial regulator Rc, we see that in general τ > τ0, i.e. the QES lies on
time slices later than the observer. As a first approximation, note that in the classical limit
c → 0, the solution is τ → −∞: this is the location where the dilaton is minimized. For
early times also, the solution is similar, i.e.

|τ0| � R : τ → −∞ , τ ∼ τ0 , (5.8)

i.e. the QES is in the far past when the observer is also in the far past. This can be seen to
exhibit time-maximization. Let us analyze (5.6) for 4-dim de Sitter upstairs (di = 2): then

∆2 ∼ R2
c ,

φr
2G

R2

(−τ)3 + c

12
3

(−τ) ∼
c

6
τ − τ0
R2
c

. (5.9)

With t ≡ −τ , we can rewrite this as

∆2 ∼ R2
c ,

6φr
Gc

R2R2
c + 3R2

c t
2 ∼ 2t3(t0 − t) → t4 − t0t3 + 3R2

c

2 t2 + 3φr
Gc

R2R2
c ∼ 0 .
(5.10)

Clearly as t0 → 0, there is no real QES solution since all terms are positive (there appears
to be a critical t0 where the real QES (5.8) stops existing). dSdi+1 can be seen to exhibit
similar behaviour.

Overall, in some essential sense, the physical interpretation of the generalized entropy
in these cases is not transparent, for instance as holographic entanglement in the dual
boundary theory, along the lines of the AdS cases (even from a bulk point of view alone, the
timelike separation is unconventional compared with the usual formulations of entanglement
on a spatial slice). However our discussion appears to corroborate previous work on classical
de Sitter extremal surfaces. Taking the future boundary as a natural anchor in dS, there are
either complex extremal surfaces [58–60] or future-past (timelike) extremal surfaces [61, 62].
The latter future-past surfaces perhaps suggest some new “temporal entanglement” between
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I±: taking the area of such surfaces to be real is effectively removing an overall i-factor
which would arise from rotating a spatial extremal surface to a timelike one (this is also
vindicated by the complex generalized entropy (5.2), (5.4), generalizing [17] for dS2). Overall
perhaps this suggests new interpretations towards entanglement in de Sitter space based on
the future boundary and dS/CFT [63–65]. The dS/CFT dictionary ΨdS = ZCFT suggests
that boundary entanglement is not bulk entanglement (quite unlike Zbulk = ZCFT in AdS).
Bulk observables require |ΨdS|2 suggesting two copies of the dual CFT: this is reflected in
the future-past extremal surfaces [61, 62] alluded to above. Other recent perspectives on
extremal surfaces anchored on the de Sitter horizon include e.g. [66].

5.2 FRW cosmologies, 2-dim gravity and QES

Consider FRW cosmologies with flat spatial sections sourced by a scalar field Ψ (general
reviews include e.g. [67, 68]4): we choose one of the spatial directions to be noncompact
and perform dimensional reduction on the others to obtain a 2-dim background

ds2 = −dt2 + a(t)2dx2
i → φ = adi , ds2 = adi+1(−dτ2 + dx2) , (5.11)

as a solution to (2.2), (A.1), (A.2). The energy-momentum conservation equation gives
dE + pdV = d(ρ adi+1) + pd(adi+1) = 0, i.e. ρ̇+ (di + 1)H(ρ+ p) = 0. This along with the
Friedmann equation and the equation of state p = wρ gives FRW cosmologies with

p = wρ , a ∼ tk , k = 2
(1 + di)(1 + w)

[
ρ = 1

2Ψ̇2 − V , p = 1
2Ψ̇2 + V

]
(5.12)

Now using conformal time τ gives

dτ = dt

a(t) → τ ∼ t1−k → a(τ) ∼
( τ
τF

) k
1−k ≡

( τ
τF

)ν
, (5.13)

introducing the FRW scale τF so the scale factor becomes dimensionless: τF controls the
strength of time-dependence in these backgrounds, analogous to tK in (3.2). Note that the
above FRW description is slightly different from focussing on the vicinity of the singularity
as in [31]: taking dominant time derivatives implies Ψ̇2 � V so p ∼ ρ, i.e. w ∼ 1, giving
ν = 1

di
so φ = adi ∼ τ in agreement with the universality (A.3). More generally the physical

bounds on the equation of state parameter w translate to corresponding regimes for ν:

ν = 2
(1 + di)(1 + w)− 2 ; −1 ≤ w ≤ 1 ⇒ ν >

1
di

or ν ≤ −1 . (5.14)

Now we analyse quantum extremal surfaces here. In general the bulk matter entropy
corresponds to some excited state, such as the thermal state. A variety of such studies for
FRW cosmologies including entanglement with auxiliary universes appears in [18], revealing
islands in various cases. Our discussion here will be limited to simply extending the earlier
de Sitter QES solutions to certain FRW cases, which correspond to matter in the ground

4See also lectures by D. Baumann at http://cosmology.amsterdam/.
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state (as may arise for pressureless matter with w = 0). The generalized entropy for an
observer in such a background is (see appendix B)

Sgen = adi

4G + c

6 log
(
∆2 a(di+1)/2|(τ,r)

)
, ∆2 = (∆x)2 − (τ − τ0)2 , (5.15)

where we are using conformal time τ in the 2-dim theory. Now extremization gives

∂xSgen = c

6
∂x∆2

∆2 = 0 , ∂τSgen = dia
di−1 ∂τa

4G + c

12
(di + 1)∂τa

a
+ c

6
∂τ∆2

∆2 = 0 ,

−→ c

3
∆x
∆2 = 0 , diν

4G
τνdi−1

τνdiF

+ c

12
(di + 1)ν

τ
− c

3
τ − τ0

∆2 = 0 , (5.16)

using (5.13), (5.14). First considering timelike separated QES, we have

∆x = 0 , ∆2 = −(τ − τ0)2 ; diν

4G
τνdi−1

τνdiF

+ c

12
(di + 1)ν

τ
+ c

3
1

τ − τ0
= 0 , (5.17)

analogous to (5.4) in the de Sitter case ν = −1: for ν < −1 the nature of these timelike
QES is similar. For νdi > 1, taking the first term to be dominant over the second gives

ν >
1
di

: diν

4G
τνdi−1

τνdiF

+ c

3
1

τ − τ0
∼ 0 [τ & τF ] , (5.18)

which is structurally similar to (4.9), with corresponding QES solutions (with τ∗ − τ0 < 0),
valid for τ large compared to τF . Since these are timelike-separated, the on-shell generalized
entropy acquires an imaginary part from log(−1) in ∆2 < 0, similar to (5.4).

Alternatively, looking for spacelike separated QES along the lines of (5.6) gives

∆2 ∼ R2
c ,

diν

4G
τνdi−1

τνdiF

+ c

12
(di + 1)ν

τ
∼ c

3
τ − τ0
R2
c

. (5.19)

We are looking in the region of slow time evolution i.e. large τ & τF (far from the singularity
at τ = 0), towards understanding the evolution of the QES with the observer time τ0. Then
for any ν > 0, we have τν−1 > τ−1 so we can approximate the time extremization equation as

diν

4G
τνdi−1

τνdiF

∼ c

3
τ − τ0
R2
c

→ τνdi−1 ∼ 4Gc
3diν

τνdiF

R2
c

(τ − τ0). (5.20)

This equation while tricky in general does have solutions at least for specific families of ν.
For instance pressureless dust has w = 0 so using (5.14) we have

w = 0 i.e. ν = 2
di − 1

di=2−−−→ τ3 ∼ Gc τ4
F

3R2
c

(τ − τ0) ,

di=3−−−→ τ2 ∼ 4Gc τ3
F

9R2
c

(τ − τ0) , (5.21)

both of which admit real solutions as long as Gcτ
νdi
F

R2
c

lies in appropriate regimes with regard

to τ0. For instance the di = 3 case requires 4Gc τ3
F

9R2
c

> 4τ0 for reality. Since the spatial
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regulator Rc →∞ strictly speaking, it is clear that these solutions only make sense in a
limit where we take c small and Rc large holding the above condition fixed: so the existence
of these spacelike-separated QES solutions is not generic.

For generic scalar configurations, it is more appropriate to consider bulk entropy
contributions that are not those pertaining to the ground state: then Sgen = adi

4G + Sb gives
di ∂τa

4G + ∂τSb = 0. Discussions of this sort have previously appeared in e.g. [18]. When Sb
overpowers the classical area term, the Bekenstein bound is violated and islands can arise if
further conditions hold. For Sb representing bulk matter in some mixed state, one might
imagine some auxiliary purifying universe “elsewhere” which could then lead to islands. We
will not discuss this further here.

6 Discussion

We have discussed quantum extremal surfaces in various cosmological spacetimes with Big-
Crunch singularities, developing further the investigations in [1]. The generalized entropy
here is studied in 2-dimensional cosmologies obtainable in part from dimensional reduction
of higher dimensional cosmologies: the bulk matter is taken to be in the ground state, which
is reasonable in the semiclassical region far from the singularity. First we focussed on the
isotropic AdS Kasner spacetime and its reduction to 2-dimensions: the quantum extremal
surfaces in [1] were found to be driven to the semiclassical region infinitely far from the Big-
Crunch singularities present in these backgrounds (the classical RT/HRT surfaces for finite
subregion size bend in the direction away from the singularity, figure 1). Analysing further,
the spatial extremization equation (3.5) shows that in the semiclassical region, the QES
location leads to the entire Poincare wedge, with no island-like regions. Introducing a spatial
regulator in the time extremization equation (3.6) enables understanding the dependence
of the QES on the observer’s location in time. This shows that the QES lags behind the
observer location, in the direction away from the singularity, as in figure 2. The lag can
be seen to increase slowly as the observer evolves towards the singularity: extrapolating
shows that the singularity t = 0 is not a solution to the extremization equations. Thus the
entanglement wedge appears to exclude the near singularity region. Removing the regulator
recovers the results in [1]. The spatial extremization equation (3.5) shows an island-like
region emerging for (3.13). However analysing carefully the extremization equations recast
as (3.12), (3.15), in the vicinity of this island boundary reveals that the potential island-like
solution is in fact inconsistent. Appending a time-independent far region joined with the
AdS Kasner region at the time slice t = tK as in (3.18) gives further insight on the QES
behaviour. This QES analysis in the AdS Kasner case extends to more general singularities
admitting a holographic interpretation, with similar QES behaviour (3.24), (3.25), in the
semiclassical region, and inconsistencies near a potential island boundary (3.26). These
cosmologies include nonrelativistic asymptotics: the assumptions on the exponents (3.22)
are fairly general.

In section 4, we studied certain families of null Big-Crunch singularities, which exhibit
a certain “holomorphy” due to special properties of null backgrounds. These are distinct
in the behaviour of the quantum extremal surface figure 3, which can now reach the
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singularity: however the on-shell generalized entropy continues to be singular so the vicinity
of singularity is not reliable. In all these cases, the QES is manifestly spacelike-separated from
the observer (e.g. (3.4), (4.9)), consistent with its interpretation as holographic entanglement.
We then discuss aspects of 2-dimensional effective theories involving dimensional reduction
of other cosmologies including de Sitter space (Poincare slicing) and FRW cosmologies.
In these cases, there are families of QES solutions which are timelike-separated from the
observer (5.4), (5.17) (the dS case here is in part a generalization of some results in [17] for
the dS2 case): correspondingly the generalized entropy acquires an imaginary part. We also
find real spacelike-separated QES solutions in the presence of finite spatial regulators (5.6).
In de Sitter, these real solutions cease to exist for the late-time observer. Overall this
perhaps corroborates earlier studies of classical extremal surfaces anchored at the future
boundary [58–62]: see the discussion at the end of section 5.1.

Our investigations here have been on using quantum extremal surfaces to gain some
insights on cosmological spacetimes containing Big-Crunch singularities: all these admit
the form of a 2-dimensional cosmology and thus exclude more general cosmologies that do
not admit a reduction to 2-dimensions. Most of our discussions pertain to bulk matter in
the ground state, which is reasonable far from the singularities in the cosmologies we have
discussed. Overall the cosmologies we have considered are closed universes with no horizons,
no appreciable entropy and no additional non-gravitating bath regions: in such cases islands
are not generic (there are parallels with some discussions in [69]). This is consistent with pre-
vious studies of closed universes with no entanglement with “elsewhere”, i.e. regions external
to the universes in question which might act as purifiers for mixed states. This is consistent
with the Bekenstein bound not being violated, i.e. the bulk entropy does not overpower the
classical area in the generalized entropy. Our discussion of de Sitter space pertains only to
the Poincare slicing: see e.g. [18, 22] for other discussions of de Sitter. The FRW discussions
also must be extended to cases with bulk matter in excited states far from the ground state:
in this case islands will appear, corresponding to violations of the Bekenstein bound.

Perhaps the most interesting question pertains to studying more interesting models for
bulk matter in the near-singularity spacetime region where the matter might be expected
to get highly excited. Presumably incorporating analogs of more “stringy” or quantum
entanglement will give more insights into how the near singularity region is accessible via
entanglement (with the null singularities perhaps more tractable).

At a more broad brush level, in some essential ways, cosmological singularities in
holography are perhaps qualitatively different from black holes. They appear to require
nontrivial non-generic initial conditions: generic time-dependent deformations of the CFT
vacuum are expected to thermalize on long timescales, leading to black hole formation in the
bulk rather than a Big-Crunch. This appears consistent with our finding that e.g. the AdS
Kasner and other holographic cosmological singularities are inaccessible via entanglement
with conventional ground state bulk matter: perhaps this corroborates the expectation of
non-generic holographic dual states (see discussion after (2.4) and also other related studies
e.g. [51, 52] of such singularities and complexity). It would be interesting to gain more
insights into the role of holographic entanglement, quantum extremal surfaces and islands
in cosmology more broadly.
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A Some details: 2-dim gravity, extremal surfaces

The equations of motion following from the 2-dim effective action (2.2) are

gµν∇2φ−∇µ∇νφ+ gµν
2

(
φ

2 (∂Ψ)2 + U

)
− φ

2∂µΨ∂νΨ = 0 ,

R− ∂U

∂φ
− 1

2(∂Ψ)2 = 0 , 1√
−g

∂µ(
√
−g φ∂µΨ)− ∂U

∂Ψ = 0 . (A.1)

In conformal gauge gµν = efηµν these give

(tr) ∂t∂rφ−
1
2f
′∂tφ−

1
2 ḟ∂rφ+ φ

2 Ψ̇Ψ′ = 0 ,

(rr + tt) −∂2
t φ− ∂2

rφ+ ḟ∂tφ+ f ′∂rφ−
φ

2 (Ψ̇)2 − φ

2 (Ψ′)2 = 0,

(rr − tt) −∂2
t φ+ ∂2

rφ+ efU = 0 , (A.2)

(φ)
(
f̈ − f ′′

)
− 1

2(−(Ψ̇)2 + (Ψ′)2)− ef ∂U
∂φ

= 0,

(Ψ) −∂t(φ∂tΨ) + ∂r(φ∂rΨ)− ef ∂U
∂Ψ = 0 .

The severe (singular) time-dependence in the vicinity of the singularity implies that time-
derivative terms are dominant while other terms, in particular pertaining to the dilaton
potential, are irrelevant there: solving these leads to a “universal” subsector

φ ∼ t, ef ∼ ta, eΨ ∼ tα; a = α2

2 , (A.3)

which governs the cosmological singularity. Analysing these equations in more detail can be
done using the ansatz (2.3), giving e.g. the AdS Kasner cosmology (2.4) as well as various
others, some of which have nonrelativistic (hyperscaling violating Lifshitz) asymptotics.
For instance, flat space has U = 0, giving

φ = t, ds2 = tα
2/2(−dt2 + dr2), eΨ = tα . (A.4)

With t = T 1−p1 , these are the reduction of “mostly isotropic” Kasner singularities ds2 =
−dt2 + t2p1dx2

1 + t2p2
∑
i dx

2
i . Hyperscaling violating cosmologies comprise backgrounds (2.3)

with exponents and parameters:

U(φ,Ψ) = 2Λφ
1
di eγΨ , Λ = −1

2(di + 1− θ)(di − θ), γ = −2θ√
2di(di − θ)(−θ)

,

m = −(di − θ) , b = m(1 + di)
di

, β = −mγ ,

k = 1, a = α2

2 , α = −γ ±
√
γ2 + 2(di − 1)

di
. (A.5)
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Here θ < 0, γ > 0. The higher dimensional backgrounds here can be obtained as certain kinds
of cosmological deformations of reductions of nonconformal branes down to D dimensions.

Still more complicated hyperscaling violating Lifshitz cosmologies (with nontrivial
Lifshitz exponents z as well) and their 2-dimensional avatars were also obtained in [31]:
these have a more complicated dilaton potential. These are more constrained, requiring the
conditions m = −1, a = −b− 2, as well as further relations between other exponents. A
simple example has θ = 0, z = 2, di = 2, and k = 1, m = −1, a = 1

2 , b = −5
2 , β = −α = 1,

and the dilaton potential is U = φ1/2(−3 + 1
φ2 e
−2Ψ).

Extremal (RT/HRT) surfaces. The area functional

S = Vdi−1
4Gdi+2

∫
dr φ

√
ef

φ(di+1)/di

(
1− (∂rt)2)+ (∂rx)2 (A.6)

upon extremizing x(r) gives

(∂rx)2 = A2
ef

φ(di+1)/di

(
1− (∂rt)2)

φ2 −A2 , S = Vdi−1
4Gdi+2

∫
dr

ef/2 φ(3−1/di)/2√
φ2 −A2

√
1− (∂rt)2 .

(A.7)
In the above expressions, A is the turning point A = φ∗ = t∗

r
di
∗

for the AdS Kasner
case (2.4). Analysing these extremal surfaces is reliable in the semiclassical region far
from the singularity at t = 0. In this region, a detailed analysis of the time extremization
equation leads to (2.5): the surface lies almost on a constant time slice (t′′ � 1) and can be
shown to bend in the direction away from the singularity, as depicted in figure 1.

B Some details on 2d CFT and entanglement entropy

Any 2-dim metric is conformally flat so ds2 = efηµνdx
µdxν . We can then modify the

Calabrese-Cardy result [47, 48], in particular taking the ground state entanglement in flat
space and then incorporating the effects of the conformal transformation ef as in [3]. The
twist operator 2-point function scales under a conformal transformation as

〈σ(x1)σ(x2)〉efg = e−∆n f/2|x1 e
−∆n f/2|x2 〈σ(x1)σ(x2)〉g , ∆n = c

12
n2 − 1
n

. (B.1)

Since the partition function in the presence of twist operators scales as the twist operator
2-point function, the entanglement entropy becomes

S12
efg = − lim

n→1
∂n〈σ(x1)σ(x2)〉efg = S12

g + c

6
∑

endpoints
log ef/2 . (B.2)

For a bulk interval, this gives

S12
g = c

6 log
(

∆2

ε2UV

)
→ S12

efg = c

6 log
(

∆2

ε2UV
ef/2|1 ef/2|2

)
(B.3)
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while for a CFT with boundary, we have essentially half the flat space answer (with one
end of the interval at the boundary), thus obtaining

S10
g = c

12 log
(

∆2

ε2UV

)
→ S10

efg = c

12 log
(

∆2

ε2UV
ef |1

)
(B.4)

We have used the latter in the AdS cases which include the presence of the AdS boundary,
while for the bulk cases we use the former expression.
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